
Design and Implementation of an
Internet based Calendar System

Winter semester
2000/2001
Thomas Jungmann &
Reinhold Klapsing

University of Essen

Information systems and software
engineering

Univ. Prof. Dr. Rony G. Flatscher

Introduction
Overview of this presentation

Introduction
Requirements analysis
System architecture
Database design
System usage (‚walkthrough‘)
Conclusion and future work

Introduction
Scope of work

Design and implementation of an internet
based calendar system
Access to calendar with simple web browser
No groupware-functionality like free/busy-time
planning
No interoperation with other calendar systems

Introduction
Standards

IETF Working Group „Calendaring and Scheduling“
(calsched)
Main work:

– RFC 2445 Internet Calendaring and Scheduling Core Object
Specifications (iCalendar)

Specifies the objects and data types (MIME-Type text/calendar)
– RFC 2446 iCalendar Transport-Independent Interoperability

Protocol (iTIP)
Interoperation of calendar systems using iCalendar Objects

– Several other RFCs and Internet drafts as well, but all
concerning interoperation between calendar systems

Introduction
Definition of terms (1/2)

Calendar
– A collection of calendar events associated with a

specific user
Calendar Event
– An entry in a calendar that represents an event for a

specific user
Calendar User
– An entity that uses a calendaring system

Introduction
Definition of terms (2/2)

Calendar User Agent
– The client application that a Calendar User utilizes to access

and manipulate a calendar (the web browser)
Calendar Service

– The collection of programs that receive and interpret the
Calendar Users commands and also generate and format the
output for the user

Calendar Store
– The database that stores the calendars

Requirements analysis
Overview

2 steps of requirements analysis

– Step 1: Technical considerations must not dominate
users needs
=> no technical terms/solutions in mind, only Users
View in ‚plain english‘

– Step 2: search for appropriate technical solution for
these needs from the Software Designers point of
view and refinement of needs

Requirements analysis

Easy access to the
calendar from
everywhere, no special
software needed (e.g.
Internet Café Scenario)

Calendar User Agent must be
standard web browser,
communication over HTTP,
HTML and CGI only
Web server must support CGI
as well (‚Apache‘ will be used,
because it is available on
many platforms)

Users view Programmers view

Requirements analysis

System must be able to
work with multiple users

Probably large amount of
data (incl. meta-data for
admin. purposes) => use of a
powerful database
recommended
MySQL will be used
(relieable, available for many
platforms, ANSI SQL 92
Standard used)
Session management needed
to distinguish users (HTTP is
stateless)

Users view Programmers view

Requirements analysis

Calendar data is private,
need for confidentiality
=> User must
authenticate before use

Password check during
logon
Sessions must timeout
after certain time

Users view Programmers view

Requirements analysis

Other (technical) requirements
– Programming language Object Rexx

Scripting language with powerful string parsing functions
preferable (because of HTML/CGI)
Available on many platforms
Interface to many databases available (Rexx/SQL)

Session management
– Can be achieved by

HTML Hidden Form fields
CGI PATH_INFO Mechanism
RFC 2109, HTTP State Management Mechanism: „Cookies“

System architecture

System architecture: Diagramm of classes

System architecture
Basic operation principle

Calendar Service Core is the main module and
started by the web server on receiving a CGI-
Request
No direct communication with other
components (web server, database)

Performed by interface classes

System architecture
Interfaces

After main script start => creation of interface
objects:

initVars: PROCEDURE EXPOSE db html cgi.

db = .sqlInterface~NEW

html = .HTMLgen~NEW

parser = .cgiParse~NEW

cgi. = parser~parseQueryString()

return

System architecture
Interfaces

Self-Initializing through constructor:
::METHOD INIT /* Constructor */

if rxFuncQuery("SQLLoadFuncs") then do

call rxFuncAdd "SQLLoadFuncs","rexxsql","SQLLoadFuncs"

call SQLLoadFuncs

end

self~establishDBConnection()

Advantages of separate interfaces:
- easy adaption in changing environments
- easy reuse of code in similar applications

System architecture
Interfaces

SQL/DB-Interface Class
– Colletion of methods for database access
– Most methods prepare textstring with SQL-Command, send it

to the database and return the results
– Example:

::METHOD getUserName

parse arg uID

cmd = "select uniqueName from user where uID=’"||uID||"’;"

res = SQLCommand(SQLout,cmd)

if SQLout.uniqueName.0 then /* SQLout.uniqueName.0 = Resultcount */

return SQLout.uniqueName.1

else

return -1 /* userID not found */

System architecture
Interfaces

CGI-Parse-Interface
– Has only one public method CGIParse()
– Reads CGI-String from environment
– Reverses the URL-Encoding
– Splits variable pairs and assigns them to a Rexx-

Stem variable (cgi.), which is then returned to the
main script

System architecture
Interfaces

HTML-Generator Class:
– Writes output of the calendar service as HTML to the standard

output
– Generates Header
– Simplifies the use of CGI-Forms, hyperlinks and other

formatting structures
– All output is written by this class – no other component writes

to the standard output

System architecture
Interfaces

::METHOD printHeader

parse arg title

sq = d2c(39)

say "content-type:text/html"

say

say "<HTML>"

say "<HEAD><TITLE>"||title||"</TITLE></HEAD>"

say "<BODY BGCOLOR='#D0D0D0' TEXT='#006600'>"

Example from the HTML-Generator Class:

System architecture
Main Program

call initVars

html~printHeader('The Web Calendar')

select

when cgi.action = 'logon' then call logon --check username and password

--and create session

when cgi.action = 'newuser' then call newuser --create a new user account

when cgi.action = 'logout' then call logout --invalidate session

when cgi.action = 'overview' then call overview --display overview of this month

when cgi.action = 'goto' then call gotoMonth –-navigate to specific month

when cgi.action = 'gotoform' then call gotoForm --show HTML-Form for gotoMonth

when cgi.action = 'viewday' then call viewDay --display all events of day

when cgi.action = 'view' then call viewEvent --display event details

when cgi.action = 'create' then call createEvent --add event to database

when cgi.action = 'newentry' then call newentryForm --show HTML-Form for createEvent

when cgi.action = 'Edit' then call editEventForm –-show HTML-Form for updateEvent

when cgi.action = 'update' then call updateEvent --accept modifications for event

when cgi.action = 'Delete' then call deleteEvent --delete event permanently

otherwise call abort 'Unknown CGI-Action'

end

html~printTail

DROP db --drop references to interfaces

DROP html

exit 0

Database design
Entity relationship model

Database design
Entities

Attributes of entity ‚User‘:
– Name (system wide unique)
– Password
– User ID (an alias for the name, both are unique, but

a number is easier to handle)

Database design
Entities

Attributes of entity ‚Event‘:
– Event ID
– User ID, a reference to the owner of that event
– Description, the actual event description
– Time of event (date and time)
– Duration
– Category

Database design
Entities

Attributes of entity ‚Session‘:
– Session ID, unique identifier
– User ID, reference to user who initiated the session
– Expire time, date and time of session expire

Attributes of entity ‚Category‘:
– Category ID
– Category Name, plain text description of category

(Birthday, Meeting, Call etc.)

Database design
Relationship between entities

3 binary relations between the four entities

– Event <> Category: One event belongs to exactly one
category, but many events to the same category =>
connectivity ‚one to many‘

– User <> Event: Each event belongs to one user, one user can
have many events => ‚one to many‘

– User <> Session: Each session belongs to one user, but how
many sessions can a user have? More than one, because it is
possible that an old session was not ended properly => ‚one to
many‘

Database design
Table definitions

mysql> describe user;

+------------+----------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+----------+------+-----+---------+-------+

| uID | int(11) | | PRI | 0 | |

| uniqueName | char(25) | | UNI | | |

| password | char(25) | YES | | NULL | |

+------------+----------+------+-----+---------+-------+

mysql> describe event;

+-------------+-----------+------+-----+------------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------------+-----------+------+-----+------------+----------------+

| eventID | int(11) | | PRI | 0 | auto_increment |

| uID | char(25) | | | | |

| categoryID | int(11) | | | NULL | |

| description | char(100) | YES | | NULL | |

| eventDate | date | | | 0000-00-00 | |

| eventTime | time | YES | | NULL | |

| duration | time | YES | | NULL | |

+-------------+-----------+------+-----+------------+----------------+

Database design
Table definitions

mysql> describe category;

+------------+----------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+------------+----------+------+-----+---------+----------------+

| categoryID | int(11) | | PRI | 0 | auto_increment |

| category | char(26) | YES | | NULL | |

+------------+----------+------+-----+---------+----------------+

mysql> describe session;

+------------+----------+------+-----+---------------------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+----------+------+-----+---------------------+-------+

| sID | char(25) | | PRI | | |

| uID | char(25) | | | | |

| expireTime | datetime | | | 0000-00-00 00:00:00 | |

+------------+----------+------+-----+---------------------+-------+

System usage
Screenshots

System usage
Screenshots

System usage
Screenshots

System usage
Screenshots

Conclusion and future work

Interoperation
– Calendar system is standalone, no interoperations with other

systems, no interoperation between users (free/busy schedule)
– IETF has already released standards for data types and

protocols for interoperation
Conceptual improvements

– Interface model has not been implemented strictly
– Exchanging HTML for WML is not easy to do, as there is

HTML specific code mixed into the core script

Conclusion and future work

Object orientation
– System was written in Object Rexx, but little concepts of the

object oriented paradigm were actually used. To much
procedural thinking

– ‚Real‘ OO-Design also possible, e.g. Events have methods to
create, alter or delete themselves, User objects have methods
to check their passwords, etc.

Security
– Based only on passwords and session timeout.
– Unencrypted, so sniffing attacks possible
– Even worse: CGI-GET-Method used for data transmission =>

cache-logfiles store all information
– Improvement: use of POST-Method
– Even better: use of Secure Socket Layer SSL

Sum up

INTERNET CALENDAR SYSTEM:

– Can be used from everywhere, even with a WAP-
capable cellular phone

– All components are freely available (MySQL only for
non-comercial use)

– Distributed system: Web server and Database
server can be placed on different machines

– Easy to use intuitive user interface
– Year 2000 compliant ;)

