
Universität Essen
information systems and software engineering

department 5, information systems

Universitätsstraße 9

D-45141 Essen

Seminar work DII:

Design and implementation of a

web-based calendar system
(WML - Version)

Submitted the department of economic science

of the University of Essen from

Ednan Masovic

Süllenstr. 78

40599 Düsseldorf

Matr-Nr. : 1080774

responsible person: Reinhold Klapsing

delivered at: 10. Dezember 2000 (WS 2000/01)

 1

Table of contents
1. Introduction ___2

1.1 „Web-Calendar“___3

1.2 Milestones of the work ___3

2. Requirements analysis___4

2.1 Retrieving of personal appointments by the Web__________________4

2.2 Emphasis of this work__5

2.3 Needed components __5

3. System architecture ___8

3.1 Clients ___8

3.2 HTTP and WAP ___8

3.3 WWW-Server__9

3.4 HTML vs. WML___9

3.5 Starting up a session - login.rxx & cgi____________________________10

3.6 View selection - diary.rxx & cgi__________________________________10

4. Class system __12

4.1 UseCase-Notation___12

4.2 Class documentation __14

5. Scripts___22

5.1 login.cgi___22

5.2 login.rxx __22

5.3 diary.cgi __23

5.4 diary.rxx__23

6. Database conception ___24

6.1 „CalendarStore“ __24

7. Screenshots of the prototype ___25

7.1 Login-Menu __25

7.2 Main-Menu ___26

7.3 View-Types ___27

8. Future Work__28

9. Search results___29

References__29

Software / Literature ___30

 2

1. Introduction
If the Web information are made available not only in HTML [5] but also in WML [2] via

a WAP-gateway [3] then you do not only achieve one of the classical Internet user, who

uses the local terminals (PC, TV,...) for „Internet-Surfing“ but also the substantially more

strongly growing number of persons, who possess a mobile device (e.g. WAP-device) and

gots informations with it.

A combined use of local and mobile devices for "Internet Surfing" would be the alternative

to achieve a larger number of Internet users and to broadcast the own Web information to a

broader mass than up to now (only in HTML [5]!).

A critical aspect with the development of HTML and WML [5,2] information systems is

the developping time and the associated costs, since one the information must be available

always in two versions on the Web server. There are special WAP gateways, which tries to

convert existing HTML information, so well goes, automatically in WML [2]. Usually

such a automated transformation is not sufficient however, because the information for the

small displays must be structured completely differently. That means each updating of the

HTML files draws updating of the WML files after itself and the work expended would

almost double itself.

A further important aspect are the relatively high costs, which come to the Internet user if

he uses the mobile device, since "Internet-Surfing" is up-to-date with local terminals 20

times more favorable than with mobile devices.

Also the input comfort (mouse, PC keyboard (101/102 keys)) is locally by far better and

the relatively large and multicolored display (PC monitor) increases the legibility of the

data. So the user can dedicates themselves completely to its original intention, to the

information query, without watching on the clock and trying with the 20 keys, which are

usualy available on mobile devices, to manage the "Web jungle".

All these aspects play a central role during the system development and - implementation

of the "Web Calendar", as hybrid web information system for local and mobile devices,

i.e. the information are made available in HTML and WML. This document deals with the

development and implementation of the WML version of the system available at:

http://swt.wi- inf.uni-essen.de/~emasovic/.

The HTML version processes Thomas Jungmann in his work available at:

 http://swt.wi- inf.uni-essen.de/~tjungman/

 3

1.1 „Web-Calendar“

In this work both, the HTML and the WML contents, are not static files. They are

generated automatically and dynamically from the information stored in the database

“CalendarStore” by "Rexx" scripts. The updating of the HTML and WML files is limited

to the updating of the used database "CalendarStore“. The time invested in the updating of

the combined Web information remains equivalent large to single solution (only HTML!).

The costs for the user of the mobile Web supply can be influenced unfortunately only

indirectly by trying to design the pages "as simple and practical as possible", i.e. not to

offer multimedially complex solutions for the mobile devices, since these are connected

with long loading times and cause therefore higher costs.

The relatively worse input modes of the mobile devices (only a digit block) are only used

for navigation and the data inputs has to be reduced to the most necessary ones (username

and password). In this work the appointments are maintained locally with the HTML

Browser and only recalled mobilely with the WAP capable device. The actual appointment

the user agent gets in 2 to 5 steps over a simple and self-describing navigation structure

(see the chapter 7 - " Screenshots of the prototype ").

1.2 Milestones of the work

In the further process of the document first the system is independently of the used

scripting language developed and afterwards in Rexx implemented. The description of the

Rexx specific implementation can be found in chapters 4 and 5. The remaining sections

deal with the documentation of the system independently of the used scripting language.

A prototype for mobile devices (only retrieve of appointments!) can be found at:

http://swt.wi-inf.uni-essen.de/~emasovic/index.wml

The HTML-prototype (edit, retrieve,… of appointments!) can be found at:

http://swt.wi-inf.uni-essen.de/~tjungman/logon.html

 4

2. Requirements analysis
2.1 Retrieving of personal appointments by the Web

The task is to create a web-based application, which enables the user agent to retrieve

existing entries from its personal appointment calendar by mobile devices (WAP-device).

The specifications for WML and WAP are to be found in the references [2,3]. At present

the most of the WAP devices, which are used up-to-date by users, do not completely

supports even the version 1.1 of WML (defined 1999). For this reason when testing the

system an emulator of the first WAP capable device is used, the “Nokia 7110”. The

emulator: “NOKIA WAP Toolkit version 2.0” offers Nokia to each WAP developer free of

charge at the disposal: http://www.forum.nokia.com/ .

Application is implemented over WML-form (“GET”-method), which communicates over

the pre-defined CGI [6] with Rexx-scripts.

The respective appointments are administered in a SQL database, which is addressed by

appropriate Rexx procedures. The data as well as the procedures for data manipulation

(insert, delete and edit) generates Thomas Jungmann in the context of his project.

Application must offer a authentification mechanism (e.g. password query), in order to

check the identity of the user agent and to show the user specific appointments.

A following Session-Management [5] manages the problems of the used HTTP [7] with

establishing a permanent connection, i.e. a authentification is necessary only at the first

request. At no further request the session is to be terminated automatically after exceeding

of a given time limit or by the user agent (logout).

Due to the relatively bad input possibilities (no mouse, compact keyboard...) of the used

mobile devices the appointments are to be retrieved with few keyboard entries.

 5

2.2 Emphasis of this work

- Apart from the user specific information query from a SQL database is afterwards the

dynamically generated WML output for WAP Devices, which support WML1.1 [2] to

be "optimal" arranged.

- Furthermore this work demonstrates nearly the technical possibilities, which are given

on the market by the different manufacturers of mobile devices, today.

- The question is to be clarified, in what respect the different standards become

transferred by the manufacturers, e.g. WML 1.1[3], WML 1.2, WML 1.3.

- A further important aspect is the use of Object Rexx as Scripting engine and the

associated difficulties with the implementation of the prototype.

2.3 Needed components

components to be developed

 6

2.3.1 Session-Management

Transaction procedure with HTTP

- Connection establishment by the user agent

- Request: of the user agent to the WWW server a certain object to transmit

- Response: of the WWW-Servers

- Connection closed

After each request the Web server goes into its origin status back. It does not exist a

possibility for the web server to bring two sequential requests in connection and so to start

up a session. The session management eliminates this "weakness" of the HTTP [7] and

enables a session between the client and the server. There are exactly three mechanisms to

arrange a session with HTTP:

- Hidden-Form-Fields specified in HTML 4.01[5]

- Post-Fields specified in WML 1.1 [2]

- Cookies specified in [RFC2109]

- PATH-Info specified in CGI [6]

In this work the Post-Fields are used to insert a unique character string in each displayed

page (session Identifier) for the identification of the users. This unique character string

transmits the user agent with each request to the server.

e.g. („Index.wml“) for Postfields:

<do type="accept" label="login">
 <go href="cgi-bin/login.cgi" method="get">
 <postfield name="user" value="$(user)" />
 <postfield name="pw" value="$(pw)" />
 </go>
</do>

 7

2.3.2 Rexx-Scripts

The application is implemented with Object Rexx - classes and - scripts. The scripts are

needed for access to the database and to generate the dynamic WML-decks and - cards.

2.3.3 WML-Decks

HTML pages cannot be displayed on a WAP device. This problem is solved by the WML-

decks defined in WML1.1 [2]. WML is an application of XML [4]. In this system the

WML-decks are generated dynamically containing information, which was taken from the

database "CalendarStore".

2.3.4 SQL – Database

The database "CalendarStore" contains four relation tables, performing following features:

- administration of users and passwords of the system,

- storing information for the session management temporarly,

- categorizing the appointments,

- storing the journals of the individual events.

 8

3. System architecture

System architecture of the web-based appointment calendar

3.1 Clients

The client can be a web browser of a PC or a WAP-device communicating via the Wireless

Application Protocol (WAP [3]) with a WAP gateway.

3.2 HTTP and WAP

WAP gateway communicates with the Web server via Internet with the Hypertext Transfer

Protokol (HTTP [7]). “The Wireless Application Protocol (WAP [3]) is a result of the

WAP Forum’s efforts to promote industry-wide specifications for technology useful in

developing applications and

services that operate over

wireless communication

networks”. 1

1 „WAP Architecture Specification“ - Version 30-Apr-1998 - URL http://www.wapforum.org/

 9

3.3 WWW-Server

The used WWW-server is an Apache [10]. It receives requests as HTTP Daemon and

sends the results back. With the first request the server sends the "index.wml" file, a static

WML or HTML-Form [5] generated by the system, as response or result.

3.4 HTML vs. WML

“WML is a markup language based on XML [4] and is intended for use in specifying
content and user interface for narrowband devices, including cellular phones and pagers.”2,

for e.g.:

- Mobil-Phones (Devices, GSM)

- PDA’s (Personal Digital Assistants, Organizer)

- Palmtop-Computer

- Auto-navigation devices

WML was developed with XML [4], therefore each WML-Deck [2] has to start with the

following directives to the XML-Parser:

WML-Decks und HTML-Sites

2 „WAP WML“ – WAP-191-WML - 19 Februar 2000 –URL: http://www.wapforum.org

<?xml version="1.0"?>
? directive for the XML Parser

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN" „http://www.wapforum.org/DTD/wml_1.1.xml">

? The URL of the DTD, to check if document is"valid"

 10

3.5 Starting up a session - login.rxx & cgi

At the beginning of the session the login-form (WML deck) of the server is requested by a

mobile device. The input data (name, password) are transmitted in the QUERY_STRING

of the URL [11] to the Web server, which this passes to the login.rxx-script via CGI [6].

The inputs are validated with the entries in the user Datenbank (My SQL3) via Rexx/SQL

[12]. Rexx/SQL provides a powerful interface to SQL databases. In the case of succesfull

validaton a session ID is generated, assigned to the user and stored in the session database

temporarly. The script suplies also the logout function.

Remark: After first determination of the session ID it will be transferred with each further

request by post-fields to the client. After each transfer of the session ID the time limit of

the current session is set to maximum in the session table of the “CalendarStore” database.

If in a certain time period no further requests take place then the session ID is deleted

automatically in the data base and so the session is terminated. The termination can also be

done by the user agent (logout).

3.6 View selection - diary.rxx & cgi

After the log in process was successfully concluded generates the application a dynamic

WML page, welcoming the user and offering various view options (Year-, Month-, Week-,

Dayview) and category options (TO-DO and EVENT specified in ICalendar [1]). The

selected view and category options are passed as control information in the

QUERY_STRING (“GET”-method) via GCI [6] to the script. After selection of the

options a further dynamic WML page with user specific appointments is created. The

appointments of the user are determined via DBI accessing the diary-database. For this the

diary.rxx-script will serve.

Remark: The different timezones are not considered by the application. The timezone

corresponds to the geographical position of the web-server. Both, the Julian and the

Gregorian calendar are supported as calenderscala. In 1582 the error in the Julian calendar

accounted already for 10 whole days. The roman catholic pope Gregor XIII therefore had

the Julian calendar corrected by skipping 10 days in 1582 (4. October was followed by the

15.). The Gregorian calendar considers apart from the usual leap years every 4 years still

3 AktuelleVersion My-SQL 2.4 - URL: http://www.tcx.se/

 11

another further leap year every 400 years. That means, the actual leap years 1700, 1800,

1900 are not leap years, because they are not dividable by 400. However the years 1600,

2000, 2400... are regarded as leap years. That is to be attributed to the fact that the earth

needs approx. 364 days 5 hours and 48 minutes to circle around the sun once.

 12

4. Class system

In further paragraph are nearly described the individual classes and their relations.

Generaly, each class for itself is stored in a separate file. All file names (almost all,;))

correspond to the class name with the addition "... lib.rxx ", i.e. the file "sessionlib.rxx"

contains the class session.

 e.g.:

 File: "cgilib.rxx" containes only a public class cgi

- ::CLASS cgi PUBLIC

 File: "sessionlib.rxx" containes only a public class session

- ::CLASS session PUBLIC

 and so on

4.1 UseCase-Notation

The figure shows the class hierarchy, as well as all methods and attributes, the one class

supplies.

 The public classes (in the figure “class system”: Square)

- ::CLASS [name_of_the_classlib] PUBLIC

- the attributes of the class

(in the figure: middle paragraph of the square)

::METHOD [name_of_the_method] ATTRIBUTE

- the suplied methods

(in the figure: lower paragraph of the square signed with "+”)

::METHOD [name_of_the_method] PUBLIC

- the class hierarchy

(in the figure: with arrow characterized)

::REQUIRES "[name_of_the_classlib]"

 13

 Class system

 14

4.2 Class documentation

The classes are documented separately, i.e.:

- Individual method calls,

[a_instance_of_the_class]~[method]()

- the expected arguments

[a_instance_of_the_class]~[method](ARG(1),...ARG(n))

- and the return values (RESULT in Rexx)

[a_instance_of_the_class]~[method]()

RESULT

 , they supply.

4.2.1 Own classes

4.2.1.1 CGILIB

Description:

The class cgi is to simplify the access to environment variables. The methods "getenv" and

"putenv" simplify the selection and the setting of environment variables.

In the case that the value of the QUERY_STRING is desired the class suplies a method

"cgiparse", which url-decodes, parses and finaly stores the values in the only attribute of

the class "cgi.", a Stemvariable.

(see also the documentation in the source code:

 „http://swt.wi- inf.uni-essen.de/~emasovic/src/sqllib.rxx“).

As starting point for this class served the procedure wroted in classic Rexx:

CgiParse()

from

Sascha Prins

 15

„CGILIB.rxx“

 CLASS cgi PUBLIC
 ATTRIBUTE
 cgi.

 METHOD

 INIT()

 RETURN:

 CGI-OBJECT: An instance of cgi

 cgiparse()

 RETURN:

 CGI.: Stem-variable containig the parsed values

 QueryString - e.g. user is stored in cgi.user

 EXPOSE:

 CGI.

 URLDecode(ARG1)

 ARGUMENTS:

 ARG1: An url-encoded string

 RETURN:

 decoded ARG1: The url-decoded string

 getEnv(ARG1)

 ARGUMENTS:

 ARG1: Name of the environment variable

 RETURN:

 value of ARG1: Value of the environment variable

 putEnv(ARG1, ARG2)

 ARGUMENTS:

 ARG1: the name of the environment variable

 ARG2: the value of the environment variable

 16

4.2.1.2 SQLLIB

Description:

The class SQLInterface is to regulate the access to the database. Apart from the access

also methods are supplied for the manipulation of database contents of the database "

CalendarStore". In this printing version not all methods, only the most important are

presented. All methods of the SQLLIB. There are here:

„http: //swt.wi- inf.uni-essen.de/~emasovic/klassensystem.htm“.

(see also the documentation in the source code:

„http://swt.wi- inf.uni-essen.de/~emasovic/src/sqllib.rxx“)

„SQLLIB.rxx”

CLASS SQLInterface PUBLIC

 REQUIRES

 ATTRIBUTE

 METHOD

 INIT()

 RETURN:

 SQL-OBJECT establishing the DB-Connection

 UNINIT()

 RETURN:

 closing the DB-Connection

 ...

 This class uses the Rexx/SQL - INTERFACES of Mark Hessling

 http://www.lightlink.com/hessling/rexxsql/

 17

4.2.1.3 WMLLIB

Description:

The class wmldeck is to simplify the dynamic generating of the WML-decks. Frequently

necessary components are central administered in this class, e.g. the processing instructions

"<?xml version="1.0"?>". With each further document the processing instructions must be

generated. In this printing version not all methods, only the most important are presented.

All methods of the WMLLIB. There are here:

„http: //swt.wi- inf.uni-essen.de/~emasovic/klassensystem.htm“.

(see also the documentation in the source code:

 „http://swt.wi- inf.uni-essen.de/~emasovic/src/wmllib.rxx“)

„WMLLIB.rxx”

CLASS wmldeck PUBLIC

 REQUIRES

 "sqllib.rxx"

 "calendarlib.rxx"

 ATTRIBUTE

 METHOD

 INIT()

 RETURN: wmldeck-OBJECT containing following header-elements:

 1. content-type (e.g. 'content-type:text/vnd.wap.wml')

 2. Processing Instructions for the xml-parser

 3. related DTD

 PrintTemplate()

 RETURN: STDOUT: - Creates a back-button

 PrintBottom()

 RETURN: STDOUT: </WML> - Closes the wml-dokument

 ...

 18

4.2.1.4 SESSIONLIB

Description:

The class session supplies a method needed for authentification of users. Furthermore

after a successful authentification a session ID is generated and stored in the attribute

“status”. The outlog-function with the following deletion of the session ID from the

database “CalendarStore” is also supplied by the class. The class is needed to start up as

well as terminate a session.

 (see also the documentation in the source code:

 „http://swt.wi- inf.uni-essen.de/~emasovic/src/sessionlib.rxx“)

„SESSIONLIB.rxx”

 CLASS session PUBLIC

 REQUIRES

 "sqllib.rxx"

 ATTRIBUTE

 status

 METHOD

 authent(ARG1, ARG2)

 ARGUMENTS:

 ARG1: Login-Name of the current user!

 ARG2: Password of the current user!

 RETURN:

 0 - User not found!

 1 - Password failure!

 SessionID - OK!

 EXPOSE:

 Status

 quitSession(ARG1)

 ARGUMENTS:

 ARG1: The session Identifier

 RETURN:

 0 - error

 2 - Login out!

 EXPOSE:

 status

 19

4.2.1.5 CALENDARLIB

Description:

The class calendar suplies methods that symplify operations with dates , i.e.. the class

with its only public method DATE(ARG(1), ARG(2)) supplies according to the

transferred date in ARG(2) and the appropriate operation, transferred into ARG(1), as

result a date or a date component (week number, name of the month...). Both are

considered the Julian one and the Gregorian calendar.

 (see also the documentation in the source code:

 „http://swt.wi- inf.uni-essen.de/~emasovic/src/wmllib.rxx“)

„CALENDARLIB.rxx”

 CLASS calendar PUBLIC

 REQUIRES

 ATTRIBUTE

 monthdays.1

 ...

 monthdays.12

 METHOD

 INIT()

 RETURN:

 calendar-OBJECT containing the monthdays array.

 EXPOSE:

 monthdays.

As starting point for this class served the datergf.cmd wroted in classic Rexx:

datergf.cmd (version: 1.6 - 1996-04-30)

from

Rony G. Flatscher, Rony.Flatscher@wu-wien.ac.at

 20

 DATE(ARG1, ARG2)

 ARGUMENTS:

 ARG1:

 EXAMPLE of the accepted parameters:

 IF ARG(2) is the 1./March/2001 then is required value of

 ARG(2)=20010301 and the RESULT accords to the following

 flags as ARG(1):

 yb - the year begins on 20010101

 ye - the year ends on 20011231

 y - yearnumber: 2001

 ny - next year: 20020101

 py - previous year: 20000101

 mb - the month begins on 20010301

 me - the month ends on 20010331

 m - monthnumber: 3

 nm - next monthnumber: 4

 pm - previous monthnumber: 2

 mn - monthname is March

 wb - the week begins on 20010226

 pwb - he week begins on 20010219

 nwb - the week begins on 20010305

 we - the week ends on 20010304

 w - weeknumber: 9

 pw - previous weeknumber: 8

 nw - next weeknumber: 10

 d - daynumber in month: 1

 nd - next daynumber in month: 20010302

 pd - previous daynumber in month: 20010228

 dn - dayname is Thursday

 di - daynumber in week: 4

 ARG2: a date [YYYYMMDD]

 RETURN:

 [YYYYMMDD, YYYY, MM, DD, WORD, DIGIT,...]

 the type of the returned value is according to ARG(1)

 21

4.2.2 Used classes

4.2.2.1 Rexx/SQL - Version 2.3

The REXX/SQL [12] - function library (version 2.3 - 26 June 1998) is used by "sqllib.rxx"

to communicate with the SQL database "CalendarStore".

“Rexx/SQL [12] consists of a number of external Rexx functions which provide the

necessary capabilities to connect to, query and manipulate data in any SQL database”4.

With REXX/SQL it is possible to communicate with the SQL database.

(see also http://www.lightlink.com/hessling/rexxsql/)

4 Rexx interface to SQL databases - Version 2.3 - 26 June 1998 – © Mark Hessling
URL: http://www.lightlink.com/hessling/rexxsql/

 22

5. Scripts
5.1 login.cgi

The "login.cgi" script is a shell script . It sets the necessary environment variables before it

executes the “login.rxx" script with the appropriate Rexx interpreter. The environment

variables may not be set at run-time of the actual Rexx-scipts because the Rexx interpreter

is obviously not able to manage it. This methodology was also a first step to store the

actual implementation-dependent and the configuration-technical information externally

into a separate file. Beside the paths of the used libraries also the path of the Rexx

interpreter can be simply indicated/modified here (thanks at Thomas Jungmann, Martin

Rueschhoff and Carsten Mjartan for the friendly assistance!).

(see also the documentation in the source code:

„http://swt.wi- inf.uni-essen.de/~emasovic/src/login.txt“)

5.2 login.rxx

The "login.rxx" script is a Rexx script. Logging in and the logging out are processed by

this script. After the succesfull authentification a session identifier is generated in the

random procedure. With the help of the session identifiers (a twelve-digit number) the user

lets itself be identified with each further request, so that a further authentication is no

longer necessary. After logging out the session Identifier is deleted from the session table

of the “CalendarStore” database and the users must log in again with a further request.

(see also the documentation in the source code:

„http://swt.wi- inf.uni-essen.de/~emasovic/src/login.rxx“)

 23

5.3 diary.cgi

The "diary.cgi" script is a shell script.It takes over the same functions as the "login.cgi".

The two scripts differ only in the Rexx scripts called afterwards, i.e. the "login.cgi" starts

afterwards with the appropriate Rexx interpreter "login.rxx" and "diary.cgi" starts

"diary.rxx ".

(see also the documentation in the source code:

„http://swt.wi- inf.uni-essen.de/~emasovic/src/diary.txt“)

5.4 diary.rxx

The "diary.rxx" script is a Rexx script. All requests of the users are intercepted by this

script and appropriate steps are initiated. With the request transmitted informations are

processed without being checked. Only the session ID is validated and afterwards the

desired information (suitable to the session!) displayed. The user will become determined

by the session ID and his appointments will be displayed according to the desired display

options on his mobile device. The modification of the appointments or the creation of new

ones is not offered, due to the relatively bad input modes and the time delay resulted from

it, as well as the higher "surf"-costs of most mobile devices.

(see also the documentation in the source code:

„http://swt.wi- inf.uni-essen.de/~emasovic/src/diary.rxx“)

 24

6. Database conception
6.1 „CalendarStore“

Description: As specified in ICalendar [1] an appointment calendar should consists of the

following components: TO-DO, EVENT, JOURNAL. For this work this means that there

must be at least two categories (TO-DO, EVENT) of appintments with in each case a

pertinent description of it (JOURNAL). This methodology causes implicitly two tables in

the databases (Category and Event)!

The tables (User and Session), which are needed for the session management, come still in

addition to the first two. Such a methodology is mandatory, due to the fact that Cookies on

mobile devices cannot be stored at present.

See in addition also the database conception:
http://swt.wi- inf.uni-essen.de/~tjungman/datenbank.html

from Thomas Jungmann!

ER-Modell of the database „CalendarStore“

- user (uID,uniqueName,password)
- event (eventID,uID,categoryID,description,date,time,duration)
- session (sID;uID,expireTime)
- category (categoryID,category)

 25

7. Screenshots of the prototype
7.1 Login-Menu

The login-page ("index.wml") is the entrance page and the only static page in the whole

system. Exactly, the login-page is a WML-form, which expects the user name and the user

password as input. The input data are passed with the “GET”-method in the

QUERY_STRING [11] to the "login.rxx"-script. The script verifies the inputs with the

entries in the user – table of the database "CalendarStore" and shows at success the Main-

Menu with the user-specific view-options. If verifing should fail, then is an appropriate

error message temporarly generated by the "login.rxx" script. Temporarly means that a

timer is set to limit the displaying of a WML page temporally.

„Index.wml“
<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD
WML 1.1//EN"
 "http://www.wapforum.org/DTD/wml_1.1.xml">

<wml>
 <template>
 <do type="prev" label="Back" optional="false">
 <prev/>
 </do>
 </template>
<card id="login" title="Login" newcontext="false">
<p align="center">
Name: <input name="user" value=""/>
Password: <input name="pw" value=""
type="password"/>
<do type="accept" label="login">
 <go href="cgi-bin/login.cgi" method="get"
sendreferer="false">
 <postfield name="type" value="wml" />
 <postfield name="action" value="login" />
 <postfield name="user" value="$(user)" />
 <postfield name="pw" value="$(pw)" />
 <postfield name="sid" value="" />
 </go></do></p>
</card></wml>

Login - Page

 26

7.2 Main-Menu

The Main-Menu

executes the

“diary.rxx”- script

and all further

requests off now

are executed only

by this script. The

logout function is

supplied in the

option menu.

The input fields

options of the input fields

After successful

authentfication the Main-

Menu is displayed and the

users has the possibility to

select the desired view

type (Year, Month, Week

or Day in the "View"

field). Apart from the

display option the user can

select also the desired

appointment category

(call, birthday, ALL...)

and only a certain type of

categories will be

displayed ("Category"

field).

 27

7.3 View-Types

Basicly it is possible to select each view option from the main menu directly. The image

shows a concrete example of navigation. The digits on the arrows refer to the navigation

possibilities between the different view-types, i.e. if in the Main-Menu "Year-View" is

once selected four steps (main-menu -> year -> month -> week -> day) has to be made up

to the desired appointment entry.

It is not possible to change from the view-option " Year-View" to "Day-View" directly or

from "Month-View" one level up to "Year-View", etc....

View-types and the navigation possibilities

 28

8. Future Work
The system still offers no memory function by SMS or something similar. A memory
function would complete the system as a commercial product and make it more
competitive on the market.

The data communication of the server to the Client could be made more secure with
WTLS5 and protect by the way the system and the data users against attacks from the
outside.

5The WTLS Protocol – Wireless Transport Layer Security based on TLS 1.0

 29

9. Search results
References

[1] - [RFC2445] – “Internet Calendaring and Scheduling Core Object Specification”,
F. Dawson, D. Stenerson, November 1998 - URL: http://www.ietf.org/rfc/rfc2445.txt

[2] - „WAP WML“ – WAP-191-WML – WAPFORUM - 19 Februar 2000 –
URL: http://www.wapforum.org/what/technical.htm

[3] - „WAP Architecture Specification“ – WAPFORUM - 30-Apr-1998 –
URL: http://www.wapforum.org/what/technical.htm

[4] - “Extensible Markup Language (XML) 1.0 (Second Edition)”, Tim Bray, Jean
Paoli, C. M. Sperberg-McQueen, Eve Maler, W3C Recommendation 6 October 2000 –
URL: http://www.w3.org/TR/REC-xml

[5] - “HTML 4.01 Specification” – Dave Ragget, Arnaud Le Hors, Ian Jacobs - W3C
Recommendation 24 December 1999 – URL: http://www.w3.org/TR/html401/

[6] - “The WWW Common Gateway Interface Version 1.1”, Ken A L Coar, D.R.T.
Robinson, INTERNET-DRAFT 25 June 1999 –
URL: http://CGI-Spec.Golux.Com/draft-coar-cgi-v11-03.txt

[7] – [RFC 2616] – “HTTP 1.1” - June 1999 - T.Berners-Lee, P. Leach, L. Masinter, H.
Frystyk, J. Mogul, J. Gettys - URL: http://www.w3.org/Protocols/rfc2616/rfc2616.html

[8] - IETF working group - URL: http://www.ietf.org/

[9] - W3C Technical Reports and Publications – URL: http://www.w3.org/TR/

[10] - Apache HTTP Server Project – URL: http://httpd.apache.org

[11] – [RFC2396] – „Uniform Resource Identifiers URI“ - T. Berners-Lee, R. Fielding,
U.C. Irvine, L. Masinter - August 1998 – URL: http://www.ietf.org/rfc/rfc2396.txt

[12] – “Rexx/SQL” - powerful interface to SQL databases – M. Hessling - 12 September
2000 – URL: http://www.lightlink.com/hessling/rexxsql/

 30

Software / Literature

- REXX-libraries
Rexx/SQL
URL: http://www.lightlink.com/hessling/rexxsql/
datergf.cmd
URL: http://swt.wi- inf.uni-essen.de/~emasovic/seminar/src/datergf.txt
CGIParse()
URL: http://swt.wi- inf.uni-essen.de/~emasovic/seminar/src/cgiparse.rxx
CGI-lib
URL: http://www.slac.stanford.edu/slac/www/resource/how-to-use/cgi-rexx/
...more libraries
URL: http://wuarchive.wustl.edu/systems/os2/dev/rexx/

- SQL-database
My-SQL 2.4 - URL: http://www.tcx.se/

- Server
Recent Apache-Version : http://httpd.apache.org/dist/apache_1.3.14.tar.gz

- REXX-Dokumentation
 URL: http://users.comlab.ox.ac.uk/ian.collier/RexxDocs/index.html

- WML-Dokumentation
Nokia-Wapkurs - URL: http://7110.nokia.de/wapkurs/wapkurs_set.html
Introduction to WML - URL: http://www.boku.ac.at/htmleinf/

- Available services
WAP@Büro
URL: http://www.wap-consulting.de/Produkte/WAPatBuro/wapatburo.html
Waphome - URL: http://waphome.ch/

