Module UNO.CLS (OpenOffice.org)

The object-oriented interface support for ooRexx is realized by calling
or requiring the ooRexx module UNO.CLS, which defines public routines,
classes and the environment symbol .UNO (a directory containing UNO
objects). You can get at that support in one of two ways:

call UNO.CLS
or

::requires UNO.CLS /* make UNO-support for ooRexx available */
UNO.CLS is based upon the BSF4Rexx support for ooRexx and therefore

requires the ooRexx module BSF.CLS. As a consequence all of the
BSF4Rexx features are available as well.

/* make UNO-support for ooRexx available */

Some of the UNO subfunctions are made available as instance
methods of the proxy class UNO_PROXY, prepended with the string "uno.".

The ooRexx class UNO_PROXY is used for representing UNO Java (class)
objects. Its instances are proxy objects which forward received
messages to the Java side for invocation.

Although this module can be used for interfacing with OpenOffice, it
generically supports interfacing with UNO and can as such be used to
drive any UNO based application.

/* create desktop service object, get its Desktop interface object

and its ComponentlLoader interface object (to load dcouments) */
ocl=UNO. createDesktop () ~XDesktop~XComponentLoader

/* define document URL, also file-, ftp- or http-URL possible */
url = "private:factory/swriter" /* "swriter": text component &
otc=ocl~loadComponentFromURL(url, " blank", @, .UNO~noProps)

/* get text component's dcoument interface object and retrieve */
oText=otc~XTextDocument~getText /* its text object &
oText~setString("Hello world from ooRexx on" date("s") time())

/* show services, i.e., the type of the component, interfaces */

str=ppd("services: " otc~uno.getServiceNames, " ","0a"x) "0a"x -
ppd(" interfaces: " otc~uno.getInterfaceNames," ","0a"x)
.bsf.dialog~messageBox(str, "Services/Interfaces", "information")

::requires UNO.CLS -- get UNO support

Public Routines

1. decodeUrl(url) returns the decoded url (all characters escaped
as %Xy sequences are replaced by their single characters)

2. encodeUrl(url) returns the encoded url (see definition of URL
characters, those not allowed are escaped as %xy hex-strings)

3. ppd(string [,delimiter] [,replacement]) returns the string in a
form, where each delimiter (blank by default) is replaced by the
replacement string (default: line.separator || TAB)

4. uno.addPath([path] [,envVar]) adds and returns 'path' to
environment variable 'envVar' (defaults to 'PATH')

5. uno.areSame(unoProxyl, unoProxy2) returns .true, if both UNO proxy
objects refer to the same UNO object, .false else

6. uno.connect([unoURL] [,xComponentContext]) returns the xContext if no
object of the local installation (use it to retrieve its ServiceManager)
or returns the remoteObject in case the optional unoURL was
supplied; the optional xComponentContext allows to determine which
(already established) connection to use

7. uno.convertFromUrl(url) returns the file encoded as an url as a fully
qualified file name matching the rules of the host operating system

8. uno.convertToUrl(url) returns the platform dependent, fully qualified file
name encoded as an url

9. uno.createArray(..) same arguments as bsf.createArray(), but
returns an instance of UNO_ARRAY_PROXY, which makes sure that the
array objects are wrapped up using the public routine uno.wrap(...)

2008-06-24_00:00:00_Reference_Card _UNO.CLS

10. uno.createDesktop([xContext]) returns the local OpenOffice desktop object
or the destkop object of the xContext argument, if supplied

11. uno.findInterfaceWithMember(o, name [, [bString] [,howMany]) searches
the service object o for an interface that contains name as a member.
Returns the interface object, if bString is .false (default) or the
fully qualified UNOIDL interface name else. In the latter case
howMany (default: 1) determines how many interfaces (delimited with
a blank) having a matching member should be returned; a value
smaller than 1 returns all matching interfaces.

.getCachedInterfaceName(name [,delimiter]) returns a string with the
fully qualified, mixed-case UNO_IDL name of the interface denoted
by name, which can be in uppercase and unqualified (the string after
the last dot). Should there be multiple fully qualified interfaces
matching an unqualified name, then the string contains them all
delimited with the delimiter string (defaults to blank).

13. uno.getCell(xSheet, nameAddress) returns the (upper-left) cell object of the
spreadsheet xSheet using an alphanumeric address (e.g. “B5”)

14. uno.getCell(xSheet, x, y) returns the cell object of the spreadsheet xSheet
using the 0-based column (x) and row (y) coordinates.

15. uno.getDefinition(o) returns a string which encodes all UNOIDL
information (see table “UNOIDL String Encodings”). o can be a
service object or an UNO_IDL string.

16. uno.getInterfaceNamesViaReflection(o) returns a blank delimited string of
the interface names that are defined for the service object o using
the UNOIDL definitions via reflection

17. uno.getProperties(o) returns a blank delimited, encoded string (see table
“UNO_IDL Encodings”) with all defined properties for the service
object o

.getScriptContext() returns a UNO proxy, if the ooRexx script was
invoked by OpenOffice, .nil else. The UNO proxy object has the
following methods, returning context related UNO proxy objects:
- getDocument (the document service object, an XModel),

- getDesktop (the desktop service object, an XDesktop), and
- getComponentContext (the context object, an XComponentContext).

.getScriptContextVersion() returns a string denoting the ooRexx Script
framework version

.getScriptMetaData() returns a UNO proxy, understanding:
getClassPath, getDescription, getLanguage, getLanguageName,
getLanguageProperties, getLocation, getLogicalName,
setLogicalName, getLocationPlaceHolder, getParcellLocation,
getScriptFullURL, getShortFormScriptUR, getSourceURL, hasSource,
loadSource, getSource, getSourceBytes

21. uno.getServiceNamesViaReflection(o) returns a blank delimited string of
the service names that are defined for the service object o using the
UNOIDL definitions via reflection.

22. uno.getScriptPath([scriptUri])

23. uno.getTypeName(o) returns o's UNO datatype name (see table “UNO
Datatype Names”)

24. uno.getXTypeProviderTypeNames(o) returns a blank delimited string of the
interface names that the object o implements. Note: it is possible
that not all implemented interfaces are reported by the object o!
You can exploit the UNOIDL definitions instead using the routines
uno.getDefinition(o) or uno.getInterfaceNamesViaReflection(o).

25. uno.loadClass(className [,idx]) imports and returns the className UNO
class object; in addition the uno proxy gets stored in the .UNO
directory using the (uppercased) idx as index (defaults to the
unqualified className, i.e., the class name after the last dot).

26. uno.queryInterfaceName(o, name) returns the fully qualified interface
name of o which contains name (can be unqualified and in any case)
as a member, returns blank “” string, if not found

27. uno.queryInterfaceObjectByName(o, name) returns the interface
object for o which contains name (can be unqualified and in any case)
as a member, returns .nil, if not found

28. uno.queryServiceName(o, name) returns the fully qualified serivce name

of o which contains name (can be unqualified and in any case) as a
member, returns blank “” string, if not found

.removePath([path] [,envar]) removes and returns 'path'from

environment variable 'envwVar' (defaults to 'PATH')

30. uno.setCell(xSheet, nameAddress, content) sets the (upper-left) cell object

12. un

o

18. un

o

19. un

o

20. un

o

o

returns system path to script

29. un

o

Bridging, _ooRexx_and_Universal_Network_Objects_(UNO)_/_OpenOffice.org_(OOo0)

of the spreadsheet xSheet using an alphanumeric address (e.g. “B5”)
using setFormula(content) which works for strings and formulas

31. uno.setCell(xSheet, x, y, content) sets the cell object of the
spreadsheet xSheet using the 0-based column (x) and row (y)
coordinates using setFormula(content) which works for strings and
formulas

32. uno.wrap(bsfObject) returns an UNO proxy object, if bsfObject is a BSF
(Java) proxy object

Class UNO_PROXY

This is the ooRexx proxy class for representing UNO Java proxy
classes. ooRexx messages sent to its instances cause the invocation of
the appropriate methods. Most of the methods starting with uno. are
pass-through methods and their arguments (except for the first one,
which is the UNO_PROXY object itsefl) are documented in the “Public
Routines” section. This class is able to handle messages that are named
after UNO interfaces (either the fully qualified name or the unqualified
name, i.e., the name after the last dot; the unqualified name must start
with the letter “X” to qualify as an interface name), returning the
appropriate interface object.

UNO_PROXY's INSTANCE METHODS

uno.bsfObject returns the wrapped BSF proxy object

uno. findInterfaceWithMember(name[, [bString][,howMany]) see public routine
uno.getDefinition see public routine

uno.getInterfaceNames see public routine ...ViaReflection
uno.getProperties
uno.getServiceNames see public routine . ..ViaReflection
uno.getTypeName see public routine
uno.getXTypeProviderTypeNames see public routine

uno.isSame(otherProxyObject) returns .true, if this proxy object is the same
as otherProxyObject, .false else

10. uno.queryInterfaceName(name) see public routine
11. uno.queryInterfaceObjectByName(name) see public routine
12. uno.queryServiceName

see public routine

© ®No e N

see public routine

Class UNO_ARRAY_REFERENCE

UNO_ARRAY_REFERENCE is a subclass of UNO_PROXY that allows interacting with
Java array objects (stored in the BSF registry) as if they were ooRexx
arrays (e.g. index values start with 1, and the ooRexx array methods
AT, [1, DIMENSION, ITEMS, MAKEARRAY, PUT, []=, SUPPLIER are available). If
returning an object from the array it will get wrapped up as an
UNO_PROXY.

The public routine uno.wrap will use this class to create the ooRexx
proxy object, if it detects that the supplied proxy object refers to an
array object (i.e., it is an instance of the class BSF_ARRAY_REFERENCE).

Class UNO_DIRLIKE

UNO_DIRLIKE is the superclass for the public classes UNO CONSTANTS
and UNO ENUM which allow easy access to the definitions either by
name or value employing the ooRexx directory class semantics.

UNO_DIRLIKE'S INSTANCE METHODS

1. directory returns a copy of the directory (unoDirectory) that stores
all definitions

2. entry(index) returns the item associated with index or .nil, if index is

not used
3. hasEntry(index) returns .true if an item is associated with index, .false

Rony_G._Flatscher, WU_(http://www.wu-wien.ac.at/english/)

else

4. init(unoidl className) retrieves the UNOIDL defintions of
unoidl className and if successful, sends the message setup to the
newly created instance (mplemented in the subclass), which sets up
the unoDirectory and unoNameQueue accordingly

5. makearray returns an array of names in unoNameQueue order

6. nameQueue returns a copy of the queue (unoNameQueue) which contains
the names in definition order

7. supplier returns a supplier where the index values follow the
unoNameQueue order

8. unoDirectory returns the directory that stores all definitions, a private
method (message needs to be sent to self to succeed)

9. unoidl definition returns the string which encodes all UNOIDL
information (see table “UNO_IDL Encodings”)

10. unoidl_name returns the fully qualified UNOIDL name (a string)

11. unoidl typeName returns the UNOIDL type name (a string, see table “UNO
Datatype Names”)

12. unoNameQueue returns the queue which contains the names in definition

order, a private method (message needs to be sent to self to
succeed)

Public Class UNO_CONSTANTS

UNO_CONSTANTS is a subclass of UNO DIRLIKE which is able to store all
defined constants in an ooRexx directory object. Sending the name of
a constant to an instance of this class returns the associated numeric
value or .nil, if the constant name is not defined. In addition it is
possible to send the numeric value to it, which would return the
constant's name or .nil, if no constant is defined for that value.

See also the public routines: bsf.getConstant (JavaClassName, fieldName)
and bsf.wrapStaticFields(unoidl className)

UNO_CONSTANTS' INSTANCE METHODS

1. decode(number) returns a blank delimited string listing the constant names
that together yield number.

2. encode(string) returns a number representing the constants of the blank
delimited string, which may consist of constant names, constant
numeric values or a mixture of both.

3. makestring encodes all its constants as the required string value

4. setup private method which sets up the object by processing the UNOIDL

definition of the constants, invoked via the superclass' constructor.

Public Class UNO_ENUM |

UNO_ENUM is a subclass of UNO DIRLIKE which is able to store all individual
enumeration objects in an ooRexx directory object. Sending the name
or its numeric value to an instance of this class returns the associated
enum object or .nil, if the enumeration name is not defined. An enum

object returned by this class possesses the methods name and value.

See also the public routines: bsf.getConstant(JavaClassName, fieldName) and
bsf.wrapStaticFields(unoidl_className)

UNO_ENUM's INSTANCE METHODS

1. setup private method which sets up the object by processing the UNOIDL
definition of the constants, invoked via the superclass' constructor.
2. makestring encodes all its enum values as the required string value

Environment Object .UNO (A Directory Object) ‘

UNo.cLS will initialize a directory object accessible via the environment
symbol .UNO to store important UNO/OOo objects. In addition it serves
as a cache for interface class objects that have been instantiated while
running an application as well as for classes that were loaded with the

2008-06-24_00:00:00_Reference_Card _UNO.CLS

help of the public routine uno.loadClass(unoidl className [,idx]). The UNO_UNSIGNED HYPER (64-bit) long
following table lists the initial content of this directory object. UNO FLOAT float
Index Description UNO_DOUBLE double
ANY com.sun.star.uno.Any
ANYCONVERTER com.sun.star.uno.AnyConverter
BEXTENDSEARCH Boolean value determining whether reflection should “ H i ”
exploit the UNOIDL definitions if interface not found in Table “UNOIDL Strlng Encodlngs
XTypeProvider list, preset to: .true The following table defines the string encodings of the fundamental
BOOTSTRAP com.sun.star.comp.helper.Bootstrap UNO datatypes as returned e.g. by the method (or public routine)

FILE.SEPARATOR
LINE.SEPARATOR

NOPROPS Empty array obje

need to be set.
PATH.SEPARATOR

XINTERFACES.DUPES

the XINTERFACES

ct of type

PROPERTYVALUE com.sun.star.beans.PropertyValue
RGFREFLECTUNO org.oorexx.uno.RgfReflectUNO
UNORUNTIME com.sun.star.uno.UnoRuntime
VERSION UNO.CLS version (a string)
XINTERFACES

directory).

Operating system dependent value retrieved from the
respective java.lang.System property.
Operating system dependent value retrieved from the
respective java.lang.System property.

com.sun.star.beans.PropertyValue; use, if property
array must be given as an argument, but no properties

Operating system dependent value retrieved from the
respective java.lang.System property.

Directory object containing a mapping of fully and
unqualified interface names to their exact cased, fully
qualified UNOIDL name.
Relation object containing a mapping of unqualified
interface names (which got already used in the
XINTERFACES directory) to their exact cased, fully
qualifed UNOIDL name (as they cannot be stored with

Table “UNO Datatype Names”

The following names are derived from the names defined by the enum
com.sun.star.uno.TypeClass and prepended with the string “UN0_".

uno.getDefinition. Definition groups are delimited by a blank “_“.
Constituents of a definition group are delimited with a vertical bar “|”,
elements of a collection are delimited with a comma “,”. Additional
characters used as delimiters for parsing are highlighted in yellow.
Items enclosed in square brackets (“[1”) are optional and can be left
out. An ellipses (“..”) indicates that the preceding type/group may be
repeated.

Encoding Definition

UNO_CONSTANTS | fully-qualified-name_member-name|value|datatype..

UNO_ENUM| fully-qualified-name|default-value_member-name|value..

Remark: the individual values are always of type UNO_LONG.

UNO_EXCEPTION|fully-qualified-name_member-name|datatype..

UNO_INTERFACE | fully-qualified-name_member-name|member-definition..

where "member-definition" is one of:

e UNO_ATTRIBUTE | [READONLY] |datatype..

* UNO_METHOD | [ONEWAY] | retValue-datatype| [argName:datatype[,..]]|
[exception[,..]1]

UNO_MODULE | fully-qualified-name_member-name|UNO_Datatype..

UNO_SERVICE | fully-qualified-name| [implName]_memberName|definition..

where "definition" is one of:

* UNO_INTERFACE| [OPTIONAL] |defined by service
e UNO_SERVICE| [OPTIONAL] |defined by service
* UNO_PROPERTY | [modifier[,..]]|datatype|defined by service

Remark: if a service object is reflected that implements more than one service
definition, than the "fully-qualified-name" of that compound service is

‘ Table “Mapping UNO to Java Datatypes”

UNO Datatype

Java Datatype

com.sun.star.uno.Any or

CHORENY java.lang.Object
UNO_VOID void

UNO_BOOLEAN boolean

UNO_BYTE (8-bit) byte

UNO_CHAR (16-bit) char

UNO_SHORT (16-bit) short
UNO_UNSIGNED_SHORT (16-bit) short

UNO_LONG (32-bit) int
UNO_UNSIGNED_LONG (32-bit) int

UNO_HYPER (64-bit) long

Bridging,_ooRexx_and_Universal_Network,

Objects_(UNO)_/_OpenOffice.org_(O0Oo0)

" UNORANY * " CNOTENUH*™ " UNOTHODUTE* " INORIYRE" created by concatenating all service names with the plus sign (+). Each of these

"UNO_ARRAY" "UNO_EXCEPTION" "UNO_PROPERTY" |"UNO_TYPEDEF" constituting service definitions (if available via reflection) is then used to create

" P " ” - " the entire definition of that "compound service" object in hand, documenting all
UNO_BOOLEAN UNO_FLOAT UNO_SEQUENCE UNO_UNION defined interfaces, services and properties.

"UNO_BYTE" "UNO_HYPER" "UNO_SERVICE" |"UNO_UNKNOWN" UNO_SINGLETON| fully-qualified-name|[old-style-servicename]

"UNO_CHAR" "UNO_INTERFACE" "UNO_SHORT" "UNO_UNSIGNED_HYPER" UNO_STRUCT | fully-qualified-name_memberName |datatype..

"UNO_CONSTANT" |"UNO_INTERFACE ATTRIBUTE" |"UNO_ SINGLETON" |"UNO_UNSIGNED LONG" UNO_TYPEDEF | fully-qualified-name_referenced-type|UNO-Type

"UNO_CONSTANTS" |"UNO_INTERFACE METHOD" "UNO_STRING" "UNO_UNSIGNED_ SHORT" =

"UNO_DOUBLE" ["UNO_LONG" "UNO_STRUCT" ["UNO_VOID"

Rony_G._Flatscher, WU_ (http://www.wu.edu)

	Module UNO.CLS (OpenOffice.org)
	Public Routines
	Class UNO_PROXY
	Class UNO_ARRAY_REFERENCE
	Class UNO_DIRLIKE
	Public Class UNO_CONSTANTS
	Public Class UNO_ENUM
	Environment Object .UNO (A Directory Object)
	Table “UNO Datatype Names”
	Table “Mapping UNO to Java Datatypes”
	Table “UNOIDL String Encodings”

