
Copyright © Martin Lafaix, 1998-2000, 2002, 2003, 2008. All rights reserved.

[2008-03-23]

In this document I describe eight proposed areas of enhancements to the NetRexx language: piece-wise methods
definitions, privileged objects, enhanced type system, short-circuit logical operators, assertions, enhanced array support,
default implementations in interfaces, and delegates. My intention in making those proposals is to enhance the
readability, expressivity, and descriptiveness of NetRexx, so that the programs we create can be easier to write and
maintain. The syntax and semantics are subject to change. Please send comments and suggestions to Martin Lafaix,
lafaix@online.fr.

1. Purpose
2. Piece-Wise method definitions
3. Privileged objects
4. Enhanced type system
5. Short-circuit logical operators
6. Assertions
7. Arrays
8. Default implementations in interfaces
9. Delegates
10. Summary
Acknowledgments
Bibliography
History

Given that you are reading this document, I assume that you want to know how to enhance NetRexx. Given that you have
that desire, I assume that you already know about NetRexx.

My purpose in this document is double: I want to propose enhancements to the NetRexx language, and I would like to have
your opinions and comments and suggestions on those enhancements (or on other enhancements you may desire).

I have been using NetRexx since its first public release more than three years ago. I like the language very much, but I have
found some of its features to be lacking, and I miss several features present in other languages. Although I tested my (poor
:-) lobbyist skills in the past years by making a few informal suggestions, I think the time has come for a more reasoned
approach---after all, the NetRexx language definition has been stable for quite some time, and hence demands
consideration.

My intention is to address eight areas in which I consider enhancements are most needed. Those areas are, in no specific
order:

methods definitions
privileged objects
the type system
logical operators
assertions
arrays
default implementation of methods in interfaces
delegates

Each area is the subject of its own section, in which I propose one or more enhancements. The enhancements are
independents: adding one of them does not require the addition of another (but it does not mean they do not relate, in that
an enhancement may improve the functionality of another).

By making those proposals, I try to enhance NetRexx's consistency, readability, expressivity and descriptiveness. In other
words, I suggest implementing those proposals so that we can create programs more effectively.

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

1 of 26 24.11.2010 19:24

But without some feedback from other NetRexx users---namely you---my proposals are of little interest. There is no point in
adding features to the NetRexx language if they are only used by one person---namely me. That is the reason why your
opinions and comments are essential. Without your participation, this document is of no use. So please express yourself, and
feel free to make your own proposals.

In this document, I am only considering the NetRexx language. I am not taking into account a particular implementation or a
particular platform an implementation may rely on. Although the only NetRexx implementation I know of relies on Java, the
language by itself is not Java dependent. I have tried not to add such dependencies in my proposals.

It also means that I am making no proposals related to a particular implementation. You will see no performances or
compile-time--optimization proposals. Such proposals are not related to the NetRexx language per se, hence they do not fit
the purpose of this document. (But it does not imply a given proposal may not open the road to a more efficient
implementation---indeed, some proposals do allow for an efficient implementation.)

In this document, I use various notations such as changes of font for clarity and for consistency with the NetRexx language
definition. Within the text, I use a sans-serif bold font to indicate keywords, and the same font in italic to indicate
technical terms. I use an italic font to indicate a reference to a technical term defined elsewhere or a word in a syntax
diagram that names a segment of syntax.

Similarly, in the syntax diagrams, I use a bold font for words (symbols) that also denote keywords or sub-keywords, and
italic for words (such as expression) that denote a token or collection of tokens defined elsewhere. The brackets [and]
delimit optional (and possibly alternative) parts of the instruction. An ellipsis (...) following a bracket indicates that the
bracketed part of the clause may optionally be repeated.

Occasionally in syntax diagrams brackets are "real" (that is, a bracket is required in the syntax; it is not marking an optional
part). I enclose such brackets in single quotes, thus: '[' or ']'. This may also occur for ellipsis.

In some sections, I may provide additional information on some points. This additional information is placed in
a side bar like this one. Such additional information complements the proposal, by giving references or
explanations.

When the symbol

appears at the end of a section, it warns of a "dangerous bend" in the train of thought; do not read the end of the section
unless you need to. (By "dangerous bend" I mean talk about unresolved or undecided issues.)

NetRexx supports multiple definitions for a method, as long as those definitions have different signatures. I suggest
extending this behavior by also allowing the use of constants, patterns, and predicates in place of arguments, so that we
can provide multiple definitions for a method for specific arguments values.

2.1. Constants

It is not infrequent for us to write methods whose bodies consist of either a select block or nested ifs instructions. A typical
example is the factorial function:

 method fact(n)
 if n = 0 then
 return 1
 else
 if n > 0 then
 return n * fact(n-1)
 else
 -- invalid arg

When the method is small, the code is readable and the intent not too obscure. But as soon as the number of cases increases,

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

2 of 26 24.11.2010 19:24

or if the code becomes large, our intent is less clear. We have to look at the end of the method to be sure the select or ifs
are not followed by trailing code. We no longer immediately know that the body of the method is in fact a series of
independent parts.

So I suggest adding piece-wise method definitions to NetRexx. Instead of having to create a big select or nested ifs block,
we simply enumerate the various partial definitions:

Example 2.1:

 method fact(0)
 return 1

 method fact(n | n > 0) -- or fact(n when n > 0)
 return n * fact(n-1)

In general a piece-wise definition of a method consists of two or more parts. Each part gives a piece of the entire
definition. As with a select block, the first matching definition is used and it is an error to either omit a case or redefine an
already handled case.

All partial definitions for a given signature should be grouped together to allow line number conservation for
implementations relying on an external compiler, such as javac. A piece-wise definition ends when one of the following
elements is encountered:

a new method definition (i.e., a method instruction with a different signature or a different name)
a class instruction
the end of the program

The type of a given argument can be specified. For example, if the we want to force the argument of the preceding fact
method to be an int, changing 0 to int 0 and n | n > 0 to n = int | n > 0 will do it.

If exceptions are declared or signaled by pieces, their union is used for the signature. (If one of those exceptions is a
subclass of another specified exception, it is omitted.)

This construction makes our intent clear. It also lets the compiler implement the argument selection efficiently. More
important, this construction opens the road to efficient and simple argument deconstruction.

2.2. Patterns

As of now NetRexx only provides deconstruction for strings via the parse clause. Piece-wise definitions allow us to use
deconstruction directly in argument specification:

Example 2.2:

 method hms2s(hh ':' mm ':' ss) -- instead of:
 return hh*3600 + mm*60 + ss -- method hms2s(dummy)
 . -- parse dummy hh ':' mm ':' ss
 . -- return hh*3600 + mm*60 + ss
 .
 say hms2s('21:37:07')

As shown in Example 2.2, by using a pattern in the argument specification we make our intent clear. The code is concise yet
readable. We no longer have to create unnecessary variables. We simply expose our intent.

If array deconstruction is added to NetRexx (see Section 7.2), an array deconstruction pattern would also be
allowed in argument specification.

This use of patterns in argument specifications differs from pattern matching as found in for example
Standard ML. A pattern in NetRexx always matches. In Example 2.2, calling hms2s('foo') will produces a
NumberFormatException at runtime with the reference implementation. It will not signal an unmatched
specification. To achieve this, we have to use predicates (see Section 2.3).

2.3. Predicates

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

3 of 26 24.11.2010 19:24

The use of constants in piece-wise definitions allows us to discriminate among discrete conditions, but we cannot specify
intervals or nondiscrete conditions. This is too restrictive.

I suggest allowing predicates in argument specification, as shown in Example 2.1. A predicate is an optional construction
following an expression (the vertical bar "|" is pronounced "such that" in this context):

 ['|' expression]

A predicate can only refer to visible objects: (1) arguments specified on the left of the predicate, (2) members of the object
the method being defined is part of, and (3) visible static members of any class.

We can use as many predicates as we wish in a given method definition. The definition will match if and only if the
predicates (i.e., the expressions following the "|") evaluate to 1.

examples:

 method foo(x | x + y > 0, y) -- invalid, y not visible yet
 method foo(x, y | x + y > 0) -- correct
 method foo(x | x > 0, y | y > 0)
 method bar(x | Math.sin(x) < 0)
 method baz(x | x.left(3) = 'foo')

We can also use a predicate after the argument list in a function declaration, so that we can write code such as method
foo(x, y) | x + y > 0. We can use a predicate even when no argument exists.

Predicates enhance piece-wise definitions by allowing us to specify the conditions we desire. We can write programs
effectively, and our intent is clear.

Using a constant as an argument can be seen as a special case of a predicate: "foo" is equivalent to dummy
| dummy = "foo".

"|" is maybe not the most appropriate notation for introducing predicates (despite that it is not ambiguous and that
such overloading cases are already presents in NetRexx---consider for example x = aBoolean =
anotherBoolean). A textual keyword such as when or suchthat may be less clumsy. If a textual keyword is used,
it would be wise to handle it like the then keyword in if instructions, so that it is not mistaken for a pattern element.

2.4. Summary

By extending the current method definition mechanism, we enhance the descriptiveness of NetRexx. The use of patterns
and predicates makes our intent more obvious. The programs we write are closer to what we think.

Additionally, an automatic documentation tool---such as nrxdoc---could be designed to use this new information. This
enhancement would help to make the documentation clearer and more accurate, and would reduce the risk of it getting out
of sync. Other tools such as debuggers, profilers, and so on could also use this information.

There is a need for a placeholder in parameter list (so that we do not have to name an argument we are not using).
Two visually appealing candidates are "_" and "...". The first candidate is unfortunately a valid variable name.
Hence using it for this purpose would break backward compatibility. The other candidate can cause comprehension
problems in that an ellipsis usually stands for a variable number of elements. Using either a single "." or nothing (as
in REXX) is a possible solution, but I do not find it readable enough in the context of a parameter list. Suggestions
welcome!

Having to repeat the method signature can be annoying. Devising a way to avoid that would be interesting. Ideas
welcome!

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

4 of 26 24.11.2010 19:24

When writing a program, it is not uncommon for us to call methods or set and or query properties of a given object
repeatedly. As shown in Example 3.1, this leads to verbose and error-prone code:

Example 3.1:

 say rectangle.x rectangle.y rectangle.width rectangle.height

We need a way to denote a privileged object, so that we can access it more effectively. I suggest adding an optional with
keyword to all block structure instructions (namely, class, do, loop, method, and select):

 [with term]

term has either to be visible at the time of its declaration or to be the special this term. If this is used, the privileged object
will be the currently running instance.

Inside such a qualified structure, we can refer to the privileged object's members by omitting the privileged object name.
This eluding is only allowed at the beginning of a term. This usage remains possible within non--with-qualified enclosed
structures.

Example 3.2:

 do with rectangle
 say .x .y .width .height
 end

The term is evaluated each time the with-qualified block body is run. It means that, in Example 3.2, rectangle is
evaluated once. In Example 3.3 the term is evaluated once per iteration:

Example 3.3:

 loop i = 0 for foo.length -- or equivalently:
 do with foo[i] --
 say .bar -- loop i = 0 for foo.length with foo[i]
 end -- say .bar
 end -- end

The privileged object that may have been defined for a class is not inherited by its possible subclasses. If no with keyword
is specified for a top-level class instruction, with this is assumed.

This construction preserves backward compatibility. It helps us to write concise yet readable code. It does not add much
complexity to NetRexx.

The with mechanism shares many similarities with the uses keyword found in class instructions. The
purpose is different, but the underlying concepts are alike.

They both allow for concise notation, the two mechanisms affect only the syntax of terms in the current class,
and the subclasses do not inherit them. Also, although the uses instruction is currently only attachable to
class instructions, we can imagine extending the use of uses keyword to other block structures (the limiting
factor here being that it might be of little interest).

It may be interesting to restrict the type of term. Built-in types such as int or double are of no interest. (A primitive
type is not an Object---hence calling methods is not valid.)

The type system is an essential part of a programming language. NetRexx offers a simple yet convenient type system. It
features single inheritance plus interfaces and a limited type inference algorithm (the first use of a untyped variable
determines its type).

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

5 of 26 24.11.2010 19:24

Although convenient, I find this scheme to be too simple in a nonnegligible number of cases: We cannot express some
known type restrictions at compile time, we have to write repetitive code to handle similar types, and we have to explicitly
specify the type of some variables.

4.1. Bounded types

The currently provided type system does not always allow us to express type restrictions we would like to enforce. For
example, let us assume we want to code a method that requires an argument that is both a Component and Cloneable.

Due to the Component class being both out of our control and not implementing the Cloneable interface, we cannot enforce
that restriction in our method definition. Instead, we have to rely on a runtime check:

Example 4.1:

 method foo(c = Component) -- or ... c = Cloneable
 if \ (c <= Cloneable) then -- and ... c <= Component
 signal IllegalArgumentException(...)
 ...

This implies some errors we know could occur will not be caught at compile time. We cannot circumvent this problem.
Defining a new class extending Component and implementing Cloneable is of no use as existing subclasses of Component
would remain unaffected. To resolve this deficiency, I suggest adding bounded types to NetRexx. A bounded type is an
intersection of types.

A bounded type can appear anywhere a type is allowed. The object is assumed to have all types constituting the
intersection. The following notation is used to denote bounded types:

 type & type [& type]...

 where type is a type

At most one type can be a descendant of Object. The other types must be interfaces. (If we were to allow more than one
noninterface type, this would be either redundant, one type being a subclass of another, or impossible---multiple inheritance
does not exist in NetRexx, and hence an object cannot belong to two nonrelated classes.)

A bounded type usually needs to be parenthesized if it is followed by an expression, as the "&" operator has a lower
precedence than the blank operator.

When an object's type is a bounded type, it means we can access all visible members of any of the union's constituents. The
following code requires no explicit casts:

 method bar(c = ActionListener & WindowListener)
 ...
 c.actionPerformed(...)
 ...
 c.windowClosed(...)
 ...

By using bounded types, we could rewrite Example 4.1 as follows:

Example 4.2:

 method foo(o = Component & Cloneable) -- or Cloneable & Component
 ...

Example 4.2 is simpler and safer. If we mistakenly pass an incorrect argument, the error will be caught at compile time.

Bounded types enhance the safety of our code, and hence our productivity. In fact, due to us also not having to explicitly
specify a cast, the code we write is more concise and more readable. The notation induces no incompatibility with existing
code.

The bounded type information could be lost in a Java class file. Although we could save it in an attribute, a nonaware
compiler would fail to see it. By mapping the bounded type to its erasure (as defined in the Generics for Java draft),

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

6 of 26 24.11.2010 19:24

we would ensure compatibility with other existing Java compilers. The advanced knowledge would be lost, but that
already is the case right now, so...

The Adding Generics to the Java Programming Language draft (cf. http://jcp.org/aboutJava/communityprocess
/review/jsr014/), in its Translation section, defines a simple way to implement bounded types in a backward
compatible way. If we are to add bounded types to NetRexx, I think we should follow this specification.

4.2. Types synonyms

The Java Class Libraries contain many meaningfully-named classes. Alas, although being meaningful, those names can be
long to type and to read. Even more, to be able to resolve name conflicts, we have to use complete class name from time to
time (e.g., is List the AWT one or the collection one? or is it a call to a list() method?).

I hence suggest adding simple types synonyms to NetRexx.

NetRexx's types synonyms are attached to a block structure (i.e., a class, do, loop, method, or select instruction). They
are active from their definition point to the end of the defining structure. It is not legal to redefine a synonym previously
specified in an enclosing scope. A synonym can use a previously-defined one, but it cannot use one defined after it. In other
words, recursive types synonyms are not allowed.

Types synonyms are defined via a new clause:

 name == term

The symbol naming the type synonym, name, cannot begin with a digit (0-9). The synonym substitution is by default
case-insensitive (but this case sensitivity can be modified by the strictcase option).

The body of the synonym, term, must be a class name (simple or compound).

The substitution only occurs for symbols. It does not occurs in literal constants. It can occur in compound terms only if the
symbol is at the starting position. It is a straight substitution. No parameters are allowed. No recursive substitution is
attempted (in other words, the result of a symbol's substitution is not analyzed for more possible substitutions).

Example 4.3:

 class foo extends Component -
 implements MouseListener

 AWTList == java.awt.List
 ME == MouseEvent

 method foo
 ...
 aList = AWTList()
 ...
 method mouseEntered(e = ME)
 ...
 method mouseExited(e = ME)
 ...

The types synonyms that may have been defined for a class are not inherited by its possible subclasses.

Types synonyms allow us to write concise code in places no other mechanisms would. By writing concise yet clear code, we
enhance our productivity and the readability of our code.

4.3. Views

We do not always control the classes we use. We often rely on third-parties libraries. This helps us to shorten our
development costs. But there is one problem that may arise with third-parties libraries: discrepancies may exist between two
similar classes we use. By discrepancies I mean that two classes that may provide an essentially identical service, due to
having been developed by two different parties, may not have the same interface.

It implies that we have to duplicate our code if we for example want to develop a method that may use those two (or more)

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

7 of 26 24.11.2010 19:24

similar services. This required duplication of code is costly. It reduces the readability and maintainability of the code we
write. Our code becomes error prone.

So I suggest adding views to NetRexx. A view is a way to instruct the system that two types are in essence identical (at least
for the use we have of them). A view is defined as follows:

 view type1 as type2 ;

 where type1 and type2 are types

If needed, this instruction is followed by one or more methods definitions. Those methods definitions are the necessary glue
that is needed to make an instance of type1 acts as an instance of type2. We do not have to provide a definition for all
type2's methods---just for the ones we use. When convenient, private methods are allowed. Such private methods cannot be
called directly from the rest of the program. They are only callable from the view's methods.

A view is visible (and hence active) from its point of definition up to the end of the enclosing structure (either a class or a
program). The definition of a view is ended by a view instruction or a class instruction. A view instruction ends the
definition of a possible preceding class instruction, except if the view definition is followed by minor-class definitions.

A view is not an object per se. It does not exist at run time. When we define a view, we specify that every method accepting
an instance of type2 must also accept an instance of type1 as an alternative. In other words, we multiply the number of
methods.

type1 and or type2 may be simple or bounded types. They can be interfaces or abstract classes. There is no need for type1
and type2 to be two related types---that is, one of them does not have to be a subclass of the other. Although type1 can be a
primitive type, type2 cannot.

In Example 4.3, we have a simple class that defines a static method myMethod. Due to the specified view, a new method is
generated:

Example 4.4:

 -- MyClass.nrx
 view Component as Container
 method paintComponents(g = Graphics)

 class MyClass
 method myMethod(c = Container) static
 ...
 c.paintComponents(...)
 ...

 -- MyTest.nrx
 MyClass.myMethod(aContainer) -- OK
 MyClass.myMethod(aComponent) -- OK too, due to the view
 MyClass.myMethod(anObject) -- Error!

Views hide the differences between two types. From our point of view, they become identical. Hence, views simplify our
work, and enhance our productivity.

In other words, views allow us to modify hierarchies we have no control upon. The source code is no longer needed if we
want to make a modification to a base class.

4.4. Indexed Types

Example 4.5:

 +++ 2.1

 +++ Example 1 Indexed types

 Vector[String]
 Seq[Seq[A]]
 Seq[String].Zipper[Integer]
 Collection[Integer]

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

8 of 26 24.11.2010 19:24

 Pair[String, String]

 -- Vector[int] -- illegal, primitive types cannot be arguments
 -- Pair[String] -- illegal, not enough arguments
 -- Pair[String, String, String] -- illegal, too many arguments

 +++ 2.2

 x = Vector[String]()
 y = Vector[Integer]()

 return x.getClass = y.getClass -- yields true

 +++ Exemple 2 Mutually recursive type variable bounds

 class ConvertibleTo[A] interface forall A

 method convert returns A

 --class ReprChange[A = ConvertibleTo[B], B = ConvertibleTo[A]]
 class ReprChange[A, B] forall A = ConvertibleTo[B], B = ConvertibleTo[A]

 a = A

 method set(x = B)
 a = x.convert

 method get returns B
 return a.convert

 +++ Example 3 Nested indexed class declarations

 class Seq[A] forall A

 head = A
 tail = Seq[A]

 method Seq()
 this(null, null)

 method Seq(hd = A, tl = Seq[A])
 head = hd
 tail = tl

 method isEmpty returns Boolean
 return tail = null

 class Seq[A].Zipper[B] dependent forall B

 method zip(that = Seq[B]) returns Seq[Pair[A, B]]
 if this.isEmpty, that.isEmpty then
 return Seq[Pair[A, B]]()
 else
 return Seq[Pair[A, B]](Pair[A, B](this.head, that.head), -
 this.tail.zip(that.tail))

 -- alternative implementation, if we were to use the same
 -- type inference algorithm for methods and constructors

 method zip(that = Seq[B]) returns Seq[Pair[A, B]]
 if this.isEmpty, that.isEmpty then
 return Seq()
 else
 return Seq(Pair(this.head, that.head), -
 this.tail.zip(that.tail))

 class Client

 strs = Seq[String]("a", Seq[String]("b", Seq[String]()))

 nums = Seq[Number](Integer(1), Seq[Number](Double(1.5), -
 Seq[Number]()))

 -- alternative

 strs = Seq[String] Seq("a", Seq("b", Seq()))
 nums = Seq[Number] Seq(Integer(1), Seq(Double(1.5), Seq()))

 zipper = strs.Zipper[Number]()
 combined = zipper.zip(nums)

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

9 of 26 24.11.2010 19:24

 +++ 2.4

 class B implements I[Integer]
 class C extends B implements I[String]

 +++ 2.5

 +++ Example 4 Raw types

 class Cell[A] forall A

 value = A

 method Cell(v = A)
 value = v

 method get returns A
 return value

 method set(v = A)
 value = v

 x = Cell Cell[String]("abc")
 x.value
 x.get
 x.set("def") ++ deprecated

 +++ 3.1

 +++ Example 5 Polymorphic methods

 method swap(a = Elem[], i, j) static forall Elem
 temp = a[i]; a[i] = a[j]; a[j] = temp

 method sort(a = Elem[]) forall Elem = Comparable[Elem]
 loop i = 0 for a.length
 loop j = 0 to i-1
 if a[j].compareTo(a[i]) < 0 then
 swap(a, i, j)
 end
 end

 class Seq[A] forall A

 method zip(that = Seq[B]) returns Seq[Pair[A, B]] forall B
 if this.isEmpty, that.isEmpty then
 return Seq[Pair[A, B]]()
 else
 return Seq[Pair[A, B]](Pair[A, B](this.head, that.head), -
 this.tail.zip(that.tail))

 +++ 3.2

 +++ Example 6 valid now (was invalid according to JLS)

 class C implements Cloneable

 method copy returns C
 return C clone

 class D extends C implements Cloneable

 method copy returns D
 return D clone

 +++ 4

 +++ Example 7 Polymorphic signals clauses

 class PrivilegedExceptionAction[E] interface forall E = Exception

 method run signals E

 class AccessController

 method doPrivileged(action = PrivilegedExceptionAction[E]) static signals E forall E = Exception
 ...

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

10 of 26 24.11.2010 19:24

 class Test

 method main(args = String[]) static
 do
 AccessController.doPrivileged(PEAction())
 catch FileNotFoundException f
 ...
 end

 class Test.PEAaction implements PrivilegedExceptionAction[FileNotFoundException]

 method run signals FileNotFoundException
 ...

 +++ 5.1

 +++ Example 8 Class instance creation expressions

 Vector[String]()

 Pair[Seq[Integer], Seq[String]](Seq[Integer](Integer(0), Seq[Integer]()), -
 Seq[String]("abc", Seq[String]()))

 -- alternative

 Pair[Seq[Integer], Seq[String]] Pair(Seq(Integer(0), Seq()), -
 Seq("abc", Seq()))
 +++ 5.2

 +++ Example 9 Array creation expressions

 Vector[String][n]
 Seq[Character][10][20][]

 +++ 5.3

 +++ Example 10 Assume the declarations

 class Dictionary[A, B] extends Object forall A, B
 ...

 class Hashtable[A, B] extends Dictionary[A, B] forall A, B
 ...

 d = Dictionary[String, Integer]
 o = Object

 Hashtable[String, Integer] d ++ legal, has type Hashtable[String, Integer]
 Hashtable o ++ legal, has type Hashtable

 Hashtable[Float, Double] d ++ illegal, not a subtype
 Hashtable[String, Integer] o ++ illegal, not unique subtype

 +++ 5.4

 +++ Example 11 Type comparisons

 class Seq[A] implements List[A] forall A

 method isSeq(x = List[A]) static returns boolean
 return x <= Seq[A]

 method isSeq(x = Object) static returns boolean
 return x <= Seq

 method isSeqArray(x = Object) static returns boolean
 return x <= Seq[]

 +++ Example 12 Type comparisons and type casts with type constructors

 class Pair[A, B] forall A, B

 fst = A
 snd = B

 method equals(other = Object) returns boolean
 return other <= Pair & -;
 equals(fst, (Pair other).fst) & -;
 equals(snd, (Pair other).snd)

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

11 of 26 24.11.2010 19:24

 method equals(x = Object, y = Object) private returns boolean
 -- x = null &&& y = null ||| x \= null &&& x.equals(y);
 if x = null & y = null then;
 return 1
 if x \= null then
 return x.equals(y)
 return 0

 +++ 5.5

 +++ Example 13 Polymorphic method calls (see Example 5)

 swap(ints, 1, 3)
 sort(strings)
 strings.zip(ints)

 +++ 5.6

 +++ Example 14 Type parameter inference

 method nil static returns Seq[A] forall A
 return Seq[A]()

 method cons(x = A, xs = Seq[A]) static returns Seq[A] forall A
 return Seq[A](x, xs)

 cons("abc", nil) -- of type Seq[String]
 cons(IOException(), cons(Error(), nil)) -- of type Seq[Throwable]
 nil -- of type Seq[*]
 cons(null, nil) -- of type Seq[*]

 +++ Example 15 An unsafe situation for type parameter inference

 method duplicate(x = A) returns Pair[A, A]
 return Pair[A, A](x, x)

 method crackIt(p = Pair[Seq[String], Seq[Integer]])
 p.fst.head = "hello"
 i = p.snd.head

 crackIt(duplicate(cons(null, nil))) -- illegal !

 +++ 6.2

 +++ Example 16 Bridge methods

 class C[A] forall A

 method id(x = A) returns A abstract

 class D extends C[String]

 method id(x = String) returns String
 return x

 -- translates to

 class C

 method id(x = Object) returns Object abstract

 class D extends C

 method id(x = String) returns String
 return x

 method id(x = Object) returns Object
 return id(String x)

 +++ Example 17 Bridge methods with the same parameters as normal methods

 class C[A] forall A

 method next returns A abstract

 class D extends C[String]

 method next returns String
 return ""

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

12 of 26 24.11.2010 19:24

 -- translates to

 class C

 method next returns Object abstract

 class D extends C

 method next/*1*/ returns String
 return ""

 method next/*2*/ returns Object
 return next/*1*/

 +++ Example 18 Overriding with covariant return types

 class C

 method dup returns C
 ...

 class D extends C

 method dup returns D
 ...

 -- translates to

 class C

 method dup returns C
 ...

 class D extends C

 method dup/*1*/ returns D
 ...

 method dup/*2*/ returns C
 return dup/*1*/

 +++ Example 19 Name clash excluded by Rule 2

 class C[A] forall A

 method id(x = A) returns A

 class D extends C[String]

 method id(x = Object) returns Object
 ...

 -- illegal since C.id and D.id have the same type erasure, yet D.id does
 -- not override C.id.

 +++ Example 20 Name clash excluded by Rule 3

 class C[A] forall A

 method id(x = A) returns A

 class I[A] interface forall A

 method id(x = A) returns A

 class D extends C[String] implements I[Integer]

 method id(x = String) returns String
 ...

 method id(x = Integer) returns Integer
 ...

 -- illegal since C.id and I.id have the same type erasure yet there is no
 -- single method in D that indirectly overrides C.id and implements I.id.

 +++ 6.3

 class Cell[A] forall A

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

13 of 26 24.11.2010 19:24

 value = A

 method getValue returns A

 ...

 method f(cell = Cell[String]) returns String
 return cell.value

 -- the return statement needs to be translated to

 return String cell.value

 -- in the previous context

 x = cell.getValue

 -- needs to be translated to

 x = String cell.getValue

 +++ other

 method foo(a = Component & Cloneable);
 method foo(a = (Component & Cloneable) null);
 if x <= Object & Cloneable then +++ illegal;
 if x <= (Object & Cloneable) then;
 method foo(a = ActionListener & WindowListener) returns ActionListener & WindowListener;
 method foo(a = A) returns A forall A = ActionListener & WindowListener;

4.5. Type inference

The currently used type inference algorithm rely on the type of the variable at its first assignment (when we do not define
this type explicitly). Similarly, the type of an array initializer depends of the type of its first element.

Although useful, this kind of type inference forces us to specify the type of a variable if its first assignment is not of the
desired type (i.e., the variable is for example assigned an object whose type is a subclass of the intended type). Therefore, I
suggest using a more elegant algorithm for local variables and array initializers type inference. The type inference algorithm
for properties and methods is not modified, to maintain compatibility and predictability.

Instead of relying on the first assignment of a local variable, all uses are considered. The assigned type is either (1) the type
specified at declaration time or (2) the common compatible type enclosing all the variable uses. If no compatible type is
found, a compile-time error is issued.

If the type determination is not possible due to recursion or ambiguity, a compile-time error is issued. We solve this by
explicitly declaring the local variable to be of a given type. When we do not specify the local variable type, the inferred type
is the deepest possible one in the class hierarchy.

Similarly, for array initializers, the type of all elements is considered. If the inferred type is not the one we want, we can
declare the type of an element of the array explicitly, as in [int 1, 2, 3]. Such an explicit declaration overrides the
inferred type. If the type of an element is incompatible with this explicit declaration, a compile-time error is issued.

This proposal preserves backward compatibility. Previously valid programs remain unaffected.

Similar type inference algorithms [Hindley; Milner] exist for languages such as Standard ML. Although this
kind of algorithm is not trivial and can theoretically lead to doubly-exponential execution time, this is (1) a
known technique and (2) the execution time is nonexponential for all practical cases. (That is, whereas the
algorithm is indeed doubly-exponential, there exists no finite program that exhibits this double-
exponentiality---at least it is the case for Standard ML and other affiliated languages. It remains to be seen
for NetRexx, but I foresee no reason...)

Trying to generalize the type inference algorithm to handle the methods parameters types would be interesting. I
have not researched it enough yet, so I am not sure it would provide useful results. I plan to write a NetRexx front
end to test that, but my expected release date is 2050 :-)

I would also like to typecheck untyped empty arrays (i.e., []) whenever the typing is not ambiguous. If only one
method matches, then I would like the code to compile. If more than one method match, then I would like a

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

14 of 26 24.11.2010 19:24

compile-time error. It implies a previously compilable code could become incorrect, but I do not find this behavior
worse than the current one concerning automatic conversions (i.e., foo(1) will call foo(long) if it is the only
available method, but if we later add a foo(byte) this new method will be called if we recompile our code).

4.6. Summary

By making the type system stricter and smarter, we would make NetRexx more versatile and less constraining. Bounded
types mean we can enforce stricter control at compile time, and type inference means we program more effectively.

Views prevent us from writing repetitive code while maintaining type safety. The code we write is more readable and our
productivity increases.

With such an enhanced type system, NetRexx would be more expressive, easier to program in, and safer.

The logical operators currently provided by NetRexx evaluate their arguments fully. For example, if we want to check
whether a string is either null or empty, the following code is needed:

Example 5.1:

 if str = null then
 -- action1
 else
 if str = "" then
 -- action1 again
 else
 -- action2

We cannot use a piece of code such as if str = null | str = "" then ... ---this code is invalid in that it will cause
an exception if str is null (due to the second check).

The duplication of action1 is inevitable, and our intent is not obvious. If the logical expression we want to test is more
complex and if it contains incompatible parts or possibly very long computations, the code we have to write quickly
becomes nonmaintainable. This uncalled-for complexity in our code is caused by the need for the logical operators to
evaluate all their arguments, even when doing so is unnecessary.

I suggest adding two short-circuit logical dyadic operators to NetRexx. A short-circuit logical dyadic operator is an operator
that evaluates its right-hand--side argument only if this evaluation is necessary. (Such a partial evaluation makes sense for
logical "and" and "or" operators. If the left-hand--side argument of an "and" operator is 0, the result is already known---it
will be 0. Similarly, if the left-hand--side argument of an "or" operator is 1, the result is also known---it will be 1. On the
opposite, it does not make sense for the "xor" operator---in this case, the values of the two arguments are always needed.)

I propose the "|||" and "&&&" notations for the short-circuit "or" and "and" operators, respectively.

With this proposal, we could rephrase Example 5.1 as:

 if str = null ||| str = "" then
 -- action1
 else
 -- action2

By using a short-circuit logical operator, we no longer have to duplicate the code for action1. Hence the possibility of
introducing an error during the duplication is removed. The code we write is shorter, clearer, and less error-prone.

Because those operators are not currently valid NetRexx constructs, this proposal adds no incompatibility with current code.
The risk of introducing those operators by mistake in existing code and producing a valid program (but whose behavior
could lead to surprises) is also quite low (not more so than for example a mistake between "&" and "&&").

Implementing those features by specifying a compiler switch or an options option can cause problems when
using an old version of a compiler and would prevent the simultaneous usage of both short-circuit and
non--short-circuit logical operators in a program.

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

15 of 26 24.11.2010 19:24

Short-circuit logical operators are not bitwise operators. Although we could possibly extend their definitions to
support integer arguments---all 0 for an "and" left-hand side means 0 for the result, all 1 for an "or" left-hand
side means all 1 for the result---it would cause problems in the general case. The "all 0" case is easy, but the
"all 1" one is trickier. It implies we know the length in bits of both arguments---which means that, in the
general case (e.g., a Rexx integer), we have to compute the value of both arguments. Even though those
problems do not arise if the arguments are of a primitive integer type of a known size, I think it is better not to
extend the behavior of short-circuit logical operators to support bitwise operations than to introduce
inconsistencies. As the proposed operators use their own notation, we can do so without difficulties.

NetRexx 2 introduces a notation that provides, in some limited (but useful) cases, an equivalent for the short-
circuit "or" operator: the "," (comma) operator in if and when instructions. This notation can not be used in
more general contexts, and does nothing for the "and" short-circuit operator, non-trivial logical expressions,
and logical expressions used in method calls, though.

NetRexx provides a trace instruction. This instruction helps immensely during code debugging phases, as we can enable
and or disable it via a compiler switch, with no source code modification.

A complementary technique is the usage of assertions. This classic technique introduces the notion of pre- and
post-conditions, as well as class invariants:

An assertion is a checkpoint placed in the body of a method. It verifies the validity of a condition at this point.
A precondition applies to a method. It is a check that is made just before running the body of the method.
A post-condition also applies to a method. It is a check that is made just before returning control to the program or the
point of invocation. If the method returns a value, the check is done after the returned value is computed, but before
actually returning the value.
A class invariant applies to an object. It is a property of the object that is true after the construction of the object and
between invocations of the object's public (or shared) members (but it does not have to apply during the execution
of the object's methods).

We can emulate assertions by decorating the code, but doing so has one drawback: there is no way we can disable those
emulated instructions without modifying the code. Although we could permanently enable the assertions, this could induce a
severe performance penalty and, instead of feeling free to exploit those features, we would refrain ourself in their use.
(Another possibility is to maintain two source trees---one for testing, one for production---but this requires adequate tools.)

I hence suggest adding four instructions to NetRexx: assert, ensure, invariant, and require, for respectively assertions,
post-conditions, invariants, and preconditions. Those instructions are followed by a logical expression:

 assert [label name] expression ;

 ensure [label name] expression ;

 invariant [label name] expression ;

 require [label name] expression ;

If the logical expression is true, the assertion is said to succeed. If it is false, the assertion is said to fail. When an assertion
fails, the execution is interrupted and the offending assertion is displayed (with module name and line). A given
implementation may decide to display more information (such as the call stack).

The invariant instruction must appear at the begining of a class, before any property or method. There can be more than
one invariant instruction in a class, in which case they must all apply (in other words, this notation is equivalent to linking
the expressions with a logical "and"). The ensure and require instructions can appear anywhere in the body of a method,
provided they are not in a block instruction (do, if, loop, or select). The assert instruction can appear anywhere in the
body of a method.

There can be as many assertions as needed for any given class or method. Although a unique assert instruction could fulfill

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

16 of 26 24.11.2010 19:24

the role of the three other instructions, using distinct names allows us to enable and or disable them selectively. It also
provides immediate visual differentiation.

With the addition of some more option words for the options instruction, this allows for a convenient and powerful usage
of assertions in NetRexx. I propose the following option words: assert, assert0, assert1, assert2, ensure, invariant,
require, and their "no-" variants (except for the numbered "asserts"). assert0 disables all assertions (that is, it is
equivalent to noassert noensure noinvariant norequire). assert1 means all output goes to stdout, assert2 to stderr
(the default).

Example 6.1:

 class Buffer
 invariant in - out >= 0 & in - out <= buffer.length

 ...

 method addElement(o = Object)
 require o \= null & \ isFull
 ensure \ isEmpty & contains(o)
 ...

Assertions, when directly supported by the language, are extremely useful. We can write correct and safe code quickly. The
inescapable debugging phase is immensely simplified. The ability to enable or disable them at will at compile time is
essential: it allows us to use assertions without fear.

The class invariants and the pre- and post-conditions are part of the class definition and hence provide
documentation. An automatic documentation extraction tool---such as nrxdoc---can include them in the
documents it produces.

A presentation of the Design by Contract notion (i.e., the use of class invariants and pre- and post-conditions
as part of the class definition) is available at http://www.eiffel.com/doc/manuals/technology/contract
/page.html.

Proposal: A Simple Assertion Facility For the Java(tm) Programming Language.

What remains to be discussed is what option is enabled by default (none? or just pre- and post-conditions?), and
whether assertions are implemented via exceptions or something else. Using exceptions (as in Eiffel) means we can
catch them, but is this desirable?

Another pending question is how---if any---to implement and or handle the notion of previous state in
post-conditions. I do find the Jass way interesting (see http://semantik.informatik.uni-oldenburg.de/~jass).

I have removed the explicit discussion of loop variants and invariants. I am not sure whether I should re-introduce it.

In case of piece-wise method definitions, the assertions specified for a piece only apply to it. I do not know how to
enforce coherence between the post-conditions, though.

I do not know how to enforce coherence for pre- and post-conditions in inherited methods. (The theory says the
redefined preconditions should be weaker and the redefined post-conditions stricter.)

Thinking of pre- and post-conditions, what about restricting their possible position in a method's body? (Forcing them
to be at the beginning may enhance readability.)

Arrays, although being an integral part of NetRexx, are in many ways second-class citizens. We can declare them, create
them, query their lengths, and query and set their elements. But those are the only available built-in operations---there is no
higher-level operations. We cannot easily concatenate two type-compatible arrays, or even walk through the elements of an
array without having to take care of the gory implementation details.

The lack of higher-level operations for arrays does not prevent us from writing code to circumvent it, but this explicit (and

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

17 of 26 24.11.2010 19:24

possibly repetitive) coding favors errors and reduces readability. Hence this section, in which I propose more support and
integration for arrays.

7.1. Concatenation

NetRexx allows us to define a literal array easily via array initializers. But the other expectable way to create an array, that
is, concatenation, is not available. Or, more accurately, we cannot concatenate two arrays in most cases. If we are for
example using char arrays, we can concatenate them. This partial support is inconsistent and confusing.

Therefore, I suggest supporting concatenation for any two type-compatible arrays. There is no need for a new operator: we
can reuse the || operator for concatenating two arrays.

 foo = [1, 2, 3]
 bar = [4, 5, 6, 7]
 foobar = foo || bar

 -- instead of
 --
 -- foobar = Rexx[foo.length+bar.length]
 -- loop i = 0 for foo.length
 -- foobar[i] = foo[i]
 -- end
 -- j = 0
 -- loop i = foo.length for bar.length
 -- foobar[i] = bar[j]
 -- j = j + 1
 -- end

If the result type has been defined, the concatenated arrays have to be type compatible with the result type. If the result
type is not known, the result type is defined by the usual assignments rules. Two arrays are said to be type compatible if
either (1) the type of an array elements is a superclass of the type of the other array elements or (2) there exists a
well-known conversion between the two arrays elements' types.

For consistency, the concatenation returns a first-level copy of the arrays. That is, the arrays' elements are not duplicated.

This proposal enhances code readability. By using the concatenation operator, we make our intent clear.

Although the concatenation of char arrays induces conversion to and from strings, it nonetheless remains
possible and transparent for the unaware programmer; that is, if a1, a2 and a3 are three char arrays, a3 = a1
|| a2 is a valid construct and produces the expected result.

7.2. Deconstruction

NetRexx allows us to access the elements of an array individually but, to do so, we have to specify the element's index
explicitly. It is not a real problem when we are accessing the first elements of the array, but it quickly leads to unreadable
code when trying to access the last elements:

 first = anArray[0]
 second = anArray[1]
 penultimate = anArray[anArray.length-2]
 intimate = anArray[anArray.length-1]

This explicit specification of the element's index also implies that we have to take into account the initial index---hence the
-1 and -2---which is nonintuitive and can cause confusion. So, both this explicit specification and the need to repeat the
operation for each and every elements we access obfuscate our intent and force us to write inelegant and repetitive code.

I suggest extending the parse instruction to allow the deconstruction of arrays by specifying a pattern that starts and ends
with "[" and "]", respectively. In such cases, the term is expected to be an array. The pattern mimics an array initializer.
Each element of the pattern is either a pattern or an extended "..." placeholder.

 parse term '[' pattern [, pattern]... ']' ;

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

18 of 26 24.11.2010 19:24

There can be at most one extended placeholder in a given pattern level. An extended placeholder stands for as many
elements as necessary (possibly negative).

examples:

 foo = [1, 2, 3]
 parse foo [a, b, c] -- a = 1, b = 2, c = 3
 parse foo [..., last] -- last = 3
 parse foo [a, b, ..., y, z] -- a = 1, b = 2, y = 2, z = 3
 parse aStringArray [hh1 '/' mm1 '/' ss1, hh2 '/' mm2 '/' ss2, ...]
 parse [x, y] [y, x]
 parse foo [..., elem, ...] -- error! only one "..." allowed

This notation is simple and intuitive, yet powerful and nonambiguous. It adds no incompatibility with existing code, and is in
many ways similar to the notation used for string deconstruction---hence it does not unnecessarily complicate the language.

The types of the various elements can be checked at compile time. If the array to deconstruct contains too many (or
too few) elements, the system's behavior may either mimic the one of string deconstruction or raise exceptions. Both
behaviors are interesting. Comments welcome!

If concatenation of arrays is added (see Section 7.1), this specification can be extended to support it, so that we
could write code such as parse anArray [a, b] || tail.

It may also be interesting to add positional patterns to array deconstruction, but, although quite powerful, this feature
can be difficult to master. Then, it is already the case of positional patterns. So, why not?

7.3. Loops

This section contains suggestions for enhancing loops. Although mostly about array support, the predicates and in-loops
sections are of more general interest.

7.3.1. Predicates

It is not uncommon to have to enclose the complete body of a loop within an if instruction when only some elements are of
interest, as shown in Example 7.1. Alas, the intent of such a construction is not clear: If the body of the loop is somewhat
long, we do not know at once whether there is an else clause for the if instruction, or if there are instructions following the
if block.

Example 7.1:

 loop i = 0 for content.length
 if content[i].hasChanged then do
 Transcript.log('Saving' content[i])
 content[i].save
 end
 else
 iterate -- not really needed
 end

So I propose the extension of the predicate construct introduced in Section 2.3 to loops. This extension is made by allowing
an optional predicate to appear in any loop instruction, before the optional conditional phrase. It is purely equivalent to
enclosing the body of the loop in an if predicate then ... structure.

 loop [label name] [protect termp] [repetitor] [predicate] [conditional] ;

 where predicate is:

 '|' expression

Example 7.2 is the equivalent of Example 7.1, expressed with a predicate. The intent is clear (and the code more readable).
We immediately know that only some elements are of interest.

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

19 of 26 24.11.2010 19:24

Example 7.2:

 loop i = 0 for content.length | content[i].hasChanged
 Transcript.log('Saving' content[i])
 content[i].save
 end

The addition of a predicate phrase to the loop instruction does not break existing valid code. It makes the code more
readable without significantly complexifying the loop instruction.

Again, "|" may not be the most effective notation to use for predicates. I am starting to find when more to my
liking. If when is used, the predicate can follow the optional conditional phrase.

7.3.2. over loops

NetRexx offers over loops to walk through the sub-values of indexed strings. Arrays share many similarities with indexed
strings, but cannot be used in over loops. This is inconsistent and unnecessarily forces us to deal with the arrays
implementation's details.

I suggest extending the over loop to support arrays. This way, we could write code such as:

 anArray = [10, 30, 60, 20, 40, 50] -- currently,
 loop i over anArray -- loop i = 0 for anArray.length
 say anArray[i] -- or
 end -- loop i = 0 to anArray.length - 1

This makes the code easier to read (the intent is simple to understand) and prevents us from possibly omitting the -1
correction factor. It also addresses the initial index possible error---that is, is this initial index 0 or 1?

The order in which the indices are enumerated is not specified. In particular, there is no guaranty two implementations will
use the same order. The only guaranteed behavior is that all indices are enumerated (once and only once).

This proposal does not break existing code and improves consistency. It also reduces the perceived difference between
arrays and indexed strings.

7.3.3. in loops

Sometimes when stepping through collections and or structures, we are only interested by the values (rather than their
indices). For example, if we want to find the extremes in a numeric array, we have to write something like:

Example 7.3:

 max = anArray[0]
 min = anArray[0]
 loop i = 0 for anArray.length -- or loop i over anArray
 if max < anArray[i] then
 max = anArray[i]
 else
 if min > anArray[i] then
 min = anArray[i]
 end

We have to deal with the index, which is strictly speaking unnecessary and can lead to confusion and errors. So I suggest
adding the following to the repetitor phrase in loops:

 vari in expri

 where vari is a nonnumeric symbol

 and expri is an expression resulting in either an indexed string or an array

where vari successively takes all the available values in termi. The type of vari would be the type of the elements contained

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

20 of 26 24.11.2010 19:24

in termi (the array element type for arrays, etc.).

The order in which the elements are enumerated is not specified. In particular, there is no guaranty two implementations will
use the same order. The only guaranteed behavior is that all elements are enumerated (once and only once).

By using this new construct, we can rewrite Example 7.3 as follow:

Example 7.4:

 max = anArray[0]
 min = anArray[0]
 loop elem in anArray
 if max < elem then
 max = elem
 else
 if min > elem then
 min = elem
 end

Our intent in Example 7.4 is clearer. The code is simpler and possibly more efficient, in that accessing an array element can
be a costly operation.

This suggestion adds a new construct to NetRexx, but should not break existing code.

An implementation may decide to extend this construction to handle collections from the libraries, such as
Dictionarys, Vectors, and so on.

The upcoming revision of Java (Java 2 v1.5, aka. Tiger) is likely to include a very similar mechanism (cf.
http://jcp.org/aboutJava/communityprocess/jsr/tiger/enhanced-for.html).

We need to address the assignability of vari.

I am somewhat tempted to add a new notion, segment, which is of the form exprn ..[exprm] [by inc], so that one
can write code such as loop i in 1..[10] [by 1], but this brings nothing---except readability and that segments
could be objects---compared to loop i = 1 [to 10] [by 1].

7.4. Iterators

By the mean of array initializers, we can create simple arrays. Alas, this construct requires us to enumerate all the
expressions constituting the array elements. This limitation implies that we have to know the number of elements in the
array at coding time and that the array does not contain many elements---otherwise, the code quickly becomes unreadable.

Hence, to complete the support of arrays as first-class citizens, I suggest introducing iterators, which are a quick and
efficient way to create arrays.

 '[' expr repetitor [',' repetitor]... ']'

 where repetitor is one of:

 for exprr [conditional] [predicate]
 for varc = expri [to exprt] [by exprb] [for exprf] [conditional] [predicate]
 for varo over termo [conditional] [predicate]
 for vari in termi [conditional] [predicate]
 while exprw
 until expru

 and conditional is either of:

 while exprw
 until expru

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

21 of 26 24.11.2010 19:24

 and expr, exprr, expri, exprt, exprb, exprf, exprw and expru are expressions.

This new construct, a form of array initializer, consists of a collation expression, expr, followed by one or more
repetitors. The value returned by the collection is an array of elements, one for each iteration of the collation expression.

The successive repetitors are equivalent to nested loops. For example, for the following iterator:

 foo = [i+j+k for i = 1 to 5, for j = 1 to 5, for k = 1 to 5]

NetRexx may execute the following:

 foo = Rexx[125]
 $idx = 0
 loop i = 1 to 5
 loop j = 1 to 5
 loop k = 1 to 5
 foo[$idx] = i+j+k
 $idx = $idx + 1
 end
 end
 end

The size of the defined array has to be bounded. It cannot be infinite, but it may only be determinable at runtime. If an
implementation detect an infinite iterator at compile time, an error is issued at compile time.

If for or while is a defined variable name, then the presence of this word is not recognized as forming the beginning of a
repetitor phrase. (This behavior is consistent with current practices and preserves backward compatibility.)

Here follow some examples of iterators:

 changedAreas = [a for a in content | a.hasChanged]
 oneToTen = [i for i = 1 to 10]
 -- i.e. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 matrix = [['x**'i '+' j for i = 1 to 3] for j = 10 to 12]
 -- i.e. [['x**1 + 10', 'x**2 + 10', 'x**3 + 10'],
 -- ['x**1 + 11', 'x**2 + 11', 'x**3 + 11'],
 -- ['x**1 + 12', 'x**2 + 12', 'x**3 + 12']]
 [i**j for i = 1 to 5, for j = 2 to 3]
 -- i.e. [1, 1, 4, 8, 9, 27, 16, 64, 25, 125]
 -- aka [1**2, 1**3, 2**2, 2**3, 3**2, 3**3, 4**2, 4**3, 5**2, 5**3]

Iterators are surprisingly intuitive and efficient tools. By using them, we can write very concise and clear code. Iterators
allow us to think in highly descriptive ways. We no longer have to think or worry about the arrays clumsy implementation
details---defining their sizes, taking care of their bounds, and so on. To end this section, I cannot resist the pleasure of giving
the example of a quicksort procedure coded with iterators:

 method qsort(int[] array | array.length = 0) returns int[]
 return array

 method qsort(int[] [head] || tail) returns int[]
 return qsort([x for x in tail | x < head]) -
 || [head] -
 || qsort([x for x in tail | x >= head])

If the compiler finds that the actual construction of the array is unnecessary, it can transform the code in an
equivalent construct. This hint especially applies to local arrays. It naturally also concerns the currently
supplied literal arrays. The equivalent---but more efficient---implementation can be done via local variables or
added loops, for example.

7.5. Summary

By making arrays "real" first-class citizens in NetRexx, we would immensely enhance the expressivity and descriptiveness
of the language. This enhanced expressivity allows us to think at a higher level. It also reduces the clumsiness of our code.

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

22 of 26 24.11.2010 19:24

The first five proposals (namely, concatenation, predicates, over loops and in loops) are somewhat classic,
in that they mostly are enhancements of existing constructs. The last proposal (the iterators) is different. Very
few existing languages offer something similar (if we exclude LISP and its declinations). I do not think it
would be judicious to add such a feature to, say, Java. The concept would just not fit. But NetRexx is much
more descriptive than Java. The gap to fill is smaller. So I think it is indeed a valuable addition for NetRexx.

There is another feature that could be added. The possibility of addressing a subset of an array. For example,
something like foo[1..5] would return an array of five elements. Such subsets would either return a value (an
array) or represent a restricted view of an array (and, as such, could be used in the left-hand side of an assignment).
Specifying a segment (see Section 7.3.3) or an array in the brackets would be a simple way to denote such subsets.

http://java.sun.com/aboutJava/communityprocess/jsr/jsr_083_multiarray.html

(sections) JSR-000083 JavaTM Multiarray Package

It is not uncommon, when creating applications, to have many classes sharing a given interface. Sometimes, we would also
like to share the implementation of one or more method(s) but, due to NetRexx's single inheritance, doing so is not always
possible. Similarly, when designing interfaces, we sometimes feel the need to provide a default implementation for a
method.

I suggest allowing an optional default implementation for functions defined in interfaces. Those default implementations,
when present, would be used in place of the ones generated by adapter classes (but not only in adapter classes).

A default implementation can only call methods defined in the interface (or in one of the interfaces it implements and or
extends, if any).

Default implementations are safe in that they are backward compatible with existing code, and in that they do not change
the semantic of interfaces. Unlike noninterface classes, interfaces cannot maintain a state on their own. It means that default
implementations in interfaces differ significantly from multiple inheritance, as they cannot alter the state of the object they
are members of by themselves.

Albeit sharing a superficial resemblance with abstract classes, default implementations in interfaces are conceptually
different. They do not serve the same purpose. An abstract classe is a base class upon which we (eventually) build concrete
classes. When a class implements an interface, it means this class has a given characteristic. An interface is not a base class
upon which we build concrete classes. It is a way to denote that some classes have and share a given characteristic.

By using default implementations in interfaces, we enhance our productivity. We do not have to repeatedly write the same
code. The expressivity of NetRexx is increased. We can write more extensive interfaces, with more generic methods,
without having to worry about implementing those generic methods again and again.

This proposal requires a native NetRexx compiler in that it relies on features not present in the Java
language, but permitted by the Java Class file format. A possible implementation is by the mean of attributes
in the class file.

The delegation pattern is of common use in the Object Oriented Programming world. Although nothing in NetRexx prevents
us from using delegation, all the work is left in the hands of the programmer---namely ours.

Let us take the case of a bean. If we create a bean with bound properties, the JavaBean specification requires us to support
PropertyChangeListeners and to fire PropertyChangeEvents each time a bound property is modified.

This is a repetitive task and, to prevent as much errors as possible, the JavaBean library contains a
PropertyChangeSupport class that provides a default implementation to handle the registration of

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

23 of 26 24.11.2010 19:24

PropertyChangeListeners and the PropertyChangeEvents dispatching.

We can either subclass the PropertyChangeSupport or use an instance of this class to delegate the work to it. But
subclassing is not always possible, as Java and NetRexx have no support for multiple inheritance (if the bean is, say, a
Container, it cannot be a PropertyChangeSupport at the same time).

So we usually have to add the following piece of code to the bean:

Example 9.1:

 properties private
 pcs = PropertyChangeSupport(this)

 method addPropertyChangeListener(pcl = PropertyChangeListener) protect
 pcs.addPropertyChangeListener(pcl)

 method removePropertyChangeListener(pcl = PropertyChangeListener) protect
 pcs.removePropertyChangeListener(pcl)

 method firePropertyChangeEvent(name = String, -
 oldValue = Object, -
 newValue = Object)
 pcs.firePropertyChangeEvent(name, oldValue, newValue)

This coding is quite long and repetitive, especially if we define many beans. Worse, if a new method is added to the
PropertyChangeSupport class, we have to update the code of each and every bean in which we implement such a
delegate.

The design I present here for support of delegation tries to remove as much unnecessary work as possible for the
programmer, while preserving consistency and predictability. Using delegates, we can rewrite Example 9.1 as

 properties delegate
 pcs = PropertyChangeSupport(this)

and, if the definition of PropertyChangeSupport changes, a simple recompilation will usually be sufficient.

The properties instruction [NRL 105] is used to define the attributes of following property variables. The visibility of
properties may include a new alternative: delegate. Properties with this form of visibility are known as delegates. These
are properties of a known type that are private to the class, but which are expected to provide some service.

The delegate attribute of a property is an alternative to the public, private, indirect, and inheritable attributes. Like
private properties, delegates can only be accessed directly by name from within the class in which they are defined; other
classes can only access them using the services they provide (or other methods that may use, or have a side-effect on, the
properties).

Delegates may be transient or static. They may not be constant or volatile.

In detail, the rules used for generating automatic methods for a property whose declared type is xxxx are as follows:

A wrapper is generated for all public instance methods exposed by the xxxx class and its superclasses (up until a
common superclass is found with the current class). If the property is static, these methods will be generated as
static methods.

1.

If a class defines more than one delegate and if two of those delegates define an identical method, an error is issued.
To circumvent this, an explicit implementation has to be provided for all such ambiguous methods.

2.

It is an error to declare a delegate for which no wrapper can be generated if the delegate is not used in the current class
code.

A delegate may have a real type which is either a subtype of its declared type or an implementation of it. As previously
stated, wrappers are only generated for methods defined in the declared type. For example, in

 properties delegate
 output = DataOutput RandomAccessFile("foo", "rw")

the generated methods are the ones defined by the DataOutput interface.

Note that in all cases a method will only be generated if it would not exactly match a method explicitly coded in the current
class.

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

24 of 26 24.11.2010 19:24

To complete this section, let us build a simplistic instance counter. To do that, we define an InstanceCounter class to
handle the counting:

 class InstanceCounter

 properties indirect constant
 instanceCount = 0

 method incInstanceCount protect
 instanceCount = instanceCount + 1

To add an instanceCounter to a class, we define a static delegate in the class. Then, each time a new instance is created,
we call the incInstanceCount (now) static method. (In this example, the counter is primitive, as it also includes subclasses
instances. It can easily be enhanced, but it is not the point we are trying to make here.)

 class ATest extends Component

 properties delegate static
 cpt = InstanceCounter()

 method ATest
 incInstanceCount

 ...

We can then at any time query the number of created instances:

 aTest1 = ATest()
 ...
 say ATest.getInstanceCount

Delegates simplify our work. We no longer have to repeatedly write wrappers. The code we write is clear, concise, and
usually immune to delegate changes (possibly modulo a recompilation). By using delegates, we operate at a higher level.

The eight areas of enhancements I addressed in this document share one purpose: to make NetRexx easier to use. Let us
review their benefits one last time:

Piece-wise methods definitions enhance the expressivity of NetRexx. The code we write is more descriptive, and our
intent is more obvious.
Privileged objects make our code more concise without impeding its readability. In fact, it possibly reduces the
number of errors we may make if we inadvertently confuse two similarly-named variables.
An enhanced type system enforces stricter type safety at compile time. It also enhances our productivity as we no
longer have to type the variables or duplicate similar methods. We can also adapt base classes we otherwise have no
control upo.
Short-circuit logical operators reduce the complexity of our code. Our intent is simpler to understand, and no
unnecessary code duplication occurs.
Assertions are a powerful way to ensure programs' correctness. They also provide additional documentation for the
code we write.
"First-class" arrays immensely enhance the expressivity of NetRexx. They allow us to write much more descriptive
code. We can think at a higher level.
Default implementations in interfaces avoid code repetition. It allows us to write code more efficiently.
Delegates implement the delegation pattern. This design pattern is common, and providing support for it, although
somewhat ad-hoc, is useful. Delegates support allows us to write simpler and clearer code.

My ramblings come to an end. I hope you have found at least some of them not totally uninteresting. The ball is now in your
hands. Please send in your comments and suggestions. They are essential. I am looking forward to read them.

I am grateful to Mike Cowlishaw for inventing NetRexx and making numerous suggestions and comments on earlier drafts
of this document.

I thank Dion Gillard for his support, and Alan Ackerman and Myron Chaffee for their comments.

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

25 of 26 24.11.2010 19:24

I thank all those who reviewed previous drafts of this document and were delicate enough not to send their comments to
preserve my sensibility :-)

[HINDLEY] Hindley, J.R. 1969. The principal type-scheme of an object in combinatory
logic. Trans. AMS 146, 29--60.

[MILNER] Milner, R. 1978. A theory of type polymorphism in programming. J. Comput.
Syst. Sci. 17, 348--75.

[NRL] Cowlishaw, M.F. 1997. The NetRexx Language. Prentice Hall, ISBN
0-13-806332-X.

0.101
More clarifications on iterators specification.
Minor changes in the bounded types section.
Typos corrected.

0.100
Macros replaced by type synonyms.
Iterators specification made more consistent.
Generics support proposed.

0.99
Reworked bounded type section, now using the & operator.
Added references to the Tiger java proposal (aka Java 2 v1.5).

0.98

Added references in the Assertions section. Label clause now formally handled. A
more interesting example.
Minor fix in the Array deconstruction section. (The diagram was incorrect in that
parse was followed by an expression instead of a term.)
Minor update in the Short circuit logical operators section, to address the recent
addition of a comma operator in if and when instructions.
Removed a paragraph in the introduction, as an interpreter now exists for NetRexx.

0.96

Added an introduction
Clarifications added in Piece-Wise method definitions section
Object deconstruction subsection removed. Array deconstruction subsection moved
to the Array section.
Shortcuts section renamed Privileged Objects
The Type inference algorithm section has been replaced with a Type System section.
Two new proposals added (Bounded types and Views).
Shortcuted logical operators section renamed Short-circuit logical operators.
Clarifications added.
Minor changes in the Assertions section. Loop variants and loop invariants discussion
removed. Clarifications added.
Clarifications added the Array section. It now includes the Array deconstruction
subsection (formerly in the Object deconstruction section).
Minor changes in the Macro section
Clarifications in the Default Implementation in Interfaces section
Delegate proposal text included
Added a Summary and Acknowledgments section

0.94
Declared exceptions addressed in Piece-wise function definitions section
Evaluations in Shortcut section addressed
Minor layout change to more accurately support non--CSS-aware HTML user agent

0.92

Concatenation of arrays section renamed Arrays and modified
Typos corrected
Predicates added
Explanations added in the Assertions section
Implicit this keyword section revised and renamed Shortcuts
Macros proposal modified

0.90 Initial public release

Martin Lafaix

Proposals for NetRexx http://lafaix.online.fr/netrexx/WD-miscproposals.html

26 of 26 24.11.2010 19:24

