
RexxExpat Function Reference

by Dominik Stein

The RexxExpat library wraps the C-XML-parser 'expat', version 1.2,
so it can be used from a Rexx environment. Since the wrapper
functions mostly simply pass through the values from Expat to Rexx
and vice versa, please have also a look at the following resources for
further readings:

For documentation on the interface of 'expat' please refer to

• [Expat:] xmlparse.h, version 1.2, Thai Open Source Software
Center

• [Cooper:] Clark Cooper, Using Expat, Sept. 1, 1999,
XML.com, O'Reill y & Associates
(http://www.xml.com/pub/1999/09/expat/reference.html)

• (to get the latest information and the newest versions please
visit SourceForge, Expat XML Parser Project Info at
http://sourceforge.net/projects/expat/)

For documentation on the Rexx SAA API please refer to

• [RexxSaa:] rexxsaa.h, version 1.5, Anders Christensen, The
Regina Rexx Interpreter

• [Regina:] Anders Christensen, The Regina Rexx Interpreter,
August 14, 2000,
(ftp://ftp.lightlink.com/pub/hessling/Reg
ina/reginapdf22.zip)

• [IBMPG:] IBM, Object REXX for Windows NT and
Windows95 Programming Guide (Version 1.03), third
edition, May 1999
(ftp://service.boulder.ibm.com/ps/products/ad/obj-
xx/rexxpg.zip)

• (for the ongoing development of Rexx please visit the IBM
Rexx Family pages at http://www-
4.ibm.com/software/ad/rexx/ and http://www-
4.ibm.com/software/ad/obj-rexx/ as well as Mark Hessling's
Rexx Homepage at http://www.lightlink.com/hessling/ - to
get the latest information about and the newest versions of
Regina Rexx)

For matters specific to RexxExpat please read this document.

I tried to keep the headers of my RexxExpat functions as close as
possible to the headers of the corresponding 'expat' functions. So for
documentation purposes of my RexxExpat I’d like to simply adapt
the article “Using Expat” by Clark Cooper (published on XML.com,
Sept. 1, 1999), who did an excellent job in describing and explaining
the function and functions of the Expat parser. Thank you very
much, Clark, your article helped me a lot in understanding 'expat'!!

I used Regina Rexx for developing! Please use an Microsoft
Browser to view this document!

Index

Exported functions
ExpatDropFuncs
ExpatErrorString
ExpatExternalEntityParserCreate
ExpatFreeVariablePool
ExpatGetBase
ExpatGetCurrentByteIndex
ExpatGetCurrentByteCount
ExpatGetCurrentColumnNumber
ExpatGetCurrentLineNumber
ExpatGetErrorCode
ExpatGetIdAttributeIndex
ExpatGetSpecifiedAttributeCount
ExpatGetVariablePool
ExpatLoadFuncs
ExpatParse
ExpatParserCreate
ExpatParserCreateNS
ExpatParserFree
ExpatSetBase
ExpatSetCdataSectionHandler
ExpatSetCharacterDataHandler
ExpatSetCommentHandler
ExpatSetDefaultHandler
ExpatSetDefaultHandlerExpand
ExpatSetDoctypeDeclHandler
ExpatSetElementHandler
ExpatSetExternalEntityRefHandler
ExpatSetExternalParsedEntityDeclHandler
ExpatSetEncoding
ExpatSetInternalParsedEntityDeclHandler
ExpatSetNamespaceDeclHandler
ExpatSetNotationDeclHandler
ExpatSetNotStandaloneHandler
ExpatSetParamEntityParsing
ExpatSetProcessingInstructionHandler
ExpatSetUnknownEncodingConverter
ExpatSetUnknownEncodingHandler
ExpatSetUnparsedEntityDeclHandler
ExpatSetVariablePool

Helper functions
_ExpatAppend2ArgList
_ExpatCopyHandler
_ExpatFreeArgList
_ExpatFreeHandler
_ExpatFreeRexxVariablePool
_ExpatMakeArgList
_ExpatSetHandler

Browser to view this document!

Parser Creation

[RexxExpat:] When creating a new parser, RexxExpat stores the information specific to this newly
created parser in a special distinct data structure. This is in particular handler information, encoding
information, the variable pool, and last not least the reference to the corresponding parser. In fact, the
value returned by the parser creation functions is a reference to this data structure, from which the
reference to the corresponding parser is then retrieved. This is to make RexxExpat thread-safe.

ExpatParserCreate

numeric ExpatParserCreate(alphanumeric encoding)
[Cooper:] Constructs a new parser. If encoding is non-null and not of zero length, it specifies a character
encoding to use for the document. This overrides the document encoding declaration. There are four built-
in encodings:

• US-ASCII
• UTF-8
• UTF-16
• ISO-8859-1

Any other value will i nvoke a call to the UnknownEncodingHandler .
[RexxExpat:] Returns 0 if out of memory. Otherwise returns a reference to the new parser.

ExpatParserCreateNS

numeric ExpatParserCreateNS(alphanumeric encoding, alphanumeric sep)
[Cooper:] Constructs a new parser that has namespace processing in effect. Namespace expanded element
names and attribute names are returned as a concatenation of the namespace URI, sep , and the local part
of the name. This means that you should pick a character for sep that can't be part of a legal URI.
[Expat:] While unprefixed attribute names are never expanded, unprefixed element type names are
expanded only if there is a default namespace. When a namespace is not declared, the name and prefix
will be passed through without expansion.
[RexxExpat:] Returns 0 if out of memory. Otherwise returns a reference to the new parser.

[RexxExpat:] In RexxExpat you can use both ExpatParserCreate and ExpatParserCreateNS to create
either kind of parser. Which function is finally called depends on the number or arguments passed.

ExpatExternalEntityParserCreate

numeric ExpatExternalEntityParserCreate(numeric parentparser, alphanumeric context,
alphanumeric encoding)
[Cooper:] Constructs a new parser for parsing an external general entity. Context is the context
argument passed in a call to a ExternalEntityRefHandler. Other state information such as handlers, user
data, namespace processing is inherited from the parser passed as the 1st argument, [RexxExpat:] which
is the parser that encountered the entity reference and called (and is passed to) the
ExternalEntityRefHandler. [Cooper:] So you shouldn't need to call any of the behaviour changing
functions on this parser (unless you want it to act differently than the parent parser.)
[Expat:] The context string consists of a sequence of tokens separated by formfeeds; a token consisting
of a name specifies that the general entity of the name is open; a token of the form prefix=uri specifies the
namespace for a particular prefix; a token of the form =uri specifies the default namespace.

This can be called at any point after the first call to an ExternalEntityRefHandler so longer as the parser
has not yet been freed. The new parser is completely independent and may safely be used in a separate
thread.
[RexxExpat:] With the new parser a new data structure to store parser specific information is created as
well. Handlers are initialized from the parser argument (so is NOT encoding information). The newly
created parser uses the same variable pool as its parent parser.
Returns 0 if out of memory. Otherwise returns a reference to the new parser.

ExpatParserFree

none ExpatParserFree(numeric parser)
[Cooper:] Free memory used by the parser [RexxExpat:] 'expat' and by the wrapper 'RexxExpat'.

Parsing

[RexxExpat:] Parsing is done by RexxExpat by feeding a buffer provided by 'expat's XML_GetBuffer
function and then calli ng 'expat's XML_ParseBuffer function. Not providing an own buffer but using
'expat's buffer turned out to be crucial when parse position functions were called (e.g. for error reporting).
Since these functions are trying to access the buffer, it must remain in memory even as ExpatParse
returns. So, ExpatParse should not de-allocate the buffer.
(Remark: Unfortunately it happens to be, that even though I let 'expat' take care of the buffer, parse
position functions are sometimes still causing memory access violations… preferingly after fatal parsing
errors are detected.)

RexxExpat itself does not wrap 'expat's XML_ParseBuffer and XML_GetBuffer functions, since
ExpatParse will perfectly do ;-).

ExpatParse

numeric ExpatParse(numeric parser, alphanumeric buffer, numeric more2come)
[Cooper:] Parse some more of the document. The string buffer is a buffer containing part (or perhaps all)
of the document. [RexxExpat:] In RexxExpat the third argument is used contrary to its original meaning
in 'expat'. The more2come parameter informs the parser that there is still something left to be parsed. Pass
0, NULL, a zero length argument or no (third) argument to inform the parser that this is the last piece of
the document. [Cooper:] Frequently, the last piece is empty (i.e. len is zero).
If a parse error occurred, it returns 0. Otherwise it returns a non-zero value.

Now, I'd like to adapt Clark Cooper's example (for use of XML_ParseBuffer and XML_GetBuffer) in
his article 'Using Expat' to an Rexx environment. Note, that the current file offset is cached before calli ng
ExpatParse and restored afterwards. This is necessary because (at least Regina) Rexx seems to forget the
current offset when invoking a callback function (and thus instanciating a new Rexx interpreter).

/* parse file */
myfile = "filename.xml"
mypos = 0

do while lines(myfile)<>0
 /* read next line from file */
 nextline = linein(myfile)

 /* remember file offset */
 mypos = STREAM(myfile, 'Command', 'Query Position Read');

 if ExpatParse(Parser, nextline, lines(myfile)) == 0 then
 /* handle parse error */

 /* restore file offset */
 call STREAM(myfile, 'Command', 'Position ='mypos Read);
end

Handler Setting

[RexxExpat:] To give maximum flexibili ty with using RexxExpat, there are three parameters to be set for
each handler (ProcName, EnvName, Instore). The crucial parameter of these three is the last one
(Instore). Depending on its value, the value in ProcName is considered to be either pure REXX code, a
file name, or a macro. Since the parameters are directly passed to the RexxStart function, it’s a good idea
to refer to the IBM Programming Guide, “Calli ng the REXX Interpreter” , p.102ff, to read about particular
constraints of each parameter in either case. Nevertheless, I will try to quote the most important points
here.

If Instore is left out, NULL, 0, or of zero length, ProcName is considered to be a file name of the REXX
procedure. [IBMPG: p.102] You can also provide an extension, drive, and path. If you do not specify a
file extension, the default is .CMD. If you do not specify the path and drive, the REXX interpreter uses
the usual file search (current directory, then environment path).

If Instore contains “macro” or “MACRO”, ProcName is considered to be a macro, which must already
be loaded into the macrospace (for further information on the macrospace interface see IBM
Programming Guide, “Macrospace Interface”, p.150). [IBMPG: p. 150] Programs registered in the REXX
macrospace are available to all processes.

If Instore is set to anything else than the values mentioned above, ProcName must contain the REXX
procedure source. [IBMPG: p.105] The source must be an exact image of a REXX procedure disk file,
complete with carriage returns, line feeds, and end-of-file characters.

EnvName is the initial ADDRESS environment name. If EnvName is null, the file extension is used as the
initial ADDRESS environment. The environment name cannot be longer than 250 characters.

[Cooper:] Although handlers are typically set prior to parsing and left alone, an application may choose to
set or change the handler for a parsing event while the parse is in progress. For instance, your application
may choose to ignore all text not descended from a para element. One way it could do this is to set the
character handler when a para start tag is seen, and unset it for the corresponding end tag.

[RexxExpat:] In RexxExpat a handler may be unset either by not providing a ProcName (leave it out) or
by providing a ProcName which is NULL or of zero length to the appropriate handler setter. Remember to
explicitly indicate left out parameters by kommata, if you intend to pass subsequent parameters.
If the handler setting functions return a value other than 0, an error occurred during memory allocation or
de-allocation.

Please note the following remarks on character encoding – they are also valid for RexxExpat, since
RexxExpat only passes through the returned characters without any alteration of character encoding.

The 'expat' parser returns [Cooper:] strings in arrays of type ExpatChar . This type is defined in
xmlparse.h and is conditional upon the setting of either of the ExpatUNICODE macros. If neither of these
is set, then ExpatChar contains characters encoding UTF-8. Otherwise you'll be receiving UTF-16 in the
form of either unsigned short or wchar_t characters. […] You'll receive them in this form independent
of the original encoding of the document […]. So character encoding has to be set on compilation time.

ExpatSetElementHandler

ExpatSetElementHandler(numeric parser,
 alp hanumeric StartElementHandler_ProcName ,
 alphanumeric StartElementHandler_EnvName ,
 alphanumeric StartElementHandler_Instore ,
 alphanumeric EndElementHandler_ProcName ,
 alphanumeric EndElementHandler_EnvName ,
 alphanumeric EndElementHandler_Instore);

Arguments passed to the StartElementHandler:

PARSE ARG parser, name, attribute1, value1, attribute2, value2, …, …, attributeN,
valueN

Arguments passed to the EndElementHandler:

PARSE ARG parser, name

[Cooper:] Set handlers for start and end tags. [RexxExpat:] The name of the element specified in the start
tag is passed as second argument. [Cooper:] Each attribute seen in a start (or empty) tag occupies two
consecutive places in the argument list: the attribute name followed by the attribute value.
[RexxExpat:] I f either handler returns a valid value (not NULL and not of zero length), RexxExpat calls
'expat's XML_DefaultCurrent function an passes the corresponding markup to the default handler.

ExpatSetCharacterDataHandler

ExpatSetCharacterDataHandler(numeric parser,
 alphanumeric CharacterDataHandler _ProcName,
 alphanumeric CharacterDataHandler _EnvName,
 alphanumeric CharacterDataHandler _Instore);

Arguments passed to the CharacterDataHandler:

PARSE ARG parser, text

[Cooper:] Set a text handler. A single block of contiguous text free of markup may still result in a
sequence of calls to this handler. In other words, if you're searching for a pattern in the text, it may be
split across calls to this handler.
[RexxExpat:] I f the handler returns a valid value (not NULL and not of zero length), RexxExpat calls
'expat's XML_DefaultCurrent function an passes the corresponding markup to the default handler.

ExpatSetProcessingInstructionHandler

ExpatSetProcessingInstructionHandler(numeric parse r,
 alphanumeric
ProcessingInstructionHandler _ProcName,
 alphanumeric
ProcessingInstructionHandler _EnvName,

 alphanumeric
ProcessingInstructionHandl er _Instore);

Arguments passed to the ProcessingInstructionHandler:

PARSE ARG parser, target, data

[Cooper:] Set a handler for processing instructions. The target is the first word in the processing
instruction. The data is the rest of the characters in it after skipping all whitespace after the initial word.
[RexxExpat:] I f the handler returns a valid value (not NULL and not of zero length), RexxExpat calls
'expat's XML_DefaultCurrent function an passes the corresponding markup to the default handler.

ExpatSetCommentHandler

ExpatSetCommentHandler(numeric parser,
 alphanumeric CommentHandler _ProcName,
 alphanumeric CommentHandler _EnvName,
 alphanumeric CommentHandler _Instore);

Arguments passed to the CommentHandler:

PARSE ARG parser, data

[Cooper:] Set a handler for comments. The data is all text inside the comment delimiters.

ExpatSetCdataSectionHandler

ExpatSetCdataSectionHandler(numeric parser,
 alphanumeric StartCdataSectionHandler _ProcName,
 alphanumeric StartCdataSectionHandler _EnvName,
 alphanumeric StartCda taSectionHandler _Instore ,
 alphanumeric EndCdataSectionHandler _ProcName,
 alphanumeric EndCdataSectionHandler _EnvName,
 alphanumeric EndCdataSectionHandler _Instore);

Arguments passed to the StartCdataSectionHandler:

PARSE ARG parser

Arguments passed to the EndCdataSectionHandler:

PARSE ARG parser

[Cooper:] Sets handlers that get called at the beginning and end of a CDATA section.

ExpatSetDefaultHandler

ExpatSetDefaultHandler(numeric parser,
 alphanumeric DefaultHandler _ProcName,

 alphanumeric DefaultHandler _EnvName,
 alphanumeric DefaultHandler _Instore);

Arguments passed to the DefaultHandler:

PARSE ARG parser, data

[Cooper:] Sets a handler for any characters in the document which wouldn't otherwise be handled. This
includes both data for which no handlers can be set (like some kinds of DTD declarations) and data which
could be reported but which currently has no handler set. Note that a contiguous piece of data that is
destined to be reported to the default handler may actually be reported over several calls to the handler.
Setting the handler with this call has the side effect of turning off expansion of references to internally
defined general entities. Instead these references are passed to the default handler. [Expat:] The characters
are passed exactly as they were in the XML document except that they will be encoded in UTF-8
(RexxExpat does not change encodings). Line boundaries are not normalized. Note that a byte order mark
character is not passed to the default handler.

ExpatSetDefaultHandlerExpand

ExpatSetDefaultHandlerExpand(numeric parser,
 alphanumeric DefaultHandlerExpand _ProcName,
 alphanumeric DefaultHandlerExpand _EnvName,
 alphanumeric DefaultHandlerExpand _Instore);

Arguments passed to the DefaultHandlerExpand:

PARSE ARG parser, data

[Expat:] This sets the default handler but does not inhibit expansion of internal entities. The entity
reference will not be passed to the default handler.

ExpatSetDoctypeDeclHandler

ExpatSetDoctypeDeclHandler(numeric parser,
 alphanumeric StartDoctypeDeclHandler _ProcName,
 alphanumeric StartDoctypeDeclHandler _EnvName,
 alphanumeric StartDoctypeDeclHandler _Instore ,
 alphanumeric EndDoctypeDeclHandler _ProcName,
 alphanumeric EndDoctypeDeclHandler _EnvName,
 alphanume ric EndDoctypeDeclHandler _Instore);

Arguments passed to the StartDoctypeDeclHandler:

PARSE ARG parser, doctypeName

Arguments passed to the EndDoctypeDeclHandler:

PARSE ARG parser

[RexxExpat:] Sets handlers that get called at the beginning and end of a DOCTYPE declaration. The
EndDoctypeDeclHandler is called after any external subsets are processed.

ExpatSetUnparsedEntityDeclHandler

ExpatSetUnparsedEntityDeclHandler(numeric parser,
 alphanumeric UnparsedEntityDeclHandler _ProcName,
 alphanumeric UnparsedEntityDeclHandler _EnvName,
 alphanumeric UnparsedEntityDeclHandler _Instore);

Arguments passed to the UnparsedEntityDeclHandler:

PARSE ARG parser, entityName, base, systemId, publicId, notationName

[Cooper:] Set a handler that receives declarations of unparsed entities. These are entity declarations that
have a notation (NDATA) field:

<!ENTITY logo SYSTEM "images/logo.gif" NDATA gif>

[Cooper:] So for this example, the entityName would be "logo", the systemId would be "images/logo.gif"
and notationName would be "gif". For this example the publicId parameter is null. The base parameter
would be whatever has been set with ExpatSetBase . If not set, it would be null.

ExpatSetNotationDeclHandler

ExpatSetNotationDeclHandler(numeric parser,
 alphanumeric NotationDeclHandler _ProcName,
 alphanumeric NotationDeclHandler _EnvName,
 alphanumeric NotationDeclHandler _Instore);

Arguments passed to the NotationDeclHandler:

PARSE ARG parser, notationName, base, systemId, publicId

[Cooper:] Set a handler that receives notation declarations. [Expat:] The base argument is whatever was
set by ExpatSetBase . The notationName will never be null. The other arguments can be.

ExpatSetExternalParsedEntityDeclHandler

ExpatSetExternalParsedEntityDeclHandler(numeric parser,
 alphanumeric
ExternalParsedEntityDeclHa ndler _ProcName,
 alphanumeric
ExternalParsedEntityDeclHandler _EnvName,
 alphanumeric
ExternalParsedEntityDeclHandler _Instore);

Arguments passed to the ExternalParsedEntityDeclHandler:

PARSE ARG parser, entityName, base, systemId, publicId

[RexxExpat:] No description supplied by 'expat'. :-(

ExpatSetInternalParsedEntityDeclHandler

ExpatSetInternalParsedEntityDeclHandler(numeric parser,
 alphanumeric
InternalParsedEntityDeclHandler _ProcName,
 alphanumeric
InternalParsedEntityDeclHandler _EnvName,
 alphanumeric
InternalParsedEntityDeclHandler _Instore);

Arguments passed to the InternalParsedEntityDeclHandler:

PARSE ARG parser, entityName, replacementText

[RexxExpat:] No description supplied by 'expat'. :-(

ExpatSetNamespaceDeclHandler

ExpatSetNamespaceDeclHandler(numeric parser,
 alphan umeric StartNamespaceDeclHandler _ProcName,
 alphanumeric StartNamespaceDeclHandler _EnvName,
 alphanumeric StartNamespaceDeclHandler _Instore ,
 alphanumeric EndNamespaceDeclH andler _ProcName,
 alphanumeric EndNamespaceDeclHandler _EnvName,
 alphanumeric EndNamespaceDeclHandler _Instore);

Arguments passed to the StartNamespaceDeclHandler:

PARSE ARG parser, prefix, uri

Arguments passed to the EndNamespaceDeclHandler:

PARSE ARG parser, prefix

[Cooper:] Set handlers for namespace declarations. Namespace declarations occur inside start tags. But
the namespace declaration start handler is called before the start tag handler for each namespace declared
in that start tag. The corresponding namespace end handler is called after the end tag for the element the
namespace is associated with. [Expat:] For an xmlns attribute, prefix will be null. For an xmlns=""
attribute, uri will be null.

ExpatSetNotStandaloneHandler

ExpatSetNotStandaloneHandler(numeric parser,
 alphanumeric NotStandaloneHandler _ProcName,
 alphanumeric NotStandaloneHandler _EnvName,
 alphanumeric NotStandaloneHandler _Instore);

Arguments passed to the NotStandaloneHandler:

PARSE ARG parser

[Cooper:] Set a handler that is called if the document is not "standalone". This happens when there is an
external subset or a reference to a parameter entity, but does not have standalone set to "yes" in an XML
declaration.
If this handler returns 0, then the parser will throw an XML_ERROR_NOT_STANDALONE error.

ExpatSetExternalEntityRefHandler

ExpatSetExternalEntityRefHandler(numeric parser,
 alphanumeric ExternalEntityRefHandler _ProcName,
 alphanumeric ExternalEntityRefHandler _EnvName,
 alphanumeric ExternalEntityRefHandler _Instore);

Arguments passed to the ExternalEntityRefHandler:

PARSE ARG parser, context, base, systemId, publicId

[Cooper:] Set an external entity reference handler. This handler is also called for processing an external
DTD subset if parameter entity parsing is in effect. (See ExpatSetParamEntityParsing) ([Expat:] The
referenced entity is not automatically parsed. The application can parse it immediately or later using
ExpatExternalEntityParserCreate .)

[Expat:] The parser argument is the parser parsing the entity containing the reference; it can be passed as
the parser argument to ExpatExternalEntityParserCreate . The context argument specifies the parsing
context in the format expected by the context argument to ExpatExternalEntityParserCreate ; context
is valid only until the handler returns, so if the referenced entity is to be parsed later, it must be copied.
[Cooper:] The base parameter is the base to use for relative system identifiers. It is set by ExpatSetBase
and may be null. The public id parameter is the public id given in the entity declaration and may be null
[Expat:] if none was specified. The whitespace in the public identifier will have been normalized as
required by the XML spec. [Cooper:] The system id is the system identifier specified in the entity
declaration and is never null.

[Cooper:] This handler returns an integer. A non-zero value should be returned for successful handling of
the external entity reference. Returning a zero indicates failure, and causes the calli ng parser to return an
XML_ERROR_EXTERNAL_ENTITY_HANDLING error.

[RexxExpat:] This handler may be called recursively, when the body of an external entity is parsed
recursively. So, be careful when using the variable pool functions, since all recursively created parsers
will use the same variable pool!

ExpatSetUnknownEncodingHandler

ExpatSetUnknownEncodingHandler(numeric parser,
 alphanumeric UnknownEncodingHandler _ProcName,
 alphanumeric UnknownEncodingHandler _EnvName,
 alphanumeric UnknownEncodingHandler _Instore);

Arguments passed to the UnknownEncodingHandler:

PARSE ARG parser, name

[Cooper:] Set a handler to deal with encodings other than the built in set. If the handler knows how to
deal with an encoding with the given name, it should [RexxExpat:] return a string with 256 numbers
separated by a non numeric character. Start out with a number. Terminate with a non numeric character.
Left out numbers will be replaced by their index. The resulting string must describe a suitable encoding
(see below) or the parser will return an XML_UNKNOWN_ENCODING error.
If the handler does not know how to deal with the encoding named in name, it should return a non-valid
value (NULL, nothing or a zero length value).
The actual conversion is accomplished by a call to the function set by
ExpatSetUnknownEncodingConverter .

Example: Return "//////////10////// ////20//////////30////// -
3////40//////////50//////////60//////////70//////////80//////////90//////////100/////
/////110//////////120//////////130/////";

[RexxExpat:] The returned string must [Cooper:] contain information for every possible possible leading
byte in a byte sequence. If the corresponding value is >= 0, then it's a single byte sequence and the byte
encodes that Unicode value. If the value is -1, then that byte is invalid as the initial byte in a sequence. If
the value is -n, where n is an integer > 1, then n is the number of bytes in the sequence.

Once again in words of 'expat':
[Expat:] The string returned by the ExpatUnknownEncodingHandler (returned_string) is to provide
information to the parser about encodings that are unknown to the parser. The returned_string[b] member
gives information about byte sequences whose first byte is b.

• If returned_string[b] is c where c is >= 0, then b by itself encodes the Unicode scalar value c.
• If returned_string[b] is -1, then the byte sequence is malformed.
• If returned_string[b] is -n, where n >= 2, then b is the first byte of an n-byte sequence that encodes

a single Unicode scalar value.

IMPORTANT!

[Expat:] Expat places certain restrictions on the encodings that are supported using this mechanism.

1. Every ASCII character that can appear in a well-formed XML document, other than the
characters $@\^`{} ~ must be represented by a single byte, and that byte must be the same
byte that represents that character in ASCII .

2. No character may require more than 4 bytes to encode.
3. All characters encoded must have Unicode scalar values <= 0xFFFF, (i.e. characters that

would be encoded by surrogates in UTF-16 are not allowed). Note that this restriction
doesn't apply to the built-in support for UTF-8 and UTF-16.

4. No Unicode character may be encoded by more than one distinct sequence of bytes.

ExpatSetUnknownEncodingConverter

ExpatSetUnknownEncodingConverter(numeric parser,
 alphanumeric UnknownEncodingConverter _ProcName,
 alphanumeric UnknownEncodingConverter _EnvName,
 alphanumeric UnknownEncodingConverter _Instore ,
 alphanumeric UnknownEncodingRelease _ProcName,
 alphanumeric UnknownEncodingRelease _EnvName,
 alphanumeric Unkno wnEncodingRelease _Instore);

Arguments passed to the UnknownEncodingConverter:

PARSE ARG parser, string2convert

Arguments passed to the UnknownEncodingRelease:

PARSE ARG parser

[RexxExpat:] Set the converter (and release) functions to encode unknown encodings. The encoding
information must be properly set in the UnknownEncodingHandler.
[Expat:] The convert function is used to convert the multibyte sequences [RexxExpat:] passed as second
argument. [Expat:] The convert function must return the Unicode scalar value represented by this byte
sequence or -1 if the byte sequence is malformed. The convert function may be unset if the encoding is a
single-byte encoding, that is if returned_string[b] >= -1 for all bytes b. When the parser is finished with
the encoding, then if the release function is set, it will call release passing it the parser reference; once
release has been called, the convert function will not be called again.

Parse position and error reporting functions

[Cooper:] These are the functions you'll want to call when the parse functions return 0, although the
position reporting functions are useful outside of errors. The position reported is either [Expat:] the
location of the character at which the error was detected or that of the first of the sequence of characters
that generated the current event.

ExpatGetErrorCode

numeric ExpatGetErrorCode(numeric parser)

[Cooper:] Return what type of error has occurred.

ExpatErrorString

alphanumeric ExpatErrorString(numeric code)
[Cooper:] Return a string describing the error corresponding to code. [RexxExpat:] The code should be
retrieved calli ng ExpatGetErrorCode .

ExpatGetCurrentByteIndex

numeric ExpatGetCurrentByteIndex(numeric parser)
[Cooper:] Return the byte offset of the position.

ExpatGetCurrentByteCount

numeric ExpatGe tCurrentByteCount(numeric parser)
[Expat:] Return the number of bytes in the current event. Returns 0 if the event is in an internal entity.

ExpatGetCurrentLineNumber

numeric ExpatGetCurrentLineNumber(numeric parser)
[Cooper:] Return the line number of the position. [RexxExpat:] Unfortunately, when fatal parsing errors

were detected, it happens that 'expat's XML_GetCurrentLineNumber function causes a memory access
violation :-(.

ExpatGetCurrentColumnNumber

numeric ExpatGetCurrentColumnNumber(numeric parser)
[Cooper:] Return the offset, from the beginning of the current line, of the position. [RexxExpat:]
Unfortunately, when fatal parsing errors were detected, it happens that 'expat's
XML_GetCurrentColumnNumber function causes a memory access violation :-(.

Miscellaneous functions

[Cooper:] The functions in this section either obtain state information from the parser or can be used to
dynamically set parser options.

[RexxExpat:] Internally, RexxExpat makes use of 'expat's XML_SetUserData and XML_GetUserData
functions; but it won't make sense to expose them to a Rexx environment. To pass user specific data from
the main program to the callback routines (and vice versa) use the variable pool functions instead.

RexxExpat does not wrap (and does not use) 'expat's XML_UseParserAsHandlerArg function either.

ExpatSetBase

numeric ExpatSetBase(numeric parser, alphanumeric base)
[Expat:] Sets the base to be used for resolving relative URIs in system identifiers in declarations.
Resolving relative identifiers is left to the application: this value will be passed through as the base
argument to the ExpatExternalEntityRefHandler , ExpatNotationDeclHandler , and
ExpatUnparsedEntityDeclHandler . The base argument will be copied.
Returns 0 if out of memory, non-zero otherwise.

ExpatGetBase

alphanumeric ExpatGetBase(numeric parser)
[Cooper:] Return the base for resolving relative URIs.

ExpatGetSpecifiedAttributeCount

numeric ExpatGetSpecifiedAttributeCount(numeric parser)
[Cooper:] When attributes are reported to the start handler in the argument list, attributes that were
explicitly set in the element occur before any attributes that receive their value from default information
in an ATTLIST declaration. This function returns the number of attributes that were explicitly set, thus
giving the offset of the first attribute set due to defaults. It supplies information for the last call to a start
handler. If you're in a start handler, then that means the current call.

ExpatGetIdAttributeIndex

numeric ExpatGetIdAttributeIndex(numeric parser)
[Expat:] Returns the index of the ID attribute passed in the last call to ExpatStartElementHandler, or -1 if

there is no ID attribute. Each attribute/value pair counts as 2; thus this corresponds to an index into the
argument list passed to the ExpatStartElementHandler.

ExpatSetEncoding

numeric ExpatSetEncoding(numeric parser, alphanumeric encoding)
[Cooper:] Set the encoding to be used by the parser. It is equivalent to passing a non-null encoding
argument to the parser creation functions. It must not be called after ExpatParser have been called on
the parser.

ExpatSetParamEntityParsing

numeric ExpatSetParamEntityParsing(numeric parser, alphanumeric code)
[Expat:] Controls parsing of parameter entities (including the external DTD subset). If parsing of
parameter entities is enabled, then references to external parameter entities (including the external DTD
subset) will be passed to the handler set with ExpatSetExternalEntityRefHandler . The context passed
will be 0.
Unlike external general entities, external parameter entities can only be parsed synchronously. If the
external parameter entity is to be parsed, it must be parsed during the call to the
ExternalEntityRefHandler: the complete sequence of ExpatExternalEntityParserCreate , ExpatParse
and ExpatParserFree calls must be made during this call. After ExpatExternalEntityParserCreate has
been called to create the parser for the external parameter entity (context must be 0 for this call), it is
ill egal to make any calls on the old parser until ExpatParserFree has been called on the newly created
parser.
If the library has been compiled without support for parameter entity parsing (i.e. without XML_DTD
being defined), then ExpatSetParamEntityParsing will return 0 if parsing of parameter entities is
requested; otherwise it will return non-zero.
Possible choices for code are: ([RexxExpat:] I f your code does not match with one of the following (and
only with them), code is interpreted as a numeric value. So, if 'expat's enumeration type
XML_ParamEntityParsing should change one day, please refer to xmlparse.h to find the legal numeric
values).

• "ExpatPARAM_ENTITY_PARSING_NEVER"
• "ExpatPARAM_ENTITY_PARSING_UNLESS_STANDALONE"
• "ExpatPARAM_ENTITY_PARSING_ALWAYS"

[RexxExpat:] The following functions ExpatLoadFuncs and ExpatDropFuncs are RexxExpat utili ty
functions and do not wrap any 'expat' functions!

ExpatLoadFuncs

ExpatLoadFuncs()
[RexxExpat:] Loads all function from the RexxExpat library described here.

ExpatDropFuncs

ExpatDropFuncs()
[RexxExpat:] Unloads all function of the RexxExpat library described here.

Variable pool functions

[RexxExpat:] The variable pool functions are provided to exchange data between the main program and
the callback routines. This came into need since the callback routines run on newly instanciated Rexx
interpreters and thus are having a separate environment.

The following functions are RexxExpat utili ty functions and do not wrap any 'expat' functions!

ExpatSetVariablePool

numeric ExpatSetVariablePool(numeric parser, alphanumeric varnames, ...)
[RexxExpat:] Append variables to the variable pool. Appended are all variables named in the argument
list following the parser reference. The variables are set to the value which they have when the function
ExpatSetVariablePool is called. If you only supply the parser reference and no further variable name
EVERY variable visible at invocation time of the function is appended to the variable pool. Use this
function carefully so that you won't run into insufficient memory. Call ExpatFreeVariablePool to free
memory occupied by the variable pool.
If the returned value is greater than 127 a fatal error occurred and the entire request failed. If the returned
value is between 0 and 127 only some variables could not be set. The function returns 0 if no error was
found.

ExpatGetVariablePool

numeric ExpatGetVariablePool(numeric parser)
[RexxExpat:] Fetch all variables from the variable pool. If the returned value is greater than 127 a fatal
error occurred and the entire request failed. If the returned value is between 0 and 127 some variables
could not be fetched. The function returns 0 if no error was found.

ExpatFreeVariablePool

numeric ExpatFreeVariablePool(numeric parser, alphanumeric encoding)
[RexxExpat:] Free the entire memory occupied by the variable pool. Returns 0 if successful, a non-zero
value otherwise.

Helper functions

[RexxExpat:] The following is meant for the developers among you. It describes the internally used
helper functions of the RexxExpat library. All function names of library function which are meant for
internal use only, begin with an underscore (_).

I tried to keep the code as understandable as possible. So handler setting functions and the handler
functions themselves should match a common pattern. Therefore I out-sourced all data management tasks
(generating, initiating and freeing) to some helper functions. They are called by the handler setting
routines to manage handler information, by the handler functions themselves to manage the arguments
lists which are to be passed to the RexxStart function, and by the variable pool functions to free the
variable pool.

_ExpatSetHandler

APIRET _ExpatSetHandler (EXPATHANDLER *Handler,
 RXSTRING ProcName,

 RXSTRING EnvName,
 RXSTRING Instore);

This function is used by the handler setting routines and will set handler information of a given Handler
according to the passed values ProcName, EnvName and Instore (see paragraph Handler settings for their
meanings).

_ExpatCopyHandler

APIRET _ExpatCopyHandler (EXPATHANDLER SourceHandler,
 EXPATHANDLER *DestinationHandler);

This functions is used by the ExpatExternalEntityParserCreate function and copies the handler
information from a given SourceHandler to a DestinationHandler . So handler information can be
easily duplicated.

_ExpatFreeHandler

APIRET _ExpatFreeHandler (EXPATHANDLER *Handler);

This function is used by the handler setting routines and the ExpatParserFree function as well and frees
the memory occupied by a given Handler .

Using these helper functions each handler setting routine is almost an exact match to the following
pseudo-code:

APIRET APIENTRY ExpatSetHandlerFunction (APIINTERFACE)
{
 /* define local variables */
 RexxExpatData userData;
 int rc = 0;

 /* check on valid call - sufficient and valid arguments passed? */
 if (!(IsSufficient(ArgCount) && IsValid(ArgList)))
 return 40; /* incorrect call – break, if not! */

 /* get reference to user data (first a rgument) */
 userData := ArgList[1];

 /* set handler – if ProcName (second argument) is defined! */
 if (IsValid(ArgList[2]))
 rc := _ExpatSetHandler (userData - >Handler[HandlerIndex],
 ArgList[2],
 ArgList[3],
 ArgList[4]);
 else /* free handler */
 rc := _ExpatFreeHandler(userData - >Handler[HandlerIndex]);

 /* register handler with 'expat' */
 XML_SetHandler(userData - >Parser,
 (userData - >Handler[HandlerIndex] ? _ExpatHandlerFunction : NULL));

 /* set Rexx return code - must not be greater than 10^RXAUTOBUFLEN ; -) */
 ReturnString := Int2Str(rc);

 return 0;
}

So, to add a new handler setting procedure to RexxExpat there are only three things to adapt:
After copying an existent procedure, adjust the HandlerIndex of the Handler member of the
RexxExpatData structure (be sure that your new HandlerIndex is listed in the enumeration
EXPATHANDLERTYPES in rexxexpat.h as well!). Now modify the handler registration call to 'expat'
and last not least change the name of the newly created RexxExpat procedure.

_ExpatMakeArgList

APIRET _ExpatMakeArgList (ULONG ArgCount,
 PRXSTRING *DestinationList,
 char **SourceList);

This function is used by the handler functions and will generate an argument list of RXSTRINGS (as
required by the RexxStart function; see [IBMPG:]) pointed to by DestinationList and initiates its
elements according to the values in SourceList (which must be an array of NULL terminated strings).
The initialisation halts when a NULL element is encountered in SourceList . The following arguments
can then be set by calls to _ExpatAppend2ArgList .

_ExpatAppend2ArgList

APIRET _ExpatAppend2ArgList (PRXSTRING *DestinationList,
 const char *ListEntry,
 int EntryLength);

This function is used by the handler functions which are to pass non-NULL terminated values to the
RexxStart functions: The first element of DestinationList which is NULL will be replaced by
ListEntry of length EntryLength . For successful assignment Destin ationList must provide such
(distinct, NULL-) element.

_ExpatFreeArgList

APIRET _ExpatFreeArgList (ULONG ArgCount,
 PRXSTRING *ArgList);

This function is used by the handler setting routines and frees the memory occupied by the passed array
of RXSTRINGs created by _ExpatMakeArgList .

Using these helper functions each handler function is almost an exact match to the following pseudo-
code:

void _ExpatHandlerFunction (void *pUserData, const XML_Char *data)
{
 /* define local variables */
 RexxExpatData userData = (RexxExpatData) pUserData;

 char * args [3];
 const ULONG ArgCount = 3;
 PRXSTRING ArgList;
 short result_int;
 RXSTRING result_str;
 int currentHandlerType = OnHandlerEvent;

 /* break - if handler's not set */
 if (!userData - >Handler[currentHandlerType]) return;

 /* make ArgList */
 args[0] := userData;
 args[1] := data;
 args[2] := NULL;
 _ExpatMakeArgList (ArgCount, ArgList, args);

 /* call RexxStart */
 RexxStart (
 ArgCount, /* number of arguments
*/
 ArgList, /* point er to argument array
*/
 userData - >Handler[currentHandlerType] - >ProcName, /* Rexx proc (code or file
name) */
 userData - >Handler[currentHandlerType] - >Instore, /* is ProcName code or file
name? */
 userData - >Handler[currentHandlerType] - >EnvName, /* initial ADDRESS environment
*/
 RXSUBROUTINE, /* call mode (here always
RXSUBROUTINE) */
 NULL, /* RexxRegisterExitDll not
implemented! */
 &result_int, /* returned result as int
*/
 &result_str)); /* returned result as RXSTRING
*/

 /* free memory */
 _ExpatFreeArgList (ArgCount, ArgList);

 /* wa it for termination of all asynchronious Rexx procedures */
 REXXWAITFORTERMINATION;
}

Again, there are only few things to be done to add a new handler to RexxExpat. First, simply copy an
existing handler. Second, provide enough space in the args array; set ArgCount accordingly. Third,
adjust the currentHandlerType (again, be sure it's an index matching with the enumeration
EXPATHANDLERTYPES in rexxexpat.h!). Then call _ExpatMakeArgList to create the ArgList and
use _ExpatAppend2ArgList if you need to pass non-NULL-terminated strings. At last, add any handler
specific code if needed (e.g. for return code processing as in _ExpatUnknownEncodingHandler).

_ExpatFreeRexxVariablePool

APIRET _ExpatFreeRexxVariablePool (PSHVBLOCK *FirstPointer);

This function is used by the variable pool functions to free the memory occupied by the variable pool. It
frees the array of SHVBLOCKs pointed to by FirstPointer .

