
Design and Implementation of an
Internet based Calendar System

Winter semester
2000/2001
Thomas Jungmann &
Reinhold Klapsing

University of Essen

Information systems and software
engineering

Univ. Prof. Dr. Rony G. Flatscher

Introduction
Overview of this presentation

! Introduction
! System usage (‚walkthrough‘)
! Requirement analysis
! System architecture
! Database design
! Conclusion and future work

Introduction
Scope of work

! Within scope:
– Design and implementation of an internet based

calendar system
– Access to a calendar with a web browser

! Out of scope:
– Groupware-functionality like free/busy-time planning
– Interoperation with other calendar systems

System usage
Screenshots

System usage
Screenshots

System usage
Screenshots

System usage
Screenshots

Introduction
Standards

! IETF Working Group „Calendaring and Scheduling“
(calsched)

! Main work:
– RFC 2445 Internet Calendaring and Scheduling Core Object

Specifications (iCalendar)
! Specifies the objects and data types (MIME-Type text/calendar)

– RFC 2446 iCalendar Transport-Independent Interoperability
Protocol (iTIP)
! Interoperation of calendar systems using iCalendar Objects

– Several other RFCs and Internet drafts as well, but all
concerning interoperation between calendar systems

Introduction
Definition of terms (1/2)

! Calendar
– A collection of calendar events associated with a

specific user
! Calendar Event

– An entry in a calendar that represents an event for a
specific user

! Calendar User
– An entity that uses a calendaring system

Introduction
Definition of terms (2/2)

! Calendar User Agent
– The client application that a Calendar User utilizes to access

and manipulate a calendar (the web browser)
! Calendar Service

– The collection of programs that receive and interpret the
Calendar Users commands and also generate and format the
output for the user

! Calendar Store
– The database that stores the calendars

Requirement analysis
Overview

! 2 steps of requirements analysis

– Step 1: Technical considerations must not dominate
users needs
=> no technical terms/solutions in mind, only Users
View in ‚plain english‘

– Step 2: search for appropriate technical solution for
these needs from the Software Designers point of
view and refinement of needs

Requirement analysis

! Easy access to the
calendar from
everywhere, no special
software is needed (e.g.
Internet Café Scenario)

! Calendar User Agent must be
a standard web browser.
Communication over HTTP,
HTML and CGI only

! Web server must support CGI
as well (‚Apache‘ will be used,
because it is available on
many platforms)

Users view Programmers view

Requirement analysis

! System must be able to
work with multiple users

! Probably large amount of
data (incl. meta-data for
admin. purposes) => use of a
powerful database
recommended

! MySQL will be used
(relieable, available for many
platforms, ANSI SQL 92
Standard used)

! Session management needed
to distinguish users (HTTP is
stateless)

Users view Programmers view

Requirement analysis

! Calendar data is private,
need for confidentiality
=> User must be
authenticated

! Password check during
logon

! Sessions must timeout
after certain time

Users view Programmers view

Requirement analysis

! Other (technical) requirements
– Programming language Object Rexx

! Scripting language with powerful string parsing functions
preferable (because of HTML/CGI)

! Available on many platforms
! Interface to many databases available (Rexx/SQL)

! Session management
– Can be achieved by

! HTML Hidden Form fields
! CGI PATH_INFO Mechanism
! RFC 2109, HTTP State Management Mechanism: „Cookies“

System architecture

System architecture: Diagramm of classes

System architecture
Interfaces

! Self-Initializing through constructor:
::METHOD INIT /* Constructor */

if rxFuncQuery("SQLLoadFuncs") then do

call rxFuncAdd "SQLLoadFuncs","rexxsql","SQLLoadFuncs"

call SQLLoadFuncs

end

self~establishDBConnection()

! Advantages of separate interfaces:
- easy adaption in changing environments
- easy reuse of code in similar applications

System architecture
Main Program

call initVars

html~printHeader('The Web Calendar')

select

when cgi.action = 'logon' then call logon --check username and password

--and create session

when cgi.action = 'newuser' then call newuser --create a new user account

when cgi.action = 'logout' then call logout --invalidate session

when cgi.action = 'overview' then call overview --display overview of this month

when cgi.action = 'goto' then call gotoMonth –-navigate to specific month

when cgi.action = 'gotoform' then call gotoForm --show HTML-Form for gotoMonth

when cgi.action = 'viewday' then call viewDay --display all events of day

when cgi.action = 'view' then call viewEvent --display event details

when cgi.action = 'create' then call createEvent --add event to database

when cgi.action = 'newentry' then call newentryForm --show HTML-Form for createEvent

when cgi.action = 'Edit' then call editEventForm –-show HTML-Form for updateEvent

when cgi.action = 'update' then call updateEvent --accept modifications for event

when cgi.action = 'Delete' then call deleteEvent --delete event permanently

otherwise call abort 'Unknown CGI-Action'

end

html~printTail

DROP db --drop references to interfaces

DROP html

exit 0

Database design
Entity relationship model

Conclusion and future work

! Interoperation
– Calendar system is standalone, no interoperations with other

systems, no interoperation between users (free/busy schedule)
– IETF has already released standards for data types and

protocols for interoperation
! Conceptual improvements

– Interface model has not been implemented strictly
– Exchanging HTML for WML is not easy to do, as there is

HTML specific code mixed into the core script

Conclusion and future work

! Object orientation
– System was written in Object Rexx, but little concepts of the

object oriented paradigm were actually used. To much
procedural thinking

– ‚Real‘ OO-Design also possible, e.g. Events have methods to
create, alter or delete themselves, User objects have methods
to check their passwords, etc.

! Security
– Based only on passwords and session timeout.
– Unencrypted, so sniffing attacks possible
– Even worse: CGI-GET-Method used for data transmission =>

cache-logfiles store all information
– Improvement: use of POST-Method
– Even better: use of Secure Socket Layer SSL

Summary

! INTERNET CALENDAR SYSTEM:

– Can be used from everywhere, even with a WAP-
capable cellular phone

– All components are freely available (MySQL only for
non-comercial use)

– Distributed system: Web server and Database
server can be placed on different machines

– Easy to use intuitive user interface
– Year 2000 compliant ;)

