
Object REXX
for Windows NT
and Windows 95

Ueli Wahli
Ingo Holder
Trevor Turton

PRENTICE HALL PTR
UPPER SADDLE RIVER, NEW JERSEY 07458

Object REXX
for Windows NT
and Windows 95

INTERNATIONAL TECHNICAL SUPPORT ORGANIZATION
 SAN JOSE, CALIFORNIA 95120

© Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication, or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

This edition applies to Object REXX running under Windows NT and Windows 95.

Comments about ITSO Technical Bulletins may be addressed to:
IBM Corporation ITSO, Almaden Research Center, QXX/80-E2, 650 Harry Road, San Jose, California 95120-6099

Published by Prentice Hall PTR
Prentice-Hall, Inc.
A Simon & Schuster Company
Upper Saddle River, NJ 07458

Acquisitions Editor: Michael E. Meehan
Manufacturing Manager: Alexis R. Heydt
Cover Design: Ueli Wahli, Ingo Holder, Design Source
Copy Editor: Maggie Cutler
Editorial/Production Supervision: Joe Czerwinski

The publisher offers discounts on this book when ordered in bulk quantities. For more information, contact:
Corporate Sales Department, Prentice Hall PTR, One Lake Street, Upper Saddle River, NJ 07458
Phone: 800-382-3419; FAX: 201-236-7141; E-mail (Internet): corpsales@prenhall.com

Printed in the United States of America

1 0 9 8 7 6 5 4 3 2 1

ISBN 0-13-858028-6

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

For information about redbooks

Send comments to
redbooks@vnet.ibm.com

http://www.redbooks.ibm.com/redbooks

For book and bookstore information

 http://www.prenhall.com

Abstract

Object orientation (OO) is a topic of great interest and concern
today. Some developers who use OO claim that it significantly
increases productivity; others view it as good for rocket science,
not for business.

Many OO languages seem complicated and alien to programmers
familiar with procedural languages, such as COBOL. This book
introduces Object REXX, a new OO language that breaks the OO
barrier. Object REXX is based on a tried-and-trusted language
used around the world today. Because it has the most complete
and easy-to-use set of OO features of any language, it offers a sim-
ple way for programmers with a procedural background to enter
the new world of objects.

This book demonstrates a practical approach to using Object
REXX and OO techniques to develop commercial systems that
meet changing business requirements. It tells the story of how
Hanna, Steve, and Curt design and implement a commercial
application system step by step, using object persistence in file
systems and relational databases, graphical user interface (GUI)
builders, and Internet Web pages. Extensive code examples are
provided to illustrate every step.
v

To Hanna, Curt, and Steve, the hard-working people at the fictitious
Hacurs company. Originally loosely defined, they inspired the writing
of real-life dialog to portray a small company trying to find a niche in
the marketplace. Any resemblance to real people is completely coinci-
dental.

To my colleagues, who work eagerly and with much personal commit-
ment to get Object REXX outside the confines of IBM. To my dear
friends, Dr. Johannes Kadel and Ronan Kieran, who inspired my
interest in English. To my parents who supported me in various
endeavors. To all those who like Object REXX and will help making it
a well-known language on Windows platforms as well.

Ingo

To my wife Ingrid, for the love and patience she showed while her hus-
band labored over recalcitrant programs and screeds of text.

Trevor

To my wife, Patricia, for her ongoing support and understanding of my
long hours at work. To the staff at the ITSO San Jose Center for mak-
ing work a joy, at least most of the time.

Ueli
vi Object REXX for Windows

Contents
Abstract . v

Figures . xxiii

Tables . xxvii

Preface . xxix
How This Document Is Organized . xxx
The Team That Wrote This Redbook . xxxiv
Acknowledgments . xxxv
Comments Welcome . xxxv

Introducing the Hacurs Company . 1

Part 1. Introducing Classic REXX and Object REXX 3

Chapter 1. Introducing Classic REXX . 5
A Lesson in Classic REXX . 5
Structured Programming . 7

The Sequence . 7
The Loop . 11
The Selection . 14

Procedural Programming Using Subroutines . 20
The Subroutine . 22
The Procedure . 25
The Function . 29

Host Commands . 36
Stems and Compound Variables . 38
Hints and Tips . 42

Chapter 2. Introducing Object REXX . 43
What’s New in Object REXX? . 43
Why REXX? . 45
Why Object Orientation? . 46

The Productivity Problem . 46
The Reuse Solution . 47

The Waterfall Method . 48
The Spiral Method . 48
Prototyping . 49
The Paradigm Shift . 49
Better Reuse from the OO Approach . 52

Communities of Cooperative Objects . 53
Bloated PC Software . 53
Standard Software Components . 54
Liberating Objects from Applications . 54
Contents vii

The CORBA Standard . 54
So Why Object REXX? . 55

Chapter 3. How Does Object REXX Implement OO? . 57
Objects . 58
Classes . 59

Inheritance . 60
Abstract Classes . 61
Multiple Inheritance . 63

Object REXX Variable Pools . 65
Object Instances . 67

Object Creation . 67
Object Destruction . 68

Methods . 68
Private and Public Methods . 69
Class and Instance Methods . 69
Meta Classes . 70

Polymorphism . 70
The Object REXX Class Library . 73

The Object REXX Class Library Browser . 74
Experimental Class Browser . 74

OODialog Class Browser . 74
Tokenizing Object REXX Programs . 75

Automatic Tokenizing . 76

Part 2. The Car Dealer Scenario . 77

Chapter 4. The Car Dealer Application . 79
The Car Dealer Opportunity . 79
The Application Model . 82
Methods and Variables . 84
Relationships Among Objects . 89
The Object REXX Collection Classes . 90
Object Creation and Destruction . 91
Implementation of the Model in Memory . 93

Implementation Notes . 94
Sample Class Definition . 95
Source Code for Base Class Implementation . 96

Chapter 5. ASCII User Interface . 97
Designing the User Interface . 97
ASCII User Interface As an Object . 101

The AUI Class . 102
The AUI Operations . 102

ASCII Menus as Objects . 103
The Menu Operations . 103
Implementing the Menus . 104

Appearance of ASCII User Interface . 105
viii Object REXX for Windows

Source Code for ASCII User Interface . 106

Chapter 6. Persistent Objects on Disk . 107
Storing Objects in FAT Files . 107

Format of the Objects . 111
Implementing the Changes in Code . 112

The Class Structure . 114
The Requires Directive . 116
The Persistent Class . 117
Source Code and Sample Data for FAT Class Implementation 119

Chapter 7. Graphical User Interfaces with OODialog 121
The Setup . 122
Resource Workshop . 124
Object REXX Dialog Classes . 126
Using the Resource Workshop . 127
Creating a Dialog with Object REXX . 130

The UserDialog Class . 130
Changing the Dialog Behavior . 133
What’s Going On Inside . 136
Implementing a Method for a Push Button . 138
Doing Graphics with OODialog . 141
Nesting Dialogs . 144

Summary of User Dialog . 145
OODialog Classes . 147

The ResDialog Class . 147
The CategoryDialog Class . 149
Standard Dialog Classes . 154

Standard Dialog Functions . 154
Timed Message Box . 154
Input Box, Integer Box, Password Box . 155
Multiple Input Box . 156
List Choice . 157
Multiple List Choice . 158
Check List . 159
Single Selection . 160

Tokenizing OODialog Scripts . 161
The Car Dealer GUI . 162

Main Dialog . 162
Customer Dialog . 163
Vehicle Dialog . 164
Work Orders Dialog . 166

Add Service Items Dialog . 167
Bill Dialog . 168

Parts List Dialog . 170
Service Items Dialog . 171
Source Code for OODialog GUI Interface . 172

How to Structure OODialog Programs . 173
OODialog Class Files . 174

OODialog Sample Programs . 174
Contents ix

Chapter 8. Persistent Objects in DB2 . 175
Storing Objects in DB2 . 175
Persistent Methods for DB2 Support . 180
Implementation of DB2 Support . 182

Implementation of Load at Application Start . 183
Implementation of Load-on-Demand . 183
Implementation Notes . 184
Setting Up DB2 on Windows NT and Windows 95 . 184
Source Code for DB2 Class Implementation . 184

Chapter 9. Using Advanced DB2 Facilities . 185
Multimedia in DB2 BLOBs . 185

Using DB2 BLOBs from Object REXX . 188
Multiple Multimedia Files in BLOBs . 192

Multimedia in the Car Dealer Application . 195
Implementing the DB2 Multimedia Support . 199

Implementation Notes . 202
Source Code for DB2 Multimedia Implementation . 202

Chapter 10. Data Security with Object REXX and DB2 203
The Security Problem . 203
Coding Stored Procedures with Object REXX . 207

Chapter 11. Configuration Management with Object REXX 215
Breaking an Application into Multiple Files . 216

Using Multiple Subdirectories . 219
Configuration Files . 220

Overall Car Dealer File Structure . 222
Communication Among Classes . 224

The Local Directory . 225
Installation Program Considerations . 226
Implementation of Configuration Files . 229

Using the Configuration File . 230
Configuration File for List Routines . 230

Implementation of the Car Dealer Class . 230
Using the Car Dealer Class . 231

Source Code for Configuration Management . 231

Chapter 12. Object REXX and the World Wide Web . 233
Hacurs Connects to the Internet . 234

Hacurs Makes a Plan for the Web . 234
Hacurs Designs a Home Page . 237

The Home Page . 237
Web Car Dealer Application . 241
Web Common Gateway Interface . 242

HTML Class . 244
Customer Search Form . 247

Program Organization . 251
Customizing the File Organization on the Web Server 251

Car Dealer Common Interface Program . 253
Multimedia on the Web . 255
x Object REXX for Windows

Interacting with Web Users . 257
Adding a Web Customer . 258

Car Dealer Home Page . 261
Implementation Notes . 263

Source Code . 263

Part 3. Object REXX and Concurrency . 265

Chapter 13. Object REXX and Concurrency . 267
Object-Based Concurrency . 267

The Object REXX Concurrency Facilities . 268
Early Reply . 268
Message Objects . 268
Unguarded Methods . 269
The Guard Instruction . 270

Examples of Early Reply with Unguarded and Guarded Methods 270
Philosophers’ Forks . 273

Philosophers’ Forks in an DOS Window . 273
Visualizing Philosophers’ Forks with OODialog . 277
GUI Design of the Philosophers’ Forks with OODialog . 280
Implementation Notes . 284

Part 4. Installing Object REXX, DB2, and the Sample Applica-
tions . 285

Chapter 14. Installing Object REXX, DB2, and the Sample Applications . . 287
Content of the CD . 288

Installation and Run from the CD . 288
Installation of Object REXX . 289

OODialog and IBM Resource Workshop . 289
Running the Car Dealer Application from the CD . 289

Installation of DB2 Version 2 . 290
DB2 Installation on Windows 95 . 290
DB2 Installation on Windows NT . 290

Installing the Car Dealer Application . 291
Prerequisites for the Car Dealer Application . 291
Object REXX Redbook Program Group . 291
DB2 Setup for Car Dealer Application . 293

Define the DB2 Database . 293
Define the DB2 Tables . 293
Load the DB2 Tables . 294

DB2 Setup for Remote Database Access . 295
Server Setup for Remote Database Access . 296
Client Setup for Remote Database Access . 296
Cataloging the Remote Database . 297
Authorizing Remote Users on the Server . 297
Contents xi

Testing the Remote Database . 298
Rebinding REXX Programs to a Database . 298

Running the Car Dealer Application . 298
Running the Car Dealer with a Remote Database . 299
Running the Car Dealer Application on the World Wide Web 299

Installed Sample Applications . 300
Car Dealer Directory . 300
Source Code for Running the Car Dealer Application . 304
Removing Object REXX and the Sample Applications . 304

OODialog Samples . 305
Video Archive . 306
Animals Riddle . 307
Philosophers’ Forks . 307
Graphical Demonstration . 308
Animation Demonstration . 311
Jack Slot Machine . 312
Standard Dialogs . 312
Let’s Go to the Movies . 313

Part 5. Reference Information . 315

Chapter 15. OODialog Method Reference . 317
OODialog Samples . 317

OODialog Classes . 318
OODialog Standard Dialog Functions . 319

OODialog External Functions . 319
Registering OODialog Functions . 320
Definition of Terms . 321

BaseDialog Class . 322
Instance Methods of BaseDialog . 328
Preparing and Running the Dialog . 328

Init . 328
InitDialog . 329
Run . 329
Execute . 329
ExecuteAsync . 330
EndAsyncExecution . 331
IsDialogActive . 331
StopIt . 331
Show . 331
ToTheTop . 332
StartMessageHandling . 332
HandleMessages . 332
ClearMessages . 333
SendMessageToItem . 333

Connect Methods . 333
InitAutoDetection . 334
NoAutoDetection . 334
xii Object REXX for Windows

AutoDetection . 334
ConnectButton . 334
ConnectBitmapButton . 335
ConnectControl . 336
ConnectList . 337
ConnectEntryLine . 337
ConnectComboBox . 338
ConnectCheckBox . 338
ConnectRadioButton . 338
ConnectListBox . 338
ConnectMultiListBox . 339
AddUserMsg . 339
AddAttribute . 341

Get and Set Methods . 342
GetData . 342
SetData . 342
Title . 343
SetTitle . 343
SetWindowTitle . 343
ItemTitle . 343
SetStaticText . 343
GetEntryLine . 344
SetEntryLine . 344
GetListLine . 344
SetListLine . 345
GetMultiList . 345
SetMultiList . 345
GetComboLine . 346
SetComboLine . 346
GetRadioButton . 346
SetRadioButton . 346
GetCheckBox . 346
SetCheckBox . 347
GetValue . 347
SetValue . 347
GetAttrib . 348
SetAttrib . 348
MakeArray . 348
SetDataStem . 348
GetDataStem . 349

Combo Box Methods . 349
AddComboEntry . 349
InsertComboEntry . 350
DeleteComboEntry . 350
FindComboEntry . 350
GetComboItems . 351
GetCurrentComboIndex . 351
SetCurrentComboIndex . 351
ChangeComboEntry . 352
ComboAddDirectory . 352
Contents xiii

ComboDrop . 353
List Box Methods . 353

AddListEntry . 353
InsertListEntry . 353
DeleteListEntry . 354
FindListEntry . 354
GetListItems . 354
GetCurrentListIndex . 355
SetCurrentListIndex . 355
ChangeListEntry . 355
SetListTabulators . 356
ListAddDirectory . 356
ListDrop . 356

Scroll Bar Methods . 357
GetSBRange . 357
SetSBRange . 357
GetSBPos . 358
SetSBPos . 358
ConnectScrollBar . 358
CombineELwithSB . 359

Methods for Window Handles, Sizes, and Positions . 360
Get . 360
GetItem . 360
GetSize . 360
GetPos . 360
GetButtonRect . 361
GetWindowRect . 361

Window Draw Methods . 361
Draw . 361
DrawButton . 361
RedrawRect . 362
RedrawButton . 362
RedrawWindowRect . 362
ClearRect . 363
ClearButtonRect . 363
ClearWindowRect . 363

Bitmap Methods . 364
LoadBitmap . 364
RemoveBitmap . 364
ChangeBitmapButton . 364
GetBitmapSizeX . 365
GetBitmapSizeY . 365
DrawBitmap . 365
ScrollBitmapFromTo . 366
TiledBackgroundBitmap . 366
BackgroundBitmap . 366
DisplaceBitmap . 367
GetBmpDisplacement . 367

Device Context Methods . 367
GetWindowDC . 368
xiv Object REXX for Windows

GetDC . 368
GetButtonDC . 368
FreeWindowDC . 368
FreeDC . 368
FreeButtonDC . 369

Text Methods . 369
WriteDirect . 369
TransparentText . 369
OpaqueText . 370
WriteToWindow . 370
WriteToButton . 371
Write . 371
ScrollText . 372
ScrollInButton . 373
ScrollButton . 373
CreateFont . 373
FontToDC . 374
DeleteFont . 374
FontColor . 375
GetTextSize . 375

Graphics Methods . 375
GraphicExtension . 375
CreateBrush . 376
CreatePen . 376
ObjectToDC . 377
DeleteObject . 377

Graphic Drawing Methods . 377
Rectangle . 378
DrawLine . 378
DrawPixel . 379
GetPixel . 379
DrawArc . 379
GetArcDirection . 380
SetArcDirection . 380
DrawPie . 381
FillDrawing . 381
DrawAngleArc . 382

Enable/Disable and Show/Hide Methods . 382
EnableItem . 382
DisableItem . 382
HideItem . 383
HideItemFast . 383
ShowItem . 383
ShowItemFast . 383
HideWindow . 383
HideWindowFast . 384
ShowWindow . 384
ShowWindowFast . 384
ResizeItem . 384
Resize . 385
Contents xv

MoveItem . 385
Move . 386
Center . 386
Update . 386

Animated Buttons . 386
AddAutoStartMethod . 386
ConnectAnimatedButton . 387

Standard Event Methods . 388
OK . 388
Cancel . 389
Help . 389
Validate . 389
DeInstall . 390

Public Routines . 390
Play . 390

UserDialog Class . 391
Instance Methods of Class UserDialog . 393

Init . 393
InitAutoDetection . 394
Create . 394
CreateCenter . 395
CheckFile . 395
CheckID . 395
ErrorFile . 396
DefineDialog . 396
Load . 396
LoadFrame . 397
LoadItems . 398

Add... Methods . 398
AddButton . 399
AddBitmapButton . 400
AddText . 401
AddGroupBox . 402
AddEntryLine . 402
AddPasswordLine . 403
AddListBox . 403
AddComboBox . 404
AddCheckBox . 404
AddRadioButton . 405
AddRadioGroup . 405
AddCheckGroup . 407
AddInput . 407
AddInputGroup . 409
AddComboInput . 410
AddInputStem . 410
AddCheckBoxStem . 411
AddRadioStem . 412
AddScrollBar . 412
AddButtonGroup . 413

Frames and Rectangles . 414
xvi Object REXX for Windows

AddWhiteRect . 415
AddWhiteFrame . 415
AddGrayRect . 415
AddGrayFrame . 415
AddBlackRect . 416
AddBlackFrame . 416

OK and Cancel Push Buttons . 416
AddOkCancelRightBottom . 416
AddOkCancelLeftBottom . 416
AddOkCancelRightTop . 417
AddOkCancelLeftTop . 417

Dialog Control Methods . 417
GetDefaultOpts . 417
GetStaticID . 417
StartIt . 417
StopIt . 418

ResDialog Class . 419
Instance Methods . 419

Init . 419
StartIt . 420

CategoryDialog Class . 421
Instance Methods of Class CategoryDialog . 423
Setting Up the Dialog . 423

Init . 423
InitCategories . 425
DefineDialog . 426
CategoryPage . 426
CreateCategoryDialog . 426
InitDialog . 427
GetSelectedPage . 427
CurrentCategory . 427
NextPage . 427
PreviousPage . 427
ChangePage . 427
PageHasChanged . 428
StartIt . 428

Connect... Methods . 428
Methods for Dialog Items . 429
Get and Set Methods . 429

SetCategoryStaticText . 429
GetCategoryEntryLine . 429
SetCategoryEntryLine . 429
GetCategoryListLine . 430
SetCategoryListLine . 430
GetCategoryMultiList . 430
SetCategoryMultiList . 430
GetCategoryComboLine . 430
SetCategoryComboLine . 430
GetCategoryRadioButton . 430
SetCategoryRadioButton . 431
Contents xvii

GetCategoryCheckBox . 431
SetCategoryCheckBox . 431
GetCategoryValue . 431
SetCategoryValue . 431
GetCategoryAttrib . 431
SetCategoryAttrib . 431

Combo Box Methods . 432
AddCategoryComboEntry . 432
InsertCategoryComboEntry . 432
DeleteCategoryComboEntry . 432
FindCategoryComboEntry . 432
GetCategoryComboItems . 432
GetCurrentCategoryComboIndex . 433
SetCurrentCategoryComboIndex . 433
ChangeCategoryComboEntry . 433
CategoryComboAddDirectory . 433
CategoryComboDrop . 433

List Box Methods . 433
AddCategoryListEntry . 433
InsertCategoryListEntry . 434
DeleteCategoryListEntry . 434
FindCategoryListEntry . 434
GetCategoryListItems . 434
GetCurrentCategoryListIndex . 434
SetCurrentCategoryListIndex . 434
ChangeCategoryListEntry . 434
SetCategoryListTabulators . 435
CategoryListAddDirectory . 435
CategoryListDrop . 435

Enable/Disable and Show/Hide Methods . 435
EnableCategoryItem . 435
DisableCategoryItem . 435
ShowCategoryItem . 435
HideCategoryItem . 435

Standard Dialog Classes and Functions . 436
TimedMessage Class . 436

Init . 436
DefineDialog . 437
Execute . 437
TimedMessage Function . 437

InputBox Class . 438
Init . 438
DefineDialog . 438
AddLine . 439
Execute . 439
InputBox Function . 439

PasswordBox Class . 439
AddLine . 439
PasswordBox Function . 439

IntegerBox Class . 440
xviii Object REXX for Windows

Validate . 440
IntegerBox Function . 440

MultiInputBox Class . 440
Init . 441
MultiInputBox Function . 441

ListChoice Class . 442
Init . 442
ListChoice Function . 443

MultiListChoice Class . 443
MultiListChoice Function . 443

CheckList Class . 444
Init . 444
CheckList Function . 445

SingleSelection Class . 445
Init . 446
SingleSelection Function . 446

AnimatedButton Class . 447

Chapter 16. Windows Program Manager and Registry 451
Windows Program Manager Class and Methods . 452
Windows Registry Class and Methods . 453

Chapter 17. Object REXX Demonstration Workbench 457
Starting the Object REXX Workbench . 457
Debugging a Program with the Workbench . 459
Workbench Function . 460

Part 6. Appendixes . 461

Appendix A. New Features in Object REXX and Migration 463
Object-Oriented Facilities . 464

New Special Variables . 464
Special and Built-In Objects . 465

Directives . 465
Class Directive . 465
Method Directive . 466
Routine Directive . 466
Requires Directive . 467

The REXXC Utility . 467
New and Enhanced Instructions . 467

CALL (Enhanced) . 468
DO (Enhanced) . 469
EXPOSE (New) . 470
FORWARD (New) . 470
GUARD (New) . 471
PARSE (Enhanced) . 471
RAISE (New) . 472
REPLY (New) . 473
Contents xix

SIGNAL (Enhanced) . 474
USE (New) . 475

New and Enhanced Built-In Functions . 475
ARG (Enhanced) . 475
CHANGESTR (New) . 475
CONDITION (Enhanced) . 476
COUNTSTR (New) . 476
DATATYPE (Enhanced) . 476
DATE (Enhanced) . 477
STREAM (Enhanced) . 477
TIME (Enhanced) . 479
VAR (New) . 479

New Condition Traps . 480
CALL/SIGNAL (Enhanced) . 480

New REXX Utilities . 482
Utilities for Semaphores . 482
Utilities for REXX Macros . 483
Utilities for Windows Systems . 484

Migration Considerations . 485

Appendix B. Car Dealer Source Code . 487
Directory Structure . 488

Car Dealer Application . 488
Philosophers’ Forks and OODialog Samples . 488

Sample Data . 489
Sample Customer Data . 489
Sample Vehicle Data . 490
Sample Work Order Data . 490
Sample Service Item Data . 491
Sample Part Data . 491

Multimedia Setup . 492
Multimedia Data Definition File . 492

Base Classes . 493
Base Customer Class . 493
Base Vehicle Class . 496
Base Work Order Class . 498
Base Service Item Class . 503
Base Part Class . 505
Persistent Class . 507
Cardeal Class . 508

Persistence in Files . 509
Configuration for File Storage . 509
File Customer Class . 510
File Vehicle Class . 511
File Work Order Class . 513
File Service Item Class . 514
File Part Class . 515

Persistence in DB2 . 516
Configuration for DB2 Storage . 516
DB2 Customer Class . 516
xx Object REXX for Windows

DB2 Vehicle Class . 518
DB2 Work Order Class . 521
DB2 Service Item Class . 524
DB2 Part Class . 525

Running the Car Dealer Application . 527
Program to Run the Car Dealer Application . 527

Appendix C. Definition for Syntax Diagram Structure 529

Appendix D. Special Notices . 531

Appendix E. Related Publications . 533
International Technical Support Organization Publications 533
Other Publications . 534
How to Get ITSO Redbooks . 534

How IBM Employees Can Get ITSO Redbooks . 535
How Customers Can Get ITSO Redbooks . 536
IBM Redbook Order Form . 537

Sample Code on the Internet . 538

Index . 539
Contents xxi

xxii Object REXX for Windows

Figures

1. Goals of the Lesson . 6
2. The First REXX Program . 7
3. Output of the First REXX Program . 8
4. Exercise 1: Symbols . 9
5. Solution for Exercise 1 . 10
6. Exercise 2: User Interaction with Pull . 11
7. Solution for Exercise 2 . 11
8. Loops as Nassi Schneidermann Charts and in REXX . 12
9. Solution for Exercise 3: Loops . 14

10. The Selections as Nassi Schneidermann Charts and in REXX 15
11. Exercise 4: Using the Single Selection . 15
12. Solution for Exercise 4: Single Selection—Easy Solution 16
13. Solution for Exercise 4: Single Selection—Clever Solution 17
14. The Rules of Parsing . 18
15. Exercise 5: Using Multiple Selection . 19
16. Solution for Exercise 5: Using Multiple Selection . 19
17. The Concept of Subprograms . 21
18. A Main Program and a Subroutine Share Their Symbols 22
19. Exercise 6: Using Subroutines . 23
20. Solution for Exercise 6: Using Subroutines . 24
21. Scopes of a Main Program and a Procedure Using Local Symbols 26
22. Solution for Exercise 6: Using Procedures with Arguments 27
23. Scopes of the Main Program and a Procedure Exposing Global Symbols 29
24. How to Define a Function . 30
25. A Function Using Arguments . 31
26. The Benefit of Using Functions . 32
27. Using Built-in Functions . 33
28. Calculating Factorials: Main Program . 34
29. Calculating Factorials: Sequential Function . 35
30. Calculating Factorials: Recursive Function . 35
31. Invoking Host Commands in REXX . 36
32. Communication with a Command Processor Using RXQUEUE 37
33. Using Stems and Compound Variables . 38
34. Stems and Counters . 41
35. Car and DumpTruck Class Inheritance Diagram . 60
36. Abstract Class Inheritance Diagram . 61
37. Multilevel Class Inheritance Diagram . 62
38. Mixin Class Multiple Inheritance Diagram . 64
39. Experimental OODialog Class Browser . 75
40. Car Dealer Application Use Case . 80
41. Car Dealer Data Class Relationships . 82
42. Car Dealer Object Attributes . 83
43. Implementation of the Car Dealer Model . 93
44. Customer Class in Memory . 95
Figures xxiii

45. Appearance of ASCII User Interface . 105
46. Customer Class Inheritance Diagram . 113
47. FAT Data Classes Inheriting from a Mixin Class . 118
48. The Resource Workshop . 125
49. The Exercise Dialog . 130
50. The Resource Script of the Exercise Dialog . 131
51. Simple Object REXX Script for the Exercise Dialog . 132
52. Extended Dialog Using Subclassing . 134
53. Sample Dialog Class with a Push Button Event . 139
54. A Dialog Using Bitmap Buttons . 143
55. How the Methods Work Together . 145
56. A Category Dialog . 149
57. Execution of a Category Dialog . 150
58. Defining the Layout of a CategoryDialog . 151
59. Examples of Category Methods . 153
60. Timed Message Box . 154
61. Input Box Dialog . 155
62. Multiple Input Box Dialog . 156
63. List Choice Dialog . 157
64. Multiple List Choice Dialog . 158
65. Check List Dialog . 159
66. Single Selection Dialog . 160
67. Main Window of OODialog GUI Application . 162
68. Customer Window of OODialog GUI Application . 163
69. Vehicle Window of OODialog GUI Application . 165
70. Work Orders Window of OODialog GUI Application . 166
71. Add Service Items Window of OODialog GUI Application 167
72. Code to Create the Add Service Items Window . 168
73. Work Order Bill of OODialog GUI Application . 169
74. Parts List Window of OODialog GUI Application . 170
75. Service Items Window of OODialog GUI Application . 171
76. DB2 Class Inheritance Diagram . 176
77. DB2 Tables for Car Dealer Application . 177
78. DB2 Table Definitions . 178
79. DB2 Database Definition . 178
80. DB2 Sample Table Load . 179
81. Boxie the Cat . 187
82. Using REXX to Update a DB2 BLOB . 189
83. Using REXX to Fetch a DB2 BLOB . 190
84. DB2 Definition for the Vehicle Table with Multimedia 191
85. Layout of Self-Defining BLOB and SQL Statements to Build BLOB 193
86. Using Object REXX to Build and Store a DB2 BLOB . 194
87. Vehicle Multimedia Window of OODialog GUI Application 196
88. DB2 Stored Procedure . 208
89. DB2 Stored Procedure with Object REXX Server . 208
90. DB2 Stored Procedure with RxQueues: Server . 210
91. DB2 Stored Procedure with RxQueues: Gateway . 211
92. DB2 Stored Procedure with RxQueues: Client . 212
xxiv Object REXX for Windows

93. Car Dealer Data Class Relationships . 218
94. Directory Structure for Car Dealer Application . 219
95. DB2 Configuration Command File . 220
96. Car Dealer Application Configurations . 221
97. Car Dealer Application Overall Class Relationships . 223
98. Using the Local Directory . 225
99. Simple Car Dealer Installation Program . 228
100. Configuration File for FAT Persistence . 229
101. Configuration File for DB2 Persistence . 229
102. The Car Dealer Class (Extract) . 231
103. Hacurs Home Page: Top Half . 238
104. Hacurs Home Page: Bottom Half . 239
105. Hacurs Home Page HTML Code . 239
106. Initial Design for the Car Dealer Application on the Web 241
107. CGI Environment Variables (Extract) . 243
108. CGI Program to List All Parts . 243
109. Car Dealer Part List in Web Browser . 244
110. Object-Oriented CGI Program to List All Parts . 245
111. HTML Class for CGI Programs (Extract) . 246
112. Customer Search Form . 247
113. HTML for Customer Search Form . 247
114. Customer List in Web Browser . 249
115. Customer Details in Web Browser . 250
116. Tailored Web Server Administration File . 252
117. Car Dealer Common Interface Program . 253
118. New and Used Car List in Web Browser . 255
119. Vehicle Picture in Web Browser . 256
120. HTML Form for a New Customer and Car . 258
121. HTML Form for a New Work Order . 260
122. Final Design for Car Dealer Application on the Web . 261
123. Web Car Dealer Application Home Page . 262
124. Concurrency with Early Reply . 268
125. Concurrency with Message Objects . 269
126. Concurrency with Guard . 270
127. Example of Early Reply with Unguarded and Guarded Methods 271
128. Sample Output of Early Reply with Unguarded and Guarded Methods 272
129. Philosophers’ Forks: Main Program . 274
130. Philosophers’ Forks: Philosopher Class . 275
131. Philosophers’ Forks: Fork Class . 275
132. Philosophers’ Forks: Sample Output . 276
133. Philosophers’ Forks GUI: OODialog Layout . 277
134. Philosophers’ Forks GUI: Animation Run . 278
135. Philosophers’ Forks GUI: Model Logic . 280
136. Philosophers’ Forks GUI: Dialog Class . 281
137. Philosophers’ Forks GUI: Dialog Setup and Run . 281
138. Philosophers’ Forks GUI: Interrupt Logic . 282
139. Philosophers’ Forks GUI: The Cake and the Icing . 284
140. Installation and Run Dialog . 288
141. Object REXX Redbook Group . 291
Figures xxv

142. DB2 Table and Index Definition . 294
143. DB2 Table Load . 295
144. OODialog Samples . 305
145. Video Archive Sample . 306
146. Animals Riddle Sample . 307
147. Graphical Demonstration Sample: Scrolling . 308
148. Graphical Demonstration Sample: Bitmap Viewer . 309
149. Graphical Demonstration Sample: Color Drawing . 310
150. Animation Demonstration Sample . 311
151. Jack Slot Machine Sample . 312
152. Let’s Go to the Movies Sample: Movies . 313
153. Let’s Go to the Movies Sample: Ticket . 314
154. OODialog Class Diagram . 318
155. Circle and Ellipse Drawing . 380
156. Sample Radio Button Group . 406
157. Sample Check Box Group . 407
158. Sample Input Field . 408
159. Frames and Rectangles in 3D Style . 414
160. Object REXX Workbench Layout . 458
161. Object REXX Workbench Button Bars . 458
162. Object REXX Workbench Program Execution . 459
163. Object REXX Workbench Execution Settings . 460
164. Sample Customer Data (sampdata\customer.dat) . 489
165. Sample Vehicle Data (sampdata\vehicle.dat) . 490
166. Sample Work Order Data (sampdata\workord.dat) . 490
167. Sample Service Item Data (sampdata\service.dat) . 491
168. Sample Part Data (sampdata\part.dat) . 491
169. Multimedia Data Definition File (media\media.dat) . 492
170. Base Customer Class (base\carcust.cls) . 493
171. Base Vehicle Class (base\carvehi.cls) . 496
172. Base Work Order Class (base\carwork.cls) . 498
173. Base Service Item Class (base\carserv.cls) . 503
174. Base Part Class (base\carpart.cls) . 505
175. Persistent Class (base\persist.cls) . 507
176. Cardeal Class (base\cardeal.cls) . 508
177. Configuration for File Storage (fat\carmodel.cfg) . 509
178. File Customer Class (fat\carcust.cls) . 510
179. File Vehicle Class (fat\carvehi.cls) . 511
180. File Work Order Class (fat\carwork.cls) . 513
181. File Service Item Class (fat\carserv.cls) . 514
182. File Part Class (fat\carpart.cls) . 515
183. Configuration for DB2 Storage (db2\carmodel.cfg) . 516
184. DB2 Customer Class (db2\carcust.cls) . 516
185. DB2 Vehicle Class (db2\carvehi.cls) . 518
186. DB2 Work Order Class (db2\carwork.cls) . 521
187. DB2 Service Item Class (db2\carserv.cls) . 524
188. DB2 Part Class (db2\carpart.cls) . 525
189. Command to Run the Car Dealer (\car-run.rex) . 527
xxvi Object REXX for Windows

Tables

1. The Object REXX Collection Classes . 73
2. The Other Object REXX Classes. 73
3. Car Dealer Objects and Methods . 81
4. Methods Required by Every Data Class . 85
5. Methods Required for Customer Class . 86
6. Methods Required for Vehicle Class . 86
7. Methods Required for Part Class . 87
8. Methods Required for Service Class . 87
9. Methods Required for Work Order Class . 87
10. Relationships between the Car Dealer Objects . 90
11. Methods Required for AUI . 102
12. Methods Required for Menu . 104
13. Methods for Customer Persistent Storage in DB2. 180
14. Methods for Part Persistent Storage in DB2 . 181
15. Methods for Service Item Persistent Storage in DB2 . 181
16. Methods for Vehicle Persistent Storage in DB2. 181
17. Methods for Work Order Persistent Storage in DB2 . 181
18. Icons of the Object REXX Redbook Group . 292
19. Files of the Master CARDEAL Directory. . 300
20. Files of the Sampdata Subdirectory.. 300
21. Files of the Base Subdirectory. 301
22. Files of the FAT Subdirectory. . 301
23. Files of the DB2 Subdirectory. . 301
24. Files of the RAM Subdirectory. 302
25. Files of the AUI Subdirectory.. 302
26. Files of the Media Subdirectory. 302
27. Files of the OOD Subdirectory. 302
28. Files of the StorProc Subdirectory. 303
29. Files of the WWW Subdirectory. 303
30. Files of the Xamples Subdirectory. 303
31. Files of the Install Subdirectory.. 304
32. BaseDialog Instance Methods. 323
33. UserDialog Instance Methods . 392
34. CategoryDialog Instance Methods . 421
35. Subdirectories of the Car Dealer Application. 488
Tables xxvii

xxviii Object REXX for Windows

Preface

In this book we describe the new object-oriented language, Object
REXX. We list all the incremental improvements that Object REXX
offers over and above classic REXX and describe the object-oriented
features included in Object REXX. To illustrate its capabilities, we
develop some fairly large applications.

REXX has long had great strengths in the area of linking to other pro-
grams and services. Here we demonstrate Object REXX’s ability to
link to DB2 Version 2 for Windows NT and Windows 95 to carry out
sophisticated binary-large-object (BLOB) handling, as well as conven-
tional record processing.

This book contains Object REXX for Windows NT and Windows 95
and OODialog, an object-oriented facility to build graphical user inter-
face (GUI) applications. OODialog makes it easy to statically or
dynamically create GUI applications, supporting all kinds of dialog
features.

Object REXX also includes powerful facilities for concurrent program-
ming. We show a graphical user interface (GUI) that exploits Object
REXX’s concurrent programming facilities.

Detailed syntax diagrams covering all of the new and changed fea-
tures of Object REXX are included, with brief descriptions.

This book is intended for programmers who know and love REXX and
would like to learn what the new facilities in Object REXX look like
and the kinds of problems they can solve. It contains lots of sample
code that we hope will provide a useful starting point for new projects.
Programmers who currently use REXX to build large and complex sys-
tems will be well aware of its limitations in terms of splitting large
programs into smaller, manageable components. Object REXX has
excellent facilities that allow and encourage this process. We describe
them and illustrate their use.

This book is also for programmers who would like to start learning
and using OO techniques but do not have access to an OO language
and compiler; or for those who do have access to one but find getting
into it to be too complicated and alien. REXX is, above all, an accessi-
ble language. It is simple, obvious, and unintimidating; and Object
REXX provides an easy entry into the world of objects.
xxix

How This Document Is Organized
How This Document Is Organized

The document is organized as follows:

❑ Introducing the Hacurs Company

In this section we introduce the hypothetical software company
Hacurs, which is followed throughout the book as it uses Object
REXX to implement an application for their customers.

❑ Part 1, Introducing Classic REXX and Object REXX

Part 1 is an overview of classic REXX and the object-oriented (OO)
facilities of Object REXX. It is also a description of why OO, in
general—and Object REXX in particular—are such valuable and
important technologies.

➢ Chapter 1, Introducing Classic REXX

In this chapter we introduce classic REXX for readers without
any knowledge of REXX. We listen as a Hacurs professional
teaches classic REXX to a group of developers of a software
company.

➢ Chapter 2, Introducing Object REXX

In this chapter we introduce Object REXX and describe the
importance of OO.

➢ Chapter 3, How Does Object REXX Implement OO?

In this chapter we describe how Object REXX implements OO
through objects, classes, and methods, including support for
inheritance and polymorphism. It also touches on the Object
REXX-provided class library.

❑ Part 2, The Car Dealer Scenario

In Part 2 we illustrate a broad range of Object REXX’s facilities by
describing the way that a hypothetical software company might
use them to design and implement a fairly realistic application for
various car dealers.

➢ Chapter 4, The Car Dealer Application

In this chapter we describe the car dealer application that
Hacurs wants to develop and the process that Hacurs goes
through to design the system, using OO techniques. This chap-
ter presents the Object REXX facilities that Hacurs decides to
use in support of the implementation. Extracts of source code
are included for illustrative purposes, while comprehensive
source listings are included in Appendix B.

➢ Chapter 5, ASCII User Interface

In this chapter we describe how Hacurs designs and builds
Object REXX classes and methods to implement a simple
ASCII character-oriented user interface for the system. The
xxx Object REXX for Windows

How This Document Is Organized
company builds one class to manage the display of information
on the user’s screen and another to store, display, and inter-
pret the many menus that the system requires. Anticipating
the need for a future GUI interface, Hacurs uses OO design
principles to isolate the application code from the user-inter-
face code.

➢ Chapter 6, Persistent Objects on Disk

In the base car dealer system, all updates to objects are lost
when the application terminates. In this chapter, Hacurs
designs and builds Object REXX classes and methods to add
persistent storage behavior to the objects within the system.
The object data is stored in flat ASCII files.

➢ Chapter 7, Graphical User Interfaces with OODialog

Chasing a new opportunity to sell its car dealer application,
Hacurs builds and implements a GUI to it. The company uses
the OODialog GUI builder provided with Object REXX.

➢ Chapter 8, Persistent Objects in DB2

Seeing yet another opportunity to market the application,
Hacurs develops new classes that give objects persistent stor-
age in a DB2 database. The new methods can support large
volumes of data by selectively loading only when needed and
caching frequently used data in storage as objects.

➢ Chapter 9, Using Advanced DB2 Facilities

Hacurs further extends the car dealer application by adding
multimedia facilities. The code makes use of the powerful new
BLOB handling facilities of DB2 Version 2 to store and
retrieve the multimedia data. Audio, bitmaps, and video facili-
ties are incorporated.

➢ Chapter 10, Data Security with Object REXX and DB2

A serious concern that arises over the security of DB2 data
accessed by dynamic SQL from client PCs is resolved by devel-
oping code that exploits DB2 Version 2’s stored procedure
mechanism.

➢ Chapter 11, Configuration Management with Object
REXX

A proliferation of different versions of the code required to
meet different customers’ needs threatens to get out of hand
and result in a big code-maintenance burden. Hacurs develops
a sophisticated system for managing many different code con-
figurations within a multiple subdirectory structure, using dif-
ferent configuration files to pull the right pieces together. This
allows common code to be reused without being cloned.
Preface xxxi

How This Document Is Organized
Hacurs develops a GUI Object REXX program that allows
users to select the application configuration they need, and
installs it.

➢ Chapter 12, Object REXX and the World Wide Web

Hacurs decides to advertise its car dealer application on the
World Wide Web, often called the Internet. It installs a Web
server and creates a simplified version of the application to
present car dealer data as Web pages. It uses the Common
Gateway Interface (CGI) to invoke Object REXX programs
from the Web server. The Object REXX programs dynamically
create Web pages with the information from the database.

Any Web browser can point to the Hacurs server and interact
with the car dealer application. An extension of the applica-
tion even enables a Web browser user to add a car to the data-
base and create a work order.

❑ Part 3, Object REXX and Concurrency

➢ Chapter 13, Object REXX and Concurrency

In this part we describe the concurrent-processing facilities of
Object REXX. After a short introduction, we solve with Object
REXX the problem of the dining philosophers, a classic illus-
tration of concurrent processing. The code to build a GUI
application illustrating five philosophers sitting down to dine
is developed and discussed. The GUI is developed using OODi-
alog.

❑ Part 4, Installing Object REXX, DB2, and the Sample Appli-
cations

➢ Chapter 14, Installing Object REXX, DB2, and the Sam-
ple Applications

In this part we describe how to install Object REXX, DB2, and
the sample applications on Windows NT and Windows 95.
Installation of the code and the setup of DB2 for the sample
application are explained in detail, including instructions on
how to run the examples.

❑ Part 5, Reference Information

This part contains reference information that should help users
write GUI applications with OODialog, access the Windows Pro-
gram Manager and the Windows Registry from Object REXX, and
use the Object REXX Demonstration Workbench.

➢ Chapter 15, OODialog Method Reference

This chapter contains the reference manual for the OODialog
GUI builder. It explains all classes and methods that can be
used to create GUI applications for Windows NT and Windows
95 with Object REXX.
xxxii Object REXX for Windows

How This Document Is Organized
➢ Chapter 16, Windows Program Manager and Registry

In this chapter we briefly describe the two Object REXX
classes provided to access the Windows Program Manager and
the Windows Registry.

➢ Chapter 17, Object REXX Demonstration Workbench

In this chapter we introduce a workbench that can be used to
debug Object REXX programs. With the workbench users can
interactively run programs, watch and modify values of vari-
ables, set breakpoints, and trace programs.

❑ Part 6, Appendixes

The appendixes contain additional information about new fea-
tures in Object REXX, migration from OS/2 REXX, an extract of
source listings of the car dealer application, instructions on how to
read the syntax diagrams, special notices, and information about
related publications and ITSO redbooks.

➢ Appendix A, New Features in Object REXX and Migra-
tion

This appendix contains a comprehensive set of syntax dia-
grams that show the new instructions, functions, classes, and
methods that are a part of Object REXX, as well as the exten-
sions made to REXX. The syntax diagrams are accompanied
by explanatory text.

The differences between classic REXX and Object REXX are
explained in a small migration section.

➢ Appendix B, Car Dealer Source Code

This appendix contains a listing of the sample data and an
extract of the source programs of the car dealer application.
The base classes and the classes for file and DB2 persistence
are listed.

➢ Appendix C, Definition for Syntax Diagram Structure

This appendix describes the notation of the syntax diagrams
used in Chapter 15, OODialog Method Reference and in
Appendix A, New Features in Object REXX and Migration.

➢ Appendix D, Special Notices

This appendix contains special notices about IBM products
and trademarks.

➢ Appendix E, Related Publications

This appendix contains a listing of related publications of the
International Technical Support Organization (ITSO) and
other sources, information about How to Get ITSO Red-
books, and a reference to Sample Code on the Internet.
Preface xxxiii

The Team That Wrote This Redbook
The Team That Wrote This Redbook
Ueli Wahli is a Consultant AD Specialist at the IBM
International Technical Support Organization in San
Jose, California. He writes extensively and teaches IBM
classes worldwide on application development and object-
oriented technology. Before joining the ITSO 12 years
ago, Ueli worked in technical support in IBM Switzer-
land as a Systems Engineer. He has 30 years of experi-
ence in application development. He holds a degree in
Mathematics from the Swiss Federal Institute of Tech-
nology. His areas of expertise include many programming
languages and visual development environments, as well
as data dictionaries, repositories, and library manage-
ment. He has been involved with many redbooks on these
topics. His e-mail address is wahli @ vnet.ibm.com.

Ingo Holder is a Software Engineer at the German Soft-
ware Development Lab in Böblingen, Germany. He has
six years of experience in application development. He
holds a degree in business management specializing in
computer science from the Württembergische Verwal-
tungs- und Wirtschaftsakademie Stuttgart, Germany.
His areas of expertise include many programming lan-
guages, such as C++, Pascal, PL/I, and Assembler. He
wrote his graduation paper about object-oriented pro-
gramming. Since October 1995 he has been responsible
for the Object REXX interpreter on the Windows NT and
Windows 95 platforms. You can reach him at iholder @
vnet.ibm.com.

Trevor Turton works as an IT Architect in the area of
Network Computing for IBM South Africa. He has a BSC
in Mathematics and Physics and 33 years of computer
experience—29 of these with IBM. This experience spans
dozens of operating systems, languages, and database
managers. Trevor started designing and implementing
distributed computer systems over 20 years ago, and has
stayed with this mode of computing through its cli-
ent/server and Internet/Intranet phases. Trevor had the
great idea of writing most of the book in the dialog
style—Hanna, Curt, Steve, and the Hacurs company are
his inventions. You can reach him at trevort @
vnet.ibm.com.

This book is based on a similar redbook on Object REXX
for OS/2, written by Trevor Turton and Ueli Wahli.
xxxiv Object REXX for Windows

Acknowledgments
Acknowledgments

This book would not have been possible without the help of the follow-
ing people who contributed to the content of the book:

❑ Jiri Andress from IBM Germany worked on the DB2 implemen-
tation under Windows NT and Windows 95 and wrote the refer-
ence manual for the OODialog GUI builder.

❑ Karel Michek from IBM Czech ported the OS/2 car dealer appli-
cation to Windows NT and Windows 95 using the OODialog GUI
builder. He also worked on the sample OODialog programs distrib-
uted with Object REXX for Windows.

Many thanks to Maggie Cutler for editing the book and making the
dialog interesting. Thanks also to Jens Tiedemann, former manager of
the ITSO San Jose, for the investment of resources into the Object
REXX projects on OS/2, Windows NT, and Windows 95.

Ueli Wahli

Comments Welcome

We want our redbooks to be as helpful as possible. Should you have
any comments about this or other redbooks, please send us a note at
the following address:

redbook@vnet.ibm.com

Your comments are important to us!
Preface xxxv

Comments Welcome
xxxvi Object REXX for Windows

Introd
ucing the
Hacurs Company
It is all too easy to make a book about a computer language read like a
catalog of washing machine parts. As we go through the features of
classic REXX and Object REXX we are going to try to bring them to
life by showing how useful they are to a fictional, but not unrealistic,
small software company called Hacurs. This company was started one
year ago by three friends—Hanna, Curt, and Steve. They studied
computer application design and programming together at college,
and after graduation they all joined the same company and worked in
its IT department. They often spoke of starting their own little soft-
ware company, and after two years of corporate life, they agreed to do
it. They decided to design and develop applications for OS/2 and Win-
dows. They had used C and C++ for some of their college assignments,
but most of their corporate experience was based on coding REXX.
They recognized that REXX is an extremely powerful and easy-to-use
language and chose it as their preferred development language.

Their company name is derived from their own names but also stands
for their main business—Handy Applications Coded Using REXX.
 1

Hacurs signed up with the IBM Developer Assistance Program (DAP)
and the Developer Connection for OS/2 (DEVCON). This gave them
access to lots of useful information, as well as some very useful devel-
opment tools.

In this book we follow the Hacurs company as they:

❑ teach classic REXX to another software company;

❑ design an object model for a car dealer application and implement
it in Object REXX;

❑ design and implement a simple ASCII window user interface;

❑ use flat files to implement object persistence;

❑ design a graphical user interface using OODialog (the GUI builder
shipped with Object REXX);

❑ implement object persistence in DB2;

❑ use advanced DB2 facilities to store multimedia data in binary
large objects (BLOBs);

❑ overcome data security concerns about dynamic SQL using stored
procedures;

❑ design a sophisticated configuration management system using
Object REXX’s requires facility;

❑ put the car dealer application on the World Wide Web by dynami-
cally creating Web pages using Object REXX; and

❑ prove how easy it is to implement concurrent processes using
Object REXX.
2 Object REXX for Windows

Part 1

Introducing
Classic REXX
and Object REXX

Object
REXX
3

4 Object REXX for Windows

1
Introd
ucing
Classic REXX
In this chapter we pick up the story of how Hacurs teaches a company
a few features of classic REXX. This chapter is for readers not familiar
with REXX and serves as an introduction to the simplicity and func-
tion of the language. In subsequent chapters we introduce the object-
oriented facilities of Object REXX.

A Lesson in Classic REXX
Steve arrived safely in Seattle, although, to get a better price, he had
to choose one of the smaller airlines. He claimed his baggage, walked
through the hallway to the taxi rank, and took a cab. He then told the
driver where he wanted to go and sat back and relaxed. It did not take
long before the driver stopped and asked for the fare. Steve paid the
driver well and stood in front of a modern-looking building. Above the
main entrance was a big sign in flashing green letters that read DIGI-
TAL SOLUTIONS.

Steve had been invited to Seattle by an old school friend, Bob, who was
responsible for employee education at Digital Solutions. Always seek-
ing to keep its employees up to date with state-of-the-art program-
 5

A Lesson in Classic REXX
ming languages, Digital Solutions wanted to teach them Object REXX.
The only problem was that the company worked exclusively on the
Windows platform, so its employees did not even know classic REXX.
Steve’s job—a well paid one—was to introduce Digital Solutions’ staff
to classic REXX, so that they would have less difficulty learning
Object REXX later.

Bob welcomed Steve and gave him a quick tour of the building. Then
he led him to the classroom and helped prepare the room for Steve’s
workshop. Five minutes before the official start, the first employees
came in. It took approximately 10 minutes until the last member
arrived and Steve had been introduced to the group by his friend.
After this, Steve took over, made a few introductory remarks, and then
uncovered the blackboard and showed the goals of the lesson [see Fig-
ure 1].

Figure 1. Goals of the Lesson

Structured Programming
The Sequence

The Loop

The Selection

Procedural Programming

Host Commands, Stems

The Subroutine

The Procedure

The Function

S
tev

e

6 Object REXX for Windows

Structured Programming
Structured Programming
Steve began his lesson: “For those of you who have already done some
programming with other programming languages, this day will be
refreshing. For those of you who do not have any experience in pro-
gramming, it won’t be easy, but it won’t be a big deal either. The good
thing about REXX is that it is so easy to use. It doesn’t take much
effort to learn the language, because it uses common English words
and is an untyped language [variables are not declared to be of a cer-
tain type]. For the nonprogrammers among you, untyped might be
meaningless, but don’t let that bother you. However, the experienced C
or Pascal developer will discover the simplification of an untyped lan-
guage. This morning we will cover the three major aspects of struc-
tured programming—sequence, loop, and selection— and in the
afternoon we will look at the different types of subroutines—normal
subroutine, procedure, and function—and a few other important con-
cepts, such as host commands and stems.”

The Sequence

“Normally, each introduction of a programming language starts with
the famous Hello World program. For us, this is reason enough not to
do it. Instead, our first program will display some numbers.” Steve
went to the blackboard, picked up the chalk, and wrote a few lines of
code on it [see Figure 2].

“This doesn’t look too complicated, does it?” asked Steve rhetorically.
“The first line of our program is a comment, which means that the line
is ignored during program execution. Some of you might wonder why
the comment says script instead of program. Well, REXX belongs to
the category of scripting languages, but you can call it a program or a
script; it’s up to you. It is recommended that you start a REXX script
with a comment, for compatibility reasons. The comment in the first
line is necessary on other systems like OS/2 or MVS. One major
advantage of classic REXX and Object REXX is that your scripts are
easy to port to different systems. If you forget to make the first line a
comment, it cannot be ported unchanged to other systems.

 /* Our first REXX script */
 say "The first 3 numbers of the multiplication table up to ten"
 i = 1
 say i
 i = i + 1
 say i
 i = i + 1
 say i
 say program finished

Figure 2. The First REXX Program
Chapter 1. Introducing Classic REXX 7

Structured Programming
“Let’s go on to the second line. Say is an instruction to display a line of
text on the screen. The text you want to display should be enclosed in
quotes. You can use either double quotes or single quotes. The only
restriction is that the quotes match. If you start the text with a single
quote, you must end it with a single quote. If you’re using special sym-
bols in your text, such as +, !, /, *, $, and &, you have to enclose the
text in quotes. The say instruction automatically executes a line feed
at the end of the output. By the way, REXX isn’t case sensitive with
regard to symbols. Case sensitivity is enabled only for strings in
quotes.

“In the third line, the number 1 is assigned to symbol i. If we now dis-
play i in the next line, 1 will appear on the screen. In the fifth line, the
variable i—the symbol became a variable by the assignment—will be
increased by 1. You can see that it’s possible to assign a value of an
expression to a variable that’s used in the expression itself. In the
sixth line, the variable will be displayed and the same procedure will
be repeated one more time. The last line finally displays the text PRO-
GRAM FINISHED in upper case.”

Steve drew a frame on the right side of the blackboard and wrote the
output of his program in it [see Figure 3].

“Why is program finished displayed in upper case, although you wrote
it in lower case?,” a well-dressed man in the second row asked. “Is it
because of the quotes?”

“Yes, it is,” answered Steve, glad that there was some participation.
“That’s an important issue in REXX. The text in the first line is
treated by REXX as one text string because of the quotes. The text in
the last line, however, isn’t a text string at all. For us human beings,
it’s recognizable as a text string, but for REXX, program is a potential
variable, as is finished. What the last line of the program does is to
display the potential variables program and finished in one line. The
exception here is that REXX returns the name of a potential variable
in upper case if no value has been assigned. In that case the potential
variable becomes a string. Everything placed within quotes is no
longer treated as a potential or real variable, but as a text string. I
know that this sounds a bit complicated, but you’ll soon discover that
this is a good way of treating symbols. Now you can switch on your
computers, because you’re going to write a REXX program.”

 The first 3 numbers of the multiplication table up to ten
 1
 2
 3
 PROGRAM FINISHED

Figure 3. Output of the First REXX Program
8 Object REXX for Windows

Structured Programming
Suddenly there was a lot of noise. One could hear the power switches
of the PCs clicking like machine guns, and then the ventilators started
to hum. Steve was hoping that the air conditioning worked properly;
otherwise, in half an hour, the room would feel like a sauna!

“To write your program you can use whatever text editor you want.
Notepad isn’t the best choice, because there is no line counter, but for
smaller programs it is sufficient. I haven’t yet mentioned how to exe-
cute your program. When you’re finished editing, save the file and
type rexx program.rex on the command prompt, where program.rex
stands for the name you gave your REXX program. .REX is the recom-
mended file extension for REXX scripts on Windows. If you use .REX or
.CMD as the file extension for your script, you can leave it out when exe-
cuting the program with the rexx command. You have to be careful
using .CMD on Windows NT, because if you try to execute your program
and you forget rexx in front of it, the system will interpret the script as
a command file. If you’re familiar with REXX on OS/2, I guarantee
that you’ll make this mistake. Now let’s come to your first exercise.
Your task is to write a REXX program that works with symbols and
produces the output shown on the blackboard.” [See Figure 4.]

“The requirement for your script is that all of the calculations must be
done by REXX and not typed in directly. The symbol for multiplication
is the asterisk [*], the symbol for the division as shown in the exercise
output is the slash [/]. Go to work.”

Steve’s students started an editor and began to write the script. Dur-
ing that time, Steve prepared the solution. It’s recommended that
you—the reader—also create a REXX program that solves the prob-
lem described above.

After 15 minutes Steve could see that most of the students were doing
something else, so he decided to conclude the first exercise and present
his solution. “It seems to me that most of you are done with the pro-
gram. I’m going to show you my solution and we’ll discuss it. It may
vary from yours, but that’s to be expected, because most of the time,
there is more than one algorithm to solve a specific problem.”

 This program has been written by Steve
 5
 +
 7.5

 12.5
 ====
 5 multiplied by 7.5 is 37.5
 25 / 5 = 5
 Program finished!

Figure 4. Exercise 1: Symbols
Chapter 1. Introducing Classic REXX 9

Structured Programming
Steve switched on the overhead projector and the tablet that was con-
nected to his ThinkPad. He had to adjust the sharpness a bit to make
his script readable on the wall [see Figure 5].

“This is not the easiest way to solve the problem,” began Steve,
explaining his script, “but the way I did it, it is easy to take numbers
other than 5 or 7.5. In lines 2 through 4, I assign numerical values to
variables a and b, and my name to author. In line 5, the first output
line will be displayed. It’s important to notice that the blank between
by" and author is displayed although it is not between the quotes. The
stand-alone say without any parameters in line 6 is for the blank line.
The semicolon [;] tells REXX that a new statement begins. Usually
each REXX statement is coded in a separate line, but with the semico-
lon it’s possible to circumvent this. In the same program line, the third
line of the output is produced. Instead of the number 5, a is used to
display 5. Then the + sign is printed—notice that it’s between quotes.
After that, 7.5 is displayed using variable b; then the dashed line. You
can see in line 9 that it’s even possible to use four statements in one
line, separated by semicolons. The second statement in this line calcu-
lates 5 + 7.5 and displays the result. Lines 10 and 11 on the screen fol-
low the same pattern. Whenever an operator has to be displayed, it
must be within quotes. It’s not too difficult, is it?”

Nobody seemed to take this as a serious question, so there was hardly
any reaction. Steve then suggested that his students try running the
same program without coding the operators in quotes. He also gave
them a few minutes to correct their programs and instructed them to
use variables instead of the hard-coded numbers. After the students
were done with the editing, Steve continued with the next point on the
agenda.

“All we have done so far is to put data to the screen. For the next pro-
gram, we’re going to interact with the user by asking him or her for
the numbers to add, multiply, or divide. My solution for Exercise 1 is
really easy to extend to user interaction. The statement to read a line
from the keyboard is PULL. I forgot to tell you that for REXX there’s
no difference between a number and a string. If you type say 7.5, the

 /* Exercise 1 */ 1
 a = 5 2
 b = 7.5 3
 author = "Steve" 4
 say "This program has been written by" author 5
 say; say " "a 6
 say " +" 7
 say " "b 8
 say "----"; say a+b; say "===="; say 9
 say a" multiplied by "b "is" a*b 10
 say; say "25 /" a "=" 25/a 11
 say; say "Program finished!" 12

Figure 5. Solution for Exercise 1
10 Object REXX for Windows

Structured Programming
string 7.5 will be displayed on the screen. The difference between the
string Hello and 7.5 is that 7.5 can be treated as a numerical value
and therefore used in a formula. When you code pull var, the program
reads a string from the keyboard into the named variable. If the user
enters a number, this variable can be used for a calculation. To make
the above script [see Figure 5] user interactive, you just have to
replace a = 5 and b = 7.5 by say "a?";pull a and say "b?";pull b.
Try to solve the next problem. The screen output should look like the
right side of the blackboard, and the values should be prompted from
the user. Let’s go.” [See Figure 6.]

Steve presented his solution for the problem and found no need to
describe it in detail [see Figure 7]. All he emphasized was how to get
the age within double quotes. “It’s slightly difficult to read the last
line, because there’s a mixture of single and double quotes. To display
single quotes, you must put them between double quotes ["'"]. To dis-
play double quotes, put them in single quotes ['"']. All you have to
verify is that an opening single or double quote matches with a closing
single or double quote.”

“It’s time for the first break now,” said Steve, feeling the need for it.
“Have a coffee or a hot chocolate and be back in 15 minutes. After the
break, we’ll discuss how computers are majorly superior to man.”

The Loop

As usual it took a few minutes longer than specified for everyone to
return and be seated. “Before the break, I promised you that you
would see how computers are superior to man. What I was thinking
about was the speed with which a computer can repeat instructions
that humans prepare. If we go back to the program with which we
started, we see that we only coded the first three numbers of the table.

 Please enter your name:
 Steve
 How old are you?
 24
 Steve, you'll be "74" in 50 years.

Figure 6. Exercise 2: User Interaction with Pull

 /* Exercise 2 */
 say "Please enter your name:"
 pull name
 say "How old are you?"
 pull age
 say name", you'll be" '"'age+50'" in 50 years.'

Figure 7. Solution for Exercise 2
Chapter 1. Introducing Classic REXX 11

Structured Programming
It would have been too much effort to code all of the remaining 97
numbers manually. Now we’re going to extend the program and dis-
play the complete multiplication table up to 100. What we need for
this is a loop. There are three types of loops:

❑ the repetitive loop, which is characterized by a fixed number of
repetitions,

❑ the top-driven loop, which checks whether or not to stop the execu-
tion of the loop at the top of the loop, and

❑ the bottom-driven loop, which checks for the stop condition at the
bottom of the loop.

“I have prepared a graphic to show you these three loops as Nassi
Schneidermann charts, together with the matching REXX notation.”
[See Figure 8.]

Figure 8. Loops as Nassi Schneidermann Charts and in REXX

for count = 1

to 100

sequence of REXX
statements

while count < 100

sequence of REXX
statements

until count >= 100

sequence of REXX
statements

do count = 1 to 100
/*

Sequence of REXX
statements

*/
end

do while count < 100
/*

Sequence of REXX
statements

*/
end

do until count >= 100
/*

Sequence of REXX
statements

*/
end

LoopsLoops

repetitiverepetitiverepetitive

top driventop driventop-driven

bottom drivenbottom drivenbottom-driven

Nassi SchneidermannNassi SchneidermannNassi Schneidermann REXXREXXREXX
12 Object REXX for Windows

Structured Programming
“The number of repetitions for the repetitive loop is controlled by an
index variable that is defined after the keyword do, assigned an initial
value, and then counted up to the maximum given after the keyword
to. In the diagram the index variable is called count, its initial value is
1, and the sequence surrounded by the do ... end is repeated 100 times.

“Both top-driven and bottom-driven loops check the specified condition
after each repetition to determine whether the loop should be
repeated. The top-driven loop checks the condition first. If the condi-
tion is true, the sequence within do ... end is processed, that is, the
condition is a continuation condition. The bottom-driven loop first pro-
cesses the sequence within do ... end and checks the condition after-
ward before the next repetition, that is, the condition is a termination
condition. The condition for both loops is specified in front of the
sequence in the do statement.”

“What exactly are conditions?” one of the students asked.

“In this context, a condition is an expression that evaluates to 0 or 1,
where 0 stands for false and 1 for true,” answered Steve. “You should
look up the topic REXX General Concepts - Comparison and REXX
General Concepts - Logical (Boolean) in the Object REXX Online Ref-
erence. Here is an extract of the list of comparison operators:

= True if the terms are equal
\=, != True if the terms are not equal (inverse of =)
<>, >< True if the terms are not equal
> Greater than
< Less than
>= Greater than or equal to
\<, !< Not less than
<= Less than or equal to
\>, !> Not greater than

“Now you’re familiar with the three types of loops and their REXX
notation,” Steve said, switching off the overhead projector and facing
the audience again. “It shouldn’t be difficult to write a script that lists
all numbers from 1 to 100. You can choose whatever type of loop you
want, but I have to say that I’d prefer the repetitive loop for this kind
of problem. You have 10 minutes.” The level of noise increased again.

Most of the students finished their exercise before the 10 minutes
were up, or at least they stopped trying. While the others were solving
the problem, Steve turned the left side of the blackboard over, where
he had prepared the solution [see Figure 9].
Chapter 1. Introducing Classic REXX 13

Structured Programming
“Because the program would have been so short, I did a second loop
that counts the numbers back from 100 to 1,” explained Steve. “You
could almost take the first loop directly from the graphic. All you
would have to add was the say within the loop. Those of you who used
the while or until loop noticed that two more lines were required, one
to initialize the index variable to 1, and one to increase it. Well, the
statements for the second loop tell REXX to start with i=100 and count
down to 1. It’s necessary to use by -1, otherwise the loop isn’t executed
a single time.”

“Can only 1 or -1 be used for by?” a young lady in the first row on the
left side asked, a little bit shyly.

“Good point,” Steve tried to encourage her. “You can use any number
as the by value. Even zero is possible, but you should avoid using it, or
you’ll get an infinite loop. Infinite loop means that the condition check,
whether or not to repeat the loop, returns true all the time, which
causes the loop to run ad infinitum. I hope that some of you have
already discovered how easy it is to develop programs with REXX.”

The Selection

“Selection is the third element of structured programming. Think
about your daily life,” Steve invited the audience. “You’ll discover that
you encounter selection throughout the day. Immediately after you
wake up, you must decide whether to get up or go back to sleep for a
couple of minutes. If you choose the uncomfortable alternative, you
must move your body out of bed and decide whether to take a shower
before or after breakfast. For breakfast, you have to decide whether
you want to have ham or jam on your toast. And so on. You can do a
single selection in REXX with the if ... then ... statement. To do a mul-
tiple selection, you can use a select group. On the graphic you can see

 /* Exercise 3 */
 say "The multiplication tables up to 100:"
 do i = 1 to 100
 say i
 end

 say "Press any key to continue..."
 pull

 /* now let's do it backward */
 say "The numbers from 100 back to 1:"
 do i = 100 by -1 to 1
 say i
 end

Figure 9. Solution for Exercise 3: Loops
14 Object REXX for Windows

Structured Programming
the Nassi Schneidermann charts and the corresponding REXX nota-
tion.” Steve loaded the necessary file into Freelance, went toward the
projector, and switched it on [see Figure 10].

“To challenge your brains a bit, let’s do Exercise 4,” said Steve, smil-
ing. “The output will look like this.” Steve pointed toward the black-
board where he wrote down the output of the exercise [see Figure 11].

“On the blackboard you can see the output of two scenarios. The sce-
nario on the left is for a male who likes sports, and the scenario on the
right is for a female who doesn’t like cooking. Your program should be
able to handle all possible scenarios for male or female, and like or not
like. By the way, to help prevent syntax errors, because else and end

Figure 10. The Selections as Nassi Schneidermann Charts and in
REXX

 /* scenario for a male person */ /* scenario for a female person */
 Please enter your name: Please enter your name:
 Steve Sheila
 Steve, are you male or female? Sheila, are you male or female?
 male female
 Steve, as a man, do you like sports? Sheila, as a woman, do you like cooking?
 yes no
 Steve is a man and he likes sports! Sheila is a woman and she doesn't like cooking!

Figure 11. Exercise 4: Using the Single Selection

Condition
true false

one REXX statement
or a DO group

one REXX statement
or a DO group

if condition = true then
do

/* REXX statements */
end
else do

/* REXX statements */
end

ConditionAlt 1

Alt 2

Alt 3 Otherwise
REXX
statement
or
DO group

REXX
statement
or
DO group

REXX
statement
or
DO group

REXX
statement
or
DO group

select
when condition = alt1 then /* do end */
when condition = alt2 then /* do end */
when condition = alt3 then /* do end */
otherwise /* do end */

end

Single selectionSingle selection Multiple selectionMultiple selection
Chapter 1. Introducing Classic REXX 15

Structured Programming
are two separate statements, you cannot placed them on the same
line, unless you separate them with a semicolon. The values of your
program must again be prompted from the user. Good luck!”

Steve gave them 30 minutes to solve Exercise 4. He walked around the
classroom to see how his students were doing. Some of them wrote the
program without problems, but others didn’t know what to do at all.
Then he said, “I forgot to tell you that it’s possible to use an if state-
ment within a part of another if statement. This might help you solv-
ing the problem. If you manage to solve the problem without using
nested if statements, it would be great.”

“Let me first show you the easier solution, which most of you I’m sure
could figure out,” started Steve, explaining the solution for Exercise 4
[see Figure 12].

“As some of you might have discovered, the value that the user types
in by will be assigned to the variable in upper case. This is because
pull is the short term for parse upper pull, which parses the string
that is read from the keyboard into the variable. To read a string in
mixed case, you can use parse pull followed by a variable. We’re going
to talk more about parsing after we finish discussing this exercise. As
you can see on the test, if likeit is ’YES’, the branch of an if statement
can be a single statement instead of a do ... end group.

“Well, what I don’t like about this solution,” continued Steve, “is that
the same algorithm is written once for a male and once for a female. In
our example, the logic that has been placed in the branches of the if
statement is not too complex, but it’s worth writing the program in a
different way, nevertheless.”

 /* Exercise number 4 */
 say "Please enter your name:"
 pull name
 say name", are you male or female?"
 pull sex
 if sex = "MALE" then do
 say name", as a man, do you like sports?"
 pull likeit
 if likeit = "YES" then
 say name "is a man and he likes sports!"
 else
 say name "is a man and he doesn't like sports!"
 end; else do
 say name", as a woman, do you like cooking?"
 pull likeit
 if likeit = "YES" then
 say name "is a woman and she likes cooking!"
 else
 say name "is a woman and she doesn't like cooking!"
 end

Figure 12. Solution for Exercise 4: Single Selection—Easy Solution
16 Object REXX for Windows

Structured Programming
Steve uncovered the other side of the blackboard and presented his
second solution [see Figure 13].

“You can easily see that I made extensive use of variables, and that I
didn’t have to place an if statement into the branch of another if state-
ment. If the sex is male, I set the necessary variables to fit for a man,
otherwise I set them to fit for a woman. The following algorithm is the
same for both male and female. The difference in the logic is handled
by variables. Please use the next five minutes to go through this pro-
gram so that you can understand what’s going on. After this, we’ll talk
about parsing and then we will use multiple selection.”

Steve wiped off the blackboard and prepared the multiple selection
exercise. “Before we use multiple selection, I’d like to show you the
way parse works in REXX. With parse you can assign data from vari-
ous sources to one or more variables. One of the possible sources is the
default input stream, which is used by our pull—short for parse upper
pull. Another source can be a variable, which makes it possible to
assign the contents of a variable to various other variables. There are
still other sources, but it would be a mistake to mention them all at
this time. Because parse is a major element of REXX, I recommend
that you look up this topic in the Object REXX reference manual. To
demonstrate the rules of parsing, I did a graphic that describes sample
processes of parsing.” Steve searched for the graphic in the current
directory and called it into Freelance [see Figure 14].

 /* Exercise number 4 */
 say "Please enter your name:"
 pull name
 say name", are you male or female?"
 pull sex
 if sex = "MALE" then do
 kind = "man"; hobby = "sports"; pronoun = "he"
 end; else do
 kind = "woman"; hobby = "cooking"; pronoun = "she"
 end
 say name", as a" kind", do you like" hobby"?"
 pull likeit
 if likeit = "YES" then
 say name "is a" kind "and" pronoun "likes" hobby
 else
 say name "is a" kind "and" pronoun "doesn't like" hobby

Figure 13. Solution for Exercise 4: Single Selection—Clever Solution
Chapter 1. Introducing Classic REXX 17

Structured Programming
Steve didn’t say much about the chart. He mentioned that the dotted
arrows indicate the separation characters for the parsing; in the first
parse statement the separators are blanks, in the second the separa-
tors are the comma and a blank [", "], and in the third the separator is
"Creek, ". He also told them not to forget that blanks are just like
other characters, except that multiple blanks are treated as one. After
five minutes he closed the file and switched off the overhead and the
tablet. He then gave instructions for the next exercise, “On the black-
board you can see the output of our next example.” [See Figure 15.]

Figure 14. The Rules of Parsing

address = " Paul Hogan, 2789 Stevens Creek, Sydney "

parse var address firstname name .

firstname = "Paul"
name = "Hogan,"

parse var address name ", " street ", " city

name = "Paul Hogan"
street = "2789 Stevens Creek"
City = "Sydney"

parse var address first "Creek," address

first = "Paul Hogan, 2789 Stevens "
address = "Sydney"

address = " Paul Hogan , 2789 Stevens Creek , Sydney "

address = "Paul Hogan, 2789 Stevens Creek, Sydney"

st
ill

sa
m

e
va

lu
e

ParsingParsing

value will be ignored
18 Object REXX for Windows

Structured Programming
Steve went on, “What the program should do is to display the number
that the user entered in letters. You are required to check for the num-
bers between 0 and 9 only. The lines in the output consist of 50 dash
characters. Try not to use say "---------------..." to display these
lines, but do it in a more clever way. You should be able to solve the
problem within 20 minutes. One piece of information you might need
is that the double splitbar [||] is used to concatenate text strings.”

The 20 minutes passed by quickly, and Steve discussed his solution
with his students [see Figure 16].

“Look at the blackboard,” said Steve. “The do while loop at the begin-
ning of the program uses the concatenation operator [double splitbar]
to build a string s that consists of 50 dash characters. All I have to do
to display the lines is to code say s. Because the say instructions are

 --
 Multiple Selection Example
 --
 Please enter a number between 0 and 9:
 6
 The number you entered was 6, in letters SIX
 --

Figure 15. Exercise 5: Using Multiple Selection

 /* Exercise 5 */
 i = 0; s = ""
 do while i < 50
 s = s||"-"
 i = i +1
 end
 say s; say " Multiple Selection Example"; say s; say
 say "Please enter a number between 0 and 9:"
 pull number
 select
 when number = 0 then letnum = "NULL"
 when number = 1 then letnum = "ONE"
 when number = 2 then letnum = "TWO"
 when number = 3 then letnum = "THREE"
 when number = 4 then letnum = "FOUR"
 when number = 5 then letnum = "FIVE"
 when number = 6 then letnum = "SIX"
 when number = 7 then letnum = "SEVEN"
 when number = 8 then letnum = "EIGHT"
 when number = 9 then letnum = "NINE"
 otherwise letnum = "UNKNOWN"
 end
 say "The number you entered was" number", in letters" letnum
 say s

Figure 16. Solution for Exercise 5: Using Multiple Selection
Chapter 1. Introducing Classic REXX 19

Procedural Programming Using Subroutines
really short, I wrote them in one line. The user input is assigned to the
variable number, which is checked in the select group. All possible con-
ditions must be placed within the select block between when and then.
The expression after then is processed if the condition is true. Because
only one condition can match in a select group, the expression of the
first condition that is true will be executed. If none of the conditions is
true, the otherwise branch is processed. Leaving out the otherwise will
cause an error if none of the conditions matches. If the user enters a
string that is none of the listed ones, the letters UNKNOWN will be
displayed. No magic, is it?”

Steve was looking at his Swiss watch and said, “It’s time for lunch
now. So far we have progressed well in time and covered all elements
of structured programming. After the break, we are going to learn
something about procedural programming. We’ll meet again in one
hour. Take care.”

The room emptied quickly. Steve went to Bob’s office and took him out
for lunch. He didn’t really like to have lunch with his workshop stu-
dents because, from his experience, the talking always turned to the
issues of the lecture and, hey, what’s a break for?

Procedural Programming Using Subroutines
After lunch, most of the students went for a short walk in the park
area around the office building, and nearly all managed to return at
the designated time. Steve started the second part of the day with
these words: “I know that it’s not easy to pay attention after lunch, so
I brought you a demonstration about what it is possible to do with
Object REXX. For the next 15 minutes, you can sit back and relax.”
Steve showed the students his demonstration, and they seemed to be
astonished at what they could do with a scripting language.

“I hope you enjoyed the demonstration and digested your food,” Steve
continued the lecture. “Now we can start with procedural program-
ming. With procedural programming, your program consists of a main
program and one or more subprograms—also called subroutines. The
main program is executed in a sequence and can call the subprograms
any time to execute them. Once the algorithm in the subprogram is
finished, the next instruction of the main program is processed. This
graphic illustrates the behavior in a diagram,” Steve said, while load-
ing the file and switching on the projector and tablet [see Figure 17].
20 Object REXX for Windows

Procedural Programming Using Subroutines
“The command to call a subprogram is, as you would expect in REXX,
call. For example, to call the DoTheLine subprogram, you have to code
call DoTheLine. The subprograms must be defined after the main pro-
gram. To ensure that the subprograms won’t be executed after the end
of the main program has been reached, you should end a main pro-
gram with exit or return.”

Figure 17. The Concept of Subprograms

Main program

Subprogram 1

Subprogram 2

Subprogram 3

execute subprogram 1

execute subprogram 3

next REXX statement

next REXX statement

other statements

other statements

SubprogramsSubprograms
Chapter 1. Introducing Classic REXX 21

Procedural Programming Using Subroutines
The Subroutine

“To define a subroutine, code the name of the subprogram followed by
a colon. After the colon, you can code the optional keyword procedure,
which we’ll discuss later. For now, we are going to use a subroutine
without the procedure keyword. For example, to define the DoTheLine
subroutine, code DoTheLine: after the main program. In the next line
you can start writing the algorithm of the subroutine just as in the
main program. Have a look at the graphic coming up.” Steve moved
the mouse and pressed a few keys to display a new chart on the wall
[see Figure 18].

Figure 18. A Main Program and a Subroutine Share Their Symbols

/* main program */
xcoord = 5
ycoord = 9
str = "Now you're in the main program"
say str;
say "xcoord =" xcoord ",ycoord =" ycoord
call myroutine
say str;
say "xcoord =" xcoord ",ycoord =" ycoord
exit

myroutine:
say "In myroutine"
say str
say "xcoord =" xcoord ",ycoord =" ycoord
xcoord = 1
ycoord = 2
say "xcoord =" xcoord ",ycoord =" ycoord
return

Now you're in the main programxcoord = 5 ,ycoord = 9
In myroutine
Now you're in the main programxcoord = 5 ,ycoord = 9
xcoord = 1 ,ycoord = 2
Now you're in the main programxcoord =1 ,ycoord = 2

ycoord

xcoord

str
Now you're in the main program

SCOPE

5 (before) 1 (after myproc)

9 (before) 2 (after myproc)
22 Object REXX for Windows

Procedural Programming Using Subroutines
“On the graphic you can see a REXX script in the grey box. The upper
part of the box contains the main program and the lower part contains
the myroutine subroutine. The output of the program can be seen on
the computer screen. The main program assigns the value 5 to xcoord,
9 to ycoord, and "Now you’re in the main program" to str and then dis-
plays them. The first two lines of the screen output are produced by
the main program, before it calls the subroutine. The so-called scope of
the program after the assignments is sketched on the right side of the
main program. When the myroutine subroutine is called, In myroutine
is displayed on the screen [third line].”

“The subroutine displays the variables xcoord, ycoord, and str [see
lines 4 and 5 of the screen]. Because a subroutine shares all its sym-
bols with the main program—it uses the same scope—the say instruc-
tions display lines 4 and 5 of the output, using the values that were
assigned to the variables in the main program. Therefore, the "Now
you’re in the main program" string logically is incorrect. After the
assignment in lines 4 and 5 of the subroutine, the say instruction in
line 6 displays the new assigned values [see line 6 of the screen].
When the procedure returns to the main program, the new values are
displayed again [see lines 7 and 8 of the screen].”

“If you look at your program from a logical point of view, it doesn’t
make sense,” one of the typical I’m-smarter-than-you students threw
in cheeky.

“Yes,” Steve agreed with him, “but it demonstrates the sharing of sym-
bols in an easy and understandable way. Are there any questions on
this subject?”

Steve waited for a few seconds, then said, “Good, I didn’t think so. This
is probably the way most of you would expect it. It’s time to do a small
exercise again, before you forget what you learned in the morning,”
said Steve. He took the chalk and wrote down the output of the exer-
cise, while explaining it [see Figure 19].

 XXX THE MONTHS HAVING 31 DAYS XXX

 --> January <---
 --> March <---
 --> May <--
 --> July <--
 --> August <--
 --> October <--
 --> December <--

 XXX End of the program XXX

Figure 19. Exercise 6: Using Subroutines
Chapter 1. Introducing Classic REXX 23

Procedural Programming Using Subroutines
Steve instructed his students: “To learn how to use subroutines, the
task is to use one subroutine to display the header and the footing,
and one subroutine to display each month, one month per call.”

The students went to work. Most of them had to switch on their
screens again because they hadn’t wanted to heat up the room unnec-
essarily. It took the best of them 10 minutes to write the program. The
average time was about 20 minutes. After approximately 30 minutes,
Steve presented his solution [see Figure 20].

“Take your time to examine the solution,” Steve said. After a while he
asked, “Are there any questions about the script?”

“Could you explain why you are checking whether or not s equals S in
upper case?” one of the male students asked Steve.

“Well,” answered Steve, “as I tried to explain with the comment in the
code, the s="S" checks whether or not the dashed line has been
assigned to s. If the line has already been built, there’s no need to
build it a second time. If nothing is assigned to s, the value is the sym-
bol itself in upper case.”

 /* main program for the 31 day months */
 HeadBodyText = "THE MONTHS HAVING 31 DAYS"
 call DoHeadBody
 month31 = "January"; call DoMonth
 month31 = "March"; call DoMonth
 month31 = "May"; call DoMonth
 month31 = "July"; call DoMonth
 month31 = "August"; call DoMonth
 month31 = "October"; call DoMonth
 month31 = "December"; call DoMonth
 HeadBodyText = " End of the program "
 call DoHeadBody
 exit

 DoHeadBody:
 if s="S" then do /* check if s was already initialized */
 s = ""
 do i = 1 to 65
 s = s||"-"
 end
 end
 say s
 say "XXX "||HeadBodyText||" XXX"
 say s
 return

 DoMonth:
 say " -->" month31 "<--"
 return

Figure 20. Solution for Exercise 6: Using Subroutines
24 Object REXX for Windows

Procedural Programming Using Subroutines
“Anybody else?” Steve asked the students a second time. There were
no further questions, so Steve went on with his topic. “If all subpro-
grams were to use global variables—variables that are shared with
the main program—this would be all I have to say on this issue.
Unfortunately, the variables used in subroutines can be either local or
global. Of course, the unfortunately refers only to the educational
point of view. The choice between local and global offers significant
advantages. If you read the Object REXX reference manual, you’ll find
the term scope. I mentioned it already in the context of the previous
example. A scope is the range in which an Object REXX symbol is
known. If you define a normal subroutine like that described above, all
symbols used within the subroutine are global.”

The Procedure

“If you’re using a procedure instead, all symbols within the procedure
are local. Local means that the symbols in the procedure can have the
same name as the symbols of the main program, but they point to
another object.”

“How is a procedure defined?” the young lady in the first row asked
charmingly.

“A procedure is defined in the same way as a normal subroutine,
except that you specify the additional keyword procedure after the
subroutine name and the colon,” Steve answered, looking deeply into
her eyes, but he realized in time that he was here for business and not
for pleasure. “To define, for example, a procedure named PrintBill, you
must code PrintBill: procedure.”

“Because all symbols are local,” Steve continued, “the modifications
made to them within the procedure don’t affect the symbols within the
main program. Whenever the procedure is entered, all of the symbols
used in the procedure are reset. The scopes of the procedure and the
main program are different.” Steve started his Freelance, selected
open in the file menu, and searched for the particular chart. After a
few seconds he found it and displayed it in full screen size [see Figure
21].

“In this graphic the same main program is used as in the previous
chart [see Figure 18 on page 22], except that myproc will be called
instead of myroutine. The scope of the procedure at its entrance is
shown on the right side below the scope of the main program. The pro-
cedure displays the variables str, xcoord, and ycoord [see lines 4 and 5
of the screen]. Because the subroutine uses its own scope and nothing
has been assigned to these symbols within the subprogram, the say
instructions display the symbols themselves in upper case. After the
assignment in lines 4 and 5 of the procedure, the say instruction in
line 6 displays the new assigned values [see line 6 of the screen].
Chapter 1. Introducing Classic REXX 25

Procedural Programming Using Subroutines

When the procedure returns to the main program, the scope of the pro-
cedure is removed. Thus the changes to xcoord and ycoord didn’t affect
the variables with the same name in the main program. The values
are the same as before [see lines 7 and 8 of the screen].”

“What happens if the procedure is called a second or third time?” one
of the students asked.

“When the procedure is called again,” explained Steve, “a new scope is
created and the symbols will be uninitialized again. The procedure
will produce exactly the same output the second time around.”

“What’s the return statement for?” the guy next to the charming lady
asked.

Figure 21. Scopes of a Main Program and a Procedure Using Local
Symbols

/* main program */
xcoord = 5
ycoord = 9
str = "Now you're in the main program"
say str;
say "xcoord =" xcoord ",ycoord =" ycoord
call myproc
say str;
say "xcoord =" xcoord ",ycoord =" ycoord
exit

myproc: procedure
say "In myproc"
say str
say "xcoord =" xcoord ",ycoord =" ycoord
xcoord = 1
ycoord = 2
say "xcoord =" xcoord ",ycoord =" ycoord
return

Now you're in the main programxcoord = 5 ,ycoord = 9
In myproc
STR
xcoord = XCOORD ,ycoord = YCOORDxcoord = 1 ,ycoord = 2
Now you're in the main programxcoord = 5 ,ycoord = 9

ycoord

xcoord

str
Now you're in the main program

9

5

SCOPE

ycoord

xcoord

str

SCOPE

(XCOORD)

(YCOORD)

(STR)
26 Object REXX for Windows

Procedural Programming Using Subroutines
“Return must be used to go back to the main program,” answered
Steve, who then went on with the topic. “Using local symbols, you can-
not pass values to a procedure by setting them in the main program
before calling the subprogram. There are special instructions to pass
values from the main program to a procedure. To pass values to a sub-
program, you must list them behind the subprogram name in the call
statement. The symbols or variables are usually separated by a
comma. For example, to pass 6, age, and name to the DisplayData pro-
cedure you would code call DisplayData 6, age, name.”

“To retrieve the arguments from the main program, you use parse arg
in the subprocedure. Arg is another source for the parse instruction.
The parse arg instruction follows the normal parsing rules. To retrieve
the values of the example, you would code parse arg number, age,
dspname—the names of the variables in the parse list may be different.
Remember that as long as your procedure does not use global symbols,
age in the main program and age in the subprogram are different sym-
bols.”

“To clarify the way a procedure and arguments can be used, we are
going to discuss the following program, which produces the same out-
put as Exercise 6,” Steve said, while searching for the right text file on
his ThinkPad. He found it, loaded it into an editor, and switched on
the tablet [see Figure 22].

 /* main program for the 31 day months */
 call DoHeadBody "THE MONTHS HAVING 31 DAYS"
 call DoMonth "January"
 call DoMonth "March"
 call DoMonth "May"
 call DoMonth "July"
 call DoMonth "August"
 call DoMonth "October"
 call DoMonth "December"
 call DoHeadBody " End of the program "
 exit
 DoHeadBody: procedure
 parse arg text
 s = ""
 do i = 1 to 65
 s = s||"-"
 end
 say s
 say "XXX " || text || " XXX"
 say s
 return
 DoMonth: procedure
 parse arg month31
 say " -->" month31 "<--"
 return

Figure 22. Solution for Exercise 6: Using Procedures with Arguments
Chapter 1. Introducing Classic REXX 27

Procedural Programming Using Subroutines
Steve gave them some time to look at the program and then empha-
sized that this was a more natural way to pass values to a subroutine
than using global variables. The same student, who asked before
about s="S", asked why this time the check was not done. Steve
explained to him that the variable s is local and therefore the value of
the first processing is not preserved when the subroutine is called the
second time. He then said, “If you’d like to pass more than one argu-
ment, you must separate the arguments with a comma in both state-
ments; that is, when the procedure is called, and in the parse
statement.”

Steve asked his standard question—whether anyone had a question—
and, after waiting a few seconds, he continued. “Well, so far we’ve dis-
cussed the entire sharing of variables and the complete separation of
variables. We also have discussed how to pass arguments from the
main program to a procedure. There’s also a way to share only particu-
lar variables between two program parts. The instruction to share
symbols between scopes is called expose. It must be placed immedi-
ately after the subprogram header—in our case after the procedure
keyword. Expose is followed by a list of the symbols that are shared
between the main program and the subprogram. A symbol that is
exposed keeps the value of the main program when the subprogram is
entered, and it keeps the value assigned in the subprogram when con-
trol is returned. An exposed symbol is located in the same scope for
both the main program and the procedure.” Steve closed the old file
and loaded the new file into Freelance [see Figure 23].

“The graphic is similar to the previous two. The symbols xcoord and
ycoord are exposed. When the procedure is called, these two symbols
will still be positioned in the same scope. Because of this, the say
instruction in line 4 of the procedure displays the values that have
been assigned to the symbols in the main menu. In contrast to this,
the symbol str has not been exposed and therefore belongs to another
scope, the local scope of the procedure. This scope will be created
whenever the procedure is entered. For this reason STR is displayed
by the subprogram [see line 4 of the screen]. After the procedure is
executed, xcoord and ycoord keep their values [see line 8 of the
screen]. In contrast, the scope containing str is destroyed, but, because
the symbol str of the main program is different from the local symbol
str, it is not affected by the execution of the procedure. Therefore, ‘Now
you’re in the main program’ is displayed [see line 7 of the screen].”

Steve turned to the student who had asked the questions about the
dash line variable and said, “If you remember the last exercise, in the
first solution I tested whether or not the dashed line was already
assigned to s, and in the second I did not. If s were exposed, I could do
the same test in the solution with the procedures.”
28 Object REXX for Windows

Procedural Programming Using Subroutines
The Function

“To bring the subject of subroutines to a close, we’re going to discuss
another type of subroutine, the function. Looking at the procedure,
you’ll notice that it’s only possible to pass values to the procedure, but
not to return a value from the procedure, unless you’re using global
symbols that have been exposed. Using functions is a way of getting a
value back from a subroutine, although no global variables are used.
This isn’t the only advantage of functions; you can assign the return
value to another symbol or you can even use them within a term to do
calculations with the return value.”

Figure 23. Scopes of the Main Program and a Procedure Exposing Glo-
bal Symbols

/* main program */
xcoord = 5
ycoord = 9
str = "Now you're in the main program"
say str;
say "xcoord =" xcoord ",ycoord =" ycoord
call myproc
say str;
say "xcoord =" xcoord ",ycoord =" ycoord
exit

myproc: procedure

say "In myproc"
say str
say "xcoord =" xcoord ",ycoord =" ycoord
xcoord = 1
ycoord = 2
say "xcoord =" xcoord ",ycoord =" ycoord
return

expose xcoord ycoord

Now you're in the main programxcoord = 5 ,ycoord = 9
In myproc
STR
xcoord = 5 ,ycoord = 9
xcoord = 1 ,ycoord = 2
Now you're in the main programxcoord =1 ,ycoord = 2

ycoord

xcoord

str
Now you're in the main program

SCOPE

str
SCOPE

(STR)

xc
oord=1

yco
ord=2 5 (before) 1 (after myproc)

9 (before) 2 (after myproc)
Chapter 1. Introducing Classic REXX 29

Procedural Programming Using Subroutines
Steve walked to the blackboard, picked up the eraser, and erased the
old stuff. He then wrote say GetSquareSize() * 2 * GetSquareHeight()
on the board. Pointing to the text, Steve said, “This is a term to calcu-
late the volume of a cuboid. What is special in this statement is that
functions are called instead of providing numerical values for the
length of the edges. That way it is possible to retrieve the values by an
algorithm. The length values could be loaded from a file or prompted
from the user, or calculated. You can do whatever you want within a
function. All that matters is that they return a value for the statement
in which they are used. A function can be used instead of a variable
anywhere.”

“What are the parentheses for?” a student in the last row asked. He
had a weak voice, which made it difficult for Steve to understand him.

“Sorry,” said Steve, “there was a lot of noise, so I’m not sure if I got
you. You asked about the parentheses, is that right?”

“Yes,” the student answered.

Steve explained, “The parentheses indicate that it is not a symbol but
a function. REXX knows by the parentheses that it has to process the
algorithm defined for the function and use its return value. Within the
parentheses it is possible to pass arguments—separated by commas—
to the subroutine. The convention is that the left parenthesis must be
adjacent to the name of the function. The arguments and the right
parenthesis can be separated by blanks. Now, let’s see how a function
is defined. Look at the board and you’ll see the definition of a really
simple function.” Steve said this while he was writing on the board
[see Figure 24].

After Steve was done with the function, he turned to the group again
and said, “The important distinction between a subroutine and a func-
tion is the fact that return is followed by a term. This term is the
return value of the function and is used to replace the function name
within the calling statement. If you write a subroutine that doesn’t
return a value, and you call it as a function, you get the error message,
Function or message did not return data.”

“Who knows what this function does, or who has a clue?” Steve asked
the group, after he gave them a few seconds to study it.

 /* main program */
 a = input()
 say a
 exit

 input: procedure /* procedure is optional */
 parse pull inp
 return inp

Figure 24. How to Define a Function
30 Object REXX for Windows

Procedural Programming Using Subroutines
More than one hand was raised, and Steve pointed to an older gentle-
man, who hadn’t participated yet. “It expects the user to enter data
and returns whatever the user enters. The return value is assigned to
a and then displayed” the gentleman said.

“Very good,” Steve encouraged him. “Actually this is not a good sample
because very little is done within the function. You would rather place
the parse pull instruction directly in the main program. But as soon as
we start using arguments, this function can be really an improve-
ment.” Steve kept the function header and wiped out the rest. He then
wrote a few new lines on the board [see Figure 25].

“What’s the function doing now?” Steve asked again. He waited a short
time to give the slower students a chance to answer as well. Finally a
middle-aged woman on the left side of the room dared to raise her
hand. Steve felt that she must have overcome a lot to participate, so he
chose her. “The function displays the text that is given to it and then
reads data from the user.”

“Good,” said Steve, “and do you know what the whole program does?”

“I think it asks the user for the age and then displays it in a sentence,”
the woman said, somehow uncertain.

“Excellent,” said Steve. “In this example one can see that functions
simplify programming. In my main program I just use the function
without worrying about the implementation of the function. All I have
to know is how I have to call the function. If I use the function twice or
more in the main program, it saves me lines of code, as the procedure
and the subroutine do. Once I decide to change the processing of the
function, I can do that without touching the main program. And I can
use the function within a term, which is also done in this example. You
couldn’t use a procedure within the say instruction. You could call a
procedure beforehand, save the value in a global variable, and then
use this variable to display the output.”

Steve moved his mouse to interrupt the sleep mode of his ThinkPad
and then loaded the two samples into his editor. “Let me briefly show
you two programs to illustrate the benefit of functions.” [See Figure
26.]

 /* main program */
 say "You are" input("Please enter your age") "years old"
 exit
 input: procedure
 parse arg text
 say text
 parse pull inp
 return inp

Figure 25. A Function Using Arguments
Chapter 1. Introducing Classic REXX 31

Procedural Programming Using Subroutines
“Not only is the calling of the function easier, but also the definition of
the function is shorter than the definition of the procedure, and you
are not limited to the symbol ret. To make it more impressive, try to
implement this construction with procedures.” Steve wrote the follow-
ing term on the board:
 say "Square of 3,5,7, and 9 =" square(3)"," square(5)"," square(7)", and" square(9)

“It would take quite a lot of coding to do it,” Steve concluded. “REXX is
a powerful language. Apart from writing self-defined functions, it pro-
vides a bundle of so-called built-in functions. These functions are pro-
vided by the interpreter itself. Some of them are just to simplify
programming by providing algorithms users could implement them-
selves, but that would mean a recurring effort by many programmers.
These are, for example, the text processing functions like delword(),
subword(), word(), wordindex(), wordlength(), wordpos(), and words().

“Other functions implement basic elements, which cannot be assem-
bled by using other REXX statements. These are, for example, the file
manipulation functions or the type conversion functions like charin(),
charout(), chars(), linein(), lineout(), lines(), stream(), c2d(), c2x(), d2c(),
and d2x(). This next script demonstrates some of the built-in functions
of REXX.” Steve positioned the track point of his ThinkPad on the file
icon and double-clicked the left button to load it into his editor [see
Figure 27].

 /* The benefit of functions */

 /* implementation with a procedure */
 call squareA 3
 say "Square of 3 is" ret
 call squareA 5
 say "Square of 5 is" ret
 call squareA 7
 say "Square of 7 is" ret

 /* implementation with a function */
 say "Square of 3 is" squareB(3)
 say "Square of 5 is" squareB(5)
 say "Square of 7 is" squareB(7)

 exit

squareA: procedure
 expose ret
 parse arg number
 ret = number*number
 return

squareB: procedure
 parse arg number
 return number*number

Figure 26. The Benefit of Using Functions
32 Object REXX for Windows

Procedural Programming Using Subroutines
“To understand the preceding example should be no problem. The
built-in functions that are used are beep(), date(), insert(), left(),
length(), pos(), random(), subword(), time(), and wordpos(). Syscls is
not a built-in function, but belongs to the RexxUtil functions that are
Windows operating system REXX functions. It is used to clean the
console window and reset the cursor to the upper left corner. I just
want to explain four more lines of this example:

❑ “The time function is used to generate a seed for the random func-
tion.

❑ “The subword function extracts one animal name using the ran-
dom number. If you remember Exercise 5 [see Figure 16], this
would be a simpler way to retrieve the name of the entered digit
without using the select block.

❑ “The wordpos function is used to check whether or not the user
typed in the right animal. This function makes it possible to
answer with a whole sentence, such as The animal is an elephant.
The statement simply checks for the existence of ani in the reply.

❑ “And now the longest statement in the third from last line. It is
used to change the word a in the reply to an for animals starting
with a vowel, for example, “You didn’t know that I was thinking of
an owl.” Function left returns the first character of ani, which is
used in function pos to check whether or not it is a vowel. If it is a

 /* Using built-in functions */
 call SysCls
 day = DATE("W")
 date = DATE("L")
 say "It is" day "the" date
 say
 say "Please try to figure out which animal I'm thinking of."
 say
 say "Possible animals are: elephant, rhinoceros, goat, ant,"
 say "lion, sealion, moose, owl, mouse, cat, and shark."
 say "The animal is?"
 ran = RANDOM(1,11,TIME("S")*TIME("M"))
 pull guess
 say "You answered the question at" TIME()
 ani = SUBWORD("ELEPHANT RHINOCEROS GOAT ANT LION SEALION MOOSE OWL MOUSE" ,
 "CAT SHARK",ran,1)
 if WORDPOS(ani, guess) > 0 then do
 call BEEP 440, 500
 say "You found the animal"
 end
 else do
 outs = "You didn't know that I was thinking of a" ani
 if POS(LEFT(ani,1),"AEIOU")>0 then
 outs = INSERT("n",outs,LENGTH(outs)-LENGTH(ani)-1,1)
 say outs
 end

Figure 27. Using Built-in Functions
Chapter 1. Introducing Classic REXX 33

Procedural Programming Using Subroutines
vowel, function insert adds the letter n after the a, before the
name of the animal after calculating the proper position using
function length.

“This information should be enough to understand the script.”

Steve offered his students 10 more minutes to study the example and
asked them to look up some of the built-in functions in the Object
REXX Online Reference. He used that time to prepare the next script
on the blackboard and to have one of his beloved chocolate bars. One of
Steve’s failings is to eat sweets whenever there is time to relax. After
he gobbled down his chocolate and licked his fingers, Steve tried to get
the students’ attention.

“All we have done so far is call a subroutine, procedure, or function
from the main program. To make it a bit more complicated but much
more powerful, it is also possible to call a subroutine from another
subroutine. The same is true for procedures and functions, and natu-
rally calls between subroutines, procedures, and functions are allowed
as well.”

“How often can it be done?” a well-dressed man in the second row
asked.

“You mean how deep can the subroutines be nested, right?” Steve
asked back, in order to give the correct answer.

“Yes, that’s what I meant,” the man replied.

“The nesting level of subroutines is restricted only by the resources of
the REXX interpreter—the so-called stack saves information about
which subroutine has been called from where. Calling a subroutine
from another subroutine is just like calling them from the main pro-
gram. Just use the call instruction together with the name of the sub-
routine or the function name together with parentheses within a
subroutine. Notice that each subroutine still has its own scope.

“To add to the confusion, it is even possible to call a function from
itself. This process is called recursion. Using recursive functions can
help solve particular problems in a much easier way. Some problems,
however, can only be solved by using recursive functions.”

Steve went to the blackboard and presented the script he wrote down
earlier, while the others were studying the example with the built-in
functions [see Figure 28].

 /* main program to calculate factorials */
 call SysCls
 say "Please enter a number up to 2000"
 pull nr
 if (nr > 2000) ¨ (nr < 0) then exit
 say "The factorial of" nr "is" factor(nr)

Figure 28. Calculating Factorials: Main Program
34 Object REXX for Windows

Procedural Programming Using Subroutines
Steve explained his thinking. “On the left side you can see the main
program of a script that calculates the factorial of a number given by
the user. The main program is transparent for both solutions, the
sequential one in the middle of the board [see Figure 29] and the
recursive one on the right side of the board [see Figure 30]. The main
program asks the user for a number between 0 and 2000 and then dis-
plays the factorial of that number by calling the factor function, which
can be implemented in one of two ways.”

“In the sequential solution, a do loop is used to calculate the factorial
by multiplying the given number by the next smaller number, and the
result of this multiplication by the next smaller one again, and so
forth, until the program reaches the number 2.”

“The philosophy used for the recursive solution is a different one. The
approach is the following: take, for example, the factorial of 7. The fac-
torial of 7 can be calculated by multiplying 7 by the factorial of 6. The
factorial of 6 on the other hand is 6 multiplied by the factorial of 5, and
so forth, until you calculate the factorial of 2 by multiplying 2 by the
factorial of 1, which is 1. This is where the recursion stops, and the
number 1 is returned as the value for the factorial of 1.

“Before we have another break, I just want to add that the statement
call can not only be used to call subroutines, but you can also call
external REXX programs by specifying the program name after call. If
you want to make sure that the file name is treated correctly, I recom-
mend enclosing the file name within quotes. An external program
called as a subroutine has the same scope as a procedure, meaning
that all the caller’s variables are hidden. You can get complete infor-
mation about call by reading the chapter on call in the Object REXX
Online Reference. For now, that’s enough and we’ll have a short coffee
break.”

 /* sequential calculation of factorials */
 factor: procedure
 parse arg fact
 result = fact
 do i = fact-1 to 2 by -1
 result = result * i
 end
 return result

Figure 29. Calculating Factorials: Sequential Function

 /* recursive calculation of factorials */
 factor: procedure
 parse arg fact
 if fact = 1 then return 1
 else return fact * factor(fact-1)

Figure 30. Calculating Factorials: Recursive Function
Chapter 1. Introducing Classic REXX 35

Host Commands
Host Commands
“The next topic is host commands,” Steve continued after the coffee
break. “Host commands are an important issue because REXX is a
scripting language that offers easy access to other environments, such
as the command processor of Windows NT or Windows 95. A command
in the Object REXX Online Reference is defined as a clause consisting
of only an expression; the expression is evaluated and the result is
passed as a command string to some external environment.”

“Such a command is, for example, dir, assuming that no value has
been assigned to the symbol before. If no other subcommand handler
has been installed, dir is passed on to the Windows command proces-
sor and lists the contents of the current directory—the display of the
command processor is visible in the text console interface
[REXX.EXE]. If dir is used as a variable by previously having
assigned any value to that symbol, the value of dir is passed on to the
command processor. To make sure that the desired command is pro-
cessed by the system, you should always code the command enclosed
in quotes. The following small program demonstrates how commands
are handled by REXX.” [See Figure 31.]

“This script consists of one assignment and three commands. In line 2,
dir is not a symbol but a variable containing the value "copy c:\win-
dows*.txt d:\tmp". Therefore the copy command is executed by the
command handler. In line 3, because of the quotes, the literal string
dir is passed on to the subcommand handler. Line 4 picks up on an
issue that causes confusion among a lot of REXX programmers. Date()
as you already know is a built-in function, and the characteristic of a
function is that it returns a value. Usually the returned value is
assigned to a variable or passed on to a REXX keyword instruction
like say. In this particular case, the return value is neither assigned to
a variable nor used in an instruction, so it is passed on to the com-
mand handler. Therefore whenever you see the message ‘Bad com-
mand or file name’ in your output, check whether you are using a
function in your program without handling its return value.”

One of the students asked, “Is it possible to call real applications from
REXX, or are the commands that can be passed on to the system lim-
ited to those the Windows command handler can handle?”

 dir = "copy c:\windows*.txt d:\tmp"
 dir
 "dir"
 date("S")

Figure 31. Invoking Host Commands in REXX
36 Object REXX for Windows

Host Commands
Steve was surprised at that well-formulated question and answered,
“There is no limitation regarding the commands you can address to
the system. If the system doesn’t recognize the command, you’ll get
the error message I mentioned before. It’s no problem to invoke Note-
pad or Write or some other application.”

“Are there any further questions concerning this topic?” Steve asked,
while he was looking around. He waited for a few seconds and then
continued “OK, let’s come to the next issue, the stems.”

“Actually I do have one more question regarding host commands,” the
same student interrupted Steve. “How, if at all, do I get back informa-
tion from the command processor?”

“Thank you,” said Steve. “I forgot to mention that issue. Indeed there
are two ways to receive data back from the subcommand handler. The
first way is to check the special REXX variable, rc, which contains the
result that the subcommand handler returns. If you have to get more
data than just one result, you can use rxqueue to redirect the output of
the subcommand handler to the specified queue. A command to
retrieve all files located in the current directory, for example, would
look like this.”

Steve took the chalk and wrote a few lines on the board [see Figure
32].

“What I have done here is to redirect the output of dir to rxqueue,
which pushes the incoming data into the session queue of the current
process. After the host command is processed, you can retrieve the
data by pulling the individual lines from the queue. The queued func-
tion returns the number of lines that are left in the queue. The do
while loop of the script pulls all of the data items from the queue until
the queue is empty. If you want to know more about host commands or
queuing, see the Object REXX Online Reference or the Object REXX
Programming Guide,” Steve concluded, finishing the lesson about host
commands.

Linking up to the next topic, Steve continued: “I’m nearly finished
with my schedule. There is only one issue left—stems and compound
variables—that we’re going to deal with briefly.”

 /* Using RXQUEUE */
 "dir *.* | RXQUEUE" /* DOS command to redirect the output of DIR */
 /* to the program RXQUEUE */
 do while queued() > 0
 pull fname; say fname
 end

Figure 32. Communication with a Command Processor Using
RXQUEUE
Chapter 1. Introducing Classic REXX 37

Stems and Compound Variables
Stems and Compound Variables
“A compound variable or compound symbol contains at least one
period and one character on both sides of the period. Let me write
down a few examples of compound symbols,” Steve said, while scrib-
bling the following list on the blackboard:

 CAR.1
 Car.chassis
 Car.engine.cylinders
 car.engine.1
 truck..color.7

Steve explained the list: “If you look at compound symbols as a sepa-
rate unit, this type of symbol is useful for structuring things that
belong together, like the chassis and the engine of a car. A compound
symbol can become a compound variable just like any other symbol by
assigning it a value, for example, car.1 = "Porsche", car.chassis =
"P-STG 78956", or car.engine.cylinders=6.”

“A stem is a symbol that contains only one period, which must be the
last character of the symbol. Our compound symbol list contains two
stems, one is car., and the other is truck.. Stems and compound vari-
ables together provide an excellent way of bundling information. The
total information in a stem can be assigned to other stems just by one
expression, and a stem also can be passed on to a subroutine as an
argument. This example demonstrates the use of stems and compound
variables.” Steve opened the display of his ThinkPad, loaded the
appropriate file and switched on the overhead projector and tablet to
reveal a script for using stems and compound variables [see Figure
33].

 /* How to use stems */

 call SysCls /* clear the window */
 A_Privat. = "" /* initialize all fields of the stem with blank */
 A_Business. = ""

 call ReadAddress A_Privat., "Private Address"
 /* copy contents of A_Privat. into A_Business. */
 do i over A_Privat.
 A_Business.i = A_Privat.i
 end

 call ReadAddress A_Business., "Business Address"

 call SysCls
 say "Press any key to continue..."
 call SysGetKey("NOECHO") /* wait until a key is pressed */
 call SysCls
 call DisplayAddress A_Privat., "Private Address"
 call DisplayAddress A_Business., "Business Address"
 exit

Figure 33. (Part 1 of 2) Using Stems and Compound Variables
38 Object REXX for Windows

Stems and Compound Variables
“Stems are a bit tricky to handle,” Steve explained, pointing to his
sample script, “and this program may not be self-explanatory. There-
fore let me clarify a few things you have to know about stems. I will
also explain the new RexxUtil functions. The expressions A_Privat. =
"" and A_Business. = "" are used to initialize all possible compound
variables of the two stems to a null string. Initialized in this way, the

 ReadAddress: procedure
 use arg Addr., OutText /* USE needed to access stem. */
 say OutText
 say Copies("-",40)
 parse value SysCurPos() with row col /* get the current cursor position */
 say "Name?"
 call DisplayValue Addr.Name, row+1
 pull tmp
 if tmp \= "" then Addr.Name = tmp /* only assign data to compound */
 say "Street?" /* variable if input is not empty */
 call DisplayValue Addr.Street, row+3
 pull tmp
 if tmp \= "" then Addr.Street = tmp
 say "Zipcode and City?"
 call DisplayValue Addr.City, row+5
 pull tmp
 if tmp \= "" then Addr.City = tmp
 say "Country?"
 call DisplayValue Addr.Country, row+7
 pull tmp
 if tmp \= "" then Addr.Country = tmp
 say Copies("-",40)
 return

 DisplayValue: procedure
 parse arg Value, Row
 ret = SysCurPos(21, 79) /* clear old lines */
 say Copies(" ",160)
 ret = SysCurPos(23, 1) /* set cursor to bottom line */
 if Value \= "" then
 say "--> current value:" Value
 else
 say "--> empty field"
 ret = SysCurPos(Row,1) /* set cursor below prompt */
 return

 DisplayAddress: procedure
 use arg Addr., OutText /* USE needed to access stem. */
 say Copies("-",Length(OutText)+4)
 say "|" OutText "|"
 say Copies("-",Length(OutText)+4)
 say Left("Name:",15) || Addr.Name
 say Left("Street:",15) || Addr.Street
 say Left("ZIP and City:",15) || Addr.City
 say
 say Left("Country:",15) || Addr.Country
 say
 say
 return

Figure 33. (Part 2 of 2) Using Stems and Compound Variables
Chapter 1. Introducing Classic REXX 39

Stems and Compound Variables
assigned value of A_Privat.Name or A_Privat.Any.Field.1 is a null
string. To give another example, if you set MyStem. = "empty" then
say MyStem.MyField displays the value empty.

“In line 8, ReadAddress is called to fill A_Privat. with the user’s input.
ReadAddress expects two arguments, a stem that receives the input
and text that is displayed as a prompt for the input. The do over con-
struct in lines 10 through 12 is new to Object REXX and is used to
copy each individual entry of A_Privat. to A_Business.. Assigning
A_Business.=A_Privat. directly would in fact cause A_Business. to
return the same values as A_Privat., but modifying a compound vari-
able of A_Business. would cause A_Privat. to be modified as well
because they refer to the same stem. Using the do over construct still
keeps A_Privat. and A_Business. as different stems, but with the same
compound variable values.

“After the stem copy, the input for A_Business. is read from the user.

“ReadAddress asks the user for the name, street, city, and country and
assigns the input to the compound symbols of the given stem. If the
input is empty—only the Enter key was pressed—the compound vari-
able is not changed. ReadAddress calls DisplayValue to display the
current value of a particular compound variable on the bottom of the
screen. The SysCurPos function of the RexxUtil package is used to
retrieve or set the cursor position. If no arguments are passed to
SysCurPos, the current cursor position is returned [row blank col], but
not modified.

“In the main program, SysGetKey("NOECHO") is used to wait until
any key is pressed. After a key is pressed, DisplayAddress is used
twice to display the data of both stems. The output is formatted using
the built-in functions copies(), length(), and left().

There is still one matter left that I have to mention. There is one state-
ment that we didn’t cover yet. Does anybody know which?” Steve
asked, scanning the audience for an answer. “Yes, you,” Steve said,
pointing to one of the students who had raised his hand.

“The use is new,” the student said. “Up to now we used parse arg to
retrieve subroutine arguments.”

“Fine, thank you,” replied Steve. “Use is a new statement and in accor-
dance with the Object REXX Online Reference, it is used to perform a
direct, one-to-one assignment of arguments to REXX variables. If we
were to use parse arg Addr., OutText instead of the use arg, any com-
pound variable of Addr would return the string value of A_Privat. or
A_Business., which is a null string, because parse retrieves the string
value of the given stem and assigns it to the subroutine variable Addr.,
instead of retrieving the whole stem. Changing any compound vari-
able of Addr. does not affect the outer stem used as an argument. This
is different from using use, because use retrieves a reference to the
outer stem and assigns it to Addr.. Each modification of Addr. also
affects the stem parameter A_Privat. or A_Business..
40 Object REXX for Windows

Stems and Compound Variables
“I know that this sounds a little bit strange, and I think it would be
best if we played around with stems and compound variables for a few
more minutes. Before I give you time to let your imagination run wild
and write your own program that uses stems, I want to show you one
more program that illustrates the connection between a stem and a
counter.” Steve wrote some lines of code on the blackboard [see Figure
34].

“If you run this script, you’ll notice that the output is not sorted. It
isn’t sorted because of the do over that doesn’t process the compound
variables in order. The first do-loop fills the variables from MyStem.1
to MyStem.100 with the values from 100 to 1. The important issue
here is that the different values are not assigned to MyStem.i, but the
value of i is resolved first and then the corresponding compound vari-
able is set. So, that’s all I have to say about stems and compound sym-
bols. For the next 15 minutes I’d like you to write your own program
that uses stems. Please also use subroutines in your program that
retrieve stems as arguments and switch between parse arg, use arg,
and arg. After you have finished your program, you’ll have some time
to ask questions.”

Steve switched off the overhead projector and closed his ThinkPad. He
then sat down and read his computer magazine. His students seemed
eager to write their program. After a while Steve put aside his maga-
zine and started to walk around to answer individual questions. After
about 15 minutes, he walked to the front of the room and offered to
answer questions his students still had. As usual, there were only a
few questions. A half-hour later, Steve ended his lesson and thanked
his students for their attentiveness. He put away his materials,
cleared the classroom, and went to Bob’s office.

Steve and Bob decided to go to the baseball game that evening.
Because of all the work with his new company, Steve hadn’t had time
for sports events for a while, and he missed singing the national
anthem, drinking beer, and eating popcorn while laughing at the team
mascot. Steve’s plane wasn’t scheduled to leave until 11 p.m., so there
was plenty of time to attend the game. [The Mariners did beat the
Yankees that night!]

 /* Numbers from 100 to 1 */
 do i = 1 to 100
 MyStem.i = 101-i
 end
 do i over MyStem.
 say "MyStem." || i "=" MyStem.i
 end

Figure 34. Stems and Counters
Chapter 1. Introducing Classic REXX 41

Hints and Tips
Hints and Tips
Here are a few hints and tips for beginners:

❑ Use the .CMD or .REX file extension for your executable source
programs.

❑ To execute a source program, type:

 rexx progname

REXX automatically looks for .CMD and .REX files.

❑ You can also double-click on the program in the Explorer list. The
.CMD and .REX extensions are registered and invoke the REXX
interpreter.

❑ You might want to use a file extension other than .CMD or .REX
for subroutines that cannot be executed by themselves.

❑ REXX performs a syntax check before executing a program. If it
finds any syntax errors, it will not start the program.

❑ REXX generates a tokenized image in memory before executing
the program. See Tokenizing Object REXX Programs on page 75
for information about saving the tokenized image for performance.

❑ REXX provides a TRACE instruction to debug programs by trac-
ing each statement during execution:

 trace 'r' /* more options are available */

❑ Use the REXXTRY program to experiment interactively with
REXX statements. Each statement you enter is executed immedi-
ately:

 C:\>rexx rexxtry
 C:\OBJREXX\rexxtry.REX lets you interactively try REXX statements.
 Each string is executed when you hit Enter.
 Enter 'call tell' for a description of the features.
 Go on - try a few... Enter 'exit' to end.
 say '5 times 6 is' 5 * 6
 5 times 6 is 30

❑ Object REXX for Windows includes a workbench that allows inter-
active debugging of programs. See Object REXX Demonstration
Workbench on page 457 for more information.
42 Object REXX for Windows

2
Introd
ucing Object
REXX
Object REXX for Windows NT and Windows 95 is a new implementa-
tion of the procedures language, REXX. Apart from numerous detailed
improvements, this version of REXX includes a full set of OO facilities.
It is now called Object REXX. This chapter outlines some of the good
things that have been added to REXX with the OO version of the lan-
guage.

Object REXX was available first in OS/2, and now also in Windows NT
and Windows 95, and possibly other operating systems and platforms
in the future.

What’s New in Object REXX?
Object REXX has many important new facilities; indeed, it is almost a
new language. Appendix A, New Features in Object REXX and Migra-
tion, on page 463 describes these in detail, and Chapter 3, How Does
Object REXX Implement OO?, on page 57 contains an overview of how
Object REXX has implemented its OO facilities. The concurrency
capabilities of Object REXX are described in Chapter 13, Object REXX
and Concurrency, on page 267.
 43

What’s New in Object REXX?
Here are a few of the highlights. Object REXX has:

❑ A full set of OO facilities
❑ Concurrency—the ability to do several things at once
❑ Improved ability to create subroutines with private variables
❑ Ability to embed source files using the requires command
❑ Ability to handle the error conditions that might arise in a called

subroutine
❑ A do over command that visits every variable defined on a stem
❑ A parse command that has more case-handling options
❑ A signal command that can handle five new conditions
❑ Direct access to SOM objects under OS/2

Object REXX has been designed to be upward-compatible with the
previous versions of REXX. With a few minor exceptions described in
Migration Considerations on page 485, all existing REXX programs
should run under Object REXX with no change.

Despite its upward compatibility with prior versions, however, Object
REXX is radically different from its predecessors. In classic REXX,
every variable that the programmer created is conceptually a charac-
ter string—even numbers appear to be stored this way. We say concep-
tually because, under the covers, REXX implementations are at liberty
to store numbers in either integer or floating-point format, so long as
they are always presented in string format when the programmer
asks to see them. Since humans represent both numbers and text in
string format when they communicate with one another, why
shouldn’t they continue to do so when talking to computers? This
makes programming in classic REXX very simple and intuitive.

In Object REXX, every variable now refers to an object! String objects
behave just as they have always done in classic REXX, and arithmetic
can still be performed on strings that happen to contain numeric val-
ues; but Object REXX introduces a number of new object types and
includes facilities for programmers to create even more of their own.
We will be looking at these in some detail later. So while the internals
have changed a great deal, Object REXX behaves very much the same
as classic REXX used to—if you ask it to do the same things.

Perhaps we should mark the end of classic REXX’s reign and the
beginning of the reign of Object REXX with the proclamation that tra-
ditionally greets the death of a monarch and the automatic, immediate
succession of his heir:

“The King is dead! Long live the King!”
44 Object REXX for Windows

Why REXX?
Why REXX?
The REXX language is only about 15 years old but is already very
widely used on IBM operating systems. The first version ran under
VM/CMS only, but since then IBM has made REXX a standard compo-
nent of the following operating systems:

❑ VM/ESA
❑ MVS/ESA
❑ OS/400
❑ OS/2
❑ PC DOS Version 7
❑ AIX (as a PRPQ)
❑ Netware (as a PRPQ)

Object REXX, the new and enhanced REXX, is now available on OS/2,
Windows NT, and Windows 95.

Other vendors have developed REXX interpreters for various other
operating systems. Also, many vendors have developed packages that
are coded in REXX and/or generate REXX programs automatically.

The thing that makes REXX so popular is that it is very easy to learn,
and REXX code is easy to read and understand—compared to most
other computer languages, that is! The language is interpretive in
style, which means that there is no requirement to pass the source
code through a compiler or linker before executing it. REXX program-
mers can change their code and test the changes immediately. The
other great advantage to programmers is that REXX is nondeclara-
tive. Programmers do not have to tell REXX how to store the variables
they create. Conventional compiled languages such as COBOL and C
do require declarations of this sort, and this roughly doubles the num-
ber of lines of code that have to be developed.

Even if we ignore the OO features that Object REXX contains, this
new version of the language contains a number of significant improve-
ments that make REXX easier to use and capable of producing more
robust code.
Chapter 2. Introducing Object REXX 45

Why Object Orientation?
Why Object Orientation?
Object orientation is the flavor of the year, perhaps of the decade. Most
new language announcements that hit the press include the magic OO
phrase, even if the applicability of OO to the product in question is
sometimes unclear. Old languages such as C, COBOL, and Pascal have
been extended to include OO features. Is OO a silver bullet that will
solve all our programming problems, or is it just a fad?

The computer language that introduced OO concepts to the world is
Smalltalk. This was originally designed in the 1970s as part of an
experiment to see whether children could learn to use computers. We
now know that the answer to that question is a resounding “yes!” (It is
less clear, however, whether their parents can do likewise.) Smalltalk
underwent significant change, but by 1980 it had the features that are
indelibly associated with OO today:

❑ Objects grouped in classes
❑ Inheritance
❑ Polymorphism

These concepts are described in Chapter 3, How Does Object REXX
Implement OO?, on page 57. But before we get into the nuts and bolts
of how OO works, we should spend some time discussing the question
of whether OO is worth doing at all.

The Productivity Problem

A clinical discussion of OO features does very little to explain why
they are valuable. There is much talk today of the need for program-
mers who have been trained in conventional procedural languages
such as COBOL to undergo a paradigm shift before they can start to
understand and exploit the benefits that OO has to offer.

The benefits claimed for OO design and programming include much
greater reuse of code, as well as simpler programs that are easier to
understand and modify. Electronic computers have been around for
about 50 years. Programmer productivity has improved radically over
this time. Even so, the biggest inhibitor to the more extensive use of
computers remains our inability to produce good, reliable code quickly
enough to meet our users’ needs. The tools and techniques that we use
today to develop computer applications are still very labor-intensive,
when compared to those in other industries. Most people have heard
the proud boast of the computer hardware industry:

“If the airline industry had been able to improve its technology as
rapidly as has the computer hardware industry, today’s airliner
would be able to fly anywhere in the world in half an hour and carry
10,000 passengers at a cost of $1.”
46 Object REXX for Windows

Why Object Orientation?
Sounds impressive. Unfortunately, we in the computer software indus-
try have not nearly as much to boast about. It has been said that:

“If the airline industry had improved its technology at the same rate
as has the computer software industry, today’s airliner would be
built from parts on the runway by the crew each time it flew, fueled
with the finest Scotch whiskey, and used to haul garbage.”

Things are not really that bad in the software industry. Our technol-
ogy has advanced rapidly and consistently since the advent of comput-
ers, at a rate that is impressive when measured against any criterion
except one—our users’ needs. The biggest problem facing software
developers is that computer hardware keeps getting cheaper and
faster all the time. Applications that were technically possible but
completely unaffordable 10 years ago are more than just affordable
today; they are compulsory if a business is to compete in the current
market.

Fortunately, there is a vast and rapidly growing number of off-the-
shelf computer packages. Smaller businesses can often meet all their
application needs from these packages. Larger businesses also make
extensive use of packages but often need to supplement them with
applications that support their core business. In many cases, a com-
pany’s core computer applications give it the competitive edge that
enables it to grow and prosper.

The Reuse Solution

To summarize the previous section: There are not enough program-
mers and there is not enough time to handcraft all the code required
to meet our users’ needs. The challenge is to deliver much more func-
tion, much more quickly. The only way out of the dilemma is not to try
to develop all the code we need but to reuse existing code instead.

Programmers have been reusing code for a very long time. Early oper-
ating systems included subroutines to handle the complexities of driv-
ing I/O devices, and early languages such as Fortran (first built in
1957) included extensive libraries of subroutines that implemented
the complex algorithms needed to calculate trig functions and logs.
Most languages allow programmers to develop their own subroutine
libraries to handle common requirements, and most information tech-
nology (IT) departments make use of these facilities (every installa-
tion has at least one date-handling subroutine, for example).

So if we already practice code reuse, what is so special about OO?
Properly used, OO allows us to change the way we design and code
applications, but to do so we must make a fundamental shift from the
procedural to the object-oriented approach. Changing from procedural
to OO application design can be difficult. The experiments in teaching
children to use Smalltalk, referred to in Why Object Orientation? on
page 46, showed that children can learn and use OO concepts quite
Chapter 2. Introducing Object REXX 47

Why Object Orientation?
easily, but for those of us who have been conditioned to design and
code with procedural languages, the change to OO requires some
unlearning.

Let us try to illustrate the differences between classic procedural
design and OO design.

The Waterfall Method
Procedural design has converged on a process called the waterfall
method. This consists of a series of steps. In theory, each step should
be completed before the next is started. The steps are:

❑ Gather the business requirements
❑ Analyze the requirements
❑ Produce a high-level design
❑ Produce detailed specifications
❑ Code and unit test the specified modules
❑ System test the modules together

It has long been known that this approach has a serious drawback,
inasmuch as the users have to express their needs fully and formally
on paper and then wait 6 to 18 months before they get to see what the
IT specialists thought they wanted. It is, in fact, very difficult for any-
one to envisage an IT solution to a business need using just paper
specs. Usually, the system has to be modified once the users under-
stand how it works. However, the limitations of procedural languages
strongly encourage this approach, and it is the norm.

The Spiral Method
Object-oriented tools can be used with the waterfall technique, but a
more common approach is the spiral method. In this, IT specialists
and the users plan to go through the design and implementation
phases many times over before the project is complete. The analysts
work with the users to identify the various business procedures they
need to automate. They then work through the details of each proce-
dure and document them in what is generally called a use case. Next,
the coders build a small and simple prototype that implements the
user interface with just enough logic behind that to make the interface
behave as expected. There are no databases or even data models at
this stage. The IT specialist and the users then work through the use
case with the prototype. The users get an early idea of how the pro-
posed system will help or hinder them in the execution of their respon-
sibilities. They tend to become very involved and excited, then identify
changes and new features that they need. In this way, it is also easier
to see which features deserve a lower priority.

On the basis of this feedback, the designers revise their use cases and
designs, and the coders modify the prototypes to implement the new
behavior. The users work with the new prototypes and identify more
changes. The entire process repeats several times, then the final ver-
sion is fleshed out into a robust and reliable application, and delivered
48 Object REXX for Windows

Why Object Orientation?
to the users. Experience shows that applications designed in this way
fit the users’ real needs far better than is normally achieved with the
waterfall approach.

Prototyping
Prototyping is not a new concept. The idea has been around for a long
time. The problem has always been that the classic procedural lan-
guages such as COBOL, PL/I, C, and Assembler are not well suited to
developing prototypes. It takes too long to build a prototype, and, once
developed, the investment in the prototype code is so large that the
programmers cannot afford to abandon it. It is very hard to make
extensive design changes to procedural code, so the first prototype
often ends up being the final product, regardless of how well it fits the
users’ needs. Further problems arise when several independently pro-
totyped components must be integrated to form the complete applica-
tion. They often do not fit together, and extensive changes may be
required. It is exactly because of these problems that the waterfall
method was developed. The users and analysts are required to antici-
pate every code module that will be needed and to ensure that all the
components will fit together. Many experienced users view this as a
shrewd maneuver on the part of the IT department, designed to shift
the blame for humanity’s inability to predict the future from the
shoulders of the IT department to those of the users.

Object-oriented languages enable programmers to take a very differ-
ent approach to building prototypes. Experience shows that OO proto-
types are easier to modify and extend and can be changed to meet the
users’ changing perceptions of what they really need. While the parts
of the overall application may be developed independently of each
other, OO languages allow these different components to be inte-
grated, forming a working whole with little disruption to any of the
parts. The transition from prototype to production code is a smooth
process, with few ugly surprises.

The Paradigm Shift
The fundamental difference between procedural and OO designs
arises from the fact that procedural languages cannot be extended.
Procedural language programmers can use only those features that
were built into the procedural language by the vendor that supplies it.
The programmer cannot add new commands or data types to the lan-
guage, no matter how much these may be needed in a given situation.

Object-oriented languages, on the other hand, are extensible. Design-
ers and programmers can add new data types to the OO language to
meet their unique business needs. These are called objects. They can
add new operations, called methods, to the OO language to manipulate
existing or new data types. New objects can be built on top of existing
data types within the OO language, and on top of other objects that
the programmers have already defined.
Chapter 2. Introducing Object REXX 49

Why Object Orientation?
If, for example, OO COBOL had been available 20 years ago, life
would have been much simpler for the software vendors who intro-
duced major new database management systems (DBMSs) at that
time. They could have extended COBOL’s capabilities to include sup-
port for their DBMSs by developing new class libraries. Lacking this
ability, many chose to create completely new computer languages,
called 4GLs, to allow easy access to the features of their DBMSs. A
new computer language is a major investment for the vendor that
builds it, the programmers who learn to use it, and especially the com-
panies that accumulate legacy code in it.

Procedural languages force the designer and programmer to follow a
process known as stepwise refinement. The designer first specifies a
business requirement at a high level. There are no features in the pro-
cedural language that can directly implement the objects described in
this design or the actions that must be performed on them. The
designer must break each object down into a collection of simpler
objects and each action into a series of simpler steps. This process has
to be repeated until the objects are so simple that they can be directly
represented in the primitive data types supported by the procedural
language and the actions can be equated to the primitive operations
implemented by the procedural language. The entire stepwise refine-
ment procedure takes place on paper, not in code. Only the final step
in the process is captured as code and appears in the application. All
prior steps in the process are captured on paper and are not delivered
as part of the running application.

Suppose we compare the design and coding of an application in a pro-
cedural language to the growth of a tree. The high-level design would
correspond to the trunk and major branches of the tree. The detailed
designs would correspond to its smaller branches, spreading out into
twigs. The actual code would correspond to its leaves. When the appli-
cation is handed over to the maintenance programmers, they regard
the code as the most important thing they get. The design documents
usually do not correspond exactly to the code, because the users ask
for changes late in the implementation process, and changing the
design document is usually low on everyone’s priority list. As time
goes by and the application undergoes maintenance, the design docu-
ments are seldom updated. After a while they are so far out of step
with the code that they are useless and are ignored.

To go back to our tree analogy, the maintenance programmers can now
see only the leaves, not the branches or twigs that were used to join
them all together. From the outside (the users’ view) it still looks and
behaves like a tree—for a while, but from the inside it becomes
increasingly difficult to see how the whole thing hangs together.

Is this gradual loss of visibility and understanding of the program’s
structure important? Yes it is, vitally so. Every program has an invisi-
ble component that we can call the flow of control. It’s the way the
computer sees the program when it executes. This is the most impor-
tant view of the program, because it determines absolutely what the
50 Object REXX for Windows

Why Object Orientation?
program does, regardless of what the programmers think it should do.
Well-structured programs help the programmer to see what the flow of
control will be and, hence, what the program will do. Most programs
are not well structured—not so much because their contents are badly
structured, but because of what they do not contain—the tree’s trunk,
branches, and twigs, to return to our analogy. Maintenance changes
start to have unexpected side effects. Someone saws off a branch with-
out knowing what leaves it supports, someone bends a branch to sup-
port new leaves and inadvertently cuts off the flow of sap to some
other leaves. After a while, the tree no longer looks anything like a
tree from the inside—it looks like a bowl of spaghetti. Then it is time
to throw the whole thing out and start again from scratch—and that is
a waste of time and money.

Suppose we now compare the design and coding of an application in an
OO language to the growth of a tree. Once again, the design would cor-
respond to the trunk and branches of the tree. This time, however, the
components of the design can and should be written into the code of
the final application, rather than written on paper and then dis-
carded. Because OO languages are extensible, the objects and actions
described in the design can be written directly into code. If the design
speaks of customers ordering, taking delivery, and paying for products,
the programmers should create new object types called Customer and
Product, as well as methods that allow product objects to be ordered,
delivered, and paid for by customer objects. The high-level program
logic can then reflect the high-level design because it talks about
exactly the same objects and actions (methods) as does the design doc-
ument.1

In essence, we can turn the design and coding process on its head
when we build OO applications. Instead of proceeding with stepwise
refinement from a high-level design through successively lower-level,
paper-based designs until we get down to the level of the procedural
language and then writing the code, we can start by writing the design
in code as if all the objects and actions it requires were already part of
our target language. Then we use the language’s OO facilities to define
what these objects are, and how they behave. As we define these
objects and their behavior, we often find that there is still a gap
between the level of abstraction at which we are working and the
built-in features of our language. Once again, we boldly code our new

1 People with experience of real-life application construction may at this stage be throwing up their
hands in horror. Building new applications tends to generate a huge volume of paper, usually
referred to as The Documentation. We do not suggest that a 1,000-page mound of paper be shoveled
into the code. Most of the documentation exists to explain, criticize, measure, report, and mend the
design. Entity-relationship diagrams, data-flow diagrams, action diagrams, and their ilk are a good
way of representing design concepts graphically. Gantt charts are a good way of representing plans
and progress graphically. All these things generate an amazing amount of paper (which is often
pasted up on the walls to show the users how productive the designers have been), but they are not
the design. It is our belief that a well-structured OO program that contains its own design will be
no bigger than the equivalent program coded with no embedded design in a procedural language.
The OO programmers will write much of their logic at a high level against smart objects, while pro-
cedural languages constrain us to write all our logic at a low level against dumb objects.
Chapter 2. Introducing Object REXX 51

Why Object Orientation?
definitions in terms of lower-level objects and actions as if they already
existed.2 We will come back later and define these lower-level objects
and actions and continue in this way until, at last, all the objects and
actions we need are actually present in the OO language we are using.

Please note the use of the word can in the preceding paragraph. It is
unfortunately quite possible for programmers trained in procedural
languages to ignore the capabilities of OO languages to preserve
design and to use OO in exactly the same way that they previously
used COBOL or C to produce only the low-level code. Proper training
and motivation are required if the transition to OO is to be fruitful.

Better Reuse from the OO Approach
The way we design and build applications using OO languages should,
therefore, be very different from the way we build them using proce-
dural languages. This change is the biggest one that procedural pro-
grammers and analysts must make when moving to OO. Why do we do
it this way? What are the benefits?

❑ The biggest long-term benefit is that most of the application’s
design is encapsulated in its code. It cannot be discarded or
ignored. All changes to the application automatically update the
detailed design document because it is a living part of the code.
This makes long-term maintenance of the application easier and
more accurate.

❑ Much of the application logic is written in terms of high-level
objects that correspond directly to the objects with which the users
work. Programmers and users can speak the same language
because they are speaking about the same objects and actions
(methods).

❑ Less code is required because it deals with high-level smart
objects, such as products, that can do complex things like get
ordered by customers, rather than with dumb objects, such as inte-
gers, that can do only simple things like arithmetic.

❑ Objects like customers have their data and associated actions
(methods) neatly packaged together in OO language definitions. It
becomes much easier to locate and reuse customer objects and
their associated behavior in other applications.

2 We are not suggesting that we should embark on the design and implementation of a major system
without careful analysis and planning. If we simply write a program as thoughts pop into our
heads, the results will be as poor with OO languages as they are with procedural ones. We will get
“stream of consciousness” programs, or what we might call Kerouac code. It may make for enter-
taining reading, but trying to make it work correctly will be much less fun. Good methods and tools
are available to help the OO analyst identify the objects and methods that should form the basis of
a new system. However, in this section we are trying to identify what is different about OO analysis
and design, not what is the same.
52 Object REXX for Windows

Why Object Orientation?
❑ When programmers reuse an object, they do not need to know how
it works internally. The author of the object can carry out mainte-
nance on it to add new data or functions without impacting any of
the programs in which this object is used.

❑ OO languages all come with an extensive library of built-in
classes, which can be used to define new objects. These inherit a
wealth of high-level function. Much of the tedious low-level coding
required to build an application can be eliminated by making use
of these class libraries.

Communities of Cooperative Objects

In dealing with the benefits of OO, we have so far restricted ourselves
to those that are currently being enjoyed and reported by installations
that have made the switch. However, there is a sea of change taking
place right now in how objects will be exploited in the future, and it is
going to affect all of us.

Bloated PC Software
It is a well-known fact that “shrink-wrap” applications are getting big-
ger and better every year—with most of the emphasis falling on big-
ger. Ten years ago, the most sophisticated spreadsheet package came
on a single floppy. Now it takes a diskette caddy to load the simplest
package. Have our needs changed that much over the past 10 years?
Has life really become 10 times more complex? Why is shrink-wrap
software so bloated? It costs the vendors a fortune to build applica-
tions of this size and complexity, so you can be sure they are not doing
it for fun. Also, a fact of life with software is: the bigger, the buggier.

Ten years ago, PC enthusiasts sneered at the “big, clumsy, slow” pro-
grams that ran on mainframes and rejoiced in their tiny, nippy appli-
cations. They have stopped talking about it. Many are watching what
is happening in numb silence.

PC software is suffering from “creeping featuritis.” One vendor puts in
a great new feature, all the competitors put it in, too, as well as a few
more unique features of their own. More bullets on the side of the
shrink-wrap box. More check-boxes in the endless assessments that
PC software magazines run. More entries in the already crowded
menu bar. More chapters in the phone-book-sized product manual.
More days on the education program. More space on the hard drive.
More RAM tied up. More bucks on the bill. Where is it all going? Is
this trip really necessary? Most of us use only a fraction of the features
of the PC software we run.
Chapter 2. Introducing Object REXX 53

Why Object Orientation?
Standard Software Components
There is another way, and it is based on the notion of building software
from a host of standard, reusable components. We touched on this in
The Productivity Problem on page 46, with those not-so-funny compar-
isons between the IT and airline industries. When hardware engineers
want to build a system, they pick standard parts out of a catalog and
wire them together. Little or none of the componentry that they need
has to be invented on the fly. The parts are highly standardized and
uniform in their behavior, and there are few surprises when they are
clicked together. Generally, the new system works.

Software engineering is light-years away from this model. The way we
handcraft code today is reminiscent of the way our ancestors used to
manufacture3 products before the industrial revolution. Programming
is still in the “cottage industry” phase of development.

Liberating Objects from Applications
All this is due to change soon—indeed, is changing already. Objects
have shown that they can deliver specific functions while encapsulat-
ing all their internal workings so that the programmers using them do
not have to know what goes on inside. Currently, the object’s horizon is
limited to the application that contains it. If you want to build a lot of
function into an OO application, you have to put a lot of objects into it.
About six years ago, the folk in the emerging world of objects realized
that objects would become much more useful if objects could be used
across different applications, even if the applications were written in
different languages—and even if they ran on different computers,
maybe even under different operating systems (this democratic vision
is not shared by all in the industry).

The CORBA Standard
To make any of this happen, standards are an absolute necessity. A
cross-industry standards group called the Object Management Group
(OMG) was formed in 1989 to develop and publish standards in this
area. The OMG has been very industrious and successful, and its
membership has risen to over 500. Almost every company involved in
building objects is in the OMG and is busy enabling its object software
to conform to the OMG standards. The biggest “umbrella” standard
from OMG is called the Common Object Request Broker Architecture
(CORBA). As with all standards, the longer the name, the more argu-
ments and reconciliations went into its formation. The CORBA stan-
dard was widely and hotly debated by the members of the OMG, and
what came of the crucible is case-hardened steel.

3 Manufacture: verb, from Latin manus, “a hand,” and facto, “I make.”
54 Object REXX for Windows

So Why Object REXX?
IBM’s CORBA-compliant object broker implementation is called the
System Object Model (SOM). It is a standard component of OS/2, AIX,
and MVS/ESA. Probably every popular operating system will have a
CORBA-compliant object broker from one vendor or another by the
end of 1996.

The topic is far too big to fit into the confines of this book. Several
excellent publications already exist on this topic alone. We particu-
larly recommend The Essential Distributed Objects Survival Guide by
Robert Orfali, Dan Harkey, and Jeri Edwards (see full reference in
Related Publications on page 533).

Note: Object REXX for OS/2 contains support for SOM, whereas
Object REXX for Windows NT and Windows 95 does not contain SOM
support in its first release.

So Why Object REXX?
In the preceding sections we have reviewed how successful REXX has
been and how useful OO facilities are. The marriage of the two is an
obvious and welcome step, bringing to the programmer a language
with the strengths of both. Object REXX is likely to be widely and
enthusiastically embraced by the REXX programming community for
the following reasons:

❑ It’s free! Everyone is talking about OO nowadays, but getting
access to an OO language costs money. Object REXX is available
at no extra charge, and Object REXX is a full-function OO lan-
guage. What better way to get your feet wet in the OO puddle than
by using the language you know and love?

❑ Object REXX lets you learn about OO incrementally. While it
enables you to build totally nonprocedural code, you can also start
adding OO features to existing procedural programs. You do not
have to abandon your legacy REXX code or your existing skill
base.

❑ The standard REXX trace and debug facilities are still available,
even for OO code. You can step through your programs line by line,
displaying and setting variables as you go. This makes it easy to
understand what is going on.

❑ Object REXX includes new features that make it much easier to
build structured and modular applications. REXX is being used to
build some very large and complex systems, and these new struc-
turing capabilities are most welcome.

❑ One of the key benefits that OO gives is reuse. REXX program-
mers are, in general, very familiar with the reuse approach. Pro-
grams coded in other languages can be invoked directly from
within REXX programs. Commands for other programming envi-
ronments, such as XEDIT under VM, DB2/2 under OS/2, and DB2
Chapter 2. Introducing Object REXX 55

So Why Object REXX?
for Windows NT and Windows 95, can be embedded in REXX code.
Most REXX programmers are comfortable with a “mix-and-match”
approach. Object REXX extends the range of resources available to
the REXX programmer to include objects developed in Object
REXX

Learning how to exploit OO does not have to be a white-knuckle expe-
rience. Object REXX provides an easy path into the world of objects,
building on and enhancing existing REXX skills.
56 Object REXX for Windows

3
How D
oes Object
REXX Implement
OO?
Object REXX has a very comprehensive set of OO facilities, including
multiple inheritance and meta classes (see Methods on page 68). It has
support both for static class and method construction through embed-
ded declaratives, and for dynamic class and method construction
through messages that may be issued at runtime to the built-in Class
and Method classes. Here we use only the static, declarative forms.

The Object REXX manuals referenced in Related Publications on
page 533 contain an excellent description of OO concepts and how
Object REXX implements them. We give only a brief and incomplete
outline of these capabilities here for the reader’s convenience.

We need to start by emphasizing that the magic of OO does not lie in
its definition. Many people have labored over descriptions of OO, seek-
ing the philosopher’s stone that will transform dull gray code into glis-
tening gold in the concepts of objects, classes, inheritance, and
polymorphism. Try as you will, you will not find it there. What is
important about OO is the changes it allows—but does not require—
 57

Objects
designers and programmers to make in the way they structure pro-
grams. We have tried to explain this in Why Object Orientation? on
page 46.

Objects
All of us deal with objects every day of our lives. Things like faucets,
toasters, refrigerators, cars, telephones, photocopiers, fax machines,
and televisions are objects. We use objects to do things. We give com-
mands to objects. We might open a faucet, push down the cook lever on
a toaster, start a car, depress an accelerator or a brake pedal, turn a
steering wheel, dial a number on a telephone or fax machine, or press
a channel change or mute button on a TV remote control.

Objects must be able to obey the commands we issue. They need some
built-in, predefined behavior. In the OO world these are called meth-
ods.

Object REXX uses the ~ (tilde) operator to invoke a method on an
object.

The word preceding the tilde is the object, and the word following it is
the method. Those familiar with classic REXX can think of invoking a
method as something similar to invoking a function. Consider the fol-
lowing code:

If every object we encountered differed from all others and had its own
unique set of commands, we could never cope with the daily demands
of living. Humans have learned to standardize the way similar objects
behave and are controlled. Different car models made by different
manufacturers in different countries all have similar controls and
respond in a similar way when these controls are used. Even if we
have to fly to a distant country, we can still operate the cars we find
there with reasonable success. Every car is different. Each has a
unique number plate and engine and chassis serial numbers. Each has
its own unique collection of scratches and bumps and little quirks,

Invoking methods on an object

 car~start
 car~turn('right')
 car~speed(55)

Invoking methods compared to functions

 aString = 'Hello, World'
 say aString (gives: Hello, World)
 say reverse(aString) (gives: dlroW ,olleH)
 say aString~reverse (gives: dlroW ,olleH)
58 Object REXX for Windows

Classes
such as the way it hesitates when you floor the accelerator at 50. But
cars, and trucks for that matter, behave similarly enough that drivers
can move from one to another and cope.

Classes
The world in which programmers must operate is also populated by
objects. These objects, too, have their own unique attributes and built-
in behavior. Programmers cannot cope with the diversity of objects
that they must manage unless they simplify and standardize the
behavior and appearance of these objects as much as possible. Quite
often, programmers will impose a greater degree of standardization
than exists in the real world. A program may insist, for example, that
every human has a surname and one or more given names. While this
is a common practice in some European countries, in Nordic countries
it is not, and the people on other continents have very different prac-
tices. We have learned to live with generalizations like these so that
programmers need cope only with a subset of the problems the real
world contains.

In order to cope with the innate complexity of the world, programmers
must seek and impose similarities in behavior across groups of related
objects. In OO terminology, a group of related objects is called a class
or type. Once they have identified a class of objects, programmers can
define and code the routines, or methods, that give these objects their
common behavior.

Object REXX uses directives, placed at the end of the program, to
define classes and methods. A directive starts with two colons (::).

Note: Class definitions can also be placed into separate files using the
::requires directive. (See The Requires Directive on page 116.)

Directives for a class definition

 ::class Car
 ::method start
 ...
 ::method turn
 ...
 ::method speed
 ...
Chapter 3. How Does Object REXX Implement OO? 59

Classes
Inheritance

So far, we have done little more than coin some trendy new OO terms
to describe well-established programming practice. Now we start to
add something new and exciting. It’s called inheritance. It stems from
the fact that, although we want to group objects into classes and
enforce a common behavior across all of them, some stubbornly refuse
to fit a common mold. Cars and dump trucks have similar controls to
drive them, but dump trucks have extra controls to manage the dump-
ing mechanism. How can we cope with this irritating diversity? We
might be tempted to build the code needed to manage cars, then clone
it and extend it to handle trucks. It gets the job done, and we score
extra brownie points if our productivity is measured in lines of code,
but it creates an extra maintenance burden that will last for as long as
the code runs.

Object-oriented languages offer an elegant way of coping with the
problem of similar but different classes. Given the problem described
above, we could define a Car class that implements the behavior com-
mon to both cars and dump trucks (for example, starting, steering, and
stopping), then define a new class called DumpTruck that is a subclass
of the Car class (see Figure 35).

The Object REXX class directives might look like the following:

A subclass inherits all the behavior (attributes and methods) of its
parent class but can add new attributes and methods of its own. We
can add to our DumpTruck class just the new behavior that is unique
to dump trucks—the ability to dump. So any dump truck objects that
we create will automatically inherit all the methods they need to be

Figure 35. Car and DumpTruck Class Inheritance Diagram

Class directives for inheritance

 ::class Car
 ::method start
 ...
 ::class DumpTruck subclass Car
 ::method dump
 ...

Car

DumpTruck
60 Object REXX for Windows

Classes
driven and will also have the methods they need to dump. We have
achieved the equivalent of cloning code without actually cloning code.
Maintenance is simplified.

A nice side effect of this approach is that when we add new methods to
the base Car class to handle new behavior such as fuel consumption,
all of its subclasses automatically inherit these new methods as well.

Abstract Classes

But what would happen if we needed to add some new methods to the
Car class that we did not want its subclasses to inherit? Suppose we
needed to add information about a car’s trunk capacities and optional
extras—sidewalls, two-tone color schemes, and such? We could
abstract from the Car and DumpTruck classes all the attributes and
methods we want them to have in common and put them in a new
abstract class called Vehicle. We would make both Car and
DumpTruck subclasses of the Vehicle class (see Figure 36).

Each would inherit all the common behavior it needs from the base
Vehicle class, and we could then add to each the behavior that it alone
requires. We might never create an object directly from the Vehicle
class. It would serve just as a handy place to keep common behavior.
Since we do not change the names of the Car and DumpTruck classes,
none of the code that deals with them will be affected. All the changes
we make are hidden inside the class definitions. This is an example of
encapsulation, one of the major benefits of OO.

Figure 36. Abstract Class Inheritance Diagram

Vehicle

Car DumpTruck
Chapter 3. How Does Object REXX Implement OO? 61

Classes
The Object REXX directives required in this case might look like this:

Can we take this further? Suppose the need arises to deal with trucks
other than just dump trucks. How would we handle this situation? In
Figure 37, we abstract the behavior that is common to dump trucks
and tanker trucks and put it in a new abstract class called Truck. We
then define TankerTruck and DumpTruck as subclasses of Truck. They
both inherit the behavior of the base Vehicle abstract class and the
behavior of the Truck abstract class, then each adds its own unique
behavior to its own class.

Class directives for an abstract class

 ::class Vehicle
 ::method start
 ...

 ::class Car subclass Vehicle
 ::method trunk_capacity
 ...

 ::class DumpTruck subclass Vehicle
 ::method dump
 ...

Figure 37. Multilevel Class Inheritance Diagram

Vehicle

Car Truck

TankerTruck DumpTruck
62 Object REXX for Windows

Classes
The Object REXX directives required in this case might look like this:

We can continue in this way to create as many levels of inheritance as
we need.

Multiple Inheritance

The inheritance story could have ended here, but Object REXX takes
it further. The Smalltalk language allows each class to have only one
parent class from which it can inherit behavior. Object REXX allows
classes to inherit from one or many parent classes. Only one can be the
direct parent. The other parents are called mixin classes. Like
abstract classes, they are not used to generate instances. They serve
only as containers for attributes and methods that other classes can
inherit from them.

Suppose we need to add information about engines to our vehicle fleet.
In the old class structure, engine information was contained in the
Vehicle class. We observe that the same sort of engine is often used in
different types (classes) of trucks, and some engines are common
between light trucks and cars. We want to separate out the engine
information from the rest of the vehicle, which we will call the Body.
We might do this as shown in Figure 38.

Class directives for multilevel inheritance

 ::class Vehicle
 ::method start
 ...
 ::class Car subclass Vehicle
 ::method trunk_capacity
 ...
 ::class Truck subclass Vehicle
 ::method hitch_horse
 ...
 ::class DumpTruck subclass Truck
 ::method dump
 ...
 ::class TankerTruck subclass Truck
 ::method fill_tank
 ...
Chapter 3. How Does Object REXX Implement OO? 63

Classes
The Object REXX directives required in this case might look like this:

Figure 38. Mixin Class Multiple Inheritance Diagram

Class directives for multiple inheritance

 ::class Body
 ::method rattle
 ...
 ::class Engine mixinclass Object
 ::method start
 ...

 ::class Car subclass Body inherit Engine
 ::method trunk_capacity
 ...
 ::class Truck subclass Body
 ::method hitch_horse
 ...

 ::class DumpTruck subclass Truck inherit Engine
 ::method dump
 ...

 ::class TankerTruck subclass Truck inherit Engine
 ::method fill_tank
 ...

Body

Car Truck

TankerTruck DumpTruck

Engine (mixin)
64 Object REXX for Windows

Object REXX Variable Pools
The old Vehicle abstract class has disappeared, its attributes and
methods split into two new abstract classes called Body and Engine.
Body becomes the direct parent of Car and Truck, while Engine
becomes a mixin class. Each vehicle now obtains its body and engine
behavior from two different classes.

Object REXX Variable Pools
In classic REXX, by default each .cmd file has its own variable pool.
Variables set by code within the .cmd file are available to all other
code within the same .cmd file. The programmer can change this by
coding the procedure instruction after a label, for example:

 aProcedure: procedure

When aProcedure is called, REXX creates a new and private variable
pool for aProcedure. This remains in effect until aProcedure termi-
nates. In this example, none of the code within aProcedure can access
any of the variables set by the code in the command file, and vice
versa.

The programmer can obtain a limited degree of exposure of the vari-
able pool external to aProcedure by using the expose option. For exam-
ple:

 aProcedure: procedure expose variable1 variable2 stem.

The variables and stems listed after the expose keyword map directly
onto the corresponding variables in the variable pool that was active
when aProcedure was called. Changes that aProcedure makes to these
exposed variables remain in effect when aProcedure terminates. Exist-
ing REXX programs work the same way in Object REXX as they do in
classic REXX, to preserve compatibility.

Objects are new in Object REXX, and they are handled differently.
Each object usually has several variables, or attributes, associated
with it. If you have 100 employee objects active, each one may have its
own name, number, address, and other attributes. Object REXX asso-
ciates a separate variable pool with each object.

An object’s attributes can be accessed only by the methods that are
defined within the object’s class; in OO terminology, all data is private
or encapsulated. Each method must specify which of the object’s
attributes it needs to access by listing them on an expose instruction
immediately after the method directive (::method).
Chapter 3. How Does Object REXX Implement OO? 65

Object REXX Variable Pools
In this example, the variables name, address, and salutation are part
of the associated object’s variable pool. All the other methods in the
class that contains this method may access and set these variables if
they first expose them. Any variables a method uses that are not in its
expose list are local variables and are discarded as soon as the method
terminates. In this example, separator is a local variable.

Note: If an object inherits methods from different classes, it will have
different variable pools in each class. A method defined in one class
cannot share a variable with a method in another class. If methods
need to share information, the owner of the variable must implement
methods to get and set this variable, and the would-be sharer must
invoke them.

The benefit that flows from this arrangement is that different groups
can build and maintain different classes quite independently. Multiple
inheritance can make bedfellows of complete strangers. If a new class
claims parentage from two independently developed classes, there is
no danger that the accidental use of the same variable name in the
two parent classes will cause collisions and corruption of the variable.
The methods of each parent class will continue to operate in its sepa-
rate variable pool. This approach mirrors the way in which SOM
classes manage their variables.

The down side of this arrangement is that it is a little difficult to split
the definition of what the programmer may regard as a single class
over more than one source file. Each class definition must be com-
pletely contained in a single file. Different files will, therefore, contain
different class definitions. The methods in these files may be pooled by
using inheritance, but they will not be able to gain access to one
another’s variables except through get and set methods created specif-
ically for this purpose.

Object REXX provides a very simple way of creating get and set meth-
ods for a given variable. With the code:

 ::method aVariable attribute

Object REXX will automatically create both a get and a set method for
aVariable. One can then get and set the value of aVariable by coding:

 something = anObject~aVariable

 anObject~aVariable=(aValue)
 anObject~aVariable=aValue

Example of a method

 ::method tag
 expose name address salutation
 separator = 'at:'
 return salutation name separator address
66 Object REXX for Windows

Object Instances
Note: Unless a SIGNAL ON NOVALUE or a SIGNAL ON ANY
instruction is included in the code, the methods may happily appear to
use variables to which they actually have no access, if these variables
happen to lie in a separate variable pool, for reasons described above.
It is probably a good discipline to include the SIGNAL ON NOVALUE
instruction in code while it is being debugged, and to leave it in while
it is being used in production.

Object Instances
We have introduced objects and classes, but how do we actually create
and delete objects within a class? Individual objects are often called
instances.

Object Creation

Most OO languages provide a new method (operator) to create an
instance of a class. This is also how object creation is implemented in
Object REXX.

Note: The Car class defined using the class directive (::class) is avail-
able in the program as .Car, and the new method is invoked against
this class object. In Object REXX, even classes are themselves objects.

We will often need to initialize the variables of a newly created object.
Object REXX automatically invokes the init method of a new object, if
an init method has been defined. The init method can accept parame-
ters to initialize object variables and set additional variables to
default values.

Object creation

 mycar = .Car~new
 ...
 ::class Car
 ::method start
 ...

Initializing a new object

 mycar = .Car~new(12345,'Ford','Mustang')
 ...
 ::class Car
 ::method init
 expose serialNumber make model saleDate
 use arg serialNumber, make, model /* parameters of new */
 saleDate = date('s') /* initialize variable */

 ::method start
 ...
Chapter 3. How Does Object REXX Implement OO? 67

Methods
Note: The new USE ARG statement is used to assign values to vari-
ables from the arguments. This is more effective than parsing the
arguments and works for any objects passed in as parameters in the
method call. See USE (New) on page 475 for more details.

Object Destruction

In Object REXX there is no explicit way to delete an object. Object
REXX supports automatic garbage collection—that is, objects without
any references (variables pointing to them) are removed from memory
periodically under system control.

The program can remove references to objects by assigning another
value to a variable or by dropping the variable:

 mycar = .Car~new
 ...
 drop mycar /* object is subject to garbage collection */

Methods
Methods of a class are defined in the directives section of the program
immediately after the class directive. We will often want methods to
return a result that can be used by the invoking program, but this is
not compulsory.

Methods can be invoked in two ways, through a single tilde (~) or
through a double tilde (~~). When a double tilde is used, any result
returned by the method is disregarded, and the object to which the
method was applied is returned instead. This allows several methods
to be applied to a single object in one statement, in a procedure known
as chaining.

Chaining of method operations

 car = .Car~new(...)
 car~~start~~speed(55)~~for(5m)~mileage
 ...
 ::class Car
 ...

Note: Since the double tilde does not return a result, the subsequent
operations work on the same car object until the mileage method
returns the miles driven in 5 minutes.
68 Object REXX for Windows

Methods
Private and Public Methods

Methods invoked from the main program or from other classes are
specified as public methods. They define the interface of the class, that
is, all the possible operations this class can perform.

Methods used only within the class—that is, they are invoked only
from other methods of the class—are private methods.

By default, methods are public; the private keyword is used to define a
private method.

Class and Instance Methods

So far, we have spoken about methods operating on objects. While this
is generally the case, some methods cannot operate on specific objects
because, for example, the method’s purpose may be to create a new
object, and the code calling the method cannot point it to this new
object because it does not exist until after the method has run. When
we deal with “normal” methods that operate on objects to do things
like print them, shred them, or delete them, we speak of instance
methods. They operate on objects, which are also known as instances
of their class. When we deal with methods that we cannot pass a spe-
cific object to, we call them class methods.

This may sound rather technical, but when it comes to writing the
code, the distinction will usually be very obvious. Making a method do
something to an existing object requires an instance method; other-
wise it must be a class method.

Instance methods usually handle the data of an individual object,
whereas class methods handle data about the whole class, such as
counting the number of objects in the class or managing a collection of
all the objects.

Public and private methods

 ::class Car
 ::method milage /* public method for users */
 self~calculate /* - invoke private method */

 ::method calculate private /* private method */
 expose time speed /* - not available to users */
 return time * speed / 3600 /* - used by other methods */
Chapter 3. How Does Object REXX Implement OO? 69

Polymorphism
Meta Classes

We have spoken about classes inheriting methods from their parents
and from mixin classes. Although we did not mention it at the time, a
subclass inherits both the instance and the class methods of its direct
(and mixin, if any) parents. We spoke of abstract and mixin classes as
a handy way to store behavior that can be inherited by a new subclass.
Now we introduce meta classes. Like abstract and mixin classes, they
are a handy place to store methods and attributes for other classes to
inherit. The wrinkle is, when a new class inherits from a meta class,
the meta class’s instance methods become the inheriting class’s class
methods—along with any other class methods it inherits from its
direct parent.

If this sounds complex, it is! But seldom will an Object REXX applica-
tion programmer need to use meta classes. Direct inheritance usually
gets the job done, with mixins less often required. The people who
really need meta classes are the programmers who build OO lan-
guages like Object REXX. They could have kept meta classes hidden
and used them for their own purposes only, but they chose to share
them with the world. There are good reasons for doing this. If the fea-
ture is there, why not make it available? People have built some very
complicated and sophisticated systems using OO languages in the
past, and we believe that Object REXX will be no exception. It is prob-
ably a good idea for the Object REXX community to understand what
meta classes are all about, and to be able to use them when required.

Polymorphism
Polymorphism is the rather cumbersome name given to a very simple
idea that almost every computer language offers. It is the notion that
a single operator symbol, like +, −, *, or /, can be used against operands
of different types, such as short integer, long integer, short float, or
long float. The language compiler (or interpreter) determines the type
of operand that is involved and uses one of the many available
machine instructions to carry out the appropriate operation. So when-
ever two numbers are added together, a plus sign is written between
them, regardless of their data type.

Object-oriented languages enable programmers to define their own
functions and operators (methods) for the new data types (classes)
they create. For example, a draw method can be defined for the Shape
class and, therefore, for all its subclasses (triangle, rectangle, circle,
etc.). The draw method can then be invoked against an object of every
subclass of the Shape class. Object REXX invokes the implementation
of the draw method according to the class of each object.

A very nice example of polymorphism may be found in complex.rex in
the Object REXX sample subdirectory and the associated usecomp.rex
that invokes it. This code creates a class of complex numbers and
70 Object REXX for Windows

Polymorphism
defines operators to carry out simple arithmetic on them. The pro-
grammer is free to choose any method name to denote the addition of
complex numbers—complexAdd, for example, which would require the
following syntax:

 a = b~complexAdd(c)

Instead, he or she wisely chooses the plus operator (+) for this purpose.
This allows the programmer using the complex class to code:

 a = b + c

This is, of course, a very familiar notation, and programmers will find
it easy to apply these new methods to the new domain of complex
numbers, even though complex numbers are not a part of standard
REXX.

Just to show that Object REXX permits very useful things without
much code, we show below the Object REXX method for adding com-
plex numbers. By way of introduction for those who did not major in
math, each complex number has two parts, called real and imaginary.
Each of these two parts is a perfectly normal number. Combined, we
can use them to do things like position a point on a graph, where we
need to know how far to the right it is and how high. These two inde-
pendent properties can be stored separately in the real and imaginary
parts of a single complex number.

1 We use the ::class directive to define the class of complex numbers.

2 We use the ::method directive to start the definition of the +
method.

3 We give each complex number two attributes, called real and
imaginary. We expose them so the method can use them.

4 The + method normally works on two complex numbers. The first
is the object in front of the + and the second is the object after it.
We access the first object through the built-in name self. We access
the second through the use arg statement and use the local vari-
able name adder to reference to it.

5 If arg(1) is omitted, we do not have to do any addition.

6 We just return the object to which this prefix (+) applies (self).

The Object REXX method for adding complex numbers

 1 ::class complex public
 2 ::method '+'
 3 expose real imaginary
 4 use arg adder
 5 if arg(1,'o') then
 6 return self
 7 tempreal = real + adder~real
 8 tempimaginary = imaginary + adder~imaginary
 9 return self~class~new(tempreal, tempimaginary)
Chapter 3. How Does Object REXX Implement OO? 71

Polymorphism
7 We get the real part of adder and add it to the real part of the com-
plex number we are dealing with.

8 We get the imaginary part of adder and add it to the imaginary
part of the complex number.

9 We make a new complex number to return to the caller. We need to
find the class of the object we are dealing with, because the
method that makes new complex numbers is a class method (see
Class and Instance Methods on page 69). Self~class gets the class
of the object, and class~new invokes the new method of the com-
plex class.

The class library that is supplied with Object REXX (see The Object
REXX Class Library, below) makes extensive use of polymorphism.
For example, the method name [] may be used to refer to an element of
any type of collection, be it from the Array, Bag, Directory, List, Queue,
Relation, Set, Stem, or Table class. The [] notation has been long and
widely used in languages like C to denote subscripting of arrays, so
the Object REXX convention exploits and reinforces an association
that many programmers already have.

Programmers are encouraged to follow the same convention when
they create new methods. If it does something analogous to an existing
method of another class, give it the same name. It is easier to remem-
ber the name when needed, and it is easier to guess what the method
does when only the name is known.
72 Object REXX for Windows

The Object REXX Class Library
The Object REXX Class Library
Every OO language worthy of the name comes with a set of class defi-
nitions. These do a wealth of useful things and spare the OO program-
mer reinventing the wheel. Object REXX is no exception. Many of its
classes relate to managing collections of data. These are called the
Collection classes and are shown in Table 1. Another group provides a
variety of useful functions to the programmer, listed in Table 2. These
are very terse lists; for details, please see the Object REXX Reference
manual.

As with any OO language, the Object REXX class library is an
extremely valuable asset and will richly repay careful study. We can
never claim to know an OO language until we have a fair idea of what
its class library contains.

Table 1. The Object REXX Collection Classes

Class Name Purpose

Array A sequenced collection

Bag A nonunique collection of objects, subclass of Relation

Directory A collection indexed by unique character strings

List A sequenced collection that supports inserts at any position

Queue A sequenced collection that can accept new items at its
start or end

Relation A collection with nonunique objects for indexes

Set A unique collection of objects, subclass of Table

Table A collection with unique objects for indexes

Table 2. The Other Object REXX Classes

Class Name Purpose

Alarm Generates asynchronous messages at specific times

Class A technical class to create new classes

Message Supports the deferred or asynchronous sending of mes-
sages

Method A technical class to dynamically create new methods

Monitor Manages the forwarding of messages

Object A technical class to manage all objects

Stem A collection indexed by unique character strings

Stream Supports input and output operations

String Supports operations on character strings

Supplier Supplies the elements of a collection one by one
Chapter 3. How Does Object REXX Implement OO? 73

The Object REXX Class Library
The Object REXX Class Library Browser

Most OO languages contain a facility called a class browser, a program
that presents the class library to the programmer on request. It sup-
ports lookup by class name or by method name. Object REXX provides
this feature through its online reference books, which should be
installed when Object REXX is installed. With its hypertext links, it
provides far more information than does the usual class browser. Of
course, it can display only the built-in Object REXX class library.
There is at this stage no equivalent facility for browsing programmer-
defined classes.

Experimental Class Browser

We implemented two simple experimental class browsers in Object
REXX. They are available as browscls.rex and browser.rex in the Xam-
ples subdirectory of the car dealer application.

The DOS window class browser, browscls.rex, is interactive and asks
the user for the name of a class and then displays its subclasses,
superclasses and methods.

OODialog Class Browser
The GUI class browser, browser.rex, starts with the .Object class and
displays its subclasses and methods. The user can then choose any
subclass and browse through the hierarchy of classes.

Once a class is selected, its subclasses, superclasses, and method are
displayed in list boxes. The user can select any of the displayed classes
and retrieve its information. The user can also type a class name and
retrieve its information using the Enter key.

For user defined classes and the OODialog classes the user can also
select a method and display the source code.

When the class browser is started it retrieves all the car dealer and
OODialog classes in source format. The list of classes is defined in the
browser.lst file and can be tailored by the user.

A typical screen capture is shown in Figure 39. The user has selected
the CustomerBase class. Its superclass is Object and it has a subclass
Customer. The source code of the FindVehicle method is displayed in
the list box at the bottom.
74 Object REXX for Windows

Tokenizing Object REXX Programs
Tokenizing Object REXX Programs
Whenever Object REXX interprets a script, the whole file and all the
required files are read, checked for syntax errors, and then translated
into an internal format that the interpreter needs to execute the
script, where the comments are skipped. If a syntax error is detected,
the program won’t be executed. Because the internal format consists
of tokens, the process of the transformation is called tokenizing.

For larger scripts, this process can take several seconds. For very large
programs contain several thousand lines of code and comment, token-
izing can take more than 15 seconds on slow machines.

To avoid this overhead every time a program is executed, Object REXX
provides the REXXC utility (see The REXXC Utility on page 467) to
tokenize a program to a file instead of only into memory. The Object
REXX interpreter is able to execute both, the original program or the
tokenized file. If a tokenized file is passed to the REXX interpreter, the
syntax check and the tokenizing are skipped, which saves time.

Figure 39. Experimental OODialog Class Browser
Chapter 3. How Does Object REXX Implement OO? 75

Tokenizing Object REXX Programs
REXXC does not resolve the ::requires statements, but you can token-
ize the required programs separately. The program in the ::requires
statement can have both formats as well.

If you tokenize, pay attention that you don’t overwrite your source pro-
gram. REXXC requires an input file name and an output file name.

 REXXC input.rex output.rex

The tokenized scripts are not readable anymore, so you cannot modify
them after this process. Therefore, we recommend that you keep the
source program in another directory. If you want Object REXX to use
tokenized versions of your program and required files, make sure that
the tokenized files are found before the source programs.

Because the symbol names are not available in the internal format,
tokenized programs cannot be traced. Often, you might first want to
trace your scripts and then, if everything is alright, you want to use
the tokenized version for faster startup.

REXXC is also a good tool to encrypt programs that are going to be
delivered to customers.

Automatic Tokenizing

Object REXX provides an environment variable, RXSAVETOKENS, to
automate tokenizing of source programs. If RXSAVETOKENS is YES,
the tokenized image of each source program is appended to the source
file when the program is executed for the first time.

Note: Many editors display the appended image, and you have to
manually delete the image when changing the source program; other-
wise a new tokenized image is appended to the program again.

Recommendations for tokenizing

❑ Put all source programs into a subdirectory, for example, SRC.

❑ Tokenize the source from the subdirectory into the main direc-
tory, using the same name as the output file.

 REXXC SRC\program.REX program.REX

❑ Write a small program which tokenizes all the source programs
of the subdirectory.

 say 'Tokenizing directory:'
 call SysFileTree 'src*.*','files','FO'
 do i=1 to files.0
 filename = substr(files.i,lastpos('\',files.i)+1)
 say "REXXC" files.i
 "REXXC" files.i filename
 end

❑ Make sure that all ::requires files are tokenized and found before
their source files.
76 Object REXX for Windows

Part 2

The Car Dealer
Scenario

Object
REXX
77

78 Object REXX for Windows

4
The C
ar Dealer
Application
In this chapter, we visit the Hacurs software company and pick up the
story of how it uses Object REXX to implement a car dealer applica-
tion. We look at the objects required for this application and find out
how the classes built into Object REXX (its class library) can be used
to help construct them.

The Car Dealer Opportunity
“Hey, team,” yelled Curt as he banged in through the door of the
Hacurs office late one afternoon, “we’ve got our breakthrough! I spent
most of today with Trusty Trucks looking at their requirements for a
car dealer system. They are really keen to automate this part of their
business, and I’ve pretty near convinced them that we can build a sys-
tem that will meet their needs, and that we can do it fast.”

“That’s wonderful,” said Hanna.

“Great going!” exclaimed Steve.

“What do they want?” asked Hanna.
 79

The Car Dealer Opportunity
“They service vehicles—cars and trucks,” Curt answered as he put
down his bag and sat at his desk. “I tried my hand at developing a use
case with them to describe their business process. I captured it on my
ThinkPad.”

Curt pulled his ThinkPad from his bag, plugged it in and powered it
on. Once it had booted up, he opened a view of his project subdirectory
and dragged an icon to the Notepad editor.

“This is what we came up with,” he said [see Figure 40 on page 80].
“Now, before you start criticizing, remember this is the first use case
that I’ve built. We wrote up the steps that have to take place, and then
I identified the nouns by making them bold, and all the verbs by mak-
ing them underscored.

“We decided not to mark every noun,” said Curt. “Some just didn’t
seem useful to us. All the nouns we highlighted are candidates for
objects in the application design. And all the verbs we highlighted are
candidates for methods.”

“Well that looks very simple and straightforward to me, Curt,” said
Hanna, “although I’m sure it will turn out to be a lot more complicated
when we get down to the details.”

“Should we try to draw up a list of the objects you have identified and
their related methods?” asked Steve.

“OK,” said Curt. He copied the text of his use case and edited out all
words except the highlighted ones. “This brings up a question,” he
noted. “If I can remember back to my high-school grammars, most sen-
tences have a subject, a verb, and an object. Both the subject and the
object are nouns. But when we come to attach methods to objects, does
the verb get associated with the subject or the object of the sentence?
For example, in the first item I’ve got

‘Trusty Trucks draws up a list of the parts it has in stock.’

“Should draws up be the method of ‘Trusty Trucks’ or of ‘parts’?”

1. Trusty Trucks draws up a list of the parts it has in stock.

2. Trusty Trucks also defines the services it offers and lists the
parts each service needs.

3. Customers bring in their vehicles for servicing.

4. Trusty Trucks records the customer and vehicle details on a
work order and itemizes the services required.

5. Service staff carries out the specified services on the vehi-
cles.

6. Clerical staff prepares bills based on the work orders.

7. The customers pay their bills and claim their vehicles.

Figure 40. Car Dealer Application Use Case
80 Object REXX for Windows

The Car Dealer Opportunity
“Of ‘parts’, I think,” answered Steve. “The Trusty Trucks object uses
the method, but the parts object must implement it. It deals with
parts data.”

“OK, let’s use that approach and see what happens,” said Curt.

The Hacurs team worked together on this task. After some thought,
they derived the table presented in Table 3.

“It looks like we’ve got some nouns left over,” said Hanna. “Trusty
Trucks, the Stores department, Service staff, and Clerical staff acted
as subjects but never as objects in the use case sentences.”

“That’s interesting,” said Curt. “I discussed these with Trusty Trucks.
We recognized that we could identify objects corresponding to various
divisions within the company and store them in the database. Trusty
Trucks couldn’t see any point in doing so. I suggested that we could
capture these in a field within each transaction, to act as an audit trail
in case they ever needed to know who did what. They could see the
potential value of doing that, but they plan to have a paper audit trail
of each transaction and decided against keeping it in the database.”

“We’re starting to see the value of the use case discipline,” said Steve.
“It makes you take into account those loose bits and pieces that might
otherwise be overlooked in the design. Even if you eventually decide to
ignore them, it’s good that you had to think about them.”

“Good point, Steve,” said Hanna. “And Curt, I think you’ve done a
great job collecting this information and getting to understand what
Trusty Trucks needs. Is this all we have to do? Do we create a class for
each of the objects we’ve defined, and a method for each of the verbs?”

“I’m afraid there’s a lot more to it than that,” responded Steve. “We
have to decide on the shape that we want our application to take.
There’s a lot of technical issues that we still need to discuss.”

Table 3. Car Dealer Objects and Methods

Object Method

A list of parts Draw up

Services Define

Parts List for each service

Vehicles Bring in

Customer Record the details

Vehicle Record the details

Services Itemize on a work order

Vehicles Get services

Bills Prepare

Bills Pay

Vehicles Claim
Chapter 4. The Car Dealer Application 81

The Application Model
“Like what?” asked Hanna.

“Like what kind of user interface we must develop,” Steve answered,
“and what database manager we should use.”

“Or if we use a database manager at all,” added Curt.

The Application Model
Hanna, Curt, and Steve sat around a table together, going through the
requirements for the car dealer application and trying to identify the
objects they would choose to implement in Object REXX. After a cou-
ple of hours of work, they came up with five objects that seemed to
play a dominant role:

❑ Customer
❑ Vehicle
❑ Part
❑ Service
❑ Work order

“This is it,” said Curt. “Customers bring their vehicles in for various
services. Trusty Trucks records the services each vehicle needs in a
work order. Each service requires a standard amount of labor and
parts. Those are the objects we have to model. The relationships
between the objects look like this.” Curt drew a sketch on the white-
board [see Figure 41].

Figure 41. Car Dealer Data Class Relationships

Work Order
class

Vehicle
class

Customer
class

Service
class

Part
class

A requires BKey A B
82 Object REXX for Windows

The Application Model
“You don’t need a line from the Work Order class to the Customer
class,” said Steve. “Each work order points to a vehicle, and each vehi-
cle has an owner, and that’s who the customer is.”

“Not necessarily,” said Curt. “Suppose someone rents a truck and
bends a fender. He or she might decide to take the truck in to get it
fixed, rather than return it, dented, to the rental company. The cus-
tomer is the renter, but the owner of the vehicle is the rental com-
pany.”

“That sounds pretty unlikely to me,” said Steve. “Anyhow, Trusty
Trucks wouldn’t know that it’s a rented truck. They would capture the
name of the person who brought the truck to them as the owner. All
they care about is who’s going to pay them.”

Hanna broke in with a suggestion: “We can sort out this detail later.
Make the line from the Work Order class to the Customer class dotted,
and let’s carry on.”

“How about labor—don’t we need that as an object?” asked Steve.

“I don’t think so,” said Hanna. “The only thing we know about it is the
standard labor charge for each service. We wouldn’t have any
attributes to store in labor if we made it an object.”

“But there are different types of labor, and they charge out at different
rates,” said Steve.

“Maybe so, but Trusty Trucks doesn’t want to record that kind of
detail in its service records,” said Curt. “Let’s not make this more com-
plicated than it has to be. We have to get a solution working fast if we
want to get the business.”

“OK, let’s take those objects as our first cut,” said Hanna. “What
attributes do we need to store for each one?”

“I’ve kept a list of the attributes as we went along, and they look like
this,” said Curt, laying out a sheet of paper [see Figure 42].

 01 customer | 01 service
 05 custnum smallint | 05 itemnum smallint
 05 custname char(20) | 05 labor smallint
 05 custaddr char(20) | 05 description char(20)
 | 05 servpart occurs 20 times
 01 vehicle | 10 partnum smallint
 05 serialnum integer | 10 quantity smallint
 05 custnum smallint |
 05 make char(12) | 01 workorder
 05 model char(10) | 05 ordernum smallint
 05 year smallint | 05 custnum smallint
 | 05 serialnum integer
 01 part | 05 cost integer
 05 partnum smallint | 05 orderdate char(8)
 05 price smallint | 05 status smallint
 05 stock smallint | 05 workserv occurs 20 times
 05 description char(15) | 10 itemnum smallint

Figure 42. Car Dealer Object Attributes
Chapter 4. The Car Dealer Application 83

Methods and Variables
“That looks like a mixture of COBOL and SQL,” said Steve.

“Never mind, it gets the job done,” said Curt.

“You’ve got repeating groups in service and work order,” Steve noted.
“We’ll have to normalize1 the data.”

“Not necessarily,” said Hanna. “The collection classes in Object REXX
allow an object to have attributes that are arrays, lists, sets, bags,
directories...”

“OK, OK—you’ve made the point,” said Steve. “But when we come to
store persistent objects in a relational database, we’ll have to normal-
ize the data.”

“Also not necessary,” chimed in Curt. “The new binary-large-object
(BLOB) support in DB2 Version 2 would allow us to store the repeat-
ing group as an array in a single BLOB column.” Seeing Steve’s look of
concern, he added, “I would also feel more comfortable if the database
was normalized, but the objects in storage don’t have to look exactly
the same.”

Methods and Variables
“OK, if those are the objects we have to model, what comes next?”
asked Hanna.

“We need to work out which methods each object must support and the
variables they need,” said Curt. “I also kept a note of those as we went
through the use cases. First, every object type...”

“You mean ‘class,’” interrupted Steve.

“Uh—yes, class,” agreed Curt. “OK, each class that manages the
objects we’ve identified [see Figure 41 on page 82] needs the basic
CRUD methods: create, read, update, and delete. Then whenever
there’s a relationship between two different objects, we need a method
to maintain it. Who owns which vehicle, for example. We need to be
able to track changes in ownership without having to delete the old
vehicle and capture it all over again under a new customer.”

“Why?” asked Steve. “You said we should keep it simple. Vehicles don’t
change ownership that often. Why not discard the old vehicle record
and capture a new one?”

“What if there’s a query relating to work done on the vehicle before it
changed hands?” asked Hanna. “If we delete the old vehicle record we
would lose any references we had to it in the work order history data.”

1 Normalization of data is a term used in database design. In simple words it makes individual tables
of a database nonredundant and all columns of a table nonrepeating and dependent on the key only.
84 Object REXX for Windows

Methods and Variables
Steve nodded, so Curt carried on: “Some of these methods relate to a
specific object—update and delete, for example. These would have to
be implemented as instance methods. But others don’t relate to a spe-
cific object. We would have to implement those as class methods.”

“Can you give us an example?” asked Hanna.

“Sure,” said Curt. “When we create a new object, we can’t send the cre-
ate message to the object because it doesn’t yet exist. So we have to
send the message to the object’s class instead, and it returns the new
object to us. And when we want to search our customer set by name,
we can’t send the message to a particular customer object, we have to
send it to the class instead. The class method would come back with a
customer object—or a list of customer objects if more than one has the
search name, or maybe an empty list if the search fails.”

“Speaking of searching customers, how can we find all the customer
objects that exist within the customer class?” asked Steve.

“We haven’t found any built-in way of doing that,” replied Hanna. “We
could maintain a variable for the Customer class that consists of the
set of all customer objects. Suppose we call it extent. Whenever a new
object is created, Object REXX automatically calls the object’s init
method. This is normally used to initialize the new object’s instance
variables. It could invoke a class method that puts the new object into
the set of all objects created. And likewise for the other objects that we
need to keep track of.”

“That’s smart,” said Curt. “And we can have another class method that
removes the reference to the object from the class’s extent attribute
when the object is deleted.”

“Right,” said Hanna. “Let’s get to work and draw up tables of all of the
methods we’ll need for each class. We won’t worry about how we store
the objects on disk in this version. Let’s just concentrate on managing
the objects in storage.” [See Tables 4–9.]

Table 4. Methods Required by Every Data Class

Method Type Purpose

initialize Class Initialize the extent variable

extent Class Return an array of all objects of the class

add Class Add a new object to the extent

remove Class Remove an object from the extent

init Instance Initialize a new object

setnil Instance Clear out the object record

delete Instance Delete the object from the class

detail Instance Return object details, formatted

makestring Instance Default ID for this object

display Instance Display object data on standard output
Chapter 4. The Car Dealer Application 85

Methods and Variables

Table 5. Methods Required for Customer Class

Method Type Purpose

number Instance Return the number of the customer

findNumber Class Find a customer given the number

findName Class Return an array of customers matching
name

heading Class Return a heading for output

name Instance Get or set the customer’s name

address Instance Get or set the customer’s address

update Instance Update the customer’s data

addVehicle Instance Add a new vehicle to the customer

removeVehicle Instance Remove a vehicle from the customer

checkVehicle Instance Does this vehicle belong to the customer?

getVehicles Instance Return the customer’s vehicles

findVehicle Instance Return a specific vehicle of the customer

addOrder Instance Add a work order to the customer

removeOrder Instance Remove a work order from the customer

getOrders Instance Return all work orders for this customer

ListCustomer-
Short

Class List customers on standard output

ListCustomerLong Class List customers with their vehicles

Table 6. Methods Required for Vehicle Class

Method Type Purpose

serial Instance Return the serial number of the vehicle

make Instance Get or set the vehicle’s make

model Instance Get or set the vehicle’s model

year Instance Get or set the vehicle’s year

update Instance Update the vehicle’s attributes

makemodel Instance Return make and model formatted

getOwner Instance Return the owner of the vehicle

setOwner Instance Set the owner of the vehicle

deleteOwner Instance Set the owner of the vehicle to nil
86 Object REXX for Windows

Methods and Variables

Table 7. Methods Required for Part Class

Method Type Purpose

findNumber Class Return the part’s number

heading Class Return a heading for output

number Instance Return the serial number of the part

price Instance Return the price of the part

description Instance Return the description of the part

stock Instance Return the stock level of the part

increaseStock Instance Increase the stock level of the part

decreaseStock Instance Decrease the stock level of the part

ListPart Class List all parts on standard output

Table 8. Methods Required for Service Class

Method Type Purpose

findNumber Class Return the service’s number

heading Class Return a heading for output

number Instance Return the number of the service

laborcost Instance Return the labor cost of the service

description Instance Return the description of the service

usesPart Instance Tell service it uses this part

getParts Instance Return the parts used by this service

getQuantity Instance Return the quantity used of this part

getPartsCost Instance Sum cost times quantity of parts used

getWorkOrders Instance Return work orders with this service

ListService Class List all services on standard output

Table 9. (Part 1 of 2) Methods Required for Work Order Class

Method Type Purpose

findNumber Class Return the work order’s number

newNumber Class Issue a new work order number

findStatus Class Return work orders of given status

number Instance Return the number of the work order

cost Instance Return the cost of the work order

date Instance Return the date of the work order

setstatus Instance Set the status of the work order
Chapter 4. The Car Dealer Application 87

Methods and Variables
“Wow! That’s a long list of methods,” said Curt, looking at the tables
they had produced. “Aren’t we making this much more complicated
than it needs to be?”

“I don’t think so,” answered Hanna. “The books on object orientation
warn that you need a lot of methods to get the job done, but they say
that the methods must be very short. Some say that if a method is
longer than 30 lines, it’s too long. I read that in connection with Small-
talk. I guess it’s too soon to say if the same limit should apply to Object
REXX.”

“What’s the benefit of having lots of silly little methods, each of which
does very little?” asked Curt. “Why not lump functions together to
make fewer, bigger methods?”

“It’s like making bricks rather than prefabricating walls,” said Steve.
“The simpler each method is, the more likely you’ll be able to reuse it
for other purposes. And the more complex it is, the less likely you’ll be
able to use it again.”

“Hmm,” mused Curt. “It sounds good, but I’ll reserve judgment on that
until we’ve built our first application and I can see how it works out in
practice.

getstatus Instance Get the status of the work order

getstatust Instance Get the status of the work order as text

getCustomer Instance Get the customer of the work order

getVehicle Instance Get the vehicle of the work order

addServiceItem Instance Add a service item to the work order

removeService-
Item

Instance Remove a service item from the work
order

getServices Instance Return services of this work order

getTotalCost Instance Compute the total cost of the work order

checkAndDecreas-
eStock

Instance Issue the parts required for the services

generateBill Instance Return array of output lines of bill

detailcust Instance Return customer and vehicle details

makeline Instance Return work order details, formatted

ListWorkOrder Class List the work orders on standard output

Table 9. (Part 2 of 2) Methods Required for Work Order Class

Method Type Purpose
88 Object REXX for Windows

Relationships Among Objects
Relationships Among Objects
“I know it’s getting late, but I’d like to spend a little time talking about
the relationships that we need to implement between the different
objects,” said Hanna. “This is the way I see it.” She quickly constructed
a list and showed it to the others. It read:

❑ A customer can own one or more vehicles
❑ A vehicle can be involved in many different work orders over time
❑ A customer can be involved in many different work orders
❑ Each work order requires one or more services
❑ Each service requires zero or more parts

Hanna asked, “Which of these relationships do we have to keep track
of? And from which end?”

“What do you mean, ‘from which end’?” asked Steve.

“If we’re given a customer, do we need to know which vehicles he
owns?” asked Hanna.

“Yes!” chorused Curt and Steve.

“And if we’re given a vehicle, do we need to know to which customer it
belongs?”

“Yes!” chorused Curt and Steve again.

“Then maybe we need to put a list of vehicles owned into each cus-
tomer object, and an owner attribute into each vehicle,” said Hanna.

“Wait a minute,” said Curt, “that doesn’t sound possible. If the vehicle
object contains the customer object, which in turn contains the vehicle
object, which one will really contain the other? Will we put the system
into a perpetual loop trying to do what we tell it?”

“No,” smiled Hanna. “Objects never actually contain each other, they
just contain references to each other. The objects themselves are all
kept in Object REXX’s system storage. When you assign an object to a
variable, you’re actually just storing a pointer to the object in the vari-
able.”

Steve chimed in too: “And if you call a subroutine or method passing a
huge BLOB as an argument, the system passes just a pointer to the
BLOB.”

“Cute,” said Curt. “So how do we actually store the relationships that
you spoke about? I seem to recall that there is a List class built into
Object REXX.”
Chapter 4. The Car Dealer Application 89

The Object REXX Collection Classes
The Object REXX Collection Classes
“There’s a whole lot of collection classes built into Object REXX,
including Array, Bag, Directory, List, Queue, Relation, Set, and Table,”
said Steve. “All of them can be used to store sets of related informa-
tion. All of them have several methods in common, and all have their
own unique capabilities. We’re spoiled for choice—it’s almost embar-
rassing!”

“OK—so which should we use?” asked Hanna.

Realizing that this would take some time, the Hacurs team phoned out
for pizza and went in detail through each of the relationships that
Hanna had identified.

“So this is what we’ve agreed,” said Curt, wiping some tomato sauce
from the handwritten table and presenting it to his teammates for
their approval [see Table 10].

“That’s cryptic!” exclaimed Steve. “What does it all mean?”

“It’s simple, really,” replied Curt. “The first two columns list different
types of object. The third column shows how we record the relation-
ship from the object in the first column to the object in the second. If
we don’t, the entry is ’none’. Otherwise it’s the name of the Object
REXX class we agreed to use. The object that carries the relationship
is stored as an attribute in the first object. The fourth column is the
same as the third, except the other way around. It shows how we store
the relationship in the second object back to the first. In most cases
I’ve written just attribute. This means that there’s only one object of
type one associated with the second object, so we don’t have to store a
list, only a single object pointer. The fifth column shows the type of
relationship we model. We distinguish between many-to-many (m:m)
and one-to-many (1:m) relationships.”

“Why don’t we record the services that use a certain part?” asked
Hanna. “Trusty Trucks is not interested in that information, so there
is no need to carry it,” replied Curt, “and we handle the work orders
from the customer directly, without going through the vehicle,” he
added.

Table 10. Relationships between the Car Dealer Objects

First Object Second
Object

From 1st to
2nd

From 2nd to
1st

Type

Customer Vehicle Set Attribute 1:m

Customer Work order Set Attribute 1:m

Vehicle Work order 'none' Attribute 1:m

Work order Service Relation Relation m:m

Service Part Set 'none' m:m
90 Object REXX for Windows

Object Creation and Destruction
“Now that we see it all,” said Steve, “do we really have to use the rela-
tion class to implement the relationship between work orders and ser-
vices? Wouldn’t it be simpler to use the same collection class for all our
relationships?”

“Maybe, but this will look better on our CVs2,” replied Curt with a
smile.

“I’m more worried about our paychecks than our CVs!” muttered
Hanna.

Object Creation and Destruction
“Let’s talk through the life-cycle of these objects and make sure they
can all be created when needed and discarded when their work is
done,” suggested Hanna.

“I think we’ve covered that,” said Curt. “We listed the methods that
are common to every object [see Table 4 on page 85] and these include
init to create new objects and delete to throw old ones away. We also
plan to define an extent set as a class variable in each class to keep
track of all the objects we have defined within that class. And we plan
to have an add and a remove method for each class. Add will save a
pointer to each new object in the extent when it’s created, and remove
will drop it when it’s discarded. The init and delete instance methods
will invoke the add and remove class methods.”

2 CV, curriculum vitae, or resumé, a short account of one’s career and qualifications.

Example of relationship between customer and vehicle classes

 ::class Customer
 ...
 ::method init /****** NEW CUSTOMER ******/
 expose customerNumber cars /* each customer object */
 use arg customerNumber /* has a customer number */
 cars = .set~new /* and a set of cars */
 ...
 ::method addVehicle /****** ADD NEW VEHICLE ***/
 expose cars /* new cars are added to */
 use arg newcar /* the set of cars */
 cars~put(newcar)
 ...

 ::class Vehicle
 ...
 ::method init /****** NEW VEHICLE *******/
 expose serialNumber owner /* each vehicle points to */
 use arg serialNumber, owner /* the owner (customer) */
 owner~addVehicle(self) /* and adds itself there */
 ...
Chapter 4. The Car Dealer Application 91

Object Creation and Destruction
“That’s fine for keeping track of objects in storage,” responded Hanna,
“but what happens when the user powers-off the PC? Are all the
objects lost?”

“Ah! Now you’re talking about object persistence,” said Curt. “That’s a
big topic, and this isn’t the right time to start getting into it. We’ve
covered a lot of ground today, and I for one am getting tired.”

Hanna glanced at her watch. “You’re right, it is getting late. OK guys,
let’s call it a day. Thanks for giving up your time for this project. It will
be a big one if we manage to close the business. And with any luck
we’ll be able to sell the same solution to a number of different compa-
nies. This could turn out to be the milk-cow application we need to
keep our paychecks rolling in. Sweet dreams!”

Maintaining the set of objects of a class

 .Customer~initialize /* prepare the class */
 cust1 = .Customer~new(101,'Steve') /* create some customers */
 cust2 = .Customer~new(102,'Hanna')
 .Customer~ListCustomerShort /* list all customers */

 ::class Customer
 /****** class methods *******/
 ::method initialize class /* prepare the set of cust. */
 expose extent /* in variable "extent" */
 extent = .set~new

 ::method add class /* add new customers to set */
 expose extent
 use arg aCust /* Arg passed from new/init */
 extent~put(aCust) /* - add it to the set */

 ::method ListCustomerShort class
 expose extent /* list of all customers */
 do aCust over extent /* iterate over extent */
 aCust~display /* - call instance method */
 end /* for each customer */

 ::method init /****** instance methods ****/
 expose customerNumber name /* initialize variables */
 use arg customerNumber, name /* - from arguments */
 .Customer~add(self) /* add itself to the extent */

 ::method display
 expose customerNumber name /* display cust. variables */
 say 'Customer: number='customerNumber 'name='name

Note: This simple example shows how instance methods can invoke
class methods (init invokes add), and class methods can invoke
instance methods (ListCustomerShort invokes display). The separa-
tion is very logical; operations at the class level are implemented as
class methods using the class keyword in the method directive, and
operations at the individual object level are instance methods.
92 Object REXX for Windows

Implementation of the Model in Memory
Implementation of the Model in Memory
Figure 43 shows the object model with class and instance variables for
the sample car dealer application.

Figure 43. Implementation of the Car Dealer Model
The outer rounded boxes represent the classes, the inner rectangles the instances
(objects) of the class. The white boxes in the outer rounded boxes are the attributes
of the class; the white boxes in the inner rectangles are the attributes of the
instances. Arrows indicate attributes that point to object instances.

Customer

extent

customerNumber
name

cars
orders

Vehicle

serialNumber
make
model
year
owner

WorkOrder

extent

orderNumber
cost
date
status

customer

WorkServRel

ServiceItem

itemNumber
description
laborCost
parts
quantity.

car

Part

extent

partid
description
price
stock

index

item

WorkServRel

extent
WorkServRel

(Relation)

(set)

(set)

(set)

(set)

(list)

(list)

(set)

(stem)
Chapter 4. The Car Dealer Application 93

Implementation of the Model in Memory
Implementation Notes

1. We chose to use the set, list, and relation classes to experiment
with the features of these collection classes. For work orders, for
example, we chose to have a list so that new work orders are added
at the top.

2. The relation class is well suited to implement the m:m relation-
ship between work orders and services. It provides methods to get
a list of related objects:
 ::class WorkOrder
 ::method addServiceItem
 use arg itemx
 workserv = self~class~getWorkServRel
 workserv[self] = itemx /* add a service item to the work order */
 ::method getServices
 return self~class~getWorkServRel~allat(self)

 ::class ServiceItem
 ::method getWorkOrders
 return self~class~getWorkServRel~allindex(self)

The method getWorkServRel returns a pointer to the external rela-
tion object and the allat and allindex methods of the relation class
return an array of related objects.

The relation object is implemented in the local directory (see The
Local Directory on page 225) as

 .local[Cardeal.WorkServRel] = .Relation~new

3. The methods to list all the objects of a class (ListCustomerShort,
ListPart, etc.) are implemented as routines instead of methods.
Object REXX provides the ::routine directive to define subroutines
(callable procedures):

 ::routine ListPart public
 aui~LineOut('List of' .Part~extent~items 'parts:')
 aui~LineOut(.Part~heading)
 do partx over .Part~extent
 aui~LineOut(partx~detail)
 end
 aui~EnterKey
 return

The decision to use routines is based on the assumption that this
code is used only by the ASCII user interface and not by the GUI.
94 Object REXX for Windows

Implementation of the Model in Memory
Sample Class Definition

Figure 44 shows an abbreviated listing of the Customer class as imple-
mented in memory.

 ::class CustomerBase public

 ::method initialize class /*----- class methods ------*/
 expose extent
 extent = .set~new /* prepare set of customers */
 ::method add class /* add customer to set */
 expose extent
 use arg custx
 extent~put(custx)
 ::method remove class /* remove customer from set */
 expose extent
 use arg custx
 extent~remove(custx)
 ::method findNumber class /* find customer by number */
 expose extent
 parse arg custnum
 do custx over extent /* - look through the set */
 if custx~number = custnum then return custx
 end
 return .nil
 ::method findName class /* find customer by name */
 arg custsearch
 custnames = .list~new /* - prepare result */
 do custx over self~extent /* - look through the set */
 if abbrev(translate(custx~name),custsearch) then do /* compare name */
 custstring = custx~number~right(3)|| ,
 '-'custx~name'-'custx~address
 custnames~insert(custstring) /* - add one to result */
 end
 end /* - return the result */
 return custnames~makearray
 ::method extent class /* return set of customers */
 expose extent
 return extent~makearray
 ::method heading class /* return a heading */
 return 'Number Name Address'

 ::method init /*----- instance methods ---*/
 expose customerNumber name address cars orders
 use arg customerNumber, name, address /* initialize new customer */
 cars = .set~new
 orders = .set~new
 self~class~add(self) /* add it to the set of cust*/
 ::method delete /* delete a customer */
 expose cars orders
 do carx over cars /* - and all the cars */
 carx~delete
 end
 do workx over orders /* - and all the orders */
 workx~delete
 end
 self~class~remove(self) /* remove it from the set */

Figure 44. (Part 1 of 2) Customer Class in Memory
Chapter 4. The Car Dealer Application 95

Implementation of the Model in Memory
Source Code for Base Class Implementation

The source code for the base implementation is described in Table 21
on page 301 and listed in Base Classes on page 493.

 ::method number unguarded /* return customer number */
 expose customerNumber
 return customerNumber

 ::method name attribute /* name, name= methods */
 ::method address attribute /* address, address= methods*/

 ::method update /* update customer info */
 expose name address
 use arg name, address
 ::method addVehicle /* add vehicle to customer */
 expose cars
 use arg newcar
 cars~put(newcar)
 newcar~setowner(self)
 ::method removeVehicle /* remove vehicle from cust */
 expose cars
 use arg oldcar
 oldcar~deleteOwner
 cars~remove(oldcar)
 ::method getVehicles /* return vehicles of cust. */
 expose cars
 return cars~makearray
 ::method findVehicle /* find vehicle by serial */
 expose cars
 use arg serial
 do carx over cars
 if carx~serial = serial then return carx
 end
 return .nil
 ::method addOrder /* add order to customer */
 expose orders
 use arg newwork
 orders~put(newwork)
 ::method removeOrder /* remove order from cust. */
 expose orders
 use arg oldwork
 orders~remove(oldwork)
 ::method getOrders /* return all orders of cust*/
 expose orders
 return orders~makearray
 ::method detail /* return a detail line */
 expose customerNumber name address
 return customerNumber~right(5) ' ' name~left(20) ' ' address~left(20)
 ::method makestring
 expose customerNumber name
 return 'Customer:' customerNumber name

Figure 44. (Part 2 of 2) Customer Class in Memory
96 Object REXX for Windows

5
ASCII
User
Interface
In this chapter we look at a variety of technologies that can be used to
develop the user interface for Object REXX applications. While most of
the solutions that we present are graphical (GUI), we also present a
simple ASCII character user interface (AUI).

Designing the User Interface
“Come on, Steve, you’re late for the meeting!” called Curt.

“I’m busy working,” Steve called back.

“You know that work is no excuse for missing a meeting, Steve,”
responded Curt.

“Meetings are work, man,” grumbled Steve, gathering his ThinkPad
and stopping to pour some coffee before joining Curt and Hanna in the
meeting area.

“Whoops!” said Hanna. “Being late for a meeting is bad enough, but
coming in late with coffee is a capital offense, Steve. You know the
rules!”
 97

Designing the User Interface
“Yeah!” agreed Curt. “You get to buy the cookies for our mid-morning
coffee break. Make mine a blueberry muffin, please.”

Steve shook his head. “Someone has to do the work while you guys sit
around talking to each other, or nothing would ever get done.” he said.
“I’ve been designing the user interface for the car dealer application.”

“What do you mean, ‘designing the interface’?” asked Curt. “You know
that Trusty Trucks doesn’t want a GUI front end to the application.
All their existing PC applications are character-based, and they want
the car dealer app to look exactly the same. Building a character-based
user interface is the easiest thing in the world. We don’t need to waste
time designing it.”

“Yes, I know,” said Steve, shaking his head. “It’s amazing. They’ve just
upgraded all their PCs from DOS to Windows 95 so they can get easy
file-sharing and Internet access, and they still want DOS-style inter-
faces. Surely you could have sold them on the benefits of a good GUI,
Mr. Ace Salesman?” He looked pointedly at Curt.

“Be realistic, Steve,” responded Curt. “They’ve got a lot of legacy DOS
applications that they have to keep running. One of the main reasons
they chose Windows 95 is its DOS compatibility. They don’t want to
redevelop all their old apps with GUI front ends. In fact, they don’t
even have source code for some of the older ones. They were built by a
little contracting company that went out of business. Like we might,
too, if we don’t get a move on with this project!”

“Exactly!” said Steve. “That’s why I was working on the user interface.
And for your information, the reason we need to design it carefully is
that we plan to sell the same application to other businesses, as well.
You know that I’ve been talking to Classy Cars about it, and they’re
really interested. There’s no way they will want a clunky old character
interface app in their smart showrooms with the sort of cars they sell.
They want the latest GUI, where the G stands for ’Gee Whiz’! And
when I showed them some multimedia with bitmap displays, recorded
audio, and even a short video clip, they were turning handsprings.”

“Multimedia? With audio and video?” snapped Curt. “Steve, are you
crazy? This is a simple car dealer application. It handles the booking
and tracking of vehicle services. We’re talking about guys in greasy
overalls crawling under cars. Multimedia has absolutely nothing to
offer us in this application. We’ve got a tight deadline to deliver work-
ing code to support a serious business operation, and you’re messing
around with your multimedia toys again! You’re just trying to justify
the company money you wasted buying that fancy multimedia Think-
Pad.”

Steve smirked in reply. “Your trouble is you have absolutely no imagi-
nation,” he said to Curt. “Sure, we’re building a vehicle servicing appli-
cation. But the reason we chose to build it in Object REXX is that, as
time goes by, its OO facilities will allow us to reuse the objects we
build, for totally new applications. And while I was talking with
Classy Cars, I found that their real hot button is the sale of cars, both
98 Object REXX for Windows

Designing the User Interface
new and secondhand. Sure, they need a system to manage car ser-
vices, but they make more money selling cars. And when I talked
through the selling process with them, I soon realized that our appli-
cation already contains many of the objects needed to support selling.
Like vehicles and customers, for example.”

“But Steve, we have no multimedia data in our system at all as it
stands,” said Hanna. “And writing code to handle multimedia will be a
major undertaking. Is it realistic to start with something that compli-
cated at this stage?”

“What you guys don’t realize is how easy it is to do multimedia in
REXX,” said Steve. “I developed a little demo on the fly at Classy Cars
to show them how it could work. Just look at this.”

Steve double-clicked an icon on his ThinkPad’s desktop, and a folder
opened. In it were several icons, each looking like a car, with captions
referring to different popular brands. There were also icons labeled
Audio and Video in the folder. Steve dragged one of the car icons and
dropped it onto the Audio icon. After a second, they heard his recorded
voice saying, “The Gazebo. An ideal outdoor car for the driver who
enjoys plenty of fresh air.” Steve picked up the same icon again and
dropped it onto the Video icon. A window opened on his screen, and
the famous IBM ‘Butterfly’ ThinkPad opened its top cover and
expanded its keyboard.

“Is that all it does?” asked Curt. “And how many hundreds of lines of
code did you waste building it?”

Hanna looked thoughtful as well. “How many lines of code did it take,
Steve?” she asked.

“Hardly any,” said Steve. “Look, this is just a demo to show what could
be done, not a production system. I used Windows 95’s facilities to put
together the folder and icons. I pointed to my audio.cmd in the audio
button’s properties notebook. When the user drops an icon on Audio,
my command gets scheduled with the name of the icon dropped on it
as the parameter. I use this name to pick an audio file and play it.
Here’s the code.”

Steve opened an editor window, and there, hiding in the top corner,
were 10 lines of code. “The video works the same way,” he added, and
brought up the video.cmd for them to see, as well.

Hanna was excited. “Hey, Steve, that’s really neat. If that’s what you
were building just now, I’ll pay for the cookies in the next coffee
break.”

“This is just a red herring,” said Curt. “We’ve got to deliver the car-ser-
vicing application soon if we want to get Trusty Truck’s business. And
if we want to stay in business. We don’t have time to mess around
building multimedia demos.”
Chapter 5. ASCII User Interface 99

Designing the User Interface
Steve looked upset and was about to respond, but Hanna cut in. “Wait,
Curt. You’re right that we have to deliver Trusty Trucks’ application
soon. But Steve’s also right. We’re using Object REXX precisely so that
we can extend the base application to do different things for different
customers in the future. We have to strike the right balance. And the
key to that is to design the system right from the start so it can grow
to meet new needs as they arise.”

“And that was exactly what I was doing when you interrupted me to
come to this meeting,” said Steve. “So why don’t we stop talking and
get some work done?” He brought up his notes on his ThinkPad and
started talking through them. “We will have to develop both character
and GUI versions of our application. I’ve called the character version
AUI for short. Most of the functions that we have to implement will be
common to both versions, and, of course, we don’t want to duplicate
the code.”

“Why not?” asked Curt. “That’s how we’ve always done it in the past.
It’s a clean solution. You can implement a change that one customer
wants without messing up the other customer’s versions.”

“Well, we didn’t have very much choice in the past,” said Steve. “Clas-
sic REXX is procedural, and it’s hard to share procedural code between
different versions of an application. It’s even hard to segment a large
application into many small files with classic REXX because of the
communication barriers between different source files. And if the indi-
vidual source files are big, it follows that they deliver complex func-
tions. The key to reuse is keeping the functions small and simple.
That’s where Object REXX shines.”

“Maybe Object REXX makes it easier to share code,” said Curt, “but
what’s the advantage? Different customers will want different fea-
tures added to the application, and it won’t be long before they’ll need
different versions of the source.”

“We have to break out of that cycle if we want to be more profitable,”
said Hanna. “If you look at the really successful PC software products,
there isn’t a different version with different features for each cus-
tomer. The vendor implements only those features that will be useful
to most of the customers, then they all get the new features. We aren’t
quite in that kind of business, and we will have to implement some
features that only one customer requests. But we should always be on
the lookout to make new features available to every customer who
might possibly want them, even if it’s some time out in the future.”

“Yes, and Object REXX will allow us to keep a common code base in
the form of common class definitions in a shared source file, and then
to implement only the differences as source unique to a particular cus-
tomer,” agreed Steve. “That’s why I’ve been trying to work out how we
can implement the ASCII user interface as an object.”
100 Object REXX for Windows

ASCII User Interface As an Object
ASCII User Interface As an Object
“Did I hear you right?” asked Curt. “You want to implement the ASCII
user interface as an object?”

“That’s right, Curt,” replied Steve. “We’re using an object-oriented lan-
guage, you know, so why not use its facilities for the user interface,
too?”

“Well, I’ve got good news for you, Steve,” Curt said. “In Object REXX,
every variable and expression is actually an object, and every function
is a method on an object. When you code:

 say aString

“that’s actually equivalent to:

 call lineout aString

“and Object REXX implements that as:

 .OUTPUT~lineout(aString)

“where .OUTPUT is a standard object in each process’s directory of
local values. You need struggle no longer to design an OO interface for
the AUI version, Steve. Just use the SAY command!”

“I was trying to work at a slightly higher level of abstraction than
that,” said Steve. “Think about the menus, for example. Our old REXX
programs that run in AUI mode are riddled with strings of SAY com-
mands that spill menus out on the screen. Those won’t work so well
when we have to switch the output from the default .OUTPUT object
to a GUI screen driver, will they, Curt? We would probably want to
make use of the GUI window’s menu bar instead.”

“That’s why we need different versions of the source for the AUI and
GUI versions,” replied Curt.

“Can we put the AUI-handling code and menus into a subroutine in a
separate file?” asked Hanna. “The GUI version would simply not call
that subroutine and not have that code.”

“It’s not that easy,” said Steve. “The logic that handles the menu has to
call the code that implements the menu option chosen by the user. The
menu code has to be the main routine, and the rest of the system sub-
routines. If they’re in separate files, it’s not that easy to pass them all
the data they need to run.”

“That’s why we need different versions of the source for the AUI and
GUI versions,” parroted Curt.

“We’re trying to solve a problem, not score cheap points,” said Hanna.
“The problem of communicating with subroutines isn’t that great with
Object REXX—we can encapsulate all the data they need in a single
object, if necessary. But tell us the approach you were working on,
Steve.”
Chapter 5. ASCII User Interface 101

ASCII User Interface As an Object
The AUI Class

“Well, we could implement an AUI class to handle all output to the
console. Handling the screen-full condition is always a bit messy, and
in the past we’ve written that logic into every piece of code that pro-
duces a listing on the screen. The AUI init routine would be called
automatically when we create the AUI object, and it could use the
REXX SysTextScreenSize built-in function to find out how many rows
can fit on the screen. Each time the lineout method is used, it can call
the REXX SysCurPos built-in function to find out how many screen
rows are already used, and handle the screen-full condition automati-
cally.”

“Sometimes we need to put out several related lines that we want to
stay together on the screen—perhaps a customer with all of his or her
vehicles,” said Hanna. “How would the AUI object handle that?”

“We could build a checkRows method for AUI,” replied Steve. “You pass
it the number of lines you want together on the screen. It checks to see
if there’s enough space free, and if not, it invokes the screen-clearing
logic. With this approach, none of the routines that generate screen
output would need to know how many lines the screen has space for, or
how many of its lines are already in use. All of this screen-related
information would be encapsulated in the AUI object.”

“That’s neat,” said Hanna.

The AUI Operations

“Let’s define all the operations (methods) needed for the character
interface on a sheet of paper,” added Curt. Shortly afterward, they had
it all ready [see Table 11].

“Why are the methods instance methods?” questioned Curt.

Table 11. Methods Required for AUI

Method Type Purpose

init Instance Initialize object, store window size

getrows Instance Return number of rows in window

ClearScreen Instance Clear output window

LineOut Instance Output one line of text

CheckRows Instance Check if there is enough space for “n” rows

UserInput Instance Ask user for input, character or numeric

YesNo Instance Ask user for Yes or No input

Enterkey Instance Wait until user presses enter key

Error Instance Display error message

AckMessage Instance Display acknowledgment message
102 Object REXX for Windows

ASCII Menus as Objects
“Well, Curt, it’s true we could implement all methods as class meth-
ods,” replied Steve, “but I think it is cleaner to create an actual AUI
object at run time to handle the interactions.”

ASCII Menus as Objects
“The other things I’d like to tidy up are the menus. In the past we have
implemented them by coding a whole bunch of SAY instructions, out-
lining the options. Immediately after these come WHEN instructions,
checking for each of the options and implementing some action if that
option has been chosen. I’d like to move the menu text and associated
actions right out of the REXX programs and store them as parameter
files. Then we could define a menu class. Its class init method could
read the menu parameter file and set up the menus as a list of objects
in storage. It would also have a method to display a selected menu
object, check which option the user chooses, and automatically imple-
ment the corresponding action.”

“Often, a menu action will simply display a submenu,” said Curt.

“That’s right,” said Hanna. “In that case, the action in the main menu
would be an instruction to display the submenu. The menu display
method would invoke itself. That’s possible, isn’t it?”

“Yes,” said Curt. “I’ve been doing some playing around with the con-
currency features of Object REXX...”

“So I’m not the only one who plays around!” interrupted Steve.

“...and methods can invoke themselves recursively,” continued Curt.
“Of course, we would have to make sure we don’t send them into an
infinite loop by linking a submenu back to one of its parent menus.”

“Our menu display process would be user-driven. The user would quit
soon enough if it loops back on itself,” said Steve.

“That sounds like a good approach,” said Hanna. “I’m still not clear on
how we’ll tie it all together when we build our first GUI front end, but
that’s not today’s problem. It’s time for our coffee break. I’ll buy the
cookies.”

“Great!” said Steve. “In that case, let’s go to the Golden West Coffee
Shoppe.”

“Oh no!” groaned Curt. “Don’t tell me that I have to sit and watch him
nibble his way through yet another Golden West Monster Munch
Chocolate Chip Cookie!”

The Menu Operations

After the coffee break, the three sat together and developed the list of
menu operations [see Table 12].
Chapter 5. ASCII User Interface 103

ASCII Menus as Objects
Implementing the Menus

The menu input file MENU.DAT has the following structure, with fields
separated by tab characters (represented as ¬ signs):

The main program uses the menu class as follows to initialize the
menu structure and to run the application using the menus:

Table 12. Methods Required for Menu

Method Type Purpose

initialize Class Read menu file and build menu objects

findMenu Class Find existing menu or allocate new one

init Instance Initialize new menu object with array of items

addItem Instance Add a menu item to the menu object

getname Instance Return name of a menu object

showMenu Instance Display the menu, prompt user

Structure of menu data file

 Main¬CAR DEALER - GENERAL MENU
 Main¬List (customer, part, work order, service)¬showMenu List
 Main¬Update customer and part information ¬showMenu Update
 ...
 List¬CAR DEALER - LISTING MENU
 List¬List customers ¬call ListCustomerShort
 List¬List customers and vehicles ¬call ListCustomerLong
 ...
 Update¬CAR DEALER - UPDATE MENU
 Update¬Create a new customer ¬call Newcust
 ...

Menu loop in main program

 aui = .AUI~new /* allocate AUI object */
 menus=.array~new /* runtime level array of menus */
 menus[1] = .Menu~initialize /* build menu objects, store 1st */
 level = 1 /* start at top menu */
 do until level < 1 /* run loop until exit */
 action = menus[level]~showMenu /* show the current menu */
 select /* - user enters an action */
 when action = .nil then level = level - 1 /* previous menu */
 when action~class = .Menu then do /* user select submenu */
 level = level +1 /* - add submenu at lower level */
 menus[level] = action
 end
 otherwise interpret action /* user select an action */
 end /* - run that action */
 end
104 Object REXX for Windows

Appearance of ASCII User Interface
Appearance of ASCII User Interface
The windows displayed to the user by the menu system are shown in
Figure 45.

Figure 45. Appearance of ASCII User Interface

CAR DEALER - GENERAL MENU
==
1: List (customer, part, workorder, service)
2: Update customer and part information
3: Setup and complete a work order

END 0: return

CAR DEALER - LISTING MENU CAR DEALER - UPDATE MENU
============================= ============================
1: List customers 1: Create a new customer
2: List customers and vehicles 2: Delete a customer
3: List parts 3: Add a car to a customer
4: List service items 4: Delete a car of a customer
5: List work orders 5: Increase stock of a part

0: return 0: return

CAR DEALER - WORK ORDER SETUP MENU
===================================
1: Create a work order
2: Delete a work order
3: Add a service item to a work order
4: Complete a work order
5: Print the bill

0: return

Individual routines in main program (car-aui.rex) or ::routine for each function
Chapter 5. ASCII User Interface 105

Appearance of ASCII User Interface
Source Code for ASCII User Interface

The source code of the AUI and menu implementation is not listed in
the appendix; it is available in the car dealer directory on the CD, or
on a hard drive after Object REXX has been installed (see Table 25 on
page 302).

The source code to start the AUI program is listed in Program to Run
the Car Dealer Application on page 527.
106 Object REXX for Windows

6
Persis
tent Objects
on Disk
In this chapter, we find out how objects can be made persistent by
storing them in conventional flat ASCII files. We want to ensure that
the objects survive (even when the program that creates them ends)
and are available again the next time that the program runs. For brev-
ity, we call this the FAT (File Allocation Table) option, although, of
course, the files may equally well be located on a device with another
file system.

Storing Objects in FAT Files
“Great news, team—we’re on the last lap of agreeing on the detailed
design of the car dealer system with Trusty Trucks!” Curt strode into
the Hacurs premises, stripping off his coat and beating a light dusting
of snow from it.

“Wonderful!” said Hanna. “We’ve all spent a lot of time on this applica-
tion. We need to implement it and bill for it soon.”

“The only outstanding area is, How are we going to store their objects
when they turn off the PC that runs the application?” asked Curt.
 107

Storing Objects in FAT Files
“Did you say ‘the PC’?” asked Steve. “Aren’t they going to run it on
multiple machines?”

“No,” replied Curt. “We did some performance evaluation with our lat-
est prototype and worked out that they’ll be able to handle their cur-
rent business volumes easily on a single workstation. And Trusty
Trucks is too cost-conscious to use two PCs to do the job if one will do.”

“What if the one PC breaks down?” asked Steve.

“Well, that’s part of what we have to discuss and implement,” replied
Curt. “We need to make sure that all object creations, updates, and
deletes are recorded on disk, and that the system will recover its
objects automatically from disk when it is brought up again. We also
have to decide on some kind of disaster recovery scheme.”

“The obvious way to do this is to base our object persistence on a data-
base manager like DB2,” said Steve.

“Trusty Trucks is a cost-conscious organization, Steve,” replied Curt.
“They’re not like Classy Cars. They don’t own a real database manage-
ment system, and they’re not about to buy one just to run our applica-
tion. We’re going to have to find a way of doing the job using
conventional ASCII files, if that’s possible.”

“If only a single workstation needs to access the data, it’s entirely pos-
sible to do the whole job using ASCII disk files,” said Hanna. “In fact,
that approach would work even if multiple PCs want to read the files
at the same time, so long as only one PC has update access to the
files.”

“That would be the ideal solution, Hanna,” said Curt. “How would you
go about it?”

“I don’t think I’m going to like this!” interjected Steve, but the other
two ignored him.

Hanna swept her hair back with her fingers, walked to the whiteboard
and picked up a pen. Curt and Steve knew she wouldn’t use the pen,
just holding it seemed to help her think. “Because we’re using an OO
approach to the whole system, we know exactly when a new object is
created, or an old one updated or deleted. It can’t happen unless our
object methods are called.”

“Right,” said Steve and Curt in unison.

“OK. So all we have to do is change the init method for each object to
write a copy of the new object to disk as soon as it has finished initial-
izing it. And we make similar changes to the delete methods so they
can delete the objects from disk, and to the update methods so they
can rewrite the objects to disk whenever they change.”

“That sounds straightforward,” said Curt.

“How would you delete an object from a disk file if it’s in the middle of
the file?” asked Steve. “You can’t just leave a hole in the file.”
108 Object REXX for Windows

Storing Objects in FAT Files
“We could shift all the trailing objects one place to the left and leave
out the deleted object,” replied Hanna.

“How will we know the position of the object in the file?” asked Steve.
“We can’t shift the remaining objects over it unless we know where it
is.”

“We could give every object a new attribute called position,” suggested
Curt. “When we read the objects into storage, we could store the posi-
tions in which we found them in this attribute. Then when we need to
update or delete them, we’ll know where they are on disk.”

“But if they keep shifting around every time you delete an object, you
won’t know where they are when it comes time to update them,” rea-
soned Steve. “It would really be simpler if we used a database man-
ager. It has all the logic needed to sort out problems of this kind.”

“I’ve just told you, Steve...” started Curt, but Hanna interrupted.

“Hold on, guys! Curt, how many objects are there going to be?”

Curt shifted his scowl from Steve and answered Hanna. “A couple of
hundred vehicles, somewhat fewer customers, and maybe a thousand
service records if they keep six months’ history on line.”

“So why don’t we just rewrite all the objects to disk any time one of
them is changed?” suggested Hanna.

“That would be a huge overhead!” Steve objected.

“Not necessarily,” answered Hanna. “We need to store only 30 to 40
bytes of information per object, and if there are a thousand, we have to
write 30 or 40 KB. That won’t take long.”

“It would take forever!” said Steve. Curt began tapping on this Think-
Pad’s keyboard. “Anyhow,” continued Steve, “if you add up all the
objects of all types, it comes to a pretty big file, maybe 120 KB.”

“No, we would split the different object types into separate files,” said
Hanna. “Otherwise we’d have a jumble of different object types in the
file, and we’d have to write extra logic to separate them. So the biggest
file we’d have to handle would be only about 40 KB.”

“That would still take a long time to rewrite,” said Steve.

“Let’s time it,” said Curt. “I’ve just written a little REXX command
that takes two parameters—average record length and number of
records. It writes a file of this size to disk, and measures how long it
takes. So what numbers should I try?” he asked.

“Try a 30-byte record length and 1000 records,” said Hanna.

“OK,” said Curt, and he typed in the command. “That took one sec-
ond,” he said. “Doesn’t sound too long to me,” he added, looking at
Steve.

Steve looked stunned for a while, then he said, “Of course! Windows 95
has a good file buffering system built-in, so records are written to disk
quickly.”
Chapter 6. Persistent Objects on Disk 109

Storing Objects in FAT Files
“That sounds great to me,” said Curt. “Since the operating system
takes care of that for us, we really don’t have to worry about perfor-
mance. And the production system will run on a server at Trusty
Trucks. Its disk is faster than mine. So Hanna’s approach will perform
beautifully.”

“Yes, but what if the system goes down while it’s still writing to disk?”
asked Steve. “A database manager logs all changes to disk, as well as
writing the data back, so if something goes wrong while it’s writing
the data, it can always fix it up from the log.”

“The data files for Trusty Trucks will be so small that we could easily
write the data out to a different file name each time around, and cycle
through the list of three or so file names for each file,” said Hanna.
“When we start up the system, we can use the query timestamp oper-
and of the stream command to find out which version of the data is the
most recent. We can write a special trailer at the end of each file, so if
it’s not there we know the file is incomplete and we should use the
next most recent one. It’s easy to solve this kind of problem.”

“I agree,” said Curt. “Let’s get the system going against flat ASCII files
and start doing user training and acceptance testing at Trusty Trucks.
We can change it later to put in smart recovery logic. The users are
waiting for us, and we need the money we’ll get once this system is
installed.”

“That’s fine for Trusty Trucks,” said Steve, “but Classy Cars is a much
bigger operation. They need to support six to eight separate locations,
and they will need update facilities from multiple workstations at the
same time. There’s no way a simple ASCII file approach will meet
their needs.”

“You’re absolutely right, Steve,” agreed Hanna. “We’ll have to build
database support when it’s time to implement the system for Classy
Cars. And maybe in the past we would have had to try to persuade
Trusty Trucks to use a database manager as well, because we couldn’t
afford to support two different versions of the application. But the
main reason we’re using Object REXX for this application is so we can
customize different versions for different customers and still reuse all
the common business logic. Remember?”

“Yes, I guess so,” said Steve, not looking convinced. “Except that once
we’ve got the ASCII file version going, you’ll probably change your
minds and decide that’s the way we have to go for Classy Cars too.”

“We’ll do what’s best for the customer, Steve,” said Hanna. “That’s the
only way to make sure that they’ll ask us for help again.”

“OK.” he said, “We’ll build an ASCII file solution for Trusty Trucks,
but I’m going to start working out how we can structure the applica-
tion to get the kind of configuration flexibility we’ll need in the future.”

“That’s a great idea, Steve,” said Hanna. “Now, let’s finish this design
and get coding. What format should we use for the objects when we
write them out to disk files?”
110 Object REXX for Windows

Storing Objects in FAT Files
Format of the Objects

“Why not write them out as comma-delimited records, the way a
spreadsheet package would export rows?” asked Curt.

“Not bad, but our data could easily include commas in things like
address fields,” said Hanna. “Let’s use tab characters to delimit fields.”

“Good idea!” said Curt. “I’ve got the fields we need on this piece of
paper.” He rifled through his work file and pulled out a piece of paper
[see Figure 42 on page 83]. “All we have to do is write the files in this
format.”

“Just a minute,” said Steve. “You’ve got some smallint fields defined
there. Those are 2-byte binary integers. Either byte could easily con-
tain the code value for a tab, the ASCII value 9. That would throw you
off when you try to decode the record during loading.”

“Good thinking, Steve,” said Hanna. “We’ll have to write the numeric
values as strings. No problem, because that’s the way REXX writes
them out, unless you tell it otherwise.”

Steve smiled his appreciation for Hanna’s compliment and got more
enthusiastic about the design. “We’ve also got some repeating groups
in the service and work order objects,” he said. “How are we going to
handle those?”

“We can just attach them to the back end of the record, delimited by
tabs, like the other fields,” said Curt. “We’ll know what they are when
we read the files. There’s no chance of confusion.”

“Not exactly third normal form1!” said Steve.

“No problem,” said Hanna. “No one is going to read these files except
us, while we’re debugging the code.”

“Hmm—I guess so,” agreed Steve reluctantly.

Sample ASCII file for the customer class

 number name address (¬ = tab key)
 101 ¬Senator, Dale ¬Washington
 102 ¬Akropolis, Ida ¬Athens
 103 ¬Dolcevita, Felicia ¬Rome
 ...

Sample ASCII file for the work order class

 number date cost complete custmr serial service-items (¬ = tab key)
 1 ¬09/06/95¬-1 ¬0 ¬101 ¬123456 ¬1
 2 ¬09/06/95¬-1 ¬0 ¬103 ¬398674 ¬10¬9¬4
 3 ¬09/06/95¬-1 ¬0 ¬106 ¬911911 ¬7¬6
 ...

1 Third normal form does not allow repeating fields within a table. A separate table with a row for
each repeating value is used in normalized tables.
Chapter 6. Persistent Objects on Disk 111

Storing Objects in FAT Files
Implementing the Changes in Code

“Well, I think we’ve got this all sorted out,” said Curt. “We just have to
modify the methods we wrote for our objects, to write updates to
disk...”

“Hold it!” snapped Steve. “We’ve just agreed that we’re going to have
different versions of the system supporting both ASCII files and a
database manager, and you want to start carving up our existing
methods to hard-wire ASCII file logic into them. Once we’ve done that,
we’ll never be able to support two different versions while sharing
common code.”

“Be realistic, Steve!” said Curt. “How are we going to support ASCII
files if we don’t write some new function into the code? This OO stuff
isn’t magic, you know.”

Steve glared at Curt, then strode to the whiteboard and took the pen
from Hanna. She sat down, grateful to give her feet a rest.

“Let’s start with customers,” he said. “We already have a Customer
class defined with its methods to control how customer objects behave
once they’re in storage.”

“Right,” said Hanna encouragingly, as Steve drew a box and labeled it
Customer on the board.

“Currently, the Customer class is a subclass of the Object class by
default, since we didn’t say otherwise when we defined it.” Steve drew
a box labeled Object above the Customer box and connected the two.
“Now, let’s say we change the name of the Customer class to Customer-
Base, and define a new class called FAT Customer.” Steve drew a new
box with this label below the Customer box, and drew connecting lines
to show that CustomerBase was a child of Object and FAT Customer a
child of CustomerBase.

“With this structure,” Steve added, “we could write the additional
methods that we need for object persistence in FAT files as new meth-
ods in the FAT Customer class. We could change the CustomerBase
class methods to invoke these new persistent methods when object
updates need to get written to disk.”

“Hold on,” said Curt, “FAT Customer isn’t a valid class name.”

“Well, the class name would actually be just Customer,” Steve
answered, “but we would have different versions of the Customer class
definition; one for FAT, another for DB2. We would store them in sepa-
rate files. I thought of giving both files the same name, but with differ-
ent extensions to distinguish them—maybe customer.FAT and
customer.DB2, for example.”

“That looks fine, Steve,” said Hanna, “but how would we switch
between the FAT and DB2 versions of the code?”

“Like this,” said Steve. He drew a DB2 Customer box next to the
FAT Customer box, and then changed the lines [Figure 46].
112 Object REXX for Windows

Storing Objects in FAT Files
“Let’s suppose we need a DB2 version,” he said. “We develop a totally
separate class called Customer with its own methods to handle persis-
tent storage in DB2 tables. We set up two different configurations. In
the FAT configuration, the FAT Customer class inherits its persistent
methods from the CustomerBase class, and in the DB2 configuration
the DB2 Customer class inherits them from the CustomerBase class.
With this approach we can use exactly the same class and method def-
initions for both the FAT and the DB2 implementations.”

“That’s really neat, Steve,” said Hanna. “That’s using the power of
inheritance in Object REXX to solve a real problem. What do you
think, Curt?” she asked, turning to him.

“It sounds like it might work,” said Curt, “but I think we should think
it through a bit more before we decide on it.”

Hanna turned back to Steve. “Why don’t you try coding-up some sam-
ple code, Steve?” she said. “I’ll gladly help you if you need me.”

“I’ll rough something out for Customer, and we can get together again
and check it out,” he replied. “If it works out the way we need, we can
split the remaining classes between us and make corresponding
changes to them.”

“OK,” said Hanna. “Do you think you’ll have something ready for us to
look at tomorrow?”

“Is that a question or an order?” asked Steve. “I think I’ll have some-
thing for you to look at. After all, when you’ve seen one baseball game,
you’ve seen them all.”

“Oh Steve, you make me feel terrible!” said Hanna.

Figure 46. Customer Class Inheritance Diagram

Object

CustomerBase ::class CustomerBase

FAT Customer DB2 Customer ::class Customer
subclass CustomerBase
Chapter 6. Persistent Objects on Disk 113

The Class Structure
“But not as terrible as you’ll feel if you don’t deliver, Steve!” added
Curt. And on this note they parted.

The Class Structure
The next morning, Steve was in early. When the other two arrived,
Steve called them over to his ThinkPad. He had plugged it into the big
screen so they could see what he was doing while he worked with the
smaller screen of the ThinkPad.

“This turned out easier to do than I expected,” said Steve. “I actually
had time to watch the game. Too bad about the result! I’ve defined the
new FAT Customer class to handle persistent storage on ASCII disk.
It has only six methods.” He pointed to the screen, which showed:

❑ A persistentLoad class method to load all customer objects from
disk into storage when the system comes up:
 ::method persistentLoad class
 expose file
 file = 'customer.dat'
 call stream file, 'c', 'open read'
 do i = 0 by 1 while lines(file)
 parse value linein(file) with customerNumber '9'x name '9'x address
 self~new(strip(customerNumber), strip(name), strip(address))
 end
 call stream file, 'c', 'close'
 return i

❑ A persistentStore class method to write all customer objects from
storage to disk when any customer object changes:

 ::method persistentStore class
 expose file
 call stream file, 'c', 'open write replace'
 do custx over self~extent
 x = lineout(file,custx~fileFormat)
 end
 call stream file, 'c', 'close'
 return 0

❑ Three methods—persistentInsert, persistentUpdate, and persistent-
Delete—that simply invoke the persistentStore method; for exam-
ple:

 ::method persistentInsert
 return self~class~persistentStore

❑ A fileFormat method to convert the customer object into a tab-
delimited string to be written to disk:

 ::method fileFormat
 return strip(self~number)'9'x || left(self~name,20)'9'x || ,
 left(self~address,20)

“There are only 45 lines of code in this class; it’s really simple,” Steve
continued, showing them the code.2
114 Object REXX for Windows

The Class Structure
“What did you have to do to the original Customer class?” asked Curt.

“A few things,” replied Steve, and explained:

❑ “I had to change the initialize class method to invoke persistent-
Load. This is the method in the FAT Customer class that loads all
the customer objects from disk into RAM:

 ::method initialize class
 expose extent
 extent = .set~new
 self~persistentLoad

❑ “Then I changed the init method to invoke persistentInsert for a
new customer:

 ::method init
 expose customerNumber name address cars orders
 use arg customerNumber, name, address
 cars = .set~new
 orders = .set~new
 self~class~add(self)
 if arg() = 4 then self~persistentInsert

❑ “And I changed the update method to invoke persistentUpdate:

 ::method update
 expose name address
 use arg name, address
 self~persistentUpdate

2 The source code referred to by Steve is not included in this document. His application structure
turned out to have some problems when Hacurs needed to introduce support for DB2. The persis-
tentInsert, persistentUpdate and persistentDelete methods were moved to a separate mixin class
called Persistent, as described in The Persistent Class on page 117.
Chapter 6. Persistent Objects on Disk 115

The Class Structure
❑ “Last, I changed the delete method to invoke persistentDelete:
 ::method delete
 expose customerNumber name address cars orders
 do carx over cars
 carx~delete
 end
 do workx over orders
 workx~delete
 end
 self~class~remove(self)
 self~persistentDelete

“And that’s all I had to do. It was very simple, really,” said Steve.

“I don’t get it,” said Curt. “Why did you define separate persistentIn-
sert, persistentUpdate, and persistentDelete methods if all of them sim-
ply invoke the persistentStore method? That looks like a waste of
time.”

“Well, I’m thinking ahead to how we’ll implement the DB2 support,”
said Steve. “With DB2 we’ll use different SQL commands to handle
the insert, update, and delete cases. As it happens, we plan to handle
these different cases by rewriting all the customer objects to an ASCII
file for Trusty Trucks. But we need to invoke different methods in the
base customer class so that one version can meet both requirements.”

“That’s good thinking, Steve,” said Hanna.

“Yes,” said Curt, “so long as he doesn’t waste too much time thinking
about the DB2 implementation. We’ve got to deliver this system fast.”

“I’ve done my bit,” said Steve. “Why don’t you and Hanna make the
corresponding changes for the other classes? Those are the Vehicle,
Service Item, Part, and Work Order classes. You can use my code as the
basis for your changes. I’ve put it on the server in the project direc-
tory.”

“Great! Let’s go,” said Hanna.

The Requires Directive

“Wait!” said Curt. “Are you planning to put the class definitions for
customer, vehicle, service item, part, and work order into different
files?”

“Yes,” said Steve, “it makes for a nice clean implementation. None of
the class files will be more than a few hundred lines of code.”

“That may be so,” Curt replied, “but these classes refer to one another
extensively. If you put them into separate files, will they still be able to
use one another?”
116 Object REXX for Windows

The Class Structure
“That’s why Object REXX has a ::requires directive, Curt,” Hanna said.
“It allows the code in one file to use classes and methods defined in
another. As you go through the code, make a note of the classes it
refers to, and just make sure that you include a ::requires directive for
each class that isn’t defined in the same source file.”

The Persistent Class

Hanna and Curt settled down at their ThinkPads and started looking
at the code. Pretty soon, Hanna called out, “Say Steve, we’re all going
to code exactly the same three persistentInsert, persistentUpdate, and
persistentDelete methods for each of the other four classes. Isn’t there
a better way of doing that?”

“Come on Hanna, just cut and paste,” said Curt. “It won’t take long.”

“But Curt,” said Hanna “We talked about several different ways of
implementing persistent storage and settled on our current approach
for Trusty Trucks only because their file sizes are going to be small.
What happens if their volumes grow, or if we find an opportunity to
sell this solution to a bigger business that still wants a flat file solu-
tion but has large volumes?”

“Now you’re thinking OO, Hanna!” agreed Steve. “There is an easy
way to do what you’re asking. I’ll move the three methods out of the
FAT Customer class and put them into a new class—let’s say we call it
Persistent. Then each of our five FAT classes can inherit these meth-
ods from the Persistent class.”

“So we should make our FAT classes subclasses of the Persistent
class?” asked Curt.

“Yes. No! Wait!!” said Steve. “Let’s do this properly. I’ll make the Per-
sistent class a mixin class. When you define your FAT classes, use the
inherit clause to inherit methods from my Persistent class. That’s what
mixin classes are for, after all. It’s very simple, really. Look, I’ll change
the diagram to show how it would work.”

Steve drew shadow boxes behind the Customer class to represent the
other data classes to be handled—Vehicle, Work Order, Service Item,
and Part. He then added a new Persistent mixin class and showed that
the FAT data classes inherited some methods from it [see Figure 47].

Example of ::requires directive

In the FAT Customer class we require the definition of the Customer-
Base class:

 ::requires 'carcust.cls'
Chapter 6. Persistent Objects on Disk 117

The Class Structure
“What about the persistence methods for the DB2 version, Steve?”
asked Hanna.

“The methods for persistence in DB2 will have to contain specific SQL
statements for each object type,” replied Steve. “We’ll probably end up
coding them directly into the DB2 classes themselves.”

“Is all this messing about really worth the trouble?” asked Curt.

“If we start building it right, we’ll finish building it easily,” said
Hanna. “If we start cutting corners while we’re busy laying the foun-
dations, there’s no way we’re going to get the walls square later on.”

Figure 47. FAT Data Classes Inheriting from a Mixin Class

Object

Persistent ::class Persistent

Mixin Class mixinclass object

CustomerBase ::class CustomerBase

::class Customer
FAT Customer DB2 Customer subclass CustomerBase

inherit Persistent

Sample code of the Persistent class

 ::class Persistent public mixinclass Object

 ::method persistentLoad class /* class methods */
 return 0
 ::method persistentStore class
 return 0

 ::method persistentInsert /* instance methods */
 return self~class~persistentStore
 ::method persistentDelete
 return self~class~persistentStore
 ::method persistentUpdate
 return self~class~persistentStore
118 Object REXX for Windows

The Class Structure
They all settled down to work. Their car dealer application was tested
and working off persistent FAT file storage before the end of the day.

“I’m going to take this round to Trusty Trucks first thing tomorrow,”
said Curt. “Wish me luck—I may just come back with the specs signed
off and a committed implementation plan.”

“I’ll bring in a bucket of ice and some sparkling wine,” said Hanna.
“Now don’t disappoint us, or Steve and I will have to drown our sor-
rows—alone.”

“You’ve got a deal!” said Curt.

Source Code and Sample Data for FAT Class Implementation

The source code for the FAT classes is described in Table 22 on page
301 and listed in Persistence in Files on page 509.

Sample flat files for the five classes of the car dealer application are
described in Table 22 on page 301 (data subdirectory) and listed in
Sample Data on page 489.

The source code of the Persistent class is listed in Persistent Class on
page 507.
Chapter 6. Persistent Objects on Disk 119

The Class Structure
120 Object REXX for Windows

7
Graph
ical User
Interfaces with
OODialog
In this chapter, we look at a tool that can be used to develop a GUI for
the Object REXX car dealer application.

This chapter also serves as a user’s guide for the OODialog GUI
builder that is part of the Object REXX code shipped with this book.
Chapter 15, OODialog Method Reference, on page 317, contains the
reference information for OODialog.
 121

The Setup
The Setup
“That was some party!” said Steve. “Do you still have the Trusty
Trucks contract, Curt? I hope you didn’t turn it into a paper plane.”

Curt smiled. “No danger of that, Steve” he said. “This contract is going
to pay our salaries for the next few months while I’m busy installing
the system and training the users.”

“The Trusty Trucks order was a wonderful business win, Curt,” said
Hanna. “It makes me feel really confident about the future of our com-
pany.”

“While you’re busy skinning this lion, I’ll go out and catch another,”
said Steve. “Classy Cars is very keen on our car dealer application,
and they’ll feel a lot more confident once they know they won’t be the
only company using it. The only thing is, I’ll have to develop a GUI
front end for it.”

“It would be great if we could sell our system to other customers,” said
Hanna. “That’s the way to get our profits up. We spent a lot of time
designing it so that we could easily customize it to different users’
requirements. It would be a great shame if that were never put to the
test.”

“Well, I’ll take care of the GUI,” said Steve.

“How did you imagine to do that, Steve? We don’t have the time to
develop our own GUI builder, and I don’t know of any graphical inter-
face for Object REXX on the Windows systems yet. Did you find an ad
while surfing?” asked Hanna surprised.

“No, I didn’t. I don’t think there are any tools for Windows yet. All the
GUI builders I know are for OS/2 REXX. But you might remember
Kevin, the German I met last year at the CEBIT conference,”
answered Steve.

“The guy working for IBM?” interrupted Hanna. Steve nodded approv-
ingly. “That’s right! In his last e-mail, he wrote that he’s now responsi-
ble for the Windows part of Object REXX. In good foresight, I have
already questioned him about some tools or products to do the same as
Dr. Dialog does for OS/2 REXX.”

“And what was his answer?” Hanna asked while searching the drawer
of her desk for a pencil.

“He told me that they had received some inquiries on this subject
before, and they decided to provide a Windows dialog interface that
they named OODialog. Perhaps we could set up a video conference
with Kevin, and he could tell us more about this interface,” suggested
Steve.

“That’s a good idea,” Hanna said with a little smile on her face. “I’ll
ask Curt to set up the environment for a video conference, and mean-
while you could contact Kevin and fix a date for it.”
122 Object REXX for Windows

The Setup
“I’m already in action,” said Steve, leaving Hanna’s cubicle and head-
ing for his desk.

Steve began to write the request for a conference call addressed to
Kevin. He was pretty sure that Kevin wouldn’t be in his office. It must
have been 8:30 p.m. in Germany, a time you didn’t have to be ashamed
of to be at home rather than working in the office. (It took Steve quite
a few seconds to figure out the time in Germany, having to adjust for
daylight savings time in addition to the usual time zone difference.)
After Steve finished writing his request, he sent it to Kevin and
returned to his usual business, which was thinking about the DB2
interface.

Steve was pretty surprised when he got an e-mail back from Kevin 20
minutes after he had sent his request. Kevin mentioned that he
planned to do some overtime that day anyway, so he suggested holding
the conference call in half an hour. Steve checked with Curt, who
agreed to the time because he only had to make a few minor changes
to the setup for the video conference. He then informed Hanna and
wrote back to Kevin to confirm the time.

At the agreed upon time, Hanna joined her two colleagues, who were
trying to get a connection over the Atlantic Ocean to Germany. The
satellites and wires seemed to be pretty busy, so they had to try it a
few times. Finally they connected to Kevin’s CODEC system and could
start their conference.

“Hello Kevin, how’s it going. It’s nice to talk to you again after such a
long time. We have a pretty bad connection today,” said Steve with
some uncertainty about what to say.

“Hi Steve, thank you, I’m fine. Nice to talk to you, and your friends as
well,” said Kevin, nodding toward the camera. “After we finish our
business, we have to talk about my residency in the States, but let’s
start talking about OODialog to save your company some money,” said
Kevin and grabbed his notes. “What do you want to know?” he asked.
“Give me some keywords, so we don’t waste time talking about sub-
jects you’re not interested in.”

“We need all the information we can get. As I mentioned in the e-mail
to you, we’ve got only a few days to create a GUI front end for our car
dealer application to make an important deal with another company.”

“OK.” Kevin cleared his throat. “That means, we don’t have to cover all
available OODialog methods. I’ll send you the reference guide for the
dialog interface, so that you can look up the methods and their argu-
ments that are provided with the tool.”

“Well, it sounds pretty good that there’s something written about your
GUI builder,” said Hanna with relief. “You could give us access to your
machine so we can ftp it.”

“No problem, already noted!” said Kevin, still writing on the paper in
front of him. “Are you ready to start?”
Chapter 7. Graphical User Interfaces with OODialog 123

Resource Workshop
“We’re ready and waiting. Shoot,” replied Steve.

“First I’ll talk a little bit about the design of OODialog and later I’ll
introduce the dialog classes to you. Conceptually the GUI builder con-
sists of three basic parts, the Object REXX interface to the Windows
API written in C, an IBM resource editor called Resource Workshop,
and the Object REXX dialog classes. The API is not of your concern,
but the other two parts are fundamental for creating a professional
front end for your application. There is also a way to create dialogs
without the Resource Workshop, but I’ll only mention this dynamic
facility briefly at the end.”

Resource Workshop
“With the Resource Workshop you can create and manipulate Win-
dows resources. On Windows, a resource is a file or a part of a file that
describes the layout of a window. You can use resources to compose the
dialogs you want to execute using Object REXX. Within the Resource
Workshop you can determine the size, frame type, and style of the dia-
log, and you can place the text, control items, and data fields that the
dialog should contain.”

“It would be great if we had this Resource Workshop installed on one
of our machines, so we could follow you on the screen,” Steve sug-
gested.

“I’ll send you all the stuff you need to use OODialog. For now, all I’m
going to tell you is on a more abstract level. Once you receive the files,
you can set up another conference call to talk about implementation
questions. Do you agree with that?” Kevin asked, not really waiting for
an answer.

“That’s fine with us,” the three said concurrently.

“OK, what was the last point I was talking about?” Kevin asked him-
self. “Ah yes, control items and data fields. I’ll load a resource script on
my ThinkPad and switch the video display to it, so that I can show you
the available dialog items.”

Kevin started the Resource Workshop on his machine, loaded an exist-
ing resource script from his hard drive, and pressed the display switch
button to change the display of the video conferencing system to his
computer screen. “Can you see the dialog?” Kevin asked. [See Figure
48.]

“Yes, clearly and plainly,” Curt replied.

Kevin explained all of the dialog items to Steve, Hanna, and Curt.
124 Object REXX for Windows

Resource Workshop
“Now you know at least what I’m talking about,” Kevin said, continu-
ing with his lecture. “With the Resource Workshop you can add and
place one or more of these items into the dialog. When you have fin-
ished your dialog design, you can save the data into a resource script,
which you’ll need later to execute the dialog with Object REXX. If you
have no questions about the resources, I’ll continue with the second
part, the Object REXX dialog classes.”

None of the three seemed to have any questions at the moment, so
Kevin went on talking about the dialog classes.

Figure 48. The Resource Workshop

Radio buttonCheck Box

Push Button

Default
Push Button

Entry LineStatic Text

Group Box

Combo Box

List Box

Selector Push button Radio button

Tab set Scroll barScroll bar

Group List box

Order

Check box

Combo boxGroup box

Test dialog Input line

Duplicate Icon

Undo last Rectangle

Static text

Frame

Custom control

Tools Explanation
Chapter 7. Graphical User Interfaces with OODialog 125

Object REXX Dialog Classes
Object REXX Dialog Classes
“The dialog classes build the interface between you—the user—and
Windows. There is more than one class because there is more than one
way of executing a dialog with Object REXX, and there are dialogs
with different behaviors. The class we are most interested in at the
moment is the UserDialog class. What we want to do with this class is
execute a dialog that has been created with the Resource Workshop
and stored into a resource script. The UserDialog class contains the
methods to do that. I’ll talk about the details of dialog execution dur-
ing our next conference, when you have received the class definitions
and the method reference. All I can do for now is tell you a few more
things about the concept of dialog execution. Let me just get some-
thing to drink, I have to wet my whistle.”

Kevin went to the fridge, snatched a can of soda, and took a long sip.

“Ahh,” sighed Kevin, “that feels good. Let’s continue. To use the User-
Dialog class, you must create an object—just as with every other class.
The new instantiated object is an Object REXX object. At this moment
you don’t have a Windows object, which means that Windows hasn’t
created a dialog window yet or allocated memory for one. The next
step will be loading the resource script. What you have now is a tem-
plate describing the layout of the dialog in a Windows internal format.
You still don’t have a Windows object. If you call the method to execute
the dialog in Object REXX, a real Windows object is created, data is
transferred to the Windows object, and it is displayed. Now the user
can enter data and communicate with the items of the dialog or the
dialog itself. When the user is done with the dialog, the data is
received in Object REXX from the dialog, and the Windows object is
destroyed.”

“What do you mean that data is transferred or received?” Curt asked,
still trying to put together Kevin’s last sentences.

Kevin nodded as if he expected this question. “There are two reasons
to use a dialog: One is to give information to the user, the other is to
get information back from the user. You can get information from the
user by providing push buttons, entry lines (also called entry fields),
radio buttons, or check boxes. The values of these dialog items are
managed by the Windows object itself. Whenever the user changes the
state of one of these dialog items, the internal data buffer of the Win-
dows dialog is updated, but the state of the Object REXX object that
has been instantiated to execute the dialog remains the same.”

“That sounds pretty complicated,” interrupted Curt.

“You’ll see that it isn’t,” replied Kevin, “but I must tell you all this to
prevent you from making typical errors later. OK?”

Again Kevin didn’t wait for an answer, but instead continued explain-
ing his dialog interface. “The UserDialog class defines some methods
to transfer the data stored in the Object REXX dialog object to the
126 Object REXX for Windows

Using the Resource Workshop
Windows dialog and vice versa. Before executing the Windows dialog,
data is automatically copied from the Object REXX object to the Win-
dows dialog, and after dialog execution, data is copied from the Win-
dows dialog back to the Object REXX dialog object. What you should
keep in mind from all of this is that there is a separation between the
Object REXX dialog attributes and the Windows dialog data. Thus it is
possible to keep the original data of the Object REXX dialog, if the
Windows dialog has been abandoned—by pressing Cancel or Esc.”

“OK! I guess I’m with you now,” said Curt.

“It’s good to stop at this point and continue when you have installed
the GUI builder. Then we can talk about OODialog, using real method
names,” suggested Kevin.

“Fine. Thank you for helping. We appreciate your spending time with
us,” said Hanna, expressing her gratitude.

“Steve, do you have five more minutes?” asked Kevin, rushed. “I’d like
to talk with you about my stay in the States.”

“Certainly,” Steve replied.

“Steve, at the same time you could fix the date for the next video con-
ference,” Hanna chimed in.

Steve talked for a few minutes with Kevin, who told him that he had
been chosen by an American company to spend four weeks in the
States to educate the employees of its software department. Steve and
Kevin agreed on a time for the next video conference and settled on a
date for a personal meeting.

Using the Resource Workshop
In the evening, Curt downloaded the files from Kevin’s machine to his
hard disk, using TCP/IP. Kevin sent Curt a short e-mail with guidance
on installing the program and reference files of OODialog.

The next day, early in the morning, they got together for the second
conference. Kevin didn’t want to stay until 11 p.m. again, so the three
Hacurs professionals had to get up at a time when the nicest part of
their dreams begin—6:30 a.m.

After the usual greeting, Kevin asked Curt, “Did you manage to install
OODialog?”

“Yes, I have,” Curt answered proudly.

“Then let us start with the Resource Workshop right now.” Kevin
opened the second session. [We recommend that the reader follow this
scenario online.]

“To start the Resource Workshop, enter Workshop or double-click on the
icon created by the installation program. Once Workshop comes up,
create a new resource by selecting the New resource project… in the
Chapter 7. Graphical User Interfaces with OODialog 127

Using the Resource Workshop
File menu. The format we are interested in is a .RC, which stands for
resource script. Now you can create a new dialog by selecting the
Resource - New menu item.”

“Wait, there’s a dialog named Add file to resource project,” interrupted
Steve. “What shall we do with that one?”

“Use the Cancel button to close that dialog,” answered Kevin.
“Because you will use the resource scripts for Object REXX, you don’t
need a symbol definition file. It’s useful for C or C++ programmers
only—the original clientele of the Resource Workshop.

“Now, let’s create a dialog. Select New in the Resource menu and DIA-
LOG as the resource type. In the DialogExpert dialog you can choose
between Buttons on right or Buttons on bottom. The other two choices
don’t apply, because you want to have a dialog and not a window.”

“OK! We selected Buttons on right and have a new window containing
a blank dialog with three buttons,” said Steve.

“That’s fine,” said Kevin, “But before we go on, let’s briefly set up the
default display view of the Resource Workshop by selecting Prefer-
ences in the Options menu:

❑ “Select WYSIWYG drawing type. If your dialog contains owner
drawn buttons, which we might discuss much later, you would
select Normal drawing type.

❑ “Select Use Ctl3dv2.dll in Selection options so that your dialog is
shown in 3D style.

❑ “Make sure that Generate CONTROL statements only is not
selected.

“Now let’s continue with the dialog. Select Rename in the Resource
menu and set New name to the identification number you want to give
the dialog, for example, 100. Symbolic IDs are allowed for C or C++
only. After that, double-click on the title bar of the dialog you created.
What you get is a prompt to set the window style of your dialog. To use
a resource script together with OODialog, you should disable the Visi-
ble check box within Dialog style, so that OODialog can enable the vis-
ible flag when the dialog is ready for that.”

“Is it possible to enable one of the other check boxes?” asked Curt.

“Only System menu, Thick frame, System modal, Modal frame, and
Visible have an effect on your dialog. By the way, the entry lines for
Class and Menu must be empty, but you should enter a dialog title, for
example, Exercise Dialog, into the Caption field. If later your dialog
doesn’t come up, check the Class entry line for characters that
shouldn’t be there. Now leave the Window style dialog, so that we can
add a new item to the dialog. I’ll do that once together with you. For all
of the other items, the procedure will be the same. Add an entry line
by selecting Edit text in the Control menu and clicking with the left
mouse button at the position where you want to have the entry line
128 Object REXX for Windows

Using the Resource Workshop
placed. Later you can do that by selecting the corresponding icon
within the tools window. Do you have an entry field within your dialog
now?”

“Yes we do,” answered Curt.

“Double-click on the entry line, and you get another prompt to set the
style for this dialog item. What you have to do for each of your dialog
items is give them a numerical identification number within the Con-
trol ID field. In addition, each item that is an input item—the entry
line, the radio button, the check box, the combo box, and the list box—
must be assigned a name within the Caption field. You’ll need the ID
for communicating with a dialog item, and the name to tell OODialog
where to retrieve or store the data of the dialog item. Because there is
usually no need to communicate with static items, such as text or
group boxes, you can give all static members an ID of -1. Communicat-
ing includes sending and receiving data. So far that’s all you have to
do to make your dialog work together with OODialog.”

“Kevin,” said Curt, “when I leave the Edit text style dialog, the name I
gave to the entry line is displayed within the field. I don’t want that,
do I?”

“It doesn’t matter that the caption is displayed in the entry line,
because it will not be displayed while executing the dialog with Object
REXX. There are some additional comments I want to make concern-
ing the naming of dialog items. OODialog will check your resource
script for input items and create an attribute within your Object
REXX dialog class to retrieve data from and store it to this object
member. It could be a problem that Object REXX doesn’t allow all
characters within symbols. OODialog filters blanks and ampersands
(&) that mark the letters that can be used together with the ALT key
to select the items. Blanks within item names should be avoided. How-
ever, for radio buttons and check boxes, the text displayed and the
item name are declared by the Caption input box within the Item style
dialog, so blanks might be necessary within the item name. But when
using blanks, you have to be aware that the name of the corresponding
Object REXX attribute is without blanks.”

“Wow, that’s a lot,” Curt said, taking a deep breath. “Is there anything
else we have to know?”

“No, I think that’s all you have to know about using the Resource
Workshop,” said Kevin, still seeking for matters he had not covered
yet. “I have a meeting with my boss in 10 minutes. Call me again in
two hours and we’ll talk about how to execute your dialog from Object
REXX. Meanwhile you could create a test dialog to experiment with
the Resource Workshop.”
Chapter 7. Graphical User Interfaces with OODialog 129

Creating a Dialog with Object REXX
Creating a Dialog with Object REXX
For two hours Curt and Steve played around with the Resource Work-
shop, and the result of a heated discussion was a small dialog contain-
ing all possible dialog items. At the arranged hour, only Steve and
Curt sat together to set up the connection to Germany for the third
time. Hanna said that there was a lot of work waiting for her, and two
programmers would be enough.

The UserDialog Class

“Hi, so you are back to talk about dialog execution,” Kevin said, with-
out wasting time. “Did you manage to create a dialog we can use to
demonstrate the execution within Object REXX?”

“Yes, we did,” replied Curt, seizing the opportunity to be the first to
answer. “I’ll switch to our screen so that you can see it.” [See Figure
49.]

“Fine,” continued Kevin. “That’s all we need to start our third lesson.
Start an editor to create a new Object REXX script. To make sure that
we don’t forget it, type in ::requires ’oodialog.cls’. This statement,
placed at the end of the script, embeds all of the necessary class defini-
tions to use OODialog. For the first step, all we’re going to do is display
your dialog, enter some data, and quit the dialog. We won’t implement
any special functionality yet, so we don’t have to define our own dialog
subclass; we can use the existing class. The class we need for working

Figure 49. The Exercise Dialog
130 Object REXX for Windows

Creating a Dialog with Object REXX
with dialogs defined through a resource script is called UserDialog. I’ll
show you how to start your dialog on my display. What is the name of
your dialog’s resource script?”

“We named it exercise.rc,” answered Curt.

“Could you show me your resource script, so I know the names you
assigned to the dialog items?” Kevin asked Curt.

“Certainly, no problem,” Curt said, loading the resource script into a
text editor and switching the display of the video conferencing system
to his monitor [see Figure 50].

“Curt, Curt, Curt,” Kevin said, sounding like a teacher. “Both of you
didn’t pay attention. You are using symbolic IDs in your resource
script for the OK, Cancel, and Help push buttons.”

“But they’ve been added by the Resource Workshop,” Steve replied.

“I know that and in this particular case it’s no problem because OODi-
alog replaces these symbolic IDs for you if the resource is used
together with UserDialog. IDOK is replaced by 1, IDCANCEL by 2,
and IDHELP by 9, which are the default IDs for these buttons on Win-
dows. To get accustomed to using numeric IDs, please change the sym-
bolic IDs to the default values. In the meantime I’m going to write the
Object REXX script.”

Steve and Curt could hear Kevin typing into his ThinkPad, so they
started the Resource Workshop and changed the button IDs.

/**
exercise.rc

produced by VisualAge Resource Workshop
***/

#define DIALOG_1 1
100 DIALOG 26, 28, 263, 163
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Exercise Dialog"
FONT 8, "System"
{
 CONTROL "Entryline", 10, "EDIT", WS_BORDER | WS_TABSTOP, 56, 8, 198, 14
 CONTROL "ComboBox", 11, "COMBOBOX", CBS_DROPDOWNLIST | WS_CHILD | WS_VISIBLE | WS_TABSTOP, 59, 36, 193, 77
 AUTORADIOBUTTON "I &like OREXX", 12, 7, 66, 57, 12, BS_AUTORADIOBUTTON | WS_GROUP | WS_TABSTOP
 AUTORADIOBUTTON "I &dont like OREXX", 13, 7, 79, 72, 12
 AUTOCHECKBOX "Checkbox", 14, 7, 98, 60, 12
 CONTROL "List", 15, "LISTBOX", LBS_STANDARD | WS_TABSTOP, 86, 63, 159, 57
 DEFPUSHBUTTON "OK", 1, 83, 139, 50, 14
 PUSHBUTTON "Cancel", 2, 143, 139, 50, 14
 PUSHBUTTON "Help", 9, 203, 139, 50, 14
 LTEXT "Field 1", -1, 9, 11, 43, 8
 LTEXT "Combo", -1, 9, 37, 44, 8
}

Figure 50. The Resource Script of the Exercise Dialog
Chapter 7. Graphical User Interfaces with OODialog 131

Creating a Dialog with Object REXX
“Here is the first part of what you have to do to execute your dialog,”
said Kevin after he stopped editing. Kevin switched the display again
and started explaining the Object REXX script on his screen [see Fig-
ure 51].

“The first line of the script instantiates an object of the predefined
UserDialog class and assigns the object to the symbol dlg. The second
line checks for an initialization error. The third line loads your
resource script and creates a template for the Windows dialog. You
don’t have a Windows object yet. The Windows dialog will first be cre-
ated within the Execute method. After Load you can set the object
attributes for the dialog’s data items. For example, if you’d like to fill
data items of your dialog with values before the dialog pops up, you
can assign these values to the attributes, using UserDialog methods.”

“Give me an example, please,” interrupted Steve. “How do I make
HANS the default value for the first entry line of the dialog?”

“To do that, you add dlg~EntryLine = "HANS" after the Load method,
where EntryLine is the entry field’s caption entered in the Resource
Workshop.”

“Ahh, I think I got it now,” Steve said, a bit hesitatingly, but with a
smile on his face. “For each of the input items we added to the dialog, a
method is created within our class that has the same name we
assigned to the dialog items in the Caption field. Right?”

“You are close,” Kevin replied. “There are three corrections I have to
make on your statement. First, not one but two methods are added for
attributes. Second, the name will be the Caption without ‘&’ or blanks,
or, if it isn’t a valid Object REXX symbol at all, the attribute will be
named DATAx, where x stands for the identification number of the
dialog item. And third, the most important point, the attributes will be
added to the object, not to the class.”

“In our example that means dlg instead of .UserDialog, doesn’t it?”
Curt interjected, expecting praise.

 dlg = .UserDialog~new
 if dlg~InitCode <> 0 then exit
 if dlg~Load("EXERCISE.RC", 100) > 0 then exit
 if dlg~Execute("SHOWTOP") = 1 then do
 say dlg~EntryLine
 say dlg~ComboBox
 say dlg~ILikeOREXX
 say dlg~IDontLikeOREXX
 say dlg~CheckBox
 say dlg~List
 end
 dlg~deinstall
 ::requires "OODIALOG.CLS" /* OODialog classes */

Figure 51. Simple Object REXX Script for the Exercise Dialog
132 Object REXX for Windows

Creating a Dialog with Object REXX
“Exactly,” replied Kevin.

“And if I want to change the value of a dialog item, or get the value
back, all I have to do is assign a new value to the attribute that
belongs to the item, or retrieve the value of the attribute,” Curt added,
not doubting for a moment that he could be wrong.

“Sorry,” said Kevin, “but that’s not quite right! You have to remember
the separation between the data within your Object REXX object and
the data within the internal buffer of the Windows dialog. Whenever
you change an attribute belonging to your object, only the state of the
object is modified, but not the state of the Windows dialog. To do that,
you must transfer the data from the Object REXX object to the Win-
dows dialog by using the SetData method. To get the data from the
Windows dialog, use the GetData method. All data of the Windows dia-
log is then copied to your object and accessible by the attributes.”

“What if I don’t want to send or receive all dialog items, but only a sin-
gle one?” asked Steve.

“There is a bundle of methods for doing that,” answered Kevin. “See
the OODialog Method Reference for SetValue and GetValue, SetAttrib
and GetAttrib, and the other methods beginning with Set or Get fol-
lowed by the name of the dialog item type, such as SetEntryLine or
GetRadioButton.”

“You didn’t say anything about the Deinstall yet,” said Curt. “What’s
this method for?”

“Deinstall is used to remove from memory the external functions
needed for OODialog,” answered Kevin. “It’s a cleanup method.”

Changing the Dialog Behavior

For a few seconds, none of the three had anything to say. Then Steve
began to speak. “Kevin, at the beginning, you briefly mentioned some-
thing about our not having to implement any special functionality, and
that was why we could use the predefined class, UserDialog. Is there a
way to influence the behavior of the dialog, or what did you mean by
special functionality?”

“Yes,” said Kevin nodding. “OODialog defines more than 250 methods,
and most of them are used to specify the behavior of the Windows dia-
log. We’re going to use some of them right now. If you look at your dia-
log, you can see two items that don’t make sense at the moment. Do
you know which items I’m talking about?”

Steve and Curt were both concentrating on their dialog to figure out
which items Kevin meant. Each of them has his own way of intensify-
ing his mental ability through physical behavior. Steve was pulling at
his nonexistent beard, and Curt was twiddling his hair with his index
finger.
Chapter 7. Graphical User Interfaces with OODialog 133

Creating a Dialog with Object REXX
Suddenly, Steve seemed to have found a clue. “I guess you’re talking
about the list and the…” Steve was searching for the right word. “I
don’t remember what the second item is called. I mean the drop-down
list.”

“It’s called a combo box,” Curt added.

“Yes, the combo box,” continued Steve. “If there are no values to select
within these lists, what are they useful for?”

“Exactly!” shouted Kevin smiling. “You need to fill these lists with
strings. You can do that dynamically, using methods of OODialog. Let
us add a few lines to the sample program.” Kevin disappeared from
the screen and started to enter some code into his ThinkPad. After a
minute or so, his head reappeared on the display of Steve and Curt’s
CODEC.

“I have added some lines,” Kevin said. “Have a look at the new code.”
Kevin switched his display to the new code and presented the Object
REXX source [see Figure 52].

“I defined my own class, MyDialog, which is a subclass of UserDialog,”
started Kevin, explaining what he did. “The definition of this class
starts right after the ::requires statement—this is a must. MyDialog
redefines one method called InitDialog, which is defined in the User-
Dialog class.”

“To be correct, you overwrote this method,” Curt suggested.

 dlg = .MyDialog~new
 if dlg~InitCode <> 0 then exit
 if dlg~Load("EXERCISE.RC", 100) > 0 then exit
 if dlg~Execute("SHOWTOP") = 1 then do
 say dlg~EntryLine /* id=10 */
 say dlg~ComboBox /* id=11 */
 say dlg~ILikeOREXX /* id=12 */
 say dlg~IDontLikeOREXX /* id=13 */
 say dlg~CheckBox /* id=14 */
 say dlg~List /* id=15 */
 end
 dlg~deinstall

 ::requires "OODIALOG.CLS" /* OODialog classes */

 ::class MyDialog subclass UserDialog /* my dialog class */
 ::method InitDialog
 self~AddListEntry(15, "Selection List 1")
 self~AddListEntry(15, "Selection List 2")
 self~AddListEntry(15, "Selection List 3")
 self~AddComboEntry(11, "Selection Combo 1")
 self~AddComboEntry(11, "Selection Combo 2")
 self~AddComboEntry(11, "Selection Combo 3")

Figure 52. Extended Dialog Using Subclassing
134 Object REXX for Windows

Creating a Dialog with Object REXX
“Yes, I did,” replied Kevin. “In my code the InitDialog method puts
three strings into the list specified by ID 15, and three strings into the
combo box specified by ID 11. There are several other methods of
working with list boxes and combo boxes. I’ll briefly list those for a list
box. There is AddListEntry, InsertListEntry, DeleteListEntry, Change-
ListEntry, FindListEntry, GetCurrentListIndex, SetListTabulators,
ListAddDirectory, and ListDrop. For the combo box there are the same
methods except that you have to use Combo instead of List for the
method names, and there’s no SetComboTabulators. I’ll ftp my pro-
gram to you right now so that you can run it to see the different behav-
ior of the dialog.” Kevin connected to Curt’s ftp server by typing ftp
curt@hacurs.com. Then he entered the user ID and password Curt gave
him and copied the small Object REXX script to the hard drive of
Curt’s machine, using the ftp put command.

After Kevin left ftp, he said, “Now you can start the program by typing
REXX EXERCISE.” Steve and Curt invoked this command, played for a
few seconds with the dialog, and were impressed at how easy it was to
implement the new behavior of their dialog.

“If you have played long enough, please add a new button to your dia-
log with any identification number greater than 9, and not used
already for another item,” Kevin said, trying to stop them from play-
ing around.

Curt started the Resource Workshop, intending to add the new button,
when Steve interrupted him. “Let me do this, you already did most of
the existing dialog. I’d like to learn more about the Resource Workshop
as well.” Curt didn’t have the energy to fight Steve, so he decided to
lean back and let Steve do the work. “You know,” Curt said, struggling
to avoid laughing, “I like work. I can sit there for hours and see it be
done.” Steve didn’t react to his joke but instead tried to find the right
icon on the tools window to add a button. After a while Steve saved his
modifications and informed Kevin about his success. “I have added a
button called PushMe with ID 16 to our dialog. Is there a reason for
choosing an ID greater than 9?”

“Yes there is,” answered Kevin. “ID 1 and 2 are reserved for the OK
and the Cancel buttons. Both buttons terminate the dialog execution
and call their corresponding methods. ID 9 is reserved for a Help but-
ton that calls the help method. All IDs from 10 to 9999 are available.”

“Kevin,” said Curt, “I executed the new dialog while you were explain-
ing the button IDs, and I clicked on the new button, but nothing hap-
pened.”

“Well, that’s because you didn’t connect the buttons of your Windows
dialog to a method of your Object REXX object,” replied Kevin. “You
must tell your dialog what should happen when a button is clicked.
The easy way to combine a dialog button with a method is to have it
done automatically: load the resource script, using the CONNECT-
Chapter 7. Graphical User Interfaces with OODialog 135

Creating a Dialog with Object REXX
BUTTONS option of the load method. In that way, all buttons of the
dialog will be connected to a method with the name given in the Cap-
tion field.”

“The instruction to load the resource script would then look like this,”
said Steve, while he was switching the display to the video conference.
The cursor of his editor was positioned at this line:

 if dlg~Load("EXERCISE.RC", 100, "CONNECTBUTTONS") > 0 then exit

“Yes, exactly,” said Kevin. “If that’s not what you want to do, you can
also explicitly connect a single button to a method, using the Connect-
Button method. The code to connect your PushMe button to the But-
tonPushed method is self~ConnectButton(16, "ButtonPressed"). After
this statement is executed, the ButtonPressed method is called when-
ever you click on the button with ID 16.”

What’s Going On Inside

If you—the reader—think you know how to use a dialog with Object
REXX and you’re not curious about internals, you can skip this topic
and continue with the next, Implementing a Method for a Push Button
on page 138.

“Can you tell me more about the connection issue?” asked Steve. “I feel
some uncertainty concerning this matter.”

“OK,” answered Kevin. “The best way is to tell you what happens
internally when a button is pressed. Whenever the user pushes a but-
ton, Windows sends a message to the so-called window procedure of
your dialog. Your window procedure gets the message and determines
whether or not it is a message in which the dialog is interested.
Because the window procedure usually is written in C, the Object
REXX programmer cannot change the behavior of the dialog for an
incoming message directly within the window procedure. What I
implemented for OODialog instead is this: I look up the message in a
table, and, if the message number is found, I send the message stored
in the table entry to the Object REXX dialog object. All that Connect-
Button does is add an entry to the message lookup table. If you don’t
connect the button to the dialog, the window procedure won’t find an
entry in the table, and the message sent by the button will be ignored.
Is it clearer now?”

“That was really helpful,” replied Steve. “And is it possible to connect
other dialog items to methods as well?”

“Yes,” said Kevin, “you can connect radio buttons and check boxes to
methods by using the ConnectControl method and the same argu-
ments as for ConnectButton. For more information about this topic,
you should read about AddUserMsg in the OODialog Method Refer-
ence. With AddUserMsg you can connect any window message to an
Object REXX method.”
136 Object REXX for Windows

Creating a Dialog with Object REXX
Kevin had hardly finished the last sentence, when he remembered
another issue. “Talking about the message table, there is another
internal table that manages all the data items within the dialog. If you
take the method reference, you can see the BaseDialog class contain-
ing an attribute called AutoDetect. If this attribute is 1—the default—
your Windows dialog will be searched for data items, that is, entry
lines, radio buttons, check boxes, list boxes, and combo boxes. There
are methods to register data items manually, but usually there is no
need for you to use them. Data items must be registered so that
OODialog knows how to transfer data from and to the Windows dialog.
For each registered data item, an attribute will be added to the Object
REXX dialog—remember the Caption field and DATAx. If a stem vari-
able is passed to the init method of the dialog, the stem variable is
searched for the ID of the dialog items to initialize and retrieve their
data. Because SetValue, GetValue, SetAttrib, and GetAttrib use infor-
mation from this table, it is only possible to use these methods for dia-
log items that have been registered.”

“OK,” said Steve, “but because auto detection is enabled as the default,
these methods can be used for normal dialogs, right?”

“Yes, that’s right,” answered Kevin, “but I classified you as curious
programmer, and therefore wanted to tell you more than you actually
need to know.”

“That’s nice,” said Steve, blushing a bit. “Thank you. Let me see if I’m
not only curious, but also able to understand. Push buttons and data
items must be registered so that OODialog knows about them and the
calling of methods can be enabled. The data transfer between the
Object REXX object and the Windows dialog depends on the registra-
tion as well. What I didn’t understand is the thing with the stem.”

“The stem,” began Kevin, hesitating because of an uncertainty that he
went too far with this, “is the second way to transfer data. If you pass
the name of a stem to the init method of a UserDialog object, data will
be taken from the stem variable to initialize your Windows dialog, and
it will be updated in the stem variable after the dialog execution. A
stem is particularly useful when the dialog includes a lot of check
boxes or radio buttons, because you can use an index variable to ini-
tialize them. I guess this explanation is deep enough and more than
you must really know, but it might help you understand how to use
OODialog just a little bit better.”

“Yes, indeed,” replied Steve. “I imagine that it will help me remember
that I have to use numerical identification numbers, name the dialog
items with valid Object REXX symbol names, and use the CONNECT-
BUTTONS option or the ConnectButton method, if I’m using push
buttons. Thanks again, it was a good lesson.”
Chapter 7. Graphical User Interfaces with OODialog 137

Creating a Dialog with Object REXX
Implementing a Method for a Push Button

Kevin thought for a few seconds about how to continue and then sug-
gested, “Let’s define the PushMe method for our dialog and connect it
to the Windows dialog. For educational reasons we’re going to use the
ConnectButton method. Within the PushMe method you can calculate,
print something to the console or a printer, display a message box,
store data in a file, or work with your dialog. Please wait a few seconds
so that I can change our demo script.”

Again Kevin started to hack on his keyboard to make the required
changes. Curt and Steve could here the noise of keys clicking, so it was
easy for them to recognize when Kevin was finished with his new
script, and they were able to load the new program into their editor.

“I made the modifications,” Kevin said, reappearing on the display.
“You can load the new script now.”

“It’s already up,” replied Curt [see Figure 53].

“The first part of the REXX script didn’t change,” Kevin started to
explain his work. “I have added two methods, PushMe and Validate.
Within PushMe I used a collection of methods provided by OODialog
to demonstrate its power, so you can honor what I did by developing
such a program. Here is a short description of what PushMe does.
First, I retrieve all of the data from the Windows dialog into dlg’s
attributes through GetData. Then, I check if the I dont like OREXX
radio button is selected. If so, I disable the OK button, so it’s only pos-
sible to leave the dialog with Cancel or Esc. I change the data within
the entry line directly, I let the list box disappear, and I add a new
string to the list that I hid before. If the radio button isn’t selected, I
enable the OK button, set the entry line to You can go now indirectly,
load the attributes into the Windows dialog, and show the list.”

“Does directly mean that you change a single dialog item and indi-
rectly that you copy all of the attributes to the dialog?” asked Steve.

“Exactly!” answered Kevin.

“Why did you add the Validate method?” asked Curt inquisitively.

“Because I wanted to show you how dialog validation is done with
OODialog,” Kevin answered. “The Validate method is called by OK,
and if Validate returns a zero value, the Windows dialog is not closed.
In our case, Validate checks whether I dont like OREXX is selected,
and if it is, a message box is displayed and the dialog does not disap-
pear.”
138 Object REXX for Windows

Creating a Dialog with Object REXX
 dlg = .MyDialog~new

 if dlg~InitCode <> 0 then exit

 if dlg~Load("EXERCISE.RC", 100) > 0 then exit

 if dlg~Execute("SHOWTOP") = 1 then do
 say dlg~EntryLine /* id=10 */
 say dlg~ComboBox /* id=11 */
 say dlg~ILikeOREXX /* id=12 */
 say dlg~IDontLikeOREXX /* id=13 */
 say dlg~CheckBox /* id=14 */
 say dlg~List /* id=15 */
 end
 dlg~deinstall

 ::requires "OODIALOG.CLS" /* OODialog classes */

 ::class MyDialog subclass UserDialog /* my dialog class */

 ::method InitDialog
 self~AddListEntry(15, "Selection List 1")
 self~AddListEntry(15, "Selection List 2")
 self~AddListEntry(15, "Selection List 3")
 self~AddComboEntry(11, "Selection Combo 1")
 self~AddComboEntry(11, "Selection Combo 2")
 self~AddComboEntry(11, "Selection Combo 3")
 self~ConnectButton(16, "PushMe")

 ::method PushMe
 self~GetData
 if self~IdontLikeOREXX = 1 then do
 self~DisableItem(1) /* disable OK */
 self~SetValue(10, "You cannot leave the dialog" ,
 "if you hate Object REXX")
 self~HideItem(15) /* hide the list */
 self~AddListEntry(15, "Tried to quit")
 end; else do
 self~EnableItem(1) /* enable OK */
 self~EntryLine = "You can go now"
 self~SetData
 self~ShowItem(15) /* show the list */
 end

 ::method Validate
 if self~GetValue(13) = 1 then do
 call InfoMessage "If you don't like Object REXX" ,
 "you cannot leave"
 return 0
 end
 else return 1

Figure 53. Sample Dialog Class with a Push Button Event
Chapter 7. Graphical User Interfaces with OODialog 139

Creating a Dialog with Object REXX
Kevin loaded one of the OODialog source scripts—BASEDLG.CLS—into
his editor and went through it to find methods he didn’t explain yet.
Reaching the end of the script, Kevin said, “I think we covered all of
the fundamental methods for working with dialogs. Are there any
questions?”

Steve answered this question in the negative. “No,” he said, “I think
Curt and I should try to do the GUI with the level of knowledge we
have now, and if there are problems we can’t solve, we’ll send an S.O.S.
and call you again. Thank you very much Kevin for the time you
shared with us. I owe you a beer or two.”

“It’s been my pleasure,” Kevin said quickly, to stop Steve from express-
ing his thanks. “But do me a favor. I’d rather have a hamburger than a
beer because your American beer is not comparable to our German
beer, which is still made with natural ingredients only.”

“That’s fine with me,” Steve replied. “See you in eight weeks at the lat-
est, when you’re on your residency. Bye!”

“Yes, see you, Ciao,” Kevin said, using one of the few Italian word he
knew. “Good bye Curt, and have fun developing the GUI.”

“Ciao, Kevin,” said Curt, showing that he too can pronounce an Italian
word. “If the design of your graphical interface is good, fun is guaran-
teed.”

Kevin switched off his camera and so did Curt. “It’s late again,” said
Steve, looking at his watch. “Come and join me at Wendy’s for a Cae-
sar salad. Tomorrow we can start coding the GUI.”

“Thank you,” said Curt, “I don’t hear myself saying no.”

The two shut down their systems, left the office, and drove to Wendy’s
to enjoy the promised salad. For the next three days, they designed the
draft dialogs with the Resource Workshop and embedded them into
the existing car dealer application. After the weekend, Hanna asked
her two colleagues about the GUI.

“Boys, did you complete the user interface yet?” Hanna asked, like a
mother asking her little children if they’ve done their homework.

“Yes we did,” answered Curt, “but some improvements are required,
and we don’t know how to do them at the moment. We are going to set
up one more video conference with Kevin. Is that OK with you?”

Hanna nodded. “Certainly, if you think it’s necessary.”

“It’s not absolutely necessary to make these improvements,” said
Steve, “but it would be good to implement what we planned, and it’s at
least not a waste to get more information about OODialog.”

Steve scheduled the video conference for 9 a.m. the next day.
140 Object REXX for Windows

Creating a Dialog with Object REXX
Doing Graphics with OODialog

[To save the reader some time we jump right into the video conference
the next day….]

“What problems do you have?” Kevin asked.

“We decided to make our dialogs more attractive, so we have to change
the appearance of the dialogs. We’d like to use our own graphical push
buttons, and it would be nice to display the car dealer’s logo in the
background of the main panel.”

“Well,” said Kevin, “that’s no big deal. The method you need for using
a bitmap as the background is called BackgroundBitmap or Tiled-
BackgroundBitmap, depending on whether you want to show a bitmap
one time or tile the whole dialog background with a bitmap. The argu-
ment for both methods is the file name of the bitmap file.

“The other method you’re looking for is called ConnectBitmapButton.
As you can see from its name, this method is used instead of Connect-
Button. The arguments for this method are the ID of the button, the
method name to be called, and four bitmap files representing the four
button states normal, focused, selected, and disabled—the normal bit-
map is required and the others are optional. The last argument is used
for options. Valid options are FRAME, USEPAL, INMEMORY, and
STRETCH. FRAME means that a 3D frame is drawn around the bit-
map so that your bitmap button behaves just like a normal Windows
button. USEPAL is necessary to correctly display bitmaps that have
their own color palette instead of the system default. INMEMORY is
necessary to indicate that the bitmap has already been loaded into
memory using the LoadBitmap method. In this case the bitmaps are
not specified by a file name but by a handle. STRETCH allows the bit-
maps to match the size of the button rectangle exactly.

“For all of the graphical functions you can do with OODialog, you have
to place a push button into your dialog and select Owner draw in its
style dialog [double-click on the push button to get the style dialog].
The graphic methods need the so-called device context—memory to
draw graphics—from the button. Even though you might not want the
functionality of a button for your graphic, you must use an owner
drawn button, but it would not be connected to a method. Also, change
the drawing style to normal [Preferences in Options menu]; otherwise
the push buttons are invisible when not selected.”

“This means that if I’d like to display a bitmap in my dialog, I’ll have
to place a button with the size of the bitmap into the dialog at the posi-
tion where I’d like to display the bitmap, double-click on the button
and select Owner draw in the style dialog, and connect the button to
the bitmap through ConnectBitmapButton without using a method
name. Does this hit the core?” asked Steve.

“Hey,” said Kevin, with an intense tone to his voice, “you’re good, you
know that?”
Chapter 7. Graphical User Interfaces with OODialog 141

Creating a Dialog with Object REXX
“I know it, but I’m not sure if Curt and Hanna know it too,” Steve said,
kidding.

“Back to the subject,” said Kevin. He drew his lips together and
stopped smiling. “Instead of using file names, you can load the bit-
maps into memory by using LoadBitmap and then pass the return
value of this method—a handle of the bitmap—to ConnectBitmapBut-
ton as the arguments for the normal, focused, selected, and disabled
states. Loading the bitmaps into memory might be much faster if you
change the bitmap within one button very often. To change the bitmap
within a button, you can use the ChangeBitmapButton method [see
Philosophers’ Forks example]. If you no longer need the bitmap, you
should free the memory by using RemoveBitmap. You can also move a
bitmap within a button by using the ScrollBitmapFromTo method. To
complete the list there are a number of other graphic methods to draw
colored figures:

❑ to create drawing objects there are CreatePen and CreateBrush;
❑ to draw a line there’s DrawLine;
❑ to draw a pixel there’s DrawPixel, and to get the color of a pixel

there’s GetPixel;
❑ to draw a rectangle there’s Rectangle;
❑ to draw circles and ellipses there are DrawArc, DrawPie, and

DrawAngleArc; and
❑ to fill an outine with a color, there’s FillDrawing.”

“You gave me a keyword,” interrupted Curt. “Is there a way to simu-
late a neon sign like the LED ones that are used in shops? We’d like to
show the highlights of the cars that way.”

“You are lucky, aren’t you?” replied Kevin. “A method called ScrollIn-
Button displays a given text with a given font within a button from
right to left. For more information about this topic, you should read
the OODialog Method Reference. There are other methods of writing
text to a dialog as well, but it would take too much time to explain all
of them.”

“I guess we don’t have to write text to a dialog,” said Curt. “All we
want to do is try the ScrollInButton method.”

“I’ll send you some sample scripts that I wrote for test reasons while
developing OODialog,” said Kevin, writing himself a note to send
them. “These samples might give you some assistance in developing
your own application. They should cover most of the methods avail-
able with OODialog, so, together with the OODialog Method Refer-
ence, you have quite enough information to use OODialog to its fullest.
[See OODialog Samples on page 305.] Take a short glance at one of the
dialogs included with the samples, and you’ll be certain that you can
make your user interface look really good.” [See Figure 54.]
142 Object REXX for Windows

Creating a Dialog with Object REXX
While Steve and Curt were looking at the dialog example, Kevin sent
them a diagram he had prepared to summarize the contents of the
previous video conferences [see Figure 55 on page 145]. “Once you get
the file I’m currently sending, I’d like you to load it into Freelance. But
before that, let’s briefly talk about nesting dialogs.”

Figure 54. A Dialog Using Bitmap Buttons
Chapter 7. Graphical User Interfaces with OODialog 143

Creating a Dialog with Object REXX
Nesting Dialogs

“What do you mean by nesting dialogs?” Curt asked curiously.

“Nesting dialogs means that you execute a dialog while running
another dialog,” Kevin satisfied Curt’s curiosity. “You’ll see that a
somewhat bigger application cannot be easily structured without nest-
ing dialogs. OODialog has a maximum nesting level of 10 dialogs. The
good thing is that you don’t have to care about the nesting. You just
instantiate a new dialog object, create the Windows dialog, and exe-
cute it. OODialog does the dialog management for you. Running a
child dialog from a parent dialog causes the parent dialog to be dis-
abled, which means that you cannot access control items of this dialog
anymore.”

“That’s how it should be,” Steve interjected, “because a dialog should
at least be application modal.”

“Exactly,” replied Kevin. “You don’t have to disable the dialog manu-
ally, it is done automatically. The usual way is to execute the newly
created child dialog with SHOWTOP, which causes the dialog to be the
topmost window. After the dialog is finished, the parent dialog is
enabled again automatically.”

“Does the parent dialog become the topmost window after the child
dialog is finished?” asked Curt.

“No,” Kevin answered. “You have to do that yourself by calling the
ToTheTop method in the parent dialog. To make sure that the parent
dialog isn’t locked by an unsuccessful execution of the nested dialog,
you can invoke the Enable method before the parent dialog gets con-
trol back. But these two methods and the limit of 10 dialogs are all you
have to know about nesting dialogs.

“The file transfer should be complete now. Because you will need some
time to study the diagram, I suggest disconnecting for 30 minutes and
then going on. Reconnect at a quarter to?”

“Fine,” replied Curt as he popped up the menu of the video conferenc-
ing system to disconnect the current communication.
144 Object REXX for Windows

Summary of User Dialog
Summary of User Dialog
Figure 55 describes the way the methods of a UserDialog object must
be called to create and execute a Windows dialog.

Figure 55. How the Methods Work Together

Init

Create

Load

LoadFrame

LoadItems

Execute ExecuteAsync

Startit

SetData

Run

manually called methods

automatically called methods

DefineDialog

A

InitDialog

B

Start automatic methods

D

GetData

StopIt

Show

C

EndAsyncExecution

E

HandleMessages F

GetData

StopIt

Startit

SetData

InitDialog

G

StartMessageHandling

Start automatic methods

Show
Chapter 7. Graphical User Interfaces with OODialog 145

Summary of User Dialog
The first method that is called is Init. This is done automatically by
the new class method when an object is instantiated. Once the object
has been created, the user has the choice [A] between defining the dia-
log manually—using the Create method—and loading the dialog from
a resource script—using the Load method. The choice is indicated by
the solid lines.

If the user wants to load the dialog from a resource script, the Load
method first calls LoadFrame and then LoadItems. LoadItems can also
be used for a CategoryDialog to load all dialog items from a dialog
resource into a category page. LoadFrame, however, calls Create,
which means that choosing to load the dialog ends in the same branch
as choosing to define the dialog manually.

The Create method allocates memory for a dialog template to which
the dialog items can be added. The DefineDialog method [B], which is
called by Create, is the right place to add items to the dialog. If the
user chooses to define the dialog manually, it is recommended that
UserDialog be subclassed and all Add… messages (AddText, AddEn-
tryLine, AddButton) be placed into DefineDialog. The new attributes
will be added to the OODialog object by LoadItems or the Add… meth-
ods. Therefore, the user can assign values to dialog items after
DefineDialog is executed. The user can choose whether to send the
Execute message or the ExecuteAsync message after Create has been
processed. At this time, no Windows dialog exists, only a dialog tem-
plate that contains all information about the dialog’s appearance.

Once the user sends the Execute or ExecuteAsync message, the Startit
method is called. Method Startit creates a real Windows dialog and
calls InitDialog [C]. The InitDialog method is the right place to fill the
combo boxes and list boxes—using AddListEntry or AddComboEn-
try—and to invoke other methods that deal with real dialog items
(Windows objects). All Connect methods, such as ConnectCheckBox,
ConnectButton, and ConnectBitmapButton, can also be placed in this
method, but the Init method is the recommended place because the
Connect methods do not deal with Windows objects. You can also pre-
pare attributes of dialog items with values, but do not use the Set...
methods.

In the Execute and ExecuteAsync methods the next method called is
SetData to transfer the data from the attributes—or the stem if
given—to the Windows dialog. This is why Set... methods in InitDialog
have no effect because the data items are set again by SetData.

Next, the dialog is displayed by sending Show [D]. After this, all the
methods that were added by using AddAutoStartMethod are executed
asynchronously. This feature is for animated buttons.

At this point there is a difference between Execute and ExecuteAsync
[E]. For Execute dialogs, the Run method is invoked next to dispatch
the messages until the dialog is closed by the user. For ExecuteAsync
dialogs the StartMessageHandling message is started to handle the
146 Object REXX for Windows

OODialog Classes
incoming messages and dispatch them to the dialog object. Because
this method is executed asynchronously, ExecuteAsync returns while
the dialog is still up.

When the dialog is closed, the data is transferred from the Windows
dialog to the OODialog object through GetData, and the dialog is
removed from memory by Stopit. A second Execute is not possible.
When using ExecuteAsync, you must call EndAsyncExecution [F] man-
ually to wait until the dialog is closed by the user and to transfer the
data to the object.

After Stopit [G] is called, you can no longer use methods that deal with
Windows objects. You still have access to the attributes of the dialog
object.

OODialog Classes
“If you remember our first video conference,” began Kevin after the
reconnect, “I told you that there is more than one way to execute your
dialogs with OODialog. What we did all the time was use UserDialog,
which is required when the dialogs are stored in a resource script. In
some of my samples I’m using other classes that I’d at least just briefly
like to mention. The class I’m going to introduce to you right now is
called ResDialog.”

The ResDialog Class

Kevin continued: “The ResDialog class is used when the dialogs are
stored within a dynamic link library (DLL). Are you familiar with
DLLs?”

“I think so,” said Steve, “at least if they are the same on Windows as
on OS/2.”

“They serve the same purpose,” said Kevin. “If you save your resources
as a .RES file in binary format—you can do that with the Resource
Workshop—you can link this file to a DLL. Windows provides func-
tions to load resources directly out of a DLL, and exactly those func-
tions are used by ResDialog. The advantage of using DLL resources is
that they are faster. You can store bitmaps in the DLL as well, so you
no longer have this heap of files, and your dialog resources are more
protected.”

“You mentioned that it is possible to save resources in binary format
with the Resource Workshop,” interrupted Steve. “What you didn’t
mention is how to link the resources to a DLL.”

Kevin explained: “In order to link a binary resource file to a DLL,
OODialog includes the IBM VisualAge C++ linker, ILINK. This linker
enables you to create a DLL from a RES file.
Chapter 7. Graphical User Interfaces with OODialog 147

OODialog Classes
“The linker must be executed within a command window. Here is the
syntax to invoke the linker:

 ilink MyDialog.res /DLL -out:MyDialog.dll

“This command creates MYDIALOG.DLL from MYDIALOG.RES. To minimize
the keystrokes, you can also use MAKEDLL.BAT, which contains the same
command. To create the same DLL, just enter MAKEDLL MyDialog on
the command prompt. Notice that when using MAKEDLL the name of the
DLL is the same as the name of the binary resource file, with a differ-
ent extension.”

“Do you recommend using binary resources stored in a DLL or
resource scripts?” Steve wanted to know from Kevin.

“It depends on what you want to do,” replied Kevin. “If your applica-
tion uses dialogs with many bitmap buttons or if you use a lot of com-
plex dialogs, it is better to store the resources in a DLL so that you
have just one file instead of all those .BMP and .RC files. The manage-
ment and distribution are easier as well. If your application is not too
big, you don’t have to bother with the link process, and it’s easier to
modify your resources. Notice also that the bitmaps stored in a DLL
don’t support different color palettes. This might force you to use bit-
map files. Is that enough to answer your question?”

“Yes, thanks,” nodded Steve.

“There are a few differences between using UserDialog and ResDialog
that I want to list now,” Kevin continued.

❑ “The init method needs two (additional) arguments, the name of
the DLL and the ID of the dialog resource. For example, to instan-
tiate a dialog object that can execute dialog 100 that is stored in
MYDLG.DLL, you have to use this statement:

 dlg = .ResDialog~Init("MYDLG.DLL", 100)

❑ “You don’t have to call Load or Create. As a matter of fact, you
must not call them.

❑ “The DefineDialog method is not called.

❑ “You can pass the resource IDs of bitmaps stored in your DLL to
AddBitmapButton and ChangeBitmapButton instead of the file
names or bitmap handles.

“The rest of the methods of ResDialog are the same as those of User-
Dialog. The difference, as explained, is how to initialize the dialog.
Any questions?”

“I’m not sure it’s clear,” answered Curt, “but it might be more clear
after I see one of your programs that uses ResDialog.”

“Yes, I’m sure that would help,” replied Kevin.
148 Object REXX for Windows

OODialog Classes
The CategoryDialog Class

“Now there’s only one class left that I didn’t mention, but it’s the class
I’m most proud of because you can do really nice dialogs with it. It’s
called CategoryDialog, and it is a subclass of UserDialog. CategoryDia-
log facilitates the use of more than one dialog within one window. It’s
comparable to OS/2’s notebook. The best way to explain it is to show
you one of these dialogs. I have already prepared a demo application
for CategoryDialog. I’ll switch the display to it, but I need a few sec-
onds.” [See Figure 56.]

Kevin explained, “The four dialogs displayed on my screen are four
pages of a CategoryDialog. To select another page, the user must select
the corresponding radio button and the other page will be displayed—
illustrated by the curved arrow. The dialog is split up into three parts,
which I have named head, body, and foot. Only the body must be
defined by the programmer; head and foot are created by OODialog
itself. Here are the Object REXX instructions to execute this category
dialog.” [See Figure 57.]

Figure 56. A Category Dialog

Head

Foot

Body

Categories

change category
Chapter 7. Graphical User Interfaces with OODialog 149

OODialog Classes
“The first line instantiates an object of TicketDialog, which is a sub-
class of CategoryDialog. The initialization data will be passed to the
dialog through the stem data. The dialog consists of four categories
and is of the style TOPLINE. There are three styles for a CategoryDia-
log: normal—using no option—, TOPLINE, and DROPDOWN. Instan-
tiating a normal CategoryDialog displays the categories in one column
on the left side of the dialog. You already saw the layout of a TOPLINE
dialog [Figure 56]. If DROPDOWN is specified, the category selection
isn’t done by radio buttons, but by a combo box. This is particularly
useful when more categories are needed than would fit on one line of
the dialog.

“After InitCode has been checked, the dialog template [see Summary
of User Dialog on page 145] is created by using CreateCenter. Using
Create or CreateCenter means that no resource script is used to
retrieve the layout of the dialog. This is why the size of the dialog must
be passed to CreateCenter in dialog units, not in screen pixels. After
that the dialog can be executed like any other dialog with Execute.”

“Is the third argument of CreateCenter the title of the dialog?” asked
Curt.

“Yes, it is,” answered Kevin.

“How do I know the size the dialog must have?” Curt continued ques-
tioning.

“The dialog must be big enough so that all the dialog pages fit, plus
the head and the foot, which are added automatically.”

“How are the single dialog pages defined?” Curt asked impatiently.
“You said that using CreateCenter means that no resource script is
loaded. Therefore it won’t be possible to use the Resource Workshop,
right?”

“You might find it astonishing, but you can use the Resource Work-
shop to define the pages. What you cannot use the Resource Workshop
for is to define the category dialog itself, which there is no need for. Let
me explain how the layout of a CategoryDialog is defined in the previ-
ous example.” Kevin moved the cursor in his editor so that the neces-
sary lines of the Object REXX script could be seen on the display he
was sharing with Steve and Curt [see Figure 58].

 dlg = .TicketDialog~new(data.,,,,"TOPLINE")
 if dlg~InitCode \= 0 then do; say "Init did not work"; exit; end

 dlg~createcenter(200, 180, "Come along to Movies !")
 dlg~execute("SHOWTOP")
 dlg~deinstall

Figure 57. Execution of a Category Dialog
150 Object REXX for Windows

OODialog Classes
Kevin pointed with the mouse and said, “InitCategories is one of the
methods that must be overwritten. To use CategoryDialog you have to
subclass it, otherwise it’s worthless. InitCategories is used to set the
information about which categories are used. The information must be
assigned to the Object REXX directory object catalog. The entry names
in this directory must be assigned to an array containing the names of
the categories.

“If you made the most of the last half an hour you’ll have noticed that
the DefineDialog method is called by Create to add dialog items to the
dialog template. With a CategoryDialog, there’s not only one dialog to
be defined; there are as many as there are categories. Instead of call-
ing DefineDialog, a method with the same name as the category is
called to define the particular dialog page.”

Kevin moved the mouse cursor to the definition of the Days method
and said, “This is the method that is called to define the dialog page
that is displayed when the Days radio button is selected. Below is the
Ticket method, which is called to define the Ticket page.”

“If I understand correctly,” Curt interrupted, “the methods have the
same name as the category names I added to the array in cata-
log['names'].”

 ::class TicketDialog subclass CategoryDialog

 ...

 ::method InitCategories
 self~catalog['names'] = .array~of("Movies", "Cinemas", "Days", ,
 "Ticket")
 ...

 ::method Movies
 self~loaditems("rc\movies.rc")

 ::method Days
 self~AddText(10,self~SizeY - 65,0,0, ,
 "Please select the day you like most")
 self~AddRadioGroup(31, 5, 5,0, "&Monday &Tuesday &Wednesday" ,
 "T&hursday &Friday &Saturday S&unday")
 self~AddBlackRect(1, self~SizeY -68, self~SizeX -6, 14)
 self~AddBitmapButton(145, 73, 10, 125, 100, ,,"bmp\movie.bmp")

 ::method Ticket
 self~loaditems("rc\ticket.rc")
 self~connectBitmapButton(45, 'printTicket', "bmp\ticket.bmp",,,, ,
 "FRAME USEPAL STRETCH")
 ...

Figure 58. Defining the Layout of a CategoryDialog
Chapter 7. Graphical User Interfaces with OODialog 151

OODialog Classes
“Correct,” answered Kevin. “In the Days method the dialog items are
added manually instead of loading a resource script. The Add… meth-
ods need the positions where the dialog items ought to be located in
dialog units. These methods enable you to create dialogs without using
the Resource Workshop. Some of them add a whole group of items,
which is much faster than adding the items with the Resource Work-
shop.”

“Are all the methods to add dialog items manually listed in the OODi-
alog method reference?” Steve asked, hoping that the answer would be
yes.

“Yes, all of them,” answered Kevin.

“We still haven’t used the Resource Workshop to define the pages,”
interjected Curt, “even though you said it’s possible.”

“Slow down,” Kevin replied, “and look at the Ticket method. It calls
LoadItems with the name of a resource script. LoadItems is the same
method that is used within Load together with LoadFrame to retrieve
the resource. Because the CategoryDialog is created by means of Cre-
ate and the pages contain only dialog items, it’s not necessary to
retrieve the dialog frame, only the items of the dialog. That’s what is
done by LoadItems.”

“Is it possible to load items out of a resource script and then manually
add more of them?” asked Curt.

“Yes,” said Kevin, “you can use both ways together. Once you have
defined your dialog pages, all dialog handling, such as creating the
dialog, switching the pages, and transferring the data, is done by
OODialog itself. The data handling is the same as with UserDialog.
Object attributes will be added for all of the data items. It’s also possi-
ble to use a stem variable to set or retrieve the dialog values. All of the
data items of all pages will be copied from or into one stem.”

“Let me make sure I’ve gotten it,” said Curt. “All I have to do to use a
CategoryDialog is to subclass it, overwrite InitCategories with a
method that creates an array containing the category names and
assign it to catalog['names'], and define the methods to load or add the
dialog items to the pages, using method names matching the names
that were stored in the array. Is that it?”

“Yes, that’s it, but there’s still something to be aware of,” answered
Kevin. “Because the dialog items are spread over more than one dia-
log, all of the methods that must communicate with real Windows
objects, such as GetValue, SetValue, AddComboEntry, and FindList-
Entry, must know in which page the corresponding dialog item is.
Therefore, you must use the Category methods instead and add the
dialog page number starting with 1. Some of the Category methods are
used in the sample.” Kevin moved the scroll bar until the definition of
InitDialog became visible [see Figure 59].
152 Object REXX for Windows

OODialog Classes
Kevin explained, “The methods have the same name as their equiva-
lent in UserDialog with the prefix Category added. The arguments are
the same except that it’s also necessary to specify the page on which
the dialog item is located.

“The PageHasChanged method is invoked by OODialog whenever the
page changes. In the example, the names of the selected movies are
filled into the combo box on page 4 and the first one is selected.”

Kevin scrolled through the sample script to find something that was
still important to say. He found a topic: “Please pay attention while
defining the resource scripts or the layout definition methods, so that
you don’t use the same item ID twice. All methods that allow you to
manually add a group of dialog items expect a starting ID for the first
item, which will be increased for each item. The other methods are the
same as for UserDialog.”

Kevin again scanned the script and finally said, “That’s it. Now we’ve
covered all OODialog classes. Only the standard dialogs are left. Are
you interested in predefined dialogs that can be used for quick user
interaction? It’s similar to simple GUI builders on OS/2.”

“Certainly,” said Steve, “Shoot.”

 ...

 ::method InitDialog
 expose films
 self~InitDialog:super
 films = .array~of("Vertigo","Taxi Driver","Superman", ,
 "Larger than Life","Hair","Cinderella", ,
 "True Lies","E.T.","Twister","Lawnmower Duel")
 do i = 1 to filsm~items
 self~addCategoryListEntry(31, films[i], 1)
 end
 self~setCategoryEntryLine(32,"Paramount")
 self~setCategoryEntryLine(33,"Kim Novak")
 self~setCategoryEntryLine(34,"Alfred Hitchcock")
 ...

 ::method PageHasChanged /* invoked when page changes */
 expose films
 NewPage = self~CurrentCategory /* current page */
 if NewPage \= 4 then return
 self~CategoryComboDrop(41, 4) /* empty combo box */
 Lines = self~getCategoryValue(31, 1) /* get selected films */
 do i = 1 to words(Lines) /* fill combo box */
 self~addCategoryComboEntry(41, films[word(Lines,i)] ,4)
 end
 self~setCategoryComboLine(41, films[word(Lines,1)] ,4)
 ...

Figure 59. Examples of Category Methods
Chapter 7. Graphical User Interfaces with OODialog 153

OODialog Classes
Standard Dialog Classes

“I’m going to display the different dialogs included in STDDLG.CLS and
tell you how they are executed,” said Kevin. “Most of them are two-lin-
ers, so if you just need a quick interface to the user, they are pretty
useful. We’ll start with the timed message box dialog.”

[The rest of this section does not repeat what Kevin told Curt and
Steve. It is a summary of Kevin’s explanations of standard dialogs.]

Standard Dialog Functions
The standard dialogs are available as Object REXX classes and as call-
able functions. In this section we describe the standard dialog classes.
See Standard Dialog Classes and Functions on page 436 for a descrip-
tion of the standard dialog functions.

Timed Message Box
The timed message box is used to display a message to the user for a
specified time. The first argument contains the message; the second,
the box title; and the third, the number of milliseconds during which
the message box is visible. As with the other dialogs, you have to call
execute to run the dialog [see Figure 60].

 dlg = .TimedMessage~new("This is a timed message, maybe you will" ,
 "need it sometime", "Hello !", 2000)
 dlg~execute

Figure 60. Timed Message Box
154 Object REXX for Windows

OODialog Classes
Input Box, Integer Box, Password Box
The input box is used to read a text string from the keyboard, similar
to what the REXX PULL instruction does in a DOS window. The first
argument contains a message, and the second, the box title. The exe-
cute method runs the dialog and returns the text string [see Figure
61].

The integer box and the password box are similar to the input box,
with this exception: In the integer box the user can return only numer-
ical data, and in the password box the typed characters are displayed
as asterisks [*]:

 dlg = .IntegerBox~new("Please enter your age","IntegerBox")
 say "Your IntegerBox data: " dlg~execute

 dlg = .PasswordBox~new("Please enter your password","Security")
 say "Your PasswordBox data: " dlg~execute

 dlg = .InputBox~new("This” ,
 "is an input dialog, please enter some data", "InputBox")
 say "Your InputBox data :" dlg~execute

Figure 61. Input Box Dialog
Chapter 7. Graphical User Interfaces with OODialog 155

OODialog Classes
Multiple Input Box
The multiple input box is used to read more than one text string from
the keyboard. The first argument contains a message; the second, the
dialog title; the third, a stem containing the labels for the entry lines;
and the fourth, a stem containing the initialization values for the
entry lines. The first stem containing the labels must start with 1 and
continue in one number increments. The second stem must start with
101 and continue in one number increments. The execute method runs
the dialog. The data is placed into the second stem and into the object
attributes that have the same names as the labels, with ampersands
(&), colons (:), and blanks removed [see Figure 62].

 lab.1 = "&First name:"
 lab.2 = "&Last name:"
 lab.3 = "&Street and City:"
 lab.4 = "&Profession:"

 addr.101 = "Ingo Holder"
 addr.102 = ""
 addr.103 = ""
 addr.104 = "Developer in the GSDL Boeblingen"

 dlg = .MultiInputBox~new("This is a multi input dialog, please" ,
 "enter the address", ,
 "Your Address", lab., addr.)
 if dlg~execute = 1 then do
 say dlg~FirstName ; say dlg~LastName ; say dlg~StreetandCity
 say dlg~Profession
 end

Figure 62. Multiple Input Box Dialog
156 Object REXX for Windows

OODialog Classes
List Choice
The list choice dialog is used to select one entry of a list. The first
argument contains a message; the second, the dialog title; and the
third, a stem containing the entries for the list. The stem suffixes
must be 1 to n in increments of one. The execute method runs the dia-
log and returns the selected text string [see Figure 63].

 lst.1 = "Monday" ; lst.2 = "Tuesday" ; lst.3 = "Wednesday"
 lst.4 = "Thursday" ; lst.5 = "Friday" ; lst.6 = "Saturday"
 lst.7 = "Sunday"

 dlg = .ListChoice~new("This is a listchoice dialog, please" ,
 "select the day", "ListChoice", lst.)
 say "Your ListChoice data:" dlg~execute

Figure 63. List Choice Dialog
Chapter 7. Graphical User Interfaces with OODialog 157

OODialog Classes
Multiple List Choice
The multiple list choice dialog is similar to the list choice dialog, except
that the user can select more than one list entry. The execute method
runs the dialog and returns the numbers of the selected entries, sepa-
rated by blanks [see Figure 64].

 lst.1 = "Monday" ; lst.2 = "Tuesday" ; lst.3 = "Wednesday"
 lst.4 = "Thursday" ; lst.5 = "Friday" ; lst.6 = "Saturday"
 lst.7 = "Sunday"

 dlg = .MultiListChoice~new("This is a multiple list choice” ,
 “dialog, please select the days", ,
 "MultipleListChoice", lst.)
 s = dlg~execute
 if s \= 0 then do while s <> ""
 parse var s res s
 if res <> "" then say lst.res
 end

Figure 64. Multiple List Choice Dialog
158 Object REXX for Windows

OODialog Classes
Check List
The check list dialog is similar to the multiple list choice dialog.
Instead of using a list to offer the alternatives, check boxes are used.
The first argument contains a message; the second, the dialog title;
the third, a stem containing the alternatives; and the fourth, a stem
containing the initialization value of the check boxes. Optional param-
eters are the length of the check boxes in dialog units and the number
of check boxes in one column. The first stem suffix must start with 1
and continue in increments of one. The second stem suffix must start
with 101 and continue in increments of one as well. To preselect a
check box, the corresponding stem entry must be assigned to 1. The
execute method runs the dialog. The data is returned in the second
stem and in the object attributes named after the check box labels. For
example, chk.102 and dlg~tuesday represent the same check box. If a
check box has been selected, its stem entry and the relative object
attribute are 1, otherwise they are 0 [see Figure 65].

 lst.1 = "Monday" ; lst.2 = "Tuesday" ; lst.3 = "Wednesday"
 lst.4 = "Thursday" ; lst.5 = "Friday" ; lst.6 = "Saturday"
 lst.7 = "Sunday"
 do i = 101 to 107
 chk.i = 0
 end
 chk.101 = 1 /* preselect Monday */
 dlg = .CheckList~new("This is a checklist dialog", ,
 "Checklist",lst., chk.)
 if dlg~execute = 1 then do
 say "Your CheckList data: "
 do i = 101 to 107
 a = i-100
 if chk.i = 1 then say lst.a
 end
 end

Figure 65. Check List Dialog
Chapter 7. Graphical User Interfaces with OODialog 159

OODialog Classes
Single Selection
The single selection dialog is similar to the list choice dialog. Instead of
offering the alternatives in a list, radio buttons are used. The argu-
ments are the same as with the check list dialog, except that argument
number 4 is not a stem but the number of the radio button that shall
be preselected—in the example, June is preselected. The execute
method runs the dialog and returns the number of the selected radio
button [see Figure 66].

After Kevin finished his explanation of the standard dialogs, he said,
“Now, we’re almost done.” “Give me just five more minutes to tell you
something about tokenizing. Do you think you’ll be able to stand it?”

“No question,” replied Steve, “we’re tough Americans.”

 mon.1 = "January" ; mon.2 = "February" ; mon.3 = "March"
 mon.4 = "April" ; mon.5 = "May" ; mon.6 = "June"
 mon.7 = "July" ; mon.8 = "August" ; mon.9 = "September"
 mon.10= "October" ; mon.11= "November" ; mon.12= "December"

 dlg = .SingleSelection~new("This is a single selection dialog",,
 "Single Selection",mon.,6,,6)
 s = dlg~execute
 say "Your SingleSelection data: " mon.s

Figure 66. Single Selection Dialog
160 Object REXX for Windows

Tokenizing OODialog Scripts
Tokenizing OODialog Scripts
Kevin was in a lecturing mood. “You probably know that larger REXX
scripts should be tokenized for performance. [See Tokenizing Object
REXX Programs on page 75.] Make sure that your GUI scripts using
OODialog are tokenized as well. Otherwise the load time for your
interactive programs can be annoyingly long.”

“I assume that the OODialog files are also tokenized,” said Curt. “In
that case it’s not possible to learn from the code or adapt it to one’s
own needs.”

“The required OODialog class file, OODIALOG.CLS, is in the internal for-
mat; otherwise it would take too much time to parse them,” explained
Kevin. “However, you also have the source scripts in the SCRIPTS sub-
directory to make some modifications. After you have changed the
source files, you must execute REXX BUILD to merge and tokenize the
modified source scripts.”

“That’s good to know,” said Curt. “I don’t like tools where you can’t
change anything. What’s next?”

“I’m pretty sure that we covered all that’s necessary for you to develop
your GUI,” Kevin answered. “If there is a problem, feel free to call me.”

“I appreciate what you’ve done for us, Kevin,” said Steve. “Thanks a lot
for that. We’ll mention your name somewhere in the documentation of
our application.” Both parties switched off their video conferencing
system, and it was the last time Steve would see Kevin for seven
weeks.

Modifying OODialog Source Scripts

If you modify the OODialog source files to build your own merged
class file, you are prompted for an output file name. The file name
you provide must be a name other than OODIALOG.CLS, which is
shipped with the product.
Chapter 7. Graphical User Interfaces with OODialog 161

The Car Dealer GUI
The Car Dealer GUI
After the weekend, Steve asked Curt. “Would you like to work with me
enhancing the GUI of the car dealer app?” he asked.

“Yes, if you think you are familiar enough with the graphical facilities
of OODialog now,” Curt answered, pulling a chair across to Steve’s
desk.

Steve started the Resource Workshop. “Let’s begin with the main dia-
log. We will make it as simple as possible, providing just four buttons
that will start single dialogs for each task.”

“Good idea,” Curt mused, “and I suggest that we make all of the panels
look more attractive by using the graphical features of OODialog.”

Main Dialog

For the next hour, Steve designed the main window, while Curt wrote
the corresponding lines of code [see Figure 67].

Steve and Curt were so delighted by the result that they wanted to
jump immediately onto the next dialog. However, Curt was called
away by an urgent telephone inquiry. All he managed to say was,
“Steve, why don’t you design the more complex customer and work

Figure 67. Main Window of OODialog GUI Application
162 Object REXX for Windows

The Car Dealer GUI
order dialogs. I will finish the logic for the main dialog and complete
the simpler dialogs for the service items and parts. I want to learn
more about how Object REXX is coded for OODialog.”

Steve was tempted to object; he wanted the whole job for himself so
that he could show off his abilities, but from Curt’s determined face he
understood that there was no chance of changing his mind.

Two days later, Steve was ready. “Would you like to see the beta ver-
sion of the car dealer application?” he asked Hanna and Curt.

“I’d love to,” Hanna answered, sitting down on the desk next to Steve’s
monitor. Curt joined them shortly afterwards.

Customer Dialog

Steve started the GUI application and clicked on the Customers but-
ton to display the newly designed Customers & Vehicles window [see
Figure 68].

Figure 68. Customer Window of OODialog GUI Application
Chapter 7. Graphical User Interfaces with OODialog 163

The Car Dealer GUI
Steve started to explain his design: “I decided to provide one dialog,
based on the CategoryDialog class, for customers and vehicles. The
dialog is separated into two panels. I can switch between them, while
always having consistent data, that is, all vehicles shown on the sec-
ond panel belong to the selected customer on the first panel.”

“So this is the first panel for the customer information,” remarked
Hanna.

“Right on!” replied Steve. “This is the customer dialog, and users can
do a lot with it alone. The first thing they have to do is identify a cus-
tomer. They can put a name, or part of a name, in the Name entry
field, then click on the List all starting with button. I fetch all cus-
tomers whose names match the search pattern entered and put them
into the list box at the bottom.”

“And if they enter no characters at all in the search field?” asked Curt.

“Then the customer findName class method will fetch all customers,”
Steve answered, demonstrating this as he spoke. “Now if the user
clicks on a particular customer in the list box, I fetch that customer’s
details—number, name, and address—and display them in the entry
fields.” Steve clicked on a name, and the details were filled in.

“And how can the user get information on the customer’s car or cars?”
asked Hanna.

“There’s nothing easier than that!” Steve exclaimed. “The user just
clicks on the Vehicle radio button at the very top of the dialog. But
before doing that, the user can see a hint in the Car field.”

Vehicle Dialog

Steve clicked on the Vehicle radio button, and the second panel of the
dialog replaced the first panel [see Figure 69].

Steve continued: “While switching to the second panel, I fetch the list
of the cars owned by that customer and put them into the Vehicle list
box at the bottom of the window. If the user clicks on a particular car
in this list, I fetch that car’s details and populate the Vehicle entry
fields. The first car in the list is selected automatically, and the car’s
details are already fetched when the dialog comes up.”

“That’s neat,” said Hanna.

“I’ve got Add, Update, and Delete push buttons for both the cus-
tomer and the vehicle dialog,” Steve elaborated.

❑ “To add a new customer, the user fills in the customer’s number,
name, and address and then clicks on the Add button.
164 Object REXX for Windows

The Car Dealer GUI
❑ “To update a customer, the user selects the customer, overtypes
the name or address, and then clicks on the Update button.

❑ “To delete a customer, the user selects the customer and then
clicks on the Delete button.

“The Add, Delete, and Update buttons on the vehicle panel do simi-
lar things. And I’ve put a Media button there too. It doesn’t do any-
thing yet—it’s just a reminder.” Steve finished. [See Using Advanced
DB2 Facilities, Figure 87 on page 196, for the function of the Media
button.]

“And with the Workorders push button you can see all of the work
orders of the customer, right?” asked Hanna, excited, because the new
dialogs looked much better than expected.

“Exactly!” answered Steve. “This will open a new dialog, the same dia-
log that is accessible through the bitmap button on the main window.”

Figure 69. Vehicle Window of OODialog GUI Application
Chapter 7. Graphical User Interfaces with OODialog 165

The Car Dealer GUI
Work Orders Dialog

Steve clicked on the Workorders button in the main window of the
OODialog GUI application and the Work Orders window appeared
[see Figure 70].

Steve was proud of his design of the Work Orders window. “Look on
the left-hand side,” he started. “The list box shows some or all work
orders, depending on several things. If the dialog is started from the
main window, all uncompleted work orders are listed by default. But
you can force the program to list only the completed or even both com-
pleted and uncompleted work orders. Just select the corresponding
radio button at the bottom of the panel.” Steve selected a work order in
the list, then another.

“Oh, I noticed that the fields at the very top changed when you
selected another work order item,” Curt observed.

“Yes,” replied Steve. “That’s because each work order belongs to a car
of a specific customer. If the work order dialog is called from the cus-
tomer or vehicle dialog, these fields never change.” Steve continued,
clicking as he spoke: “In that case I fetch only the work orders associ-
ated with the currently selected car and customer.”

Figure 70. Work Orders Window of OODialog GUI Application
166 Object REXX for Windows

The Car Dealer GUI
“That makes sense,” Hanna agreed, “so if I want to see all work orders,
I’ll start this dialog directly, and if I want to view a specific car’s work
order, I’ll go through the customer and vehicle dialog. But sorry, I
didn’t mean to interrupt you.”

“In the list box on the right-hand side, I show the list of the service
items associated with the selected work order,” Steve continued.

“Wow, Steve, you’ve put a lot of work into this,” said Hanna. “It’s
impressive.”

Add Service Items Dialog
“There’s more to come!” said Steve. “The user can click on the New
Order button to create a new work order for that vehicle.” Steve
clicked the button, and a new work order appeared in the list box. It
was already selected.

“There are no service items on the new work order yet. I don’t have to
bother with all the service item numbers because just one click on the
Add Items button displays a multiple selection list of services avail-
able.” [See Figure 71.]

Steve selected a few service items from the list and closed the dialog.
The work orders window refreshed its right-hand list immediately.

Figure 71. Add Service Items Window of OODialog GUI Application
Chapter 7. Graphical User Interfaces with OODialog 167

The Car Dealer GUI
“Since the Add Service Items window is that simple, I don’t use the
Resource Workshop, but I create it dynamically with just a few lines of
code.” [See Figure 72.]

“Can you delete service items from an existing work order?” asked
Hanna.

“No!” said Steve emphatically. “That’s a feature Classy Cars particu-
larly doesn’t want to have. It’s suspected that some ‘sweethearting’ is
going on in the service department, where services are performed but
not billed. If a service item is added to a work order in error, the clerk
responsible has to make out a whole new work order and get manage-
ment approval to delete the old one.”

“Once all service items on a work order have been completed, the
users can mark the work order as complete,” Steve continued. “They
do so by selecting the work order and clicking on the Complete it but-
ton. I compute the final cost of the work order, based on the standard
charges for the service items and parts involved, and update the work
order to show that it’s complete, and what the final cost is.”

Bill Dialog
“What happens when you click on the Bill button?” asked Curt.

“This,” answered Steve, clicking on the button. “This is the bill that I
have to print. It has the same format as the bill you produced for
Trusty Trucks. I don’t have a printer for my ThinkPad at home, so I’m
displaying the print image on the screen for the time being.” [See Fig-
ure 73.]

 /* prepare a stem "lst." with all service items */
 i = 1
 do servx over .local['Cardeal.ServiceItem.class']~extent
 lst.i = servx~number~left(3) " - " servx~laborCost " - " servx~description
 i = i + 1
 end

 /* now create the dialog window */
 dlg = .MultiListChoice~new(,
 "Select the service items you want to add to the work order", ,
 "Service items", lst.)

 /* display the dialog */
 ret = dlg~execute
 /* handle returned values to add the selected service items */
 ...
 curorder~addServiceItem(servx,'store')
 ...

Figure 72. Code to Create the Add Service Items Window
168 Object REXX for Windows

The Car Dealer GUI
“And by clicking on OK in the Work Orders window, you always come
back to the dialog from where the work orders dialog was invoked,”
Steve concluded.

“That’s really great! I guess now it’s my turn. Would you like to see
what I have done?” Curt asked.

“No! I don’t.” Steve joked. He had already clicked on the Parts button
in the main window of the OODialog GUI application [see Figure 67
on page 162].

“Hey, it’s my turn!” Curt said, “and it doesn’t work anyway since I
haven’t connected the button clicked event with my dialogs. I’ll do it
immediately. Will you be so kind and bring some coffee in the mean-
while please?”

Steve went away to fetch coffee for his friend.

Figure 73. Work Order Bill of OODialog GUI Application
Chapter 7. Graphical User Interfaces with OODialog 169

The Car Dealer GUI
Parts List Dialog

Curt added a few lines to the main dialog’s code. When Steve came
back, Curt started his part.

“If the user clicks on the Parts button, it opens a Parts List window,”
he explained, performing the action as he spoke [see Figure 74].

“This dialog shows all of the part objects available in a list box. If the
user selects a particular part, its details are shown in the entry fields
at the bottom. The user can increase the Stock field by typing in the

Figure 74. Parts List Window of OODialog GUI Application
170 Object REXX for Windows

The Car Dealer GUI
amount to increase by and clicking on the Increase by push button.
To add a new part, the user fills in the entry fields and then clicks on
the Add new part push button,” said Curt, exercising these options.

“This looks great, Curt,” said Hanna.

“Thanks,” said Curt. He closed the Parts List window.

Service Items Dialog

“If the user comes back to the main window of the OODialog GUI
application and clicks on the Services button, the Service Items win-
dow opens,” Curt said, on a roll [see Figure 75].

Figure 75. Service Items Window of OODialog GUI Application
Chapter 7. Graphical User Interfaces with OODialog 171

The Car Dealer GUI
“This window lists all service items defined, with their associated
standard labor cost. When the user clicks on a particular service item,
the list of parts needed to carry out a service of this type is retrieved.
The parts list is displayed in the lower list box with the quantities
required and the cost per part. And that’s all the user does with this
window” concluded Curt, closing it.

“Good job,” said Steve, “you learned to handle OODialog in a short
time!”

“Well, it looks wonderful to me,” said Hanna. “And it seems pretty
robust. I didn’t notice any glitches or crashes.”

“Of course, we made use of the class libraries we developed for the
Trusty Trucks application. We managed to get a high degree of reuse,”
Steve reasoned.

“That’s exactly what we were trying to achieve, and I’m delighted that
it’s working out so well,” said Hanna. “What’s the next step, Steve?”

“I’m due at Classy Cars tomorrow morning to review progress on my
GUI development,” said Steve. “I think the code is in good shape. I’m
sure they’ll be happy with it. If they are, I can start developing the
new classes required to use DB2 for the persistent storage of our
objects.”

“Good luck, Steve,” said Hanna. “We’ve got to win the business at
Classy Cars. We’ve invested a lot to make this application config-
urable, and we’ve got to get a return on that investment.”

Steve smiled. “Don’t worry, Hanna,” he said. “I’m sure they’ll sign.
They need our system to get better control of their operation.”

Source Code for OODialog GUI Interface

The source code for the car dealer OODialog GUI interface is not listed
in the appendix; it is available in the car dealer directory on the CD, or
on a hard drive after Object REXX has been installed (see Table 27 on
page 302).

The source code to start the OODialog GUI program is listed in Pro-
gram to Run the Car Dealer Application on page 527.
172 Object REXX for Windows

How to Structure OODialog Programs
How to Structure OODialog Programs
Here are some hints and tips regarding the structure of OODialog pro-
grams with multiple windows:

❑ Use a subdirectory for all source files, for example, OOD.

❑ Create one main program, for example, car-ood.cmd or
car-ood.rex. Put the logic to display the first dialog at the begin-
ning of the main program. Use a ::requires statement for the
source file of the main window:

 ::requires 'ood\mainmenu.dlg'

❑ Create one Object REXX program for each dialog window. Use
extension .DLG [dialog], for example, mainmenu.dlg.

❑ Define the main window as a subclass of a predefined OODialog
class and use ::requires statements for the source files of the sub-
ordinate windows. Invoke the subordinate windows through action
methods:

 ::requires 'ood\custvehi.dlg'
 ::requires 'ood\orders.dlg'
 ...
 ::class CardealerMainDialog subclass UserDialog
 ::method init
 ...
 ::method customers
 dlg = .CustomerVehicleDialog~new
 ...
 ::method ok
 ...

❑ For the subordinate window dialogs [.dlg], subclass your own dia-
log windows from an OODialog class, overwrite the initialization
methods, and add methods for all actions of the dialog:

 ::requires 'oodialog.cls'

 ::class CustomerVehicleDialog subclass UserDialog
 ::method init
 ...
 ::method InitDialog
 ...
 ::method myAction
 ...

❑ Tokenize all of the dialogs when they have been tested. See Token-
izing Object REXX Programs on page 75 for more details. Consider
merging all dialog source programs into one file for this purpose.
The CARDEAL\OOD\SRC directory contains a sample BUILD program.
Change the main program to require only the merged file:

 ::requires 'ood\ood.mrg'
Chapter 7. Graphical User Interfaces with OODialog 173

OODialog Sample Programs
OODialog Class Files

The OODIALOG.CLS master file is built from the source files of all the
OODialog classes:

 basedlg.cls
 userdlg.cls
 catdlg.cls
 resdlg.cls
 stddlg.cls
 anibuttn.cls
 dialog.cls

Use the ::requires statement for the whole set:

 ::requires 'oodialog.cls'

The OODialog source files are available in the OODIALOG\SCRIPTS sub-
directory of Object REXX. A BUILD program is provided in that direc-
tory to create a merged tokenized file of your choice. The merged file
cannot be named OODIALOG.CLS, which is the name of the file shipped
with the product.

OODialog Sample Programs
OODialog comes with a few, small, sample programs that show many
of the aspects of programming with OODialog. Use the samples as
models for your own dialogs. See OODialog Samples on page 305 for a
brief description of the samples.
174 Object REXX for Windows

8
Persis
tent Objects
in DB2
In this chapter, we find out how objects can be made persistent by
storing them in a DB2 database. We use DB2 for Windows NT and
Windows 95 [Version 2.1.2] for this exercise. Because DB2 is part of
the DB2 family and provides connectivity to all other members of the
family through DDCS or DB2 Client Application Enabler [CAE], the
approach described in this chapter could be used, regardless of the
platform on which the DB2 databases are stored. We also restricted
the SQL functions used in this chapter to a simple subset of the ANSI
SQL standard. Therefore, the code should be portable with more or
less effort across any of several other vendors’ relational DBMSs. In
Chapter 9, Using Advanced DB2 Facilities, on page 185, we exploit
some of the more advanced functions of DB2 Version 2.

Storing Objects in DB2
“Hi Steve,” said Hanna as she walked into the office. “I’ve just been
over to see Trusty Trucks. Our car dealer application is running so
smoothly, they’re just delighted!”
 175

Storing Objects in DB2
“That’s great,” replied Steve. “We spent a lot of time designing that
system—it should run smoothly! But the real benefits of our approach
will surface only when we start building and delivering different ver-
sions to meet different customers’ needs.”

“Right,” agreed Hanna. “Speaking of which, how are you doing with
the DB2 work for Classy Cars?

“It’s been really easy to do, Hanna,” replied Steve. “All the trouble we
took up front to make sure that we could fit DB2 support into the sys-
tem later has paid off. Look, here’s a picture of the class inheritance I
need to build the DB2 support.” Steve showed Hanna Figure 76.

“The base classes contain the methods that are common across DB2
and FAT files, and the DB2 classes contain the DB2-specific methods,”
Steve explained. “Since the DB2 classes are subclassed from the base
classes, they inherit all the methods of the base classes.”

“That sounds quite straightforward,” said Hanna. “What else do you
need to do?”

“Well,” said Steve, “I took the data definitions that Curt drew up when
we first went through the car dealer requirements.” [See Figure 42 on
page 83.] “All I had to do was turn his COBOL into DB2 SQL. Oh, and
get rid of the repeating groups in the service and work order objects.”

“What have you done with them?” asked Hanna.

Figure 76. DB2 Class Inheritance Diagram
The DB2 classes could also inherit from the Persistent class. This
does not provide an advantage, however, because all methods
have to be coded in the DB2 class, regardless.

Object

CustomerBase DB2 Customer

 VehicleBase DB2 Vehicle

 PartBase DB2 Part

 ServiceItemBase DB2 ServiceItem

 WorkOrderBase DB2 WorkOrder

 KEY parent child (subclass)
176 Object REXX for Windows

Storing Objects in DB2
“I’ve made them separate tables,” said Steve. “Look, here’s the table
diagram I have drawn up.” Steve opened a Freelance picture on his
ThinkPad [see Figure 77].

Figure 77. DB2 Tables for Car Dealer Application.
The pictures column in the vehicle table is discussed in Chapter 9, Using Advanced
DB2 Facilities, on page 185.

custnum custname custaddr

101 Senator, Dale Washington
103 Dolcevita, Felicia Rome
...

serialnum custnum make model year

123456 101 Ford T 1931
222222 103 Lamborghini Countach 1992
398674 103 Cadillac Alliante 1991

ordernum custnum serialnum cost orderdate

1 101 123456 -1 09/06/95
2 103 398674 -1 09/07/95

status

0
0

itemnum labor description

1 110 Brake job
2 25 Check fluids

...
3 20 Tire rotate

...

partnum price description

1 120 Muffler
10 5 Oil 10-40

...
11 22 Oil filter

stock

3
30
15

itemnum partnum quantity

1 22 1
1 23 2

11 5

ordernum itemnum

1 1
2 10

...
2 9

...

...

Customer

Vehicle

WorkOrder

Part

WorkServ

Service

ServPart

5 107 199999 100 08/01/95 1

pictures
Chapter 8. Persistent Objects in DB2 177

Storing Objects in DB2
“We need a DB2 table for each class,” explained Steve. “I’ve given them
the same names as the classes themselves. And then there are two
extras to hold the repeating groups. I’ve called them Servpart and
Workserv. Servpart will be used to store the relationship between the
service objects and all the parts that each one needs. Workserv will be
used to store the relationship between the work orders and the ser-
vices that each one specifies.”

“And here are the SQL commands I think I’ll need.” Steve opened a
Notepad window on his ThinkPad [Figure 78].

Hanna studied the SQL commands. “Have you set up a database for
this yet?” she asked.

“Sure,” answered Steve [Figure 79].

“And I’ve run the SQL. I wrote a little REXX command file called run-
sql.rex [see Table 31 on page 304] to read this file and pass it over to
the DB2 command line utility, and I’ve already run these table defini-
tions through it. A couple of times!” he added. “That’s why I’ve got the
DROP TABLE commands at the top. There were a few errors in my
SQL the first time around.”

Hanna smiled. “I believe you!” she sympathized.

“I’ve also coded up the SQL required to insert our test values into the
DB2 tables,” said Steve, dragging an icon from a folder and dropping it
on the editor. A long string of insert commands appeared, and Steve
scrolled down through them [Figure 80].

 DROP TABLE CARDEAL.CUSTOMER
 DROP TABLE CARDEAL.PART;
 ...
 CREATE TABLE CARDEAL.CUSTOMER
 (CUSTNUM SMALLINT NOT NULL,
 CUSTNAME CHAR(20) NOT NULL,
 CUSTADDR CHAR(20) NOT NULL) ;
 CREATE TABLE CARDEAL.PART
 (PARTNUM SMALLINT NOT NULL,
 PRICE SMALLINT NOT NULL,
 STOCK SMALLINT NOT NULL,
 DESCRIPTION CHAR(15) NOT NULL) ;
 ...
 CREATE UNIQUE INDEX CUSTOMER_IX ON CARDEAL.CUSTOMER (CUSTNUM);
 CREATE UNIQUE INDEX PART_IX ON CARDEAL.PART (PARTNUM)
 ...

Figure 78. DB2 Table Definitions
Extract of SQL DDL statements for table definitions.

 CREATE DATABASE DEALERDB ON d -- "d" is the disk drive letter

Figure 79. DB2 Database Definition
178 Object REXX for Windows

Storing Objects in DB2
“And this one starts with a whole bunch of delete commands—just in
case?” asked Hanna.

“Right!” agreed Steve. “I’ve already made sure that they work, too. But
the test data is loaded, and now I’m working on the definitions of the
DB2 classes. We’re going to need a whole lot of new methods.”

“Oh dear!” said Hanna apprehensively. “I hope this doesn’t turn out to
be a lot of extra work.”

Steve’s frustrations boiled over. “Hanna, you and Curt keep challeng-
ing me about the DB2 support. But Classy Cars is a much bigger oper-
ation than Trusty Trucks. Their turnover was five times bigger last
year. They’ve got branches in twenty cities around the country. Sure,
it’s going to take work to adapt our application to meet their needs.
But we’ll get far more revenue out of them than we’ll ever see from
Trusty Trucks. And once we’ve adapted our application to fully sup-
port a GUI front end and a real database, it will be a far more market-
able product than it is today. How many businesses want a clunky
character interface when they buy a computer package nowadays?”

“You’re 100% right, Steve,” she said soothingly. “All of us recognize
that Classy Cars is a wonderful business opportunity. But we’re a very
small operation. I’m worried that we may go bankrupt before we get a
chance to show them how good we are. We have to make absolutely
sure that the Trusty Trucks implementation completes on the due
date with no hitches, so we can get paid on schedule.”

 delete * from cardeal.customer
 ...
 commit
 insert into cardeal.customer (custnum, custname, custaddr)
 values (101, 'Senator, Dale', 'Washington')
 ...
 insert into cardeal.vehicle (serialnum, custnum, make, model, year)
 values (123456, 101, 'Ford', 'T', 1931)
 ...
 insert into cardeal.workorder (ordernum, custnum, serialnum, cost, orderdate, status)
 values (1, 101, 123456, -1, '09/06/95', 0)
 ...
 insert into cardeal.service (itemnum, labor, description)
 values (1, 110, 'Brake job')
 ...
 insert into cardeal.part (partnum, price, stock, description)
 values (21, 120, 3, 'Brake cylinder')
 ...
 insert into cardeal.workserv (ordernum, itemnum)
 values (1, 1)
 ...
 insert into cardeal.servpart (itemnum, partnum, quantity)
 values (1, 21, 1)
 ...
 commit

Figure 80. DB2 Sample Table Load
Extract of SQL statements to load sample DB2 tables.
Chapter 8. Persistent Objects in DB2 179

Persistent Methods for DB2 Support
“I know that, Hanna,” Steve replied. “The best guarantee for a smooth
installation is a good design. That’s why I keep on insisting that we
get the design right, instead of jumping into coding.”

Hanna smiled. “You’re right, Steve,” she said. “We’ve all been working
hard on this project to make sure it’s a success. So let’s settle down
and do some more designing! Have you decided whether you’re going
to load all the objects from DB2 into storage when the system starts
up, or fetch them as you need them?”

Steve relaxed as he turned back to his design. “The people at Classy
Cars haven’t yet decided whether they want one centralized database
or whether each operation will get its own,” he mused. “If it’s central-
ized, the volumes will be pretty big, and we’ll have to go for a load-on-
demand approach. But if they decentralize, no single operation is so
big that its objects wouldn’t fit into storage.”

“So what’s the answer?” asked Hanna.

Persistent Methods for DB2 Support
“We can’t wait for them to make up their minds,” Steve answered. “We
have to assume the worst case, and make sure we can handle it.

That means loading objects only when required and updating them
directly on disk every time they change. Of course, there’s only a lim-
ited number of part- or service-type objects, no matter how big the
operation is. We can carry on loading all those into storage when the
application comes up. But customers, vehicles, and work orders will
have to stay out on disk.”

“Will this mean a lot of extra coding, Steve?” asked Hanna.

“I’ve worked out that we’ll need the following methods,” replied Steve,
as he showed her Tables 13–17.

Table 13. Methods for Customer Persistent Storage in DB2
Method Type Purpose

findName Class Find list of customers in DB2 given an
abbreviated name

findNumber Class Find customer in DB2 given the num-
ber; create customer object in memory
with cars and work orders

persistentInsert Instance Insert a new customer into DB2

persistentUpdate Instance Update an old customer in DB2

persistentDelete Instance Delete an old customer from DB2

ListCustomerShort Class List customers on standard output

ListCustomerLong Class List customers and cars on standard
output
180 Object REXX for Windows

Persistent Methods for DB2 Support

“Wow, Steve—that looks like a lot!” said Hanna concerned.

“I’ve already coded up some of the simpler methods,” Steve replied,
“and I estimate that the whole job will take about twice as many lines
of code as the methods we developed to support persistent storage in
ASCII files. That’s not bad, when you consider all the extra things that
DB2 will give us:

Table 14. Methods for Part Persistent Storage in DB2
Method Type Purpose

persistentLoad Class Load all parts from DB2

persistentInsert Instance Insert a new part into DB2

persistentUpdate Instance Update an old part in DB2

Table 15. Methods for Service Item Persistent Storage in DB2
Method Type Purpose

persistentLoad Class Load all service items from DB2

Table 16. Methods for Vehicle Persistent Storage in DB2
Method Type Purpose

persistentLoadByCust Class Load all vehicles of a customer into
memory

persistentInsert Instance Insert a new vehicle into DB2

persistentUpdate Instance Update an old vehicle in DB2

persistentDelete Instance Delete an old vehicle from DB2

Table 17. Methods for Work Order Persistent Storage in DB2
Method Type Purpose

persistentLoadByCust Class Load all work orders of a customer into
memory

findNumber Class Get work order by number

findStatus Class Get all work orders by status

newNumber Class Make new work order number

persistentInsert Instance Insert a new work order into DB2

persistentUpdate Instance Update an old work order in DB2

persistentDelete Instance Delete an old work order from DB2

persistentInsertServ Instance Add a new service to the work order

persistentDeleteServ Instance Remove a service from the work order

ListWorkOrder Class List work orders on standard output
Chapter 8. Persistent Objects in DB2 181

Implementation of DB2 Support
❑ Support for multiple workstations performing updates concur-
rently

❑ Automatic rollback of programs that fail
❑ Logging of all updates
❑ Recovery of corrupt databases from the log
❑ The ability to handle large volumes of data
❑ The ability to run the database on servers as big as an ES/9000.”

“Enough, already!” Hanna interrupted him. “You don’t have to sell me
on the advantages of DB2, you know that I love using it. Are you
including all the SQL we’ll have to code in your estimates?”

“For sure,” responded Steve.

“OK, Steve,” said Hanna. “I’ve got to get back to Trusty Trucks. Curt
has everything there pretty well under control, but I want to make
sure one more time that the users are ready for the system. If we need
you, I’ll call you, but in the meantime it would be fine for you to carry
on with the DB2 design. It will get us well ahead of the schedule we
agreed to with Classy Cars. There’s nothing better than getting off to a
flying start.”

Steve smiled his appreciation. “I’ll be here if you need me,” he said.
“Good luck with the users!”

Implementation of DB2 Support
The steps to add DB2 support are:

1. Define the DB2 database.

2. Define the tables in the database; an extract is listed in Figure 78
on page 178.

3. Load the tables with sample data; an extract of possible SQL com-
mands is listed in Figure 80 on page 179.

These three steps are part of the car dealer DB2 setup program. Then:

4. Write the Object REXX code for DB2 persistence:

• No changes are necessary to the base classes. They already
have the coding to invoke the persistent methods from the
FAT implementation. For example, the init method invokes
persistentInsert for new application objects.

• Prepare the classes as subclasses of the base classes:

 ::class Customer public subclass CustomerBase

• Write all the additional methods for DB2 persistence.

• Implement the creation of memory objects at application start
for parts and services, and load-on-demand for customers,
vehicles, and work orders.
182 Object REXX for Windows

Implementation of DB2 Support
Implementation of Load at Application Start

During initialization of the application, all parts and services are
loaded into memory by using the persistentLoad methods, similar to
the flat file support but with data from the DB2 database.

Implementation of Load-on-Demand

Customers, vehicles, and work orders are loaded on demand, based on
the assumption that there would be too many for all of them to be
loaded into memory.

To leave intact the pointer implementation of the base classes between
customers, their vehicles and work orders, and the services of a work
order, we always load all the data associated with a customer.

Customers are loaded into memory by their number. The findNumber
method implements the DB2 load of a customer, then invokes the
Vehicle and Work Order classes to load all the data associated with
that customer.

Loading of parts at application start (abbreviated)

 ::class Part
 ::method persistentLoad class
 stmt = 'select p.partnum, p.price, p.stock, p.description' ,
 ' from cardeal.part p order by 1' /* SQL Select */
 call sqlexec 'PREPARE s1 FROM :stmt'
 call sqlexec 'DECLARE c1 CURSOR FOR s1'
 call sqlexec 'OPEN c1'
 do ipart = 0 by 1 until sqlca.sqlcode \= 0
 call sqlexec 'FETCH c1 INTO :xpartid, :xprice, :xstock, :xdesc2'
 if sqlca.sqlcode = 0 then
 partx = self~new(xpartid, xdesc2, xprice, xstock) /* part object */
 end
 call sqlexec 'CLOSE c1'
 return ipart

Loading of customers on demand (abbreviated)

 ::class Customer
 ::method findNumber class
 use arg custnum /* input is customer number */
 stmt = 'select c.custname, c.custaddr' , /* SQL select statement */
 ' from cardeal.customer c where c.custnum =' custnum
 call sqlexec 'PREPARE s1 FROM :stmt' /* prepare the SQL */
 call sqlexec 'DECLARE c1 CURSOR FOR s1' /* define and open a cursor */
 call sqlexec 'OPEN c1'
 call sqlexec 'FETCH c1 INTO :xcustn, :xcusta'/* fetch the matching row */
 if sqlca.sqlcode = 0 then do /* found a customer */
 custx = self~new(custnum, xcustn, xcusta) /* make an OREXX object */
 .Vehicle~persistentLoadByCust(custx) /* load the vehicles ... and*/
 .WorkOrder~persistentLoadByCust(custx) /* work orders of the cust. */
 end
 else custx = .nil /* customer not found */
 call sqlexec 'CLOSE c1' /* close the cursor */
 return custx /* return the customer obj. */
Chapter 8. Persistent Objects in DB2 183

Implementation of DB2 Support
When accessing work orders directly by number, we retrieve the cus-
tomer number of the work order from DB2, then all the data of that
customer is loaded as shown above, including the requested work
order.

Implementation Notes

1. To define the tables and indexes, we wrote the runsql.rex pro-
gram, which reads a file with SQL DDL statements and submits
them to the DB2 command processor (DB2.EXE).

2. For the sample application, the DB2 tables are loaded from the
same files used for the flat file persistent storage. The load pro-
gram, load-db2.rex, reads the files and inserts the data into the
DB2 tables.

3. To prepare and set up the DB2 system, we wrote db2setup.rex and
db2ddl.rex, which invokes runsql.rex with the proper DDL files to
define the tables and indexes, and then load-db2.rex to load the
sample data into the tables.

4. We did not use DB2 referential integrity to check the relationships
between primary and foreign keys in the tables.

5. Customers can also be retrieved by partial name. DB2’s LIKE
facility is used to search the database, and an array of matching
customer names, together with their number, is returned. Data is
loaded into memory with the findNumber method only when a
customer from the resulting array is selected.

6. All updates to the data are performed first in memory and then
immediately thereafter in DB2 with the persistentInsert, persisten-
tupdate, and persistentDelete methods. The DB2 database is,
therefore, always up to date.

Setting Up DB2 on Windows NT and Windows 95

The installation and preparation of the DB2 system on both Windows
NT and Windows 95 is covered in Installation of DB2 Version 2 on
page 290.

Source Code for DB2 Class Implementation

The source code for the DB2 classes is described in Table 23 on page
301 and listed in Persistence in DB2 on page 516.

The source code for the table definitions and the DB2 setup and load
programs is not listed in the appendix; it is available in the car dealer
directory on the CD, or on a hard drive after Object REXX has been
installed (see Table 31 on page 304).
184 Object REXX for Windows

9
Using
 Advanced
DB2 Facilities
In this chapter, we exploit some of the more advanced features of DB2
for Windows NT and Windows 95 delivered in Version 2 of the product.
We make use of DB2’s BLOBs to store multimedia data.

Multimedia in DB2 BLOBs
“I hope things go well today when you call on Classy Cars, Steve!”
called out Hanna. “We need you to bring back a signed contract.”

“I’ll do my best,” replied Steve. “Classy Cars is really keen on our car
dealer package. I’m just a bit worried about delivering the multimedia
function that we’ve promised to give them. Time’s getting short.”

“Is multimedia really necessary, Steve?” Hanna asked. “Wouldn’t it be
simpler to install the application without it, and then come back to it
later if they really want it?”

“They do really want it, Hanna,” Steve replied. “As I’ve mentioned,
they make more money from selling cars than from servicing them.
They want to boost their sales, and they believe that the multimedia
facilities I described and demoed to them will be a big help. Where
 185

Multimedia in DB2 BLOBs
they really hope to score is by exchanging information between differ-
ent branches about cars they have for sale. So if a customer expresses
interest in some type of car that the branch doesn’t have, they can
quickly search the records of cars for sale at the other branches. If
they find the car, they can use multimedia to show it to the customer.
If the customer likes it, they will arrange to transfer the car to the
most convenient branch for the customer. Classy Cars is convinced
that their sales will skyrocket.”

“That sounds very ingenious,” said Hanna. “But how are they going to
capture multimedia images of the cars they have in stock? I know that
you can take color pictures and have a print shop scan it and turn it
into an image file, but that’s slow and quite expensive.”

Steve grinned. “Ah! I haven’t shown you my latest toy,” he said. He
zipped open his bag and pulled out a black object that looked a bit like
a camera. “Here we have a camera that captures image files directly.
The lens focuses the image onto a charge-coupled device array [CCD]
instead of conventional film, and the camera copies that into its own
RAM storage in compressed format. It can hold up to 48 high-quality
images. The camera comes with a cable to plug it into a PC’s serial
port and software to download the images.”

“Wow!” said Curt. “I bet that costs plenty.”

“About the same as a conventional camera,” Steve replied, “And the
really good news is—you never have to buy film for it! That’s a saving.”

Curt shook his head. “You can see who’s the bachelor around here,” he
said.

“Marry in haste, repent at leisure,” said Steve.

“Well, show us what it can do, Steve,” said Hanna.

Steve looked around for a suitable subject and then said, “Look,
there’s Boxie.” The cat from the neighboring house often visited for the
saucer of milk and tidbits she knew she could wheedle from Hanna. At
the moment, Boxie was doing her best to melt into a wooden bench in
the morning sunshine. She looked up sleepily as Steve approached her
with the camera.

“Got it!” said Steve. He connected the camera to the serial port of his
ThinkPad with a thin cable and brought up the camera software. Then
he started to download the image. “This will go fast. I’ve only got one
image in the camera,” Steve said. A series of small frames was pre-
sented on the screen. Only one contained an image, and when Steve
double-clicked on it, up came an image of Boxie. Steve zoomed in [see
Figure 81].
186 Object REXX for Windows

Multimedia in DB2 BLOBs
“Oh, that’s lovely!” said Hanna. “I’ve often wanted a picture of Boxie,
but I’ve never gotten around to bringing in my camera. Could you
print that, Steve?”

“Sure thing,” said Steve. He selected the print menu, chose the color
printer, and clicked on the OK button. A short while later the printer
oozed out a picture. They picked it up and inspected it.

“This is pretty good, Steve,” said Hanna.

“Yes, and you can do a lot with the image before you print or store it,”
Steve responded. “You can rotate it and crop it. You can edit the color
tones too, very simply. This picture has come out a bit blue. It would be
easy to warm it up by emphasizing the red tones. Anyhow, I’m taking
this camera out to Classy Cars to show them how they could capture
multimedia images. I’m sure they’ll be excited. Which brings me back
to the question of how we’re going to build the code.”

“Maybe Curt could look at that while you’re busy,” said Hanna. “If you
swap ThinkPads with him, he can get on with it while you’re out visit-
ing Classy Cars’ branches.”

“Oh—aren’t you still busy with Trusty Trucks, Curt?” asked Steve.

“Not unless something breaks,” answered Curt. “If you’ll let me have
your multimedia ThinkPad, I’ll give it a whirl. You keep on telling us
how easy it is to handle multimedia in REXX. And the BLOB support
in DB2 Version 2 should make it easy to store and fetch multimedia
data.”

Figure 81. Boxie the Cat
The real picture is in full color!
Chapter 9. Using Advanced DB2 Facilities 187

Multimedia in DB2 BLOBs
“OK,” Steve agreed somewhat reluctantly. “I’ll have to transfer the
files I need this week onto your ThinkPad. I’ll upload them onto the
server.” Steve sat down again, powered on, and plugged his PC into
the LAN. Curt, likewise, started uploading files from his PC onto the
server.

“Wait a minute,” said Steve. “I’ve built up a whole set of groups with
special icons for the Classy Cars project and I don’t want to have to
rebuild them all on your PC, Curt.”

“No problem, Steve,” responded Curt. “Just drag them and drop them
on the server directory icon. Windows 95 will copy the whole structure
for you. Then you can drag the icon off the Server and drop it onto my
PC’s desktop.”

“Of course!” said Steve.

They swapped ThinkPads and downloaded their files from the server.
Steve powered off Curt’s PC, put it in his bag, and left to accompany
the Classy Cars IT Manager on a series of visits to their bigger remote
branches.

Curt opened the groups that Steve had defined for the Classy Cars
project and tried running the multimedia demo. He was able to dis-
play images and play audio and video clips. He opened the settings
notebooks of the various icons to find out what REXX commands they
used, and opened these commands in the editor. “This does look quite
straightforward,” he said. “Now I’ll need to dig into the DB2 manuals
and find out how BLOBs work.”

“Let me know when you find out,” said Hanna, looking up from her
work. “I’d like to understand more about BLOBs too.”

Using DB2 BLOBs from Object REXX

Curt spent the next several hours reading the DB2 manuals and
building small pieces of code to try out the BLOB features. By mid
afternoon he was ready to share with Hanna something of what he
had learned.

“The DB2 developers have done a great job with BLOBs,” said Curt.
“I’ve managed to get some things working without any trouble at all.”

Hanna closed her ThinkPad’s lid and came over to see what Curt had
built.

“For starters,” said Curt, “they have defined three different types of
BLOBs. Well, LOBs, actually—large objects, they call them. Binary
LOBs are just one of these three types. They have also defined Charac-
ter LOBs [CLOBs] and Double-Byte Character LOBs [DBCLOBs] too.”

“If we’re storing images and audio and video clips, we’ll need just plain
BLOBs, right?” asked Hanna.
188 Object REXX for Windows

Multimedia in DB2 BLOBs
“Yes,” said Curt. “We can define multiple LOBs in a single row, and
each LOB can be up to 2 GB in size.”

“That’s huge!” gasped Hanna. “How do you go about loading LOB data
into a DB2 column?”

“Well, you can assemble the LOB data into a host variable and then
put that into a DB2 column with a normal SQL insert or update state-
ment,” Curt answered. “Or if the LOB data is in a disk file, you can
simply give DB2 a host variable that contains the name of the file that
contains the LOB data on disk. That way the application program
doesn’t need to read the entire LOB into storage. DB2 copies the LOB
data straight from its source disk file into a DB2 column.”

“That’s a nice option,” said Hanna.

“Yes,” agreed Curt. “I’ve defined a simple DB2 table and written a load
program in Object REXX that loads a BLOB into it. I just pass DB2
the name of the file that contains the BLOB. Look, here it is.”

Curt showed Hanna the code [see Figure 82]. “See,” he explained, “I
need to tell DB2 that my host variable is a locator and contains a file
name. I declare it with the language type blob file options. If I were
coding this in C, COBOL, or Fortran, I would have to build a structure
containing information about the file—its name, length, and whether I
wanted to read it or write it. The REXX interface is much simpler. My
locator host variable is actually the name of a REXX stem variable. I
store the name of the file in a compound variable, using the stem with
the name tail, and store the file read/write options using the
file_options tail. This is the code I wrote to declare the file locator and
the update statement that transfers the media file into the DB2 pic-
ture column,” said Curt.

“Look,” said Curt, “to update the DB2 BLOB:

1 “I declare a file locator variable called media.

2 “I put the name of a bitmap image file into the media.name vari-
able, and

3 “I put the file options into media.file_options.”

“OK so far,” responded Hanna. Curt continued, “Then,

 1 call sqlexec 'declare :media language type blob file'
 2 media.name = 'd:\cardeal\media\boxie.bmp'
 3 media.file_options = 'read'
 4 stmt = 'update myTable set myBLOB = cast(:media as blob(4M))'
 5 call sqlexec 'prepare s1 from :stmt'
 6 call sqlexec 'execute s1'
 7 call sqlexec 'clear sql variable declarations'

Figure 82. Using REXX to Update a DB2 BLOB
Chapter 9. Using Advanced DB2 Facilities 189

Multimedia in DB2 BLOBs
4 “I build an SQL statement to update myBLOB—the column that
contains the BLOB—and next

5 “I prepare it,

6 “I execute it, and

7 “I clear the SQL variable declarations.”

“Hold on,” said Hanna. “What’s the cast(:media as blob(4M)) in line 4
for?”

“Cast is new in Version 2,” replied Curt. “I used it here to tell DB2 that
my BLOB file locator host variable media will be used to store a BLOB
no bigger than 4 MB.”

“And the clear SQL variable declarations in line 7?” asked Hanna.

“BLOB file locator host variables don’t get released until the process
that created them terminates,” said Curt. “Since they’re potentially
very big, it’s good practice to release them as soon as possible. That’s
what this new clear command does.”

“Well that took some explaining, but you managed to get the job done
with very little code,” said Hanna. “Is it just as easy to get the BLOB
back out of DB2?”

“It sure is,” replied Curt. “This is the code I developed to do the job.”
[See Figure 83.]

“First,

1 “I declare the media file locator variable. Then

2 “I put the name of a bitmap image file into the media.name vari-
able, and next

3 “I put my overwrite file option into media.file_options.”

“This looks familiar,” responded Hanna.

“Yes, I was able to copy some of this code from the update program,”
Curt agreed.

 1 call sqlexec 'declare :media language type blob file'
 2 media.name = 'media.bmp'
 3 media.file_options = 'overwrite'
 4 stmt = 'select myLOB from myTable'
 5 call sqlexec 'prepare s2 from :stmt'
 6 call sqlexec 'declare c2 cursor for s2'
 7 call sqlexec 'open c2'
 8 call sqlexec 'fetch c2 into :media :mediaInd'
 9 call sqlexec 'close c2'
 10 call sqlexec 'clear sql variable declarations'

Figure 83. Using REXX to Fetch a DB2 BLOB
190 Object REXX for Windows

Multimedia in DB2 BLOBs
4 “This is the SQL select statement. Very simple! I have only one
BLOB loaded, so I don’t even need to specify which row. Of course,
the code I develop for Classy Cars would specify a vehicle in this
select statement. Next,

5 “I prepare the SQL select statement,

6 “I declare a cursor on it,

7 “I open the cursor and

8 “I fetch the BLOB into the file.

9 “I close the cursor and

10 “I clear the SQL variable declarations.”

“And then?” asked Hanna.

“And then it’s ready to display,” answered Curt. “Like so.” He opened
the Windows Explorer, found the image file that DB2 had just created,
double clicked on it, and a picture of Boxie appeared in a Paintbrush
window.

“That’s great, Curt!” said Hanna. “And it didn’t take you long at all.
What more do you have to build?”

“I need to change the Classy Cars database definitions,” said Curt.
“Apart from adding a new column to the vehicle table, I have to define
a separate DB2 table space to store the multimedia data. Then, when I
define the new vehicle table, I’ll specify that DB2 should perform no
logging on the column that holds the multimedia data. Otherwise, it
would waste log space.” [See Figure 84.]

“Then, of course, I have to generalize this code to support multiple
media files per vehicle, and also different media types. Currently, I’m
handling only images, but audio and video will be almost identical. I
guess I should have something working by the end of the week.”

 CREATE REGULAR TABLESPACE VEHICLESPACE -- table space for non multimedia
 MANAGED BY DATABASE -- columns of the vehicle table
 USING (FILE 'vehiclea' 300); -- 300 blocks of 4K

 CREATE LONG TABLESPACE VEHICLESLOB -- table space for long (BLOB)
 MANAGED BY DATABASE -- columns of the vehicle table
 USING (FILE 'vehicleb' 4000); -- 4000 blocks of 4K = 16 MB

 CREATE TABLE CARDEAL.VEHICLE -- Vehicle table
 (SERIALNUM INTEGER NOT NULL,
 CUSTNUM SMALLINT NOT NULL,
 MAKE CHAR(12) NOT NULL,
 MODEL CHAR(10) NOT NULL,
 YEAR SMALLINT NOT NULL,
 PICTURES BLOB(4M) NOT LOGGED) -- BLOB column, up to 4 MB
 IN VEHICLESPACE -- assignment for normal columns
 LONG IN VEHICLESLOB; -- assignment for long (BLOB) column

Figure 84. DB2 Definition for the Vehicle Table with Multimedia
Chapter 9. Using Advanced DB2 Facilities 191

Multimedia in DB2 BLOBs
“Wonderful!” said Hanna. “Steve will be back in the office on Monday
and then we can all look at it together.”

Multiple Multimedia Files in BLOBs

“If you’re planning to store images and audio clips jumbled together in
one BLOB, how on earth will you ever unscramble them?” asked
Steve. It was Monday, Steve’s first morning back at the office in a
week.

“No problem!” said Curt with a smile. “DB2 provides facilities to break
BLOBs into pieces and handle one piece at a time. The really neat
thing about this is, DB2 doesn’t even have to read the whole BLOB
into its own buffers to give you access to the part you need. That’s very
important. The images and audio clips may range from 100 to 500 KB
each, but if we include video clips...”

“Are video clips for real, Steve?” interrupted Hanna.

“Sure!” replied Steve. “We can do only limited video on this ThinkPad,
but the latest home PCs from IBM include a chip that can display full-
screen, full-motion video. And, of course, the IBM PowerPC is so pow-
erful that it can deliver full video without needing any hardware
assist. It does the whole job in software.”

“Wow!” said Hanna.

“It’s true,” agreed Curt, “and I’ve heard that the Intel Pentium Pro
processor has the same kind of capability.”

“Yes,” said Steve, “and it would be silly for us to ignore that kind of
capability, since it’s almost here now. And our car dealer application is
going to be around for a long time, isn’t it, team?”

“Right!” chorused Hanna and Curt.

“So it won’t hurt to make sure that our multimedia design can handle
video when our customers ask for it,” continued Curt. “Windows 95’s
multimedia capabilities make it very easy to handle video. It uses the
same commands as audio. And it sure makes for a powerful demo
when you’re trying to close a sale!”

“That sounds great, Curt,” said Steve, “but you haven’t answered my
original question. How are you going to separate out all this multime-
dia data if you jumble it together in one big BLOB? Wouldn’t it be bet-
ter to store each piece of multimedia data as a separate BLOB? You
could add three new columns to the vehicle table—one for the image,
one for the audio, and one for the video.”

“DB2 would allow us to do that,” replied Curt, “although some other
database managers wouldn’t. But Classy Cars wants to be able to
store several pictures of some of their cars—front view, side view, and
so forth.”
192 Object REXX for Windows

Multimedia in DB2 BLOBs
“Oh, yes,” said Steve. “Well, it’s obviously a repeating group, so why
don’t you normalize the data? Create a new DB2 table called Vehi-
cleMedia, key it on the vehicle’s serial number and a multimedia
sequence number, give it a BLOB column, and put the multimedia
descriptive data in there. That way each vehicle could have as many or
as few associated multimedia files as you want.”

Curt looked thoughtful. “That approach could also work, Steve,” he
said, “but if you’d just listen for a moment, I’ll tell you how I’m han-
dling it.”

“OK,” said Steve, resolving to be patient [see Figure 85].

“I’ve written code to put all the multimedia data for a given car into
one BLOB. I also embed control information in the BLOB. I use the
first 3 bytes of each BLOB to store a counter that tells me how many
multimedia files it contains. It’s in character format, so that allows me
up to 999 multimedia files per vehicle.”

“OK so far,” said Hanna, “tell us more.”

“Following the 3-byte counter,” Curt continued, “I’ve got a 30-byte
string of control information for each multimedia file in the BLOB. It
contains a 20-byte title for the multimedia data, and its length. I strip
these out using the DB2 substring function and pass them to the GUI
code, which inserts the titles into a list box. This shows the user which
multimedia files are available for playing. I use the relative position of

Figure 85. Layout of Self-Defining BLOB and SQL Statements to Build BLOB

 1 4 25 34 55 64 xxx yyy zzz

 nr mediatitle,length; mediatitle,length; Long text Picture Audio

 <---> <---------> <----------> <----------->
 control information media media media
 (nr * 30 bytes) file 1 file 2 file 3

 SQL: update cardeal.vehicle
 set pictures = cast(? as blob(1K)) || cast(? as blob(4M)) ||
 cast(? as blob(4M)) || cast(? as blob(4M))
 where serialnum = 123456

 HOSTVAR: :ctlinfo, :vpic1, :vpic2, :vpic3

 ctlinfo = "BIN'003Fact sheet...,146;Side view...,67118,Audio...,294956;@@'

 vpic1.name = 'd:\cardeal\media\auditext.fac' /* fact sheet text */
 vpic1.file_options = 'READ'

 vpic2.name = 'd:\cardeal\media\audiside.bmp' /* picture bitmap */
 vpic2.file_options = 'READ'

 vpic3.name = 'd:\cardeal\media\audi.wav' /* audio wave file */
 vpic3.file_options = 'READ'

--

--

--

--

--

--

--

--
Chapter 9. Using Advanced DB2 Facilities 193

Multimedia in DB2 BLOBs
the title within the list and the sizes of the multimedia files that come
before it to calculate its position within the BLOB. Then I use the DB2
substring function to pull just the bytes we need out of the BLOB. So
when the user clicks on a particular title and asks to play it, it’s very
efficient.”

“Does DB2 read the multimedia data into one of your program vari-
ables?” asked Hanna.

“It could,” answered Curt, “but I’m exploiting DB2’s ability to transfer
the data directly from the BLOB to a file on disk. My program never
even sees the data. Once DB2 has copied it to disk, I issue a multime-
dia play command, and the rest happens automatically.”

“How do you load multiple multimedia files into one DB2 BLOB col-
umn, Curt?” asked Steve. “Do you read each file into a separate REXX
variable, concatenate them together in storage, and then insert that
data into the DB2 column?”

“I thought of doing it that way,” answered Curt, “but then I found an
easier way. This is how I build the SQL that I need.” Curt showed
them a piece of code [Figure 86].

Curt explained his logic. “To begin,

1 “I start the list of host variables with the control information vari-
able.

2 “I initialize this variable with the number of media files.
3 “I code the beginning of the SQL update statement.
4 “I loop as many times as there are media files to be inserted into

DB2. Each time,
5 “I get the length of the media file, and
6 “I concatenate the title and length to the control information.
7 “I declare a new DB2 locator file host variable and
8 “I concatenate its name to the list of host variables.
9 “I set the locator variable’s file name and

 1 hostvar = ':ctlinfo'
 2 ctlinfo = right(numpic,3)':'
 3 stmt = 'update cardeal.vehicle set pictures = cast(? as blob(1K))'
 4 do i=1 to numpic
 5 piclength = stream(picfile.i,'c','query size')
 6 ctlinfo = ctlinfo''left(pictitle.i,20)','right(piclength,8)';'
 7 call sqlexec 'declare :vpic'i 'language type blob file'
 8 hostvar = hostvar', :vpic'i
 9 call value 'vpic'i'.name', picfile.i
 10 call value 'vpic'i'.file_options', 'READ'
 11 stmt = stmt '|| cast(? as blob(4M))'
 12 end
 13 ctlinfo = "BIN'"ctlinfo"@@'"
 14 stmt = stmt 'where serialnum =' oldserial
 15 call sqlexec 'prepare s1 from :stmt'
 16 call sqlexec 'execute s1 using' hostvars

Figure 86. Using Object REXX to Build and Store a DB2 BLOB
194 Object REXX for Windows

Multimedia in the Car Dealer Application
10 “I also set its file options.
11 “I concatenate another place-marker to the SQL update state-

ment.
12 “Once out of the loop,
13 “I mark the control information host variable as binary, and
14 “I complete the SQL update statement.
15 “I prepare it, and
16 “I execute it, using the list of host variables that I built up.

“DB2 concatenates all the multimedia files together to form a single
BLOB field, and I never even touch them in my Object REXX code.
Pretty neat, hey?”

“Wow! I never realized how powerful DB2’s BLOB handling capabili-
ties are,” said Hanna. “And you’re making full use of them, Curt.”

Curt smiled. “Thanks, Hanna. Want to hear it play?”

“Yes please,” said Hanna.

Multimedia in the Car Dealer Application
Curt started up the application using the OODialog interface that
Steve had developed. “I’ve added the logic for the button called Media
in the vehicle dialog window,” he said [see Figure 69 on page 165].

“Of course, the button is only enabled if there is some media data for
the particular customer. You click on the Media button and the appli-
cation opens a new window that lists the cars of the current customer.
When you select a car, the multimedia files associated with that car
are listed below on the right-hand side.” Curt opened the Vehicle Mul-
timedia window as he spoke [see Figure 87].

“Then you just click on the multimedia file you want!” Curt did this. A
line of text in large bold letters scrolled smoothly from right to left
across the Facts area in the Media window. It carried a description of
the selected car.

“And since Object REXX supports concurrent processing,” continued
Curt, “I can kick off something else while the text display is still roll-
ing.” He clicked on a multimedia line describing a bit map picture, and
a picture of a car appeared in another area of the window. Then Curt
selected a sound bite and they heard a recording of his voice describ-
ing the car that he had selected.
Chapter 9. Using Advanced DB2 Facilities 195

Multimedia in the Car Dealer Application
“Classy Cars will be really impressed when they see what you’ve
developed,” said Hanna. “It will give them a wonderful marketing aid.
I know they were thinking of using it for their marketing staff, but it’s
so impressive, I think they could also show it directly to prospective
car buyers. What do you think, Steve?”

All this time Steve had been watching Curt’s demo silently. “Yes, it is
impressive,” he answered Hanna.

“But?” prompted Hanna. She could see that Steve wasn’t completely
happy.

“I’m worried about storing multiple multimedia files and the catalog of
multimedia information in the BLOB itself,” Steve answered. “We may
need to add more control information later on, and this approach is
limiting.”

“There’s no limit,” said Curt. “I can easily increase the size of the con-
trol field if we need to.”

“Well,” responded Steve, “if you had created a new vehicle multimedia
table and stored one multimedia file per BLOB, we could add new col-
umns to that table any time we needed to by using the DB2 ALTER

Figure 87. Vehicle Multimedia Window of OODialog GUI Application
196 Object REXX for Windows

Multimedia in the Car Dealer Application
TABLE command. We wouldn’t have to unload the existing data and
reformat it, or even change existing applications. They would keep on
working, while new applications made use of the new columns.”

“What new columns?” asked Curt. “Are you changing the application
specs while I’m still writing the code?”

“I was talking with the consultant that Classy Cars has engaged to
help them develop an IT architecture,” answered Steve. “He isn’t
happy with our proposal that Classy Cars install a separate database
manager in each of their branches.”

“Why not?” asked Hanna. “We’ve priced it out, and it’s a good, eco-
nomic solution. DB2 is inexpensive, and they won’t have to get into the
complexities and costs that networking their branches into a central
database manager would entail. And Classy Cars told us right from
the beginning that each branch runs as an autonomous unit. They
don’t have any need to share data.”

“That is what they told us,” agreed Steve. “Of course, their head office
does want sales and service revenue figures on a weekly basis...”

“We agreed with them that their head office would get that data by
dialing into the distributed DB2 databases each week,” interrupted
Curt.

“Right,” agreed Steve. “But the consultant has uncovered something
that Classy Cars didn’t tell us. They deal with several large companies
all over the country. Currently, each branch of Classy Cars deals with
the branches of these large companies in isolation. Many of these com-
panies are unhappy with this situation. They want a single, consoli-
dated bill from Classy Cars each month, and they want a single
national phone number where they can talk to one person about all
their dealings with Classy Cars. The consultant says the best way of
achieving this would be to have a single central database manager,
with all the branches hooked into it.”

“That sounds like a big change, Steve,” said Hanna. “I don’t know if we
can support that approach. What are the implications for our design
and the code we have already written?”

“No problem!” interjected Curt. “DB2 can support a distributed opera-
tion over a Netbios or TCP/IP network, and the program code doesn’t
have to change a bit. All we have to do is install the DB2 CAE client
package on each remote Windows 95 PC and point them to the central
Windows NT server.”

“That’s true,” agreed Steve. “DB2 gives us a great deal of flexibility in
that area. But I’m worried about the implications of shipping multi-
media files over the wide area network every time a dealer wants to
display a picture or play a sound clip. It would overload their network
and kill their response times.”
Chapter 9. Using Advanced DB2 Facilities 197

Multimedia in the Car Dealer Application
“Well for Pete’s sake!” said Curt, his anger boiling up. “It was your idea
to add multimedia to this application. Classy Cars never even
dreamed of doing it till you talked them into it. And now it turns out to
be unaffordable, and they’ll probably decide to can the whole car
dealer application. When will you learn to be sensible and do what the
customer asks for, instead of getting so smart you can’t deliver what
you promise?”

Steve was about to respond angrily, but Hanna stepped between the
two of them. “Hold on there, guys,” she said. “Let’s make sure that we
understand how big a problem this is before we start shouting at each
other.” She held her ground until Curt and Steve backed off.

“It’s clearly late in the day for Classy Cars to decide that they want to
run on a centralized database,” she said. “They’ve already signed off
our design, and that specified one database per branch. If they want to
change their minds, we will have to assess the impact of that change
and tell them what it will cost, in terms of network bandwidth, extra
coding, or whatever. What would the impact be if we ran the multime-
dia off ASCII files on the users’ PCs instead of using DB2 to store
them?” she asked Steve.

“That would work fine,” he said, “except there wouldn’t be any easy
way to distribute new multimedia files when new models come out. If
we store all the multimedia files in DB2, it’s easy to make sure every
user has the most recent multimedia information, whether they’re
local or remote users.”

“You can’t have it both ways,” said Curt. “You can’t plan to use DB2 to
distribute multimedia files and then complain that it will use too
much bandwidth.”

“Maybe we can,” said Steve. “Supposing we use DB2 to distribute the
multimedia data, but keep copies on the users’ PCs and reuse them as
long as they’re still current.”

“How would you know if a user’s copy is still current?” Curt asked.

“By putting extra columns into the vehicle table,” Steve answered. “If
we put the multimedia file’s time and date stamp in there, our multi-
media playing logic could fetch those columns from DB2 and check
whether the user has a current copy of the multimedia file on the PC.
If not, we ask DB2 to give us a copy, play it to the user, but also keep it
for next time. But the way you’re handling the multimedia control
information, there’s no way to do that.”

“I could easily extend my control information to handle file date and
time stamps,” retorted Curt.

“Sure!” said Steve sarcastically. “But what about the next change that
we need?”

“Steve, you’re coming up with a whole lot of new requirements and
criticizing Curt because his code can’t handle them,” said Hanna.
“Now, let’s think this through together. We have already agreed with
198 Object REXX for Windows

Implementing the DB2 Multimedia Support
Classy Cars that we’ll implement our application as a pilot in their
San Jose branch next month. That’s going to be six PCs on a LAN with
a stand-alone database, right?”

“Yes,” agreed Steve.

“Fine,” said Hanna. “Curt’s multimedia code would work perfectly in
that environment, wouldn’t it?”

“Yes,” said Steve again.

“The pilot is due to run for a month,” continued Hanna. “That will give
Classy Cars time to think through whether they really need a central-
ized database and us time to think through the implications of making
such a change. Right?”

Steve looked relieved. “You’re right, Hanna,” he said. “I guess I don’t
have to start panicking yet. There’s still a fair amount of time before
they go live across multiple branches. And if the pilot is successful,
their first payment is due. At least we’ll be able to eat while we’re
working out what to do next.”

“Now you’re talking, Steve,” said Hanna. “Curt has put together some
really smart code, and it seems to work well. We’ve still got time to put
it through acceptance testing with the users and implement it as part
of the pilot installation. That way, we’ll be delivering it before the date
we committed to. I’m sure that Classy Cars will be happy.”

“I sure hope so,” said Curt.

“I’m due back at Classy Cars tomorrow to start working out the imple-
mentation plan once the pilot has proved successful,” said Steve. “Dur-
ing the pilot, I’ll talk to them about the approach we want to take for
distributed databases.”

“Let us know what happens,” said Hanna.

Implementing the DB2 Multimedia Support
Here are the steps required to implement multimedia data in DB2
Version 2:

1. Define two DB2 table spaces for the vehicle table, to separate the
normal data from the large multimedia data (BLOBs).

2. Define the vehicle table so that the BLOB column is stored in the
special table space for such columns (long in keyword).

These two steps are shown in Figure 84 on page 191.

3. Write a DB2 program, load-mm.rex, to update the vehicle table
with the multimedia files in the BLOB column. An extract of the
program with the SQL statements is shown in Figure 86 on page
194.
Chapter 9. Using Advanced DB2 Facilities 199

Implementing the DB2 Multimedia Support
• We described all the multimedia files in a specification file (in
media\media.dat):

/* serial, title of file , filename */
 999001, Fact-sheet , ford.fac
 999001, Side view , fordsid.bmp
 999001, Front view , fordfrt.bmp
 999001, Back view , fordbck.bmp
 999001, Angle view , fordang.bmp
 999001, Audio , ford.wav
 999002, Fact-sheet , audi.fac
 999002, Side view , audisid.bmp
 999002, Front view , audifrt.bmp
 999002, Back view , audibck.bmp
 999002, Audio , audi.wav
 ...
 end

• The multimedia update program reads this file and updates
the vehicle table with multimedia BLOBs.

4. Write three new methods for the vehicle class to retrieve the mul-
timedia data (in db2\src\carvehi.cls):

• Retrieve and return the number of media files of a vehicle:
::method getmedianumber
 expose medianumber mediacontrol
 if symbol("medianumber") = 'VAR' then return medianumber
 medianumber = 0
 mediacontrol = ''
 stmt = 'select substr(v.pictures,1,3)' ,
 ' from cardeal.vehicle v where v.serialnum =' self~serial
 call sqlexec 'PREPARE s2 FROM :stmt'
 if sqlca.sqlcode \= 0 then return 0
 vpicind = -1
 call sqlexec 'DECLARE c2 CURSOR FOR s2'
 call sqlexec 'OPEN c2'
 call sqlexec 'FETCH c2 INTO :vpic :vpicind'
 call sqlexec 'CLOSE c2'
 if vpicind >=0 then medianumber = vpic
 return medianumber

• Retrieve the control information of multimedia files for a vehi-
cle:
::method getmediacontrol
 expose medianumber mediacontrol
 if symbol("medianumber") = 'LIT' then return ''
 if medianumber <= 0 then return ''
 stmt = 'select substr(v.pictures,5,30*'medianumber')' ,
 ' from cardeal.vehicle v where v.serialnum =' self~serial
 call sqlexec 'PREPARE s2 FROM :stmt'
 call sqlexec 'DECLARE c2 CURSOR FOR s2'
 call sqlexec 'OPEN c2'
 call sqlexec 'FETCH c2 INTO :vpic :vpicind'
 rcv = sqlca.sqlcode
 call sqlexec 'CLOSE c2'
 if rcv = 0 & vpicind >= 0 then mediacontrol = vpic
 return mediacontrol
200 Object REXX for Windows

Implementing the DB2 Multimedia Support
• Retrieve one multimedia file from the BLOB of a vehicle:
::method getmediainfo
 expose medianumber mediacontrol
 if symbol("medianumber") = 'LIT' then return ''
 if mediacontrol = '' then self~getmediacontrol
 arg medianum
 if medianumber = 0 | medianum > medianumber | medianum <= 0 | ,
 mediacontrol = '' then return ''
 mediatitle = substr(mediacontrol,medianum*30-29,20)
 medialength = substr(mediacontrol,medianum*30- 8, 8)
 mediastart = 7 + 30 * medianumber
 do i=1 to medianum -1
 blg = substr(mediacontrol,i*30-8,8)
 mediastart = mediastart + blg
 end
 call sqlexec 'CLEAR SQL VARIABLE DECLARATIONS'
 call sqlexec 'DECLARE :vpic3 LANGUAGE TYPE BLOB FILE'
 vpic3.file_options = 'OVERWRITE'
 temp = value('TMP',,'ENVIRONMENT')
 if temp = '' then temp = directory()
 tnam = 't'self~serial''medianum
 shorttitle = mediatitle~left(4)
 select
 when shorttitle = 'Fact' then vpic3.name = ''
 when shorttitle = 'Audi' then vpic3.name = temp'\'tnam'.WAV'
 when shorttitle = 'Vide' then vpic3.name = temp'\'tnam'.AVI'
 otherwise vpic3.name = temp'\'tnam'.BMP'
 end
 vfacts = vpic3.name
 stmt = 'select substr(v.pictures,'mediastart','medialength')' ,
 ' from cardeal.vehicle v where v.serialnum =' self~serial
 call sqlexec 'PREPARE s2 FROM :stmt'
 call sqlexec 'DECLARE c2 CURSOR FOR s2'
 call sqlexec 'OPEN c2'
 if vfacts = '' then call sqlexec 'FETCH c2 INTO :vfacts'
 else call sqlexec 'FETCH c2 INTO :vpic3 :vpicind3'
 if sqlca.sqlcode \= 0 then vfacts = ''
 call sqlexec 'CLOSE c2'
 call sqlexec 'CLEAR SQL VARIABLE DECLARATIONS'
 return mediatitle'::'vfacts

The fact sheet is retrieved directly into a variable, whereas pic-
tures (.bmp), audio (.wav), and video (.avi) are retrieved into tem-
porary files (in the Windows TMP directory), and the file name is
returned to the caller.

5. Write the code to play audio and video multimedia files. Sample
code to play an audio file and to display a video (extract from car
dealer class in base\src\cardeal.cls):
 ::method playaudio class
 arg filename
 call PlaySoundFile filename, "YES" /* implemented in OODIALOG.DLL */

 ::method playvideo class
 arg filename
 "mplayer /PLAY" filename /* mplay32 in Windows NT */

6. Pictures are displayed in bitmap buttons by the OODialog GUI
builder, or using the Windows Paintbrush program in the ASCII
interface.
Chapter 9. Using Advanced DB2 Facilities 201

Implementing the DB2 Multimedia Support
Implementation Notes

1. The DB2 table spaces and the vehicle table are set up by the car
dealer DB2 setup programs db2setup.rex and db2ddl.rex. All
tables are loaded as well, including the multimedia data. We have
provided the programs load-db2.rex and load-mm.rex to load the
sample data into DB2; they are called from db2ddl.rex.

2. We retrofitted multimedia support into the FAT implementation.
The FAT vehicle class was enhanced by the same three methods
(getmedianumber, getmediacontrol, getmediainfo), and the respec-
tive multimedia files are passed to the code directly from the dis-
tributed data files.

This allows the ASCII and GUI applications to be run with FAT
persistence support and multimedia data.

3. Multimedia data is available for customers New and used cars,
Holder, Turton, and Wahli.

Source Code for DB2 Multimedia Implementation

The source code for the DB2 Vehicle class is listed in DB2 Vehicle
Class on page 518.

The multimedia descriptive file is listed in Multimedia Data Defini-
tion File on page 492.

Audio and video play methods are part of the car dealer class, which is
introduced in Overall Car Dealer File Structure on page 222, and the
source code is listed in Cardeal Class on page 508.

The source code for the multimedia load program load-mm.rex is not
listed in the appendix; it is available in the car dealer INSTALL direc-
tory on the CD, or on a hard drive after Object REXX has been
installed (see Table 31 on page 304).
202 Object REXX for Windows

10
Data S
ecurity with
Object REXX and
DB2
In this chapter we exploit DB2 stored procedures to solve a common
security problem when using dynamic SQL.

The Security Problem
The next day, Hanna and Curt were working quietly in the office when
the phone rang. Hanna answered it.

“Hello, Hacurs Software Systems,” she said. “Oh hello, Steve. We were
wondering how your morning went with Classy Cars. What? What’s
the problem? They don’t like our data security? No...wait...hold on,
Steve! I think that you’re overreacting. Come into the office straight
away and tell us what happened. I’m sure we’ll be able to sort some-
thing out.”

“That sounded like trouble,” observed Curt.
 203

The Security Problem
“Steve’s very upset,” said Hanna. “He said that the IT consultant that
Classy Cars has engaged has persuaded them that there’s a major
security exposure in our system. Steve said he couldn’t talk them out
of it; they’re saying they can’t implement the system as it is.”

“We’ve invested a lot of effort in Classy Cars, and so far we’ve had
nothing but problems with them,” said Curt. “I think we should cut
our losses. There are lots of other car dealers around. We’re sure to sell
our system with less time and trouble than we’re having.”

“We’ve invested too much time and effort in Classy Cars to just walk
away,” Hanna responded. “Let’s wait and see what the problem is,
Curt. I’ve got a lot of faith in you and Steve. I’m sure you’ll be able to
handle it.”

Curt didn’t look convinced. They both tried to keep working at their
tasks while waiting for Steve. At last they heard the crunch of his car
tires outside the office. He came in moments later, slamming the door.

“That confounded consultant is really making things hard for us,”
Steve said.

“What is it now, Steve?” asked Hanna.

“Well, he’s still going on about the need for a centralized database
manager,” said Steve. “And he seems to have convinced Classy Cars
that that’s the way they must go. I explained to them that they have
already signed off our design based on a separate database per branch,
and that’s the way we’ll have to install the pilot. It’s too late to change
without impacting the schedule. They agreed to that. We’ll investigate
the impact of changing to a distributed system later on.”

“What else, Steve?” asked Hanna.

“The consultant has been reviewing our design in detail,” Steve
responded. “He’s come to the conclusion that its security is weak, and
that this will be a problem, particularly for their customer data.”

“Why does he say that?” asked Hanna.

“Mainly because we’re using dynamic SQL in all our applications,”
answered Steve. “The implication is that we will have to authorize the
end users to access the DB2 tables directly. So long as they use our
programs, we can control what data they can see. But they could
equally well use a package like Lotus 1-2-3 or Excel to access the
tables, and then we can’t control what they do.”

“But isn’t access to DB2 password-protected, Steve?” asked Hanna.

“Yes,” replied Steve, “but the user is asked to perform the logon when
our code first tries to access DB2. So users have to know their own
logon ID and password. And once they’ve logged on to allow our appli-
cation to run, they can start up other applications and access the data-
base with them.”
204 Object REXX for Windows

The Security Problem
“Hold on, Steve,” said Curt. “What you say is true for a user working
on the database server itself. But someone using a client PC to access
a DB2 server must issue a connect command to DB2, quoting a user ID
and password. That connect command must be embedded in the appli-
cation program. And we’re not planning to allow users to run applica-
tions directly on the DB2 server machine.”

“I wish that I’d had you with me this morning, Curt,” said Steve. “But
if the DB2 connect statement is in a REXX program, anyone can look
at the source, and then they’ll see the user ID and password, won’t
they?”

“That used to be true, but not any more,” said Hanna. “Object REXX
includes a new utility called REXXC. You can use this to read REXX
source code and produce a new program that does what the original
program does, but is unreadable, similar to compiling C or COBOL
source, which produces unreadable object text.” [See Tokenizing Object
REXX Programs on page 75 and The REXXC Utility on page 467 for
more information.]

“That’s great,” said Steve, “but if a REXX program contains a user ID
and password as plain text literals and it gets processed by the
REXXC command, won’t the literals still be there in the output file?”

“Let’s find out,” said Curt. He typed in a small REXX command file,
processed it through REXXC, and looked at the output. “Hmm—yes,
the literals are stored as plain text in the output file.”

“Hey!” said Steve. “Maybe we can write the logon data in an encrypted
form in our programs, then include code to decrypt it before we pass it
to DB2. The Object REXX translate or bitxor methods could do the
trick. That way, no one could see the logon information in our pro-
grams, because it wouldn’t be there—in readable form.”

“I’m impressed!” said Hanna. “You guys have thought of lots of ways to
tackle this security issue, and it didn’t take you long at all.”

“I’m going straight back to Classy Cars,” said Steve. “I think we can
overcome their concerns about security.”

“Let us know how it goes,” called out Hanna as Steve strode for the
door.

Hanna and Curt settled down to their work again. It was mid-after-
noon before they heard from Steve. He strode into the office with a
troubled look on his face.

“Hi, Steve,” said Curt. “How did Classy Cars like our approach to
ensuring the security of their data?”

“They were impressed,” Steve answered. “So was their IT consultant,
except on one issue. They definitely want to move toward a single, cen-
tralized database. They accept that this wasn’t in the original spec
that they signed off, so they’re prepared to implement using separate
databases in each branch and then to centralize over time. I’m sure we
can work out an approach that will satisfy them.”
Chapter 10. Data Security with Object REXX and DB2 205

The Security Problem
“What’s the IT consultant’s concern?” asked Curt.

“He’s been helping Classy Cars plan how they will run in the future,”
Steve answered. “They want central control over their customer
accounts. It turns out that lots of their customers have run up sub-
stantial debts, and some simply switched their business to another
branch when the first branch refused to extend them any more credit.
Their branches don’t exchange customer information. They really
want to fix that. But they’re pretty worried, because the accounting
data they want to store will be very sensitive. They want a guarantee
that unauthorized personnel can’t read it—and, even more important,
alter it.”

“I don’t understand the problem, Steve,” said Hanna. “DB2 has very
good built-in facilities to restrict the people who can access a specific
table.”

“Yes,” agreed Steve, “but every branch must have users authorized to
capture and view accounting data for their own branch only, but not to
update or delete it. I was trying to work out a way we could do this
with the check option of the DB2 view facility, but their requirements
as to who can see what and who can update what may be too compli-
cated to handle this way. The consultant says that the best way to
implement really tight security is to have the application code running
on the server in a locked room, and not on a hundred-plus PCs all
around the country. He says if you can’t even keep games and viruses
off users’ PCs, how can you hope to keep fraudulent code off?”

“So what’s wrong with the security schemes we came up with this
morning?” asked Curt.

“Well, our schemes all depend upon the remote user having an access
user ID and password,” said Steve. “We can do a lot to keep those hid-
den, but if there’s collusion and somehow an ID and password pass
into the wrong hands, the security of their accounts data will be lost,
and they won’t even know about it.”

“Is this for real?” asked Curt. “Aren’t they being a bit paranoid?”

“I’m afraid not,” answered Steve. “Last year they had to write off more
than a quarter of a million dollars in bad debt. They suspect that there
may have been some collusion between some customers and some of
their staff. But there’s no way they can prove anything. They just don’t
have the right controls in place. Our computer system could help
them, but its security will have to be watertight.”

“Ouch!” said Curt. “It’s a tough world out there.”

“I’ve got an idea that some of the new DB2 features may provide a
solution in this area,” said Hanna, “but I’m not sure if we can use them
from Object REXX. I’ll take the manuals home tonight and check it
out.”
206 Object REXX for Windows

Coding Stored Procedures with Object REXX
“Good hunting, Hanna,” said Steve. “If you can come up with a really
watertight solution to their problems, it would be worth a lot to
them—and to us!”

Coding Stored Procedures with Object REXX
The next morning, Hanna came in clutching the DB2 manuals and
smiling. “I think I’ve got the answer, guys!” she said.

“Cut the suspense, Hanna!” said Steve. “Tell us what your approach is,
please.”

“The consultant suggested that the code dealing with the most sensi-
tive data should run on the central server only,” said Hanna. “Histori-
cally, that’s the way transaction programs have been handled on
mainframes. Normally we build our REXX programs to run directly on
the client PCs. Our challenge is to find a way to get some of the REXX
code to run on the secure server and still to be able to access it from
the client PCs. The answer I thought of is to use DB2’s stored proce-
dures facility. It’s often used to reduce network traffic and to improve
server performance by moving code that accesses the database heavily
onto the database machine. But it can also be used to improve security.
It would allow us to move key code off the client’s PCs and to access
secure DB2 tables by using a special logon ID and password in code
that runs on the server only.”

“Hanna,” said Curt, “I hate to puncture a great idea, but a client pro-
gram must be connected to a DB2 database before it can invoke a DB2
stored procedure. Which means that it has already supplied a logon ID
and password. The DB2 stored procedure isn’t allowed to issue
another connect command, so it has to operate under the client’s ID
and password. Anything that the stored procedure can do in DB2, the
client can do, too. And since the client’s ID and password are embed-
ded in code on the client PC, your proposal doesn’t sound any more
secure than do the approaches Classy Cars has already turned down.”

Hanna just smiled. Curt and Steve were really intrigued. What did
she have up her sleeve? She moved to the whiteboard and picked up
the pen.

“What you say is true, Curt,” she said. “I thought of that, too. But I
also thought, Is there anything new in Object REXX that could help us
in this situation? I did some reading about DB2 and Object REXX last
night, and I came up with an idea. I wrote some code to check it out,
and it looks like it will work. But I had only one ThinkPad to test it on.
We’ll have to try it out on a couple of PCs connected over our LAN.”

“Come on, Hanna, you’re driving us crazy!” exclaimed Steve. “What’s
your idea?”
Chapter 10. Data Security with Object REXX and DB2 207

Coding Stored Procedures with Object REXX
“It’s quite simple, really,” said Hanna. And for once, she actually drew
something on the whiteboard. “This is the way that DB2 stored proce-
dures are normally put together,” she said [see Figure 88].

“The client code tells DB2 to call a stored procedure,” explained
Hanna. “The Client Application Enabler [CAE] on the client PC relays
the request to the DB2 database manager on its server. DB2 schedules
the stored procedure code, passing it the arguments on the original
call command. The stored procedure runs, accessing DB2, and passes
results back to DB2, which relays them back to the client code.”

Hanna continued. “We can write both the client code and the stored
procedure in Object REXX. But as you pointed out, Curt, the stored
procedure has to use the DB2 connect that the client code has already
issued, and, therefore, has no more authority than does the client.
Now for the magic!” Hanna changed the figure on the whiteboard [Fig-
ure 89].

“The key thing here is that although the DB2 stored procedure has
access to DB2 by virtue of the connect that the client PC issued, it
doesn’t use it,” Hanna explained. “At least, not for accessing the really

Figure 88. DB2 Stored Procedure

Client Network Server

Client DB2 Client DB2 DB2
Code Application Stored Database

Enabler Procedure Manager

Figure 89. DB2 Stored Procedure with Object REXX Server

Client Network Server

Client DB2 Client DB2
Code Application Stored / /

Enabler Procedure
DB2
Database
Manager

ObjRexx
Server
Program

RxQueue
208 Object REXX for Windows

Coding Stored Procedures with Object REXX
sensitive data, because the client doesn’t have authority to do that.
Instead, we automatically start up a disconnected process each time
the server boots up, running an Object REXX server command. This
command issues its own connect to DB2 using a secure ID and pass-
word, and creates a REXX queue using RxQueue. This queue can be
used by any Object REXX command running on the server. In particu-
lar, DB2 stored procedures written in Object REXX can use it to relay
requests to the Object REXX server command that created the queue.
The server command waits for requests, handles them, and sends
responses back to the requester through another REXX queue, passed
to the server as an argument.”

“This is brilliant, Hanna!” said Steve. “Show us your code.”

“This is the Object REXX server code,” said Hanna, bringing up the
code on the screen [Figure 90].

“Now this isn’t production-strength code. There isn’t any error-check-
ing in it,” explained Hanna. “I just did enough to make sure that it
would work the way I thought it should. Let me step you through the
main points:

1 “This is the file that would run when the server boots up. It con-
tains definitions for the DB2 server class and methods. I create an
input queue for the client requests.

2 “I create a server object to process the requests.

3 “I connect to DB2 with the special ID and password. This gives me
the authority to anything the special ID can do.

4 “I go into a loop, sending the Request message to the server object.
Each time, it waits for a client request, then processes it. I make
this loop quit if the client sends an exclamation mark [!] character,
just to ease debugging.

5 “Here’s where I define the DB2 server class and its methods.

6 “The Request method activates the input queue and waits for a
request. The incoming request is parsed to extract the client’s
result queue and the input parameter.

7 “The Request method then invokes the Respond method to process
the request.

8 “I return the server’s response to the client’s result queue, reset
the queue, and return to the server procedure.

9 “There’s only token logic in the Respond method. If the input
transaction is a CONNECT request, I tell DB2 to select the special
SQL value User, which is my DB2 connection ID, and return this
to the client. That’s just enough logic to verify that I can access
DB2 data and to make sure that I’m using the right DB2 connec-
tion.
Chapter 10. Data Security with Object REXX and DB2 209

Coding Stored Procedures with Object REXX
/****** server.rex ******/
 q = RXQUEUE('create','DB2IN') /* define the input queue */ 1
 server = .DB2server~new /* make a DB2 server object */ 2
 if RxFuncQuery('SQLEXEC') then /* register SQL functions */
 call RxFuncAdd 'SQLEXEC', 'DB2AR', 'SQLEXEC'
 call sqlexec "connect to dealerdb user special using secret" /*******/ 3
 say "The OREXX server is active..." /* server is ready */
 do until input = '!' /* loop */ 4
 input = server~Request /* process a client request */
 end
 call sqlexec "connect reset"|
 call SysSleep 3 /* let gateway/client end */
 q = RXQUEUE('delete','DB2IN') /* delete the input queue */
 say "The OREXX server is ending."

::class DB2server /* DB2 SERVER CLASS */ 5

::method Request /* invoked by server loop */ 6
 expose input output
 originalq = RXQUEUE('set','DB2IN') /* set queue to input */
 input = linein('queue:') /* wait for a line in queue */
 say 'Server: waiting...'
 parse var input '(' outqueue ')' input /* parse the request */
 say 'Server: input:' input
 self~Respond /* server db2 process */ 7
 say 'Server: reply:' output '('outqueue')'
 oldq = RXQUEUE('set',outqueue) /* set queue for result */ 8
 queue output /* and place result */
 oldq = RXQUEUE(‘set’,originalq) /* set queue to original */
 return input /* return to loop */

::method Respond /* invoked from Request */ 9
 expose input output
 select
 when input~translate = 'CONNECT' then do /*** CONNECT *****/
 stmt = "select user from sysibm.systables",
 "where name = 'SYSTABLES'" /* return userid */
 call sqlexec "prepare s1 from :stmt"
 call sqlexec "declare c1 cursor for s1"
 call sqlexec "open c1"
 call sqlexec "fetch c1 into :output"
 call sqlexec "close c1"
 end
 when input~translate~word(1) = 'CUST' then do /*** CUST xxx ****/ 10
 custno = input~word(2)
 stmt = 'select * from cardeal.customer where custnum =' custno
 call sqlexec "prepare s2 from :stmt" /* return the */
 call sqlexec "declare c2 cursor for s2" /* customer info */
 call sqlexec "open c2"
 call sqlexec "fetch c2 into :custnx, :custname, :custaddr"
 if sqlca.sqlcode = 0 then
 output = 'Cust' custnx':' strip(custname) 'in' strip(custaddr)
 else output = 'Cust' custno': not found'
 call sqlexec "close c2"
 end
 otherwise output = input~reverse /* just to show we're here */ 11
 end

Figure 90. DB2 Stored Procedure with RxQueues: Server
210 Object REXX for Windows

Coding Stored Procedures with Object REXX
10 “If the input is a CUST request, I retrieve the customer from the
database and return its information.

11 “Otherwise, I simply reverse the input, just so I can see that some-
thing happened.

“And here’s the DB2 stored procedure code,” said Hanna [Figure 91].

“You’ll see that there really isn’t much to it. It acts as a gateway
between the remote client and the Object REXX server code.

1 “I create a new REXX queue to retrieve the result from the server,
and capture its name.

2 “I make the server’s input queue the active queue and add the cli-
ent request, sqlrida.1.sqldata, to the queue, prefixed with the
name of my result queue.

3 “I make the result queue the active queue and wait for the server
to post the result line.

4 “I store the result in sqlroda.2.sqldata and set the sqlcode to zero
to indicate that the call worked correctly. DB2 will pass the result
back to the remote client that called my procedure.

5 “After resetting the queue, I delete the result queue.”

“The gateway is tiny, Hanna,” said Curt, “there are only ten lines of
code. Is this what they call middleware?”

“I guess so,” Hanna replied.

“Where’s the client code?” asked Curt.

“Here it is,” said Hanna, bringing up the code [Figure 92]. “I wrote this
as a stand-alone command that I can invoke from the command line.
You’ll see that there really isn’t much to the client code either.”

/****** gateway.cmd ******/

 newq = RXQUEUE('create') /* define the result queue */ 1

 originalq = RXQUEUE('set','DB2IN') /* make input queue active */ 2
 sqlroda.1.sqldata = 'anything' /* touch arg to make DB2 happy */
 say 'Gateway: queue:' sqlrida.1.sqldata '('newq')'
 queue '('newq')'sqlrida.1.sqldata /* queue parameters for server */

 oldq = RXQUEUE('set',newq) /* make result queue active */ 3
 sqlroda.2.sqldata = linein('queue:')/* get result from queue/server */ 4
 sqlca.sqlcode = 0 /* set return code for client */

 oldq = RXQUEUE(‘set’,originalq) /* set queue to original */ 5
 q = RXQUEUE('delete',newq) /* delete the result queue */

Figure 91. DB2 Stored Procedure with RxQueues: Gateway
Note that a stored procedure coded in REXX must have extension
.CMD.
Chapter 10. Data Security with Object REXX and DB2 211

Coding Stored Procedures with Object REXX
“Let me step you through this code,” Hanna said.

1 “I connect to DB2 using a low-security ID and password.

2 “I’m going to use the SQL CALL command. I have to prepare the
field in which the reply will come by assigning a representative
value to it.

3 “My DB2 stored procedure is called gateway.cmd.

4 “The client loops, asking the user for input until the user keys in
an exclamation mark [!].

5 “This is the real meat of the code. The client calls the DB2 stored
procedure, passing it the user’s input string in argument and the
reply field for the reply. I check the SQL return code, and if it’s
good I give the reply back to the user. Otherwise, I display the SQL
code and error message.”

To show them how it worked, Hanna opened a DOS command line
window and entered the rexx server command. The server code dis-
played a message saying it was active and waiting for customers. Then
she opened a second DOS command line window, and entered the
rexx client command. The client code also notified them that it was
active, and asked for some input. Hanna typed in Hello! and back
came !olleH. She did it again, and the same response came back
instantly. Then she typed in connect, and back came the answer SPE-
CIAL.

“That’s the server process’s logon ID, not the client’s,” observed Hanna.
Then she typed CUST 106, and the response was the name and address
of the customer Helvetia. Finally, she typed ! into the client command
line. Both the server and the client commands terminated in their
respective windows.

“Hanna, this is brilliant,” said Curt, “but the client, gateway, and
server code are all running on the same PC. How does this scale up?”

/****** client.rex ******/
 call sqlexec "connect to dealerdb user humble using humbly" 1
 reply = " "~left(60) /* prime reply so DB2 knows */ 2
 proc = "gateway.cmd" /* gateway code on DB2server*/ 3
 say "Client : Active.... I'm going to use the DB2 server..."

 do until reply = "!" /* ask for input */ 4
 say "Give me an argument (any, connect, cust xxx, ! to end)"
 parse pull argument
 call sqlexec "call :proc (:argument, :reply)" /***** call proc ***/ 5
 if sqlca.sqlcode = 0 then
 say "Client : reply:” strip(reply)
 else say "Client : Error:" sqlca.sqlcode", msg="sqlca.sqlerrmc
 end
 call sqlexec "connect reset"
 say "Client : The DB2 client is terminating."

Figure 92. DB2 Stored Procedure with RxQueues: Client
212 Object REXX for Windows

Coding Stored Procedures with Object REXX
“DB2 stored procedures can be called by remote client PCs,” Hanna
answered. “The clients can be running under a variety of operating
systems, including Windows 95, Windows 3.1, OS/2, DOS, and AIX.
DB2 supports connections over both LANs and WANs and can handle
SNA, TCP/IP, NetBIOS, and IPX/SPX communications protocols. It’s
very flexible.”

“Hanna, you’re a genius!” said Steve. “This approach will allow us to
implement really tight control over Classy Cars’ sensitive data. I’m
due to visit them later today, and I’d really like to take the code that
you’ve developed and to review your ideas and code with them. If
they’re happy with it—and I’m sure they will be—we can start imple-
menting their pilot branch while we build secure code to handle their
accounts data.”

“I’m glad you like it, Steve,” Hanna replied. “This new version of
REXX is so powerful, we’re all going to end up looking like heroes!”

“I love it,” said Steve, “and I’m sure that Classy Cars will, too, once I
explain it to them. Let me copy the code you developed, and I’ll go
there right away.”

Later that day, Hanna and Curt were in the office, waiting to hear
from Steve about how his visit to Classy Cars had gone. They had
expected him to phone after his visit, but he hadn’t. There was an edge
of nervousness in the office as Hanna and Curt tried to keep busy with
things that needed doing. But the Classy Cars deal was so important
to the future of their company that they found it hard to concentrate
on anything else. Suddenly, they heard Steve’s footsteps outside the
door, and moments later he walked in with his ThinkPad slung over
his shoulder and a large brown paper packet in his hands. As he put
the bag down, it made a clinking sound.

“How did it go?” asked Hanna. She had a suspicion that the bag con-
tained the answer to her question. Steve didn’t answer immediately.
He took a bottle of sparkling wine from the bag and placed it on the
desk, followed by three glasses.

“Cut the suspense, Steve,” said Curt. “Tell us what happened.”

“They signed.”

“Congratulations,” said Hanna, hugging him. Curt got up and shook
his hand vigorously, as if he had just announced his engagement.

“Thanks, Hanna. Thanks, Curt,” said Steve. “This has really been a
team effort. We did it together. And Hanna, I want to thank you espe-
cially for helping us work as a team whenever Curt and I got bogged
down in silly arguments.” Having said this, Steve reached once more
into the brown paper bag and, somewhat shamefacedly, pulled out a
beautiful, if slightly smashed, bunch of red roses, which he handed to
Hanna. This gift was so unexpected that she blushed.
Chapter 10. Data Security with Object REXX and DB2 213

Coding Stored Procedures with Object REXX
“Thanks, Steve,” said Hanna, “these are really lovely.” She put them
into a vase and added water while Curt tried to get some more infor-
mation out of Steve.

“What did they sign for?” asked Curt. “What do they want us to
deliver? And when?”

“They want us to install the application we’ve already built and dem-
onstrated to them,” Steve answered. “They want the OODialog GUI
front end. Oh, and they want the application to run against multiple
distributed copies of DB2, one per branch, for the initial implementa-
tion. They want us to quote on extending the application to run off a
single centralized copy of DB2 on a Windows NT server in about three
months’ time. And, most importantly, they wrote a check to cover our
development effort to date. Here it is!”

Steve pulled out the check and showed it to the others. Hanna took it
and said, “Well done, Steve! I’ll deposit that in our bank account later
today. Our bank manager will be very happy to see it.”

“All this talking,” said Curt, “and you haven’t even offered us a drink.”

“You’re right,” Steve responded, “what am I thinking of?” He loosened
the cork, filled the three glasses, and passed them around. “I propose a
toast to Hacurs—may it prosper and grow.”

“To Hacurs,” said Hanna and Curt in agreement.

Demonstration notes

❑ The code for the three commands is in the StorProc subdirectory
of the car dealer application.

❑ Make sure DB2 is started.

❑ Open two DOS windows and make the StorProc subdirectory the
current directory in both windows.

❑ Type rexx server in one window, and wait for the ready message.

❑ Type rexx client in the other window, and then enter any text,
or the special keywords CONNECT or CUST xxx.

❑ The response of the SPECIAL user ID when entering CONNECT is
proof that the code on the server runs under the user ID of the
server.

❑ Type ! to end both client and server.

❑ You can also run the server on Windows NT and the client on
Windows 95. Change the client connect statement to use the local
alias name of the server database. See DB2 Setup for Remote
Database Access on page 295 for instructions. The two user IDs,
SPECIAL as local administrator with password SECRET, and
HUMBLE as regular user with password HUMBLY, must be
defined on the NT server and authorized to DB2.
214 Object REXX for Windows

11
Config
uration
Management with
Object REXX
In this chapter, we discuss ways of managing an Object REXX applica-
tion that is large and has different versions, all of which must be sup-
ported concurrently. We shall see how to use Object REXX classes with
inheritance and polymorphism to help us achieve these goals. The
grouping of related files into subdirectory structures can also help.

Most REXX programmers know that writing small, one-off applica-
tions is fun. It’s quick to do, and the users are often grateful to get a
fast response to their needs. But, of course, there is always the risk
that, after a while, the application might become very popular with
many users. Suddenly, the code must run in environments never con-
templated and, therefore, turns into a maintenance burden.
 215

Breaking an Application into Multiple Files
This is the kind of problem that a software company like Hacurs loves
to have. One-off applications yield revenue once only. The real money-
spinners are those applications that can be sold to a number of differ-
ent customers. Inevitably, the operating environment will be different
in each location. There may be different database managers to inter-
face with and possibly different GUI packages, as well.

When classic REXX was first designed, no one could have guessed how
widely used it would become or how big some REXX applications
would grow. The base language has some facilities for managing large
applications by separating called subroutines into separate files, but
Object REXX brings a lot more to the table.

We’ve spoken about the benefits of classes, polymorphism, and inherit-
ance. We’ve claimed that these make it easier to substitute parts with-
out impact to the rest of the system. Now it’s time to deliver. We must
show practical ways to make these promises come true. In this chap-
ter, we talk about the problems that confront “successful” applications
and show how the features of Object REXX can be used to ease the cre-
ation, distribution, implementation, and maintenance of such applica-
tions.

Breaking an Application into Multiple Files
Hanna was working alone in the Hacurs offices. Curt and Steve were
out at Classy Cars, training more staff to use the pilot car dealer
application that was now installed and running. Hanna was working
through the various pieces of the car dealer application on the server.
Although it had been Hacurs’ goal to work off a common and shared
set of class libraries, things had gotten a little out of control while
Curt was struggling to meet deadlines at Trusty Trucks and Steve
working to satisfy Classy Cars. The time had now come to reconcile
any differences there might be and to consolidate both versions of the
application into a single library.

Hanna knew that once a source file grows bigger than about 400 lines,
it becomes hard to read and understand. It was time to break the
source into a number of separate files. Each component file should
deal with a separate part of the overall system, and, ideally, each part
of the system should be dealt with in only one place. The Hacurs team
had tried to follow this approach with classic REXX, with limited suc-
cess. While classic REXX enables the programmer to split procedures
off into separate source files, the code in a separate file can see the
data passed only as call arguments. This is good in terms of hiding
data that the called code should not see or change, but bad when the
amount of data that must be shared with the called routine is large.
The number of arguments needed on the call statement can become
unmanageable, and getting the callers and callee’s parameter lists to
agree can be difficult.
216 Object REXX for Windows

Breaking an Application into Multiple Files
With Object REXX, sets of related data can and should be grouped
together into objects. When a procedure or routine in another file is
called, only a short list of objects must be passed. When an object is
passed to a subroutine, only a reference, not the object’s data, is actu-
ally passed. Hanna was trying to work out the best way of applying
Object REXX’s new capabilities to segmenting the car dealer applica-
tion code.

Curt and Steve came tramping into the office with a take-out lunch
they had bought on the way. They offered Hanna a share.

“Thanks,” said Hanna. “How did the training go?”

“No problems,” answered Steve. “We agreed to do three more training
sessions with them, and that should be all they need from us. How
does the converged version of our application look?”

“Just a little chaotic,” Hanna answered. “I’m surprised at how many
differences you and Curt managed to sneak into your code without
consulting anyone. I’ve drawn up a list of them and have shown what I
think the converged version should look like. I’d like you two to go
through this list and tell me if you agree or disagree.”

Steve and Curt groaned but settled down at their desks and powered
up their ThinkPads to review the list that Hanna had stored on the
server. About half an hour later, they had completed this task.

“Your suggestions all look good to me, Hanna,” said Curt.

“Me, too,” agreed Steve. “It’s mainly a question of making sure that
each class definition includes all the methods and features that we
need for both Trusty Trucks and Classy Cars. I think you’ve got it all
sorted out.”

“Thanks, guys,” said Hanna. “I’ve also come up with an idea of how we
can split the source code into separate files. I’d like to review that with
you. We’ve already moved the major class definitions into separate
files. We had to write ::requires directives in our source files so that
the code in each file could see the other classes and methods that it
needs.” [See The Requires Directive on page 116.]

Hanna produced a sketch from her files. “The Work Order class
requires the Vehicle class because it references the vehicle’s serial
number,” she said, “and the Vehicle class requires the Customer class
because it references its owner’s ID. The Work Order class also
requires the Service class, since each work order contains one or more
services; and the Service class references the parts required for a par-
ticular service.” [See Figure 93.]
Chapter 11. Configuration Management with Object REXX 217

Breaking an Application into Multiple Files
“The Work Order class also references the Customer class,” chimed in
Steve.

“That’s right,” agreed Hanna. “I’ll show that with a dotted line. The
work order file doesn’t have to contain a ::requires directive because
Work Order requires Vehicle which in turn requires Customer, so the
Customer class is visible to Work Order. Strictly speaking, we don’t
need the customer’s ID in the work order object, since we can get it
from the vehicle object. But, in theory, a vehicle can change ownership
while it’s undergoing service, and there could be arguments about
who’s liable for the costs of the service.”

“In practice, the dealer owns the database,” said Steve, “and they
would register a change in vehicle ownership only after they had made
sure that the new owner would accept the service charges. But Trusty
Trucks was worried about this part of the data model, and our zealous
salesman bent over backward to meet their needs, as usual.”

“Some of the biggest sales in the history of our industry have been
made by salesmen who showed they were keen to meet their custom-
ers’ needs,” responded Curt.

Figure 93. Car Dealer Data Class Relationships

Work Order
class

Vehicle
class

Customer
class

Service
class

Part
class

A requires BKey A B
218 Object REXX for Windows

Breaking an Application into Multiple Files
Using Multiple Subdirectories

“The way it works out, a lot of the class and method definitions are (or
should be) the same across both versions of our application,” she con-
tinued. “But some of the method definitions are different, depending
on whether it’s the FAT or DB2 version. I wanted to get some unifor-
mity in the file-naming conventions, so I’ve used the same file name
for the common or base class definitions, the FAT ones, and the DB2
ones. All Customer class definitions are stored in files called car-
cust.cls, for example.”

“Now hold on, Hanna,” said Curt. “If the base, FAT, and DB2 class def-
inition files all have the same name, they’ll wipe each other out when
you copy them into the common directory.”

“I thought of that, Curt,” said Hanna, “and decided that the cleanest
approach is to create separate subdirectories for the common base
class definitions, and likewise for the FAT and DB2 ones. I store the
class definitions each in its own subdirectory, so there are no name
conflicts. It could look something like this,” said Hanna, pulling
another sketch from her file [Figure 94].

“Why so many subdirectories?” asked Steve.

“I’ve got a list here,” Hanna replied, producing yet another piece of
paper:

Common files common to all configurations
Base base object management classes
FAT persistent storage in disk files
DB2 persistent storage in DB2 tables
RAM initialization of objects in memory
AUI ASCII user interface
OOD OODialog GUI builder

“What’s the RAM subdirectory for?” asked Curt.

“We did our initial development without any persistent storage—
remember? I think we can keep that version alive with almost no
effort, using the same techniques that we need to separate the FAT
version from the DB2 version. I plan to put that code into the RAM sub-
directory.”

Figure 94. Directory Structure for Car Dealer Application

Common
Base
FAT
DB2
RAM
AUI
OOD
Chapter 11. Configuration Management with Object REXX 219

Configuration Files
Configuration Files
“This all looks wonderfully neat and tidy, Hanna,” said Steve, “but how
on earth will Object REXX know where to find the files that you’ve
hidden in those subdirectories when it runs the application? It will
never see them, unless all the subdirectories are in the PATH environ-
ment variable. And if they are, it will always pick the files it needs
from the first subdirectory that appears in the PATH variable.”

“I thought of that too, Steve,” said Hanna with a smile, “and I built a
sample configuration file to try out an idea.” Hanna opened an editor
window to reveal the sample code [Figure 95].

“As you can see, I included the relative subdirectory name as part of
each ::requires command,” said Hanna, “and Object REXX was able to
find all of the files with no trouble, so long as the common directory
was the current directory when I invoked the configuration command
file that contains all these statements.”

“That’s pretty neat,” said Steve, “but what happens if the common
directory isn’t the current directory when you issue the configuration
command?”

“It works fine, provided that the common directory is in the PATH
variable,” Hanna responded. “Which is what we would need, even if all
our files were merged into a single subdirectory.”

“That sounds great,” chimed in Curt, “but you’ve got the relative sub-
directory hard-coded into the configuration command file. What will
you do when you need to include the class definition files from the FAT
subdirectory instead of DB2?”

“I guess we’ll have to have a different configuration file for each differ-
ent configuration of files we need to use,” Hanna answered. “It’s sort of
like the make file you build to tell the C compiler where all the source
files are for a particular project, except the make file gets used at com-
pile and link times, while my configuration would be used by Object
REXX at run time. In fact, I started out by thinking of all the configu-
rations that we may have to support, and that’s what got me to
develop a tidy way of handling them all. This is the sketch I made,”
said Hanna, scratching through her papers. She produced a sketch
[see Figure 96].

 ::requires 'DB2\carcust.cls'
 ::requires 'DB2\carvehi.cls'
 ::requires 'DB2\carpart.cls'
 ::requires 'DB2\carserv.cls'
 ::requires 'DB2\carwork.cls'

 ::requires 'Base\cardeal.cls'

Figure 95. DB2 Configuration Command File
220 Object REXX for Windows

Configuration Files
“I’ve included the storage-based version we started out with for com-
pleteness,” said Hanna. “I called it the RAM version. So, we currently
have two different front ends and three different persistent storage
systems. In theory, we could support 6 different configurations. And if
we succeed in selling our application to other customers, the list of
persistent storage systems could grow. We need a way of managing
this complexity.”

“This is very ingenious,” said Steve. “But wouldn’t it be simpler just to
give every class definition file a different name and put them all into a
single, common subdirectory? Suppose you give all the FAT class defi-
nitions a file extension of .FAT and all the DB2 definitions a file exten-
sion of .DB2. That would resolve the conflict.”

“Yes, that would do the trick,” said Hanna. “But would it also work
when we have to merge the subdirectories that contain the AUI and
OODialog GUI projects? And when we come to write the car dealer
installation program, I’m sure that it would be easier if all the files we
need for DB2 support are in one subdirectory, all the files for FAT in
another, and so on. Then the installation program won’t need to know
which files are required for each type of support; it will just copy com-
plete subdirectories.”

“All this comes from having an obsessively tidy mind,” said Curt, “but
I can see that it would lead to a tightly controlled system and reduce
the number of surprises when we need to implement major new ver-
sions of the application. For example, I was talking to an outfit called
Value Vans the other day, and they are very interested in our applica-
tion. But they already have several Oracle-based packages running,

Figure 96. Car Dealer Application Configurations

User OODialog
Interfaces: AUI

GUI

COMMON BUSINESS LOGIC

Persistent RAM ASCII file DB2
Storage: support support support

Other
Chapter 11. Configuration Management with Object REXX 221

Configuration Files
and we would have to port our code to Oracle before they would even
look at it. With this approach, we would create a new subdirectory
called Oracle and develop the new code we needed in there.”

“It also allows us to put fences around portions of the code,” said
Hanna. “If we get contractors in to develop the Oracle code, for exam-
ple, we could direct the server to give them read/write access to the
Oracle subdirectory and read-only access to the others. That way, they
couldn’t accidentally break the FAT or DB2 code while they were
building the Oracle code.”

“That’s a good idea,” said Steve, “and maybe not just for contractors! I
accidentally saved one of my DB2 class definition files on top of Curt’s
FAT version the other day, and I had to recover his code from the
backup tape. I might make fewer mistakes if my default server profile
gave me read-only access to the FAT subdirectory. I could always
request the server to give me read/write access if I needed it.”

“Thanks for your help, guys,” said Hanna. “I still need to think this
problem through some more. I’ll take it home with me. Maybe we can
look at it together again tomorrow.”

“That’s fine by me,” said Steve, and Curt grunted agreement, too.

Overall Car Dealer File Structure

The next morning, Hanna was already in when Curt and Steve
reached the office.

“Hi, Hanna,” they called out as they entered.

“I’ve got a question,” said Steve. “I copied the files you were working
with yesterday from the server. When I looked at the end of your con-
figuration file [see Figure 95 on page 220], I noticed a new class file
named cardeal.cls. What is it?”

“I found that we need a place to put initialization code for all the other
classes,” Hanna explained. “Every class needs to fetch its initial
objects, for example. There didn’t seem to be a good place to put it, so I
made the car dealer class. It will be responsible for initializing the
application and terminating it properly, as well—for example, to dis-
connect from DB2.”

Hanna dug a sketch from her bag. “I was working on the overall struc-
ture of our application last night, and it looks like this,” she said [see
Figure 97].
222 Object REXX for Windows

Configuration Files
“This shows all the files we need for the various configurations we
have to support,” Hanna explained. “Each file is shown as a box in the
sketch. There were so many, I’ve simplified it by showing boxes
stacked on one another. There are Customer, Vehicle, Work Order, Ser-
vice, and Part classes all hiding behind the box I labeled Base classes,
for example, and likewise for the boxes labeled FAT, DB2, and RAM
data classes. Each different configuration we need to support will have
its own configuration file. I’ve shown them as a stack labeled Config
file.”

“This looks complicated,” exclaimed Steve. “Do we really need all these
files?”

“I think so, Steve,” answered Hanna. “Most of them already exist
today for the systems that we’ve developed for Trusty Trucks and
Classy Cars. We just haven’t put all of them together on one piece of
paper before. For example, the car-aui.rex, caraui.cls, and car-
menu.cls files are all used to drive the AUI interface for the Trusty
Trucks version of our application. And the OODialog GUI package

Figure 97. Car Dealer Application Overall Class Relationships

AUI
class

Menu
class

Cardeal
class

FAT data
classes

Base
classes

DB2 data
classes

Persistent
mixin class

Config file

RAM data
classes

A requires BKey A AB B
A requires and
inherits from B

car-gui
packages

FAT

RAM

DB2

ASCII User Interface Graphical User Interfaces

car-aui
cmd

Customer
Vehicle
WorkOrder
ServiceItem
Part

Customer
Vehicle
WorkOrder
ServiceItem
Part
Chapter 11. Configuration Management with Object REXX 223

Communication Among Classes
that we used to build the front end for the system, and potentially
other GUI builders in the future, are hiding under the label car-gui
packages, like spiders under a rock.”

“Yeah—I guess you’re right,” said Steve as he stared at the sketch.

“I’ve shown that there’s more than one configuration file,” said Hanna.
“When a user installs our application onto a PC, the install program
will list the various options available, then copy in the configuration
file that implements the options chosen. This file will contain
::requires directives for either the FAT or the DB2 data handling
classes. When we need to switch between different configurations, we
can edit our own configuration file or copy one of a set of standard con-
figurations into our working directory.”

“Now that I can see it all mapped out like this, I realize that we’ve
built quite a complex system,” said Steve.

“Have we?” asked Curt. “Or have we built two simple systems and
made life difficult for ourselves by trying to share code between them?
This looks like a lot of work to me. We aren’t a research lab, we’re a
small software development company. We have to meet customer
needs fast, or we’ll go out of business. We don’t have time to mess
around with complicated schemes like this one.”

Steve squared up to reply, but before he did so, Hanna intervened by
saying “You’re absolutely right, Curt. We need to be able to respond to
our customers quickly. And we all know that we can’t do that with our
old invoicing application. We’ve installed five—no, six different ver-
sions of it for different customers. They all started out the same, but
today they’re all different. Maintaining that code is chewing up a lot of
our time. Yet, all of the different versions do much the same thing. We
need to be smarter with the car dealer application. You’re doing a
great job finding prospects for the product. We need to make sure that
we can deliver all they need without creating a monster maintenance
problem.”

Turning back to her sketch, Hanna said “As I said before, most of the
files shown in this sketch already exist. We just need to tidy them up
so they can reside in the subdirectory structure we looked at yester-
day. What do you think, Curt?”

Communication Among Classes
Curt pondered for a while, then said, “Well, for starters, we’ll have a
problem that one class will not know about other classes. How can a
method in the Customer class access a method in the Vehicle class?” he
asked. “Shouldn’t every application class have access to all the other
application classes, in case we decide to enhance the system?”
224 Object REXX for Windows

Communication Among Classes
Steve had a concerned look on his face, but then he lightened up and
shouted, “We could use the Object REXX local directory for this!” He
continued, “If every class puts itself into the local directory, all classes
will have access to each other.”

The Local Directory
Steve brought up two editor windows with the Vehicle and Customer
classes and changed the source code to make use of the local directory
[see Figure 98].

“That’s cool,” said Curt, “I can use the same technique between the
Menu and the AUI class. When the aui object is created, I store it in
the local directory. This way I don’t need to pass the aui object to the
menu methods.”

Curt thought a few seconds, then said, “Let’s keep our copies of the
code that’s currently running at Trusty Trucks and Classy Cars
untouched in their respective directories on our server. We can start
restructuring the code along these lines, but I would like to be able to
show Value Vans that we can meet their requirements as soon as pos-
sible. So we can’t afford to get bogged down for weeks in a big restruc-
turing exercise that prevents us from building and running demos.”

“That’s reasonable,” said Hanna. “The question is, how long will it
take us to restructure the code along these lines?”

“If we all work at it, I think we could have it done in two or three
days,” replied Steve. “Then we’ll have to test it out, of course.”

“Sounds good to me,” said Hanna. “Let’s do it!”

Figure 98. Using the Local Directory

DB2 Vehicle Class - source file DB2 Customer Class - source file

.local['Cardeal.Vehicle.class'] = .Vehicle
::requires 'base\carvehi.cls'
::class Vehicle public subclass VehicleBase

::method persistentLoadByCust class
 use arg custx
 customerNumber = custx~number
 stmt = 'select v.serialnum, v.make, ...' ,
 ' from cardeal.vehicle v ...'
 call sqlexec 'PREPARE s2 FROM :stmt'
 call sqlexec 'DECLARE c2 CURSOR FOR s2'
 call sqlexec 'OPEN c2'
 do until rcv \= 0
 call sqlexec 'FETCH c2 INTO :xserial,...'
 rcv = sqlca.sqlcode
 if rcv = 0 then
 carx = self~new(xserial,xmake,..)
 end
 call sqlexec 'CLOSE c2'
 return 0

::method presistentInsert
 ...

.local['Cardeal.Customer.class'] = .Customer

::requires 'base\carcust.cls'

::class Customer public subclass CustomerBase

::method findNumber class
 use arg custnum
 vehiclass = .local['Cardeal.Vehicle.class']
 workclass = .local['Cardeal.WorkOrder.class']
 custx = self~findNumber:super(custnum)
 if custx \= .nil then return custx
 stmt = 'select c.custname, c.custaddr' ,
 ' from cardeal.customer c' ,
 ' where c.custnum =' custnum
 call sqlexec 'PREPARE s1 FROM :stmt'
 call sqlexec 'DECLARE c1 CURSOR FOR s1'
 call sqlexec 'OPEN c1'
 call sqlexec 'FETCH c1 INTO :xcustn, :xcusta'
 if sqlca.sqlcode = 0 then do
 custx = self~new(custnum, xcustn, xcusta)
 vehiclass~persistentLoadByCust(custx)
 workclass~persistentLoadByCust(custx)
 end
 else custx = .nil
 call sqlexec 'CLOSE c1'
 return custx
 ...
Chapter 11. Configuration Management with Object REXX 225

Installation Program Considerations
Installation Program Considerations
Three days later the Hacurs team met to review progress.

“I’ve got my AUI front end working with the new class structure,” said
Curt.

“I’ve got my OODialog front end working with it, too,” said Steve.

“Sounds like it’s time for a shoot-out,” said Hanna with a smile.

The threesome put their ThinkPads side by side and went through
their standard demo process in parallel. Everything seemed to work
perfectly.

“Great work, team!” said Hanna. “The class conversion work wasn’t
hard at all. Are you running against FAT files or DB2, by the way?”

“FAT files,” said Curt.

“DB2,” said Steve simultaneously.

The two looked at each other. “There’s actually no easy way to tell,
short of looking to see which configuration file is currently active,”
said Steve.

“I guess that proves something,” said Hanna. “How easy is it to switch
from DB2 to FAT?”

“We’ll have to develop an installation program,” said Steve.

Using the local directory

The local directory object (.local) is available to all Object REXX pro-
grams running in one process.

For the car dealer application we used the local directory to record:

❑ Each class as .local['Cardeal.classname.class']

❑ The relationship between work orders and service items as
.local['Cardeal.WorkServRel']

❑ The ASCII window interface object (aui) as
.local['Cardeal.aui.object']

❑ The active persistent storage as .local['Cardeal.Data.Type'],
either FAT, DB2, or RAM

❑ The directory of the FAT data files as .local['Cardeal.Data.dir']

❑ The directory of the multimedia files (pictures, audio, video) as
.local['Cardeal.Media.dir']
226 Object REXX for Windows

Installation Program Considerations
“No, it’s simpler than that,” said Curt. He clicked on the directory
structure to open the DB2 subdirectory, and drag-copied the configura-
tion file within it back into its parent directory. After confirming the
overwrite, he restarted his application. It ran as before, this time
using the DB2 configuration file.

“Well that’s a handy way for programmers to do it,” said Steve. “But
our users will still need an installation program. Come on, it won’t
take long to build. The way Hanna parcelled everything out into sepa-
rate directories, it should be a snap.”

“Count me out,” said Curt. “I’ve got an appointment to see Value Vans,
and I don’t want to be late. See you later.” Curt left with a wave.

“OK,” said Hanna, “I’ll work with you. Should we use a GUI builder
tool?”

“Absolutely!” answered Steve. “We want everything about this applica-
tion to look professional. There, I’ve created a new resource file for
OODialog; let’s open it and edit it ... right, I’ve got an empty form.
What should I put in it?”

“The target disk and path for our installation,” Hanna answered.

“OK,” said Steve. “I’ll provide an entry field for that.”

“Fine,” said Hanna. “Now we need to offer the user a choice of persis-
tent storage techniques—ASCII disk files or DB2 database.”

“Hmm,” said Steve, “I’ll build a group box labeled Persistent storage
option and put some radio buttons into it with the two storage options
available. I’ll add the RAM option too—let’s call it Objects in memory.”

“Now we need to offer the user a choice of user interfaces—the ASCII
character, or the OODialog GUI,” said Hanna.

“OK,” said Steve, “I’ll copy the storage options group box to make the
User interface option box. I need two radio buttons, and I must change
the text to show the interface options that we have available.”

“And then we need an OK button,” said Hanna, as Steve finished this
task.

“I’ll put in an OK button and a Cancel button,” said Steve. “Some
folks get a little nervous if they can’t see a Cancel button. There, that
does it. Now, let’s just neaten this up a bit.” Steve standardized the
alignments and sizes of the controls he had built.

“That looks really professional, Steve,” commented Hanna on Steve’s
design [see Figure 99].
Chapter 11. Configuration Management with Object REXX 227

Installation Program Considerations
“Now I’ve got to add the logic,” said Steve. “But that really shouldn’t be
hard, thanks to the directory structure you set up.”

“OK, I’ll leave you to it,” said Hanna, getting up.

“Just a moment, Hanna,” said Steve, rising, too. “There’s something I
need to tell you.” Steve suddenly looked serious, and rather strained.
“I’ve been thinking about this for a while; maybe it’s time I settled
down and sorted out my life. We’ve been so busy getting our company
going, I haven’t had time to think about myself. But now that we’ve
got our first big application installed with two customers and the
money is starting to come in...” Steve’s voice trailed off.

Hanna felt uneasiness, almost panic. Did Steve want to leave? Their
little company had only just started to find its feet, and every member
of the team was vital to its continued existence. If Steve left at this
stage, Hacurs would never survive. And what did he mean by “settle
down and sort out his life?” Was there a woman in his life? Where had
he found time? They had all been so busy getting the company going.
Hanna’s heart started to pound.

“So...what I mean is,” Steve struggled on. “Do you want to see the ball
game on Saturday?”

A flood of relief swept through Hanna. She laughed involuntarily, and
Steve was startled. He might have taken offense, but Hanna’s broad
smile and shining eyes reassured him that she would very much like
to see the ball game on Saturday.

Figure 99. Simple Car Dealer Installation Program
228 Object REXX for Windows

Implementation of Configuration Files
Implementation of Configuration Files
All configuration files are named carmodel.cfg. There is one for FAT
persistence, one for DB2 persistence, and one for objects in memory
(RAM). Each file is in the subdirectory of its respective implementa-
tion.

Object REXX executes any REXX code placed at the beginning of a file
required by other programs that use the ::requires directive. This fea-
ture allowed us to place entries in the local directory, load REXX func-
tion packages, and then connect to DB2.

Figure 100 shows the configuration file for FAT; Figure 101 shows the
configuration file for DB2.

 Parse source . . me .
 maindir = me~left(me~lastpos('\')-1) /* main cardeal directory */

 .local['Cardeal.Data.type'] = 'FAT' /* Data in Files */
 .local['Cardeal.Data.dir'] = maindir'\FAT\Data'/* Data directory */
 .local['Cardeal.Media.dir'] = maindir'\Media' /* Media directory */

 ::requires 'base\cardeal.cls'
 ::requires 'fat\carcust.cls'
 ::requires 'fat\carvehi.cls'
 ::requires 'fat\carpart.cls'
 ::requires 'fat\carserv.cls'
 ::requires 'fat\carwork.cls'

Figure 100. Configuration File for FAT Persistence

 if RxFuncQuery('SQLDBS') then
 call RxFuncAdd 'SQLDBS', 'DB2AR', 'SQLDBS'
 if RxFuncQuery('SQLEXEC') then
 call RxFuncAdd 'SQLEXEC', 'DB2AR', 'SQLEXEC'

 call sqlexec "CONNECT RESET"
 call sqlexec "CONNECT TO DEALERDB USER userid USING password"
 if sqlca.sqlcode \= 0 then do; say 'Cannot connect to DEALERDB'
 exit 16; end

 .local['Cardeal.Data.type'] = 'DB2' /* Data in DB2 */
 .local['Cardeal.Data.dir'] = '-none-' /* Data in DB2 */
 .local['Cardeal.Media.dir'] = '-none-' /* Media in DB2 */

 ::requires 'base\cardeal.cls'
 ::requires 'db2\carcust.cls'
 ::requires 'db2\carvehi.cls'
 ::requires 'db2\carpart.cls'
 ::requires 'db2\carserv.cls'
 ::requires 'db2\carwork.cls'

Figure 101. Configuration File for DB2 Persistence
Placing the SQL CONNECT call into the configuration file
relieves the ASCII and GUI interface from dealing with DB2.
Chapter 11. Configuration Management with Object REXX 229

Implementation of Configuration Files
Using the Configuration File
There are two ways of using the configuration file:

❑ Put a ::requires directive at the end of the source program to
embed the configuration file:

 ::requires "carmodel.cfg"

❑ Alternatively, call the configuration file at the start of the pro-
gram:

 call 'carmodel.cfg'

The configuration file must either be located in the current directory
or be found through the PATH variable. In our application, we copy
one of the three configuration files into the main car dealer directory
to make it active. Object REXX finds the currently active configuration
file—DB2, FAT, or RAM. The application has no knowledge of which
persistent storage method was selected. This technique is valid for
both the window application (AUI) and the OODialog GUI application.
The ::requires statements are placed at the end of car-aui.rex for the
ASCII application and at the end of car-ood.rex for the OODialog GUI
application.

Configuration File for List Routines
We use an additional configuration file, carlist.cfg, to select the cor-
rect routines to list customers and work orders for the ASCII user
interface according to file or DB2 persistence.

This configuration file is copied from FAT or DB2 subdirectories to the
AUI subdirectory automatically, according to the configuration set for
persistence.

Implementation of the Car Dealer Class

The Car Dealer class is responsible for initialization and termination
of the environment. It is also a good place to hold the methods for mul-
timedia—that is, playaudio and playvideo.

An extract of the class is shown in Figure 102.
230 Object REXX for Windows

Implementation of Configuration Files
Using the Car Dealer Class
Each version of the car dealer application has to make one call,
.Cardeal~initialize, at the beginning of the program to initialize the
application, and one call, .Cardeal~terminate, at the end of the pro-
gram to terminate the application.

Source Code for Configuration Management

The source code for the configuration files is listed in Configuration for
File Storage on page 509 for persistence in files and in Configuration
for DB2 Storage on page 516 for persistence in DB2.

The source code for the Car Dealer class is described in Table 21 on
page 301 and listed in Cardeal Class on page 508.

 .local['Cardeal.Cardeal.class'] = .Cardeal

 ::class Cardeal public

 ::method initialize class
 self~mciRxInit /* initialize multimedia */
 .local['Cardeal.Part.class']~initialize /* let each class */
 .local['Cardeal.ServiceItem.class']~initialize /* initialize itself */
 .local['Cardeal.Customer.class']~initialize /* and load objects */
 .local['Cardeal.Vehicle.class']~initialize
 .local['Cardeal.WorkOrder.class']~initialize
 return 0

 ::method terminate class
 if .local['Cardeal.Data.type'] = 'DB2' then /* disconnect from DB2 */
 call sqlexec "CONNECT RESET"

 ::method playaudio class
 arg filename
 call PlaySoundFile filename, "YES"

 ::method playvideo class
 arg filename
 "mplayer /PLAY" filename /* Windows 95 */

 ::method mciRxInit class private /* load multimedia function package */
 call RXFUNCADD 'PlaySoundFile','OODIALOG','PlaySoundFile'

Figure 102. The Car Dealer Class (Extract)
Chapter 11. Configuration Management with Object REXX 231

Implementation of Configuration Files
232 Object REXX for Windows

12
Objec
t REXX and
the World Wide
Web
The World Wide Web (Web) on the Internet is fast becoming the plat-
form of choice for advertising applications. Therefore, in this chapter,
let’s rewrite the car dealer application to run on a Web server and use
any Web browser as the GUI.

With minimal effort, we can port the car dealer application to run
under the control of a Web server, using DB2 as the database. We can
redesign the user interface, using the Hypertext Markup Language
(HTML). The car dealer application creates most of the HTML docu-
ments from the data stored in DB2, using Common Gateway Interface
(CGI) programs written in Object REXX.
 233

Hacurs Connects to the Internet
Hacurs Connects to the Internet
It was after the long Labor Day weekend when Steve walked into the
office with an unhappy expression on his face, seemingly carrying the
weight of the world on his shoulders.

“What’s going on with you?” asked Hanna, concerned.

“Now that we’ve implemented the application for both Classy Cars
and Value Vans, we are simply not busy enough” Steve replied. “We
need to advertise our skills and our beautiful application, so that we
get more companies interested in our services. I just have not figured
out a good way of doing it.”

Curt, who had listened half-hearted to the conversation, suddenly got
up from his chair and shouted “The Internet!”

“The Internet?” asked Steve.

“Yes, the Internet,” reiterated Curt. “I visited the Computer Software
Exposition at the Convention Center over the weekend, and lots of
companies advertised their services and applications using one of
those Web browsers connecting to their main home site.”

Hanna was silent for a moment, reflecting on what she had just heard.
Then she said, “I think that’s a great idea, Curt. I have read so many
articles lately about the Internet and the World Wide Web; we need to
get our act together and become part of this exciting new technology.”

“What does it all take, Curt?” Steve asked, a little shyly. He felt badly
that he did not really know much about the Web.

“Let’s sit down and make a list,” suggested Hanna. “Curt, you lead the
discussion; of the three of us, you know most about the Web.”

Hacurs Makes a Plan for the Web

Curt got up from his chair, grabbed a marker pen, and marched to the
flipchart stand. “Let’s see,” he began. “There are several things we
have to do.

[1] “First, we must physically connect our server to the Internet.
That’s usually done through a high-speed leased phone line pro-
vided by the phone company. Then we need a modem at our end of
line. We connect TCP/IP to the modem and line, using the Serial
Line Internet Protocol (SLIP) or Point-to-Point Protocol (PPP).”

“Our line traffic will not be very big, I guess?” asked Hanna.

“True,” replied Curt. “We can get by with a medium-speed phone
line for quite a while.”

“Luckily, we’ve already configured our LAN with TCP/IP,” said
Steve. “It should be a breeze to connect our desktop machines and
the ThinkPads to the Internet through our LAN server.”
234 Object REXX for Windows

Hacurs Connects to the Internet
“There you go, Steve,” laughed Curt.

[2] “Second, we have to install an Internet server program on our
LAN server. Many server products are on the market, but for our
Windows NT system, I think one of the best servers is the IBM
Internet Connection Server. I saw a demonstration at the exposi-
tion in the IBM booth. IBM currently has a promotion, and it
takes only a few minutes to download the server for free from an
IBM site.”

“Doesn’t Microsoft provide an Internet server as well?” asked
Hanna.

“Yes, they do,” replied Curt, “But it only runs on an NT server and
we are running an NT workstation for our small office.”

“Is the IBM server hard to install?” asked Steve.

“It looks very easy,” replied Curt. “There is only one configuration
file to be updated with our installation-specific information, and
the product even provides a Web browser dialog to do most of the
tailoring.”

“I guess we have to install one of those Web browsers,” added
Hanna.

[3] “You’re right, Hanna” responded Curt. “That is the third point: a
Web browser on every machine. For our Windows 95 systems, we
can either install Netscape Navigator or Microsoft Internet
Explorer. Both companies just recently brought out new versions
of their products.

“Great,” intervened Steve. “We’ll try out both. What else do we
need, Curt?”

“What does a user see when he connects to our server?” asked
Hanna.

[4] “That’s item number four: a home page,” Curt said. “The home
page is the first thing you see when you point your browser to a
Web server. Our home page must make a statement about our
company that entices people to want more information about us. It
has to be attractive and lure users into our net—the car dealer
application.”

“I’ll help you design the home page,” said Hanna. “We can use our
logo, add some information about ourselves, and then go directly
into advertising the car dealer application.”

“That sounds wonderful, Hanna,” Curt agreed.

“By the way, how is a home page designed?” asked Steve.

Curt explained: “All Web pages are written as a file with the
Hypertext Markup Language, or HTML for short. It’s a tag lan-
guage, similar to some word processors. There are many tools on
Chapter 12. Object REXX and the World Wide Web 235

Hacurs Connects to the Internet
the market to design Web pages interactively in WYSIWYG mode,
then generate the HTML file. Our home page is probably simple
enough to just code directly in HTML.”

“Don’t we have to create the Web pages for the car dealer applica-
tion from the data stored in DB2?” asked Steve. He was now very
interested in understanding and learning more about Web tech-
nology.

[5] “Yes,” said Curt. “And this leads directly to the fifth item—the car
dealer application. We have to design the flow of how a user can
look at the car dealer data. Then we design each of the pages indi-
vidually and write an Object REXX program to generate the page.”

“How are these programs invoked?” asked Steve.

“Most Web servers support the Common Gateway Interface, or
CGI for short,” replied Curt. “In the configuration file, you specify
which requests should be handled by a program, as opposed to just
returning a predefined HTML file. The program can create the
HTML file on disk and tell the server about it or, for better perfor-
mance, it can pass the lines of the generated HTML page directly
to the server. Most servers pick up the output by rerouting stan-
dard output, so we just use the Object REXX say instruction to
prepare the pages.”

“That sounds easy enough for me,” Steve added. “I’ll work on that
because I understand the DB2 database the most. The hard part
will be to learn the syntax of HTML. I had better go to the book-
store to buy a manual.”

“I bet you will find a great way to generate those pages from DB2,”
Hanna joked. “Maybe, you’ll even define an Object REXX class to
handle the HTML easily!”

“Hmm, not a bad idea from a young kid like you!” Steve replied,
and he started to leave.

[6] “Don’t run away yet!” said Curt, holding Steve back by the arm.
“We have to decide on an Internet name for our server and register
it with the gods of the Internet.”

“What does an Internet name look like?” Hanna asked.

“Well, it’s something like ‘www.ibm.com,’ so I suggest we name our
Internet server ‘www.hacurs.com,’ and our machines could then
have the names ‘steve@hacurs.com’ and so forth.”

“I like it!” Steve exclaimed, and Hanna agreed as well, after deeply
pondering her new name.

“OK Curt, you and I can install the Internet server and Web browsers
this afternoon,” she said. “We can work with them on our existing LAN
without the leased line for now. Then we’ll meet tomorrow morning to
236 Object REXX for Windows

Hacurs Designs a Home Page
work on the home page. Steve, you can go to the bookstore and get us
some manuals about HTML and the CGI way of invoking programs. I
think we’re on a roll!”

Hanna was happy to see that Steve was excited about the World Wide
Web. He had been morose for quite some time, but now his face was lit
up, and he was ready to tackle any problems that might arise. Indeed,
everything looked bright again.

Hacurs Designs a Home Page
The next morning, Hanna and Curt worked together to design the
home page. Both were eager to get it done quickly.

“We don’t have to design the ultimate home page,” Hanna reasoned. “It
should be simple, not too long, and provide the essential information
about our company. What information do we need on it?”

“Let’s make a list,” suggested Curt.

They brainstormed for 15 minutes and came up with the following top-
ics.

❑ Company logo

❑ People (Hanna, Curt, Steve), with some personal details

❑ Services offered

❑ Introduction to the car dealer application

“The company logo we can enter as is, because Web browsers handle
all kind of graphic files,” Curt explained. “For the people, we use a
table with our names and personal details. Then we list our services in
boldface, and for the car dealer application we could design some cute
little icons. One of these icons will start the application.”

“We could make the table a little more interesting by adding a picture
of our car to each row. I mean, we do have that neat camera to take
electronic pictures!” Hanna suggested.

“That’s a good start; let’s go to work,” said Curt, who was getting eager
as well, and the HTML manuals Steve bought from the bookstore were
all ready to get dirty.

The Home Page

Within a few hours, Hanna and Curt managed to get the home page
coded in HTML. The table of the people was a little tricky, but after
some trials, the home page [Figures 103 and 104] saw the light of the
day on Curt’s ThinkPad.
Chapter 12. Object REXX and the World Wide Web 237

Hacurs Designs a Home Page
Notes:
To connect to the home page of the Hacurs company with a Web
browser, you would enter:

 http://www.hacurs.com/
 or
 http://www.hacurs.com/Hacurs.htm

We used the TCP/IP HOSTS file to make a shorthand entry,
hacurs, to point to the Windows machine with the Internet Con-
nection Server.

 129.33.160.207 www.hacurs.com hacurs

Figure 103. Hacurs Home Page: Top Half
238 Object REXX for Windows

Hacurs Designs a Home Page
Those readers who want to know what the Hacurs’ home page looks
like in HTML can see the actual coding in Figure 105. The home page
is usually stored in the HTML directory of the Web server.

Figure 104. Hacurs Home Page: Bottom Half

<!--->
<! WWW\Hacurs.htm CarDealer - Web - Hacurs Home Page ITSO-SJC ->
<!--->
<html> <head> <title> HACURS Home Page </title> </head>
<body>

<hr>
<h3> The People </h3>
<dir>

Figure 105. (Part 1 of 2) Hacurs Home Page HTML Code
Chapter 12. Object REXX and the World Wide Web 239

Hacurs Designs a Home Page
Note: Web browsers compress multiple blanks to single blanks, and
lines are concatenated unless a tag forces a new line.

 <table border=2 cellpadding=0>
 <tr>
 <th> </th> <th> Name </th> <th> Personal Details </th> <th> Car </th>
 <tr>
 <td align=center> HA </td> <td align=left > Hanna </td>
 <td align=left >
 Graduate of MIT
 REXX is her love

 Object REXX is her future </td>
 <td align=center> </td>
 <tr>
 <td align=center> CUR </td> <td align=left > Curt </td>
 <td align=left >
 Graduate of MIT
 C++ was his love

 SOM and CORBA is the future </td>
 <td align=center> </td>
 <tr>
 <td align=center> S </td> <td align=left > Steve </td>
 <td align=left >
 Graduate of MIT
 Any language anywhere

 Object REXX is the best </td>
 <td align=center> </td>
 <tr>
 </table>
</dir>
<p>
<hr> <h3> We program for you - any application - in Object REXX </h3>
 <h3> Ask for our services - call today: (408) xxx-xxxx </h3>
<hr>
<h1> The Latest Adventure </h1>
<dir> <p> Customers
 Vehicles
 Work Orders
 Services
 Parts
 Pictures <p>
</dir>
<h3> The CAR DEALER Application </h3>

 Play with it right here
 See Object REXX in action
 All data in DB2/2 Version 2 ...
 with PICTURES and SOUNDS

<dir>
 <table border=4 cellpadding=0>

 Click here to enter the world of REXX the Car Dealer <
/a>
 </table>
</dir>
<hr> HACURS
 <address> swiss@hacurs.com
 (408) xxx-xxxx </address>
 <p>
 Ulrich (Ueli) Wahli - IBM ITSO San Jose
 <address> wahli@vnet.im.com </address>
<hr>
</body></html>

Figure 105. (Part 2 of 2) Hacurs Home Page HTML Code
240 Object REXX for Windows

Web Car Dealer Application
Web Car Dealer Application
In the meantime, Steve had designed the car dealer application for the
Internet. On a few sheets of paper, he sketched out the different for-
mats for presenting the car dealer data in Web browser pages. He
called Curt and Hanna over to his desk and showed them his initial
design [see Figure 106].

Steve explained: “I start with a home page, from where we can invoke
the different paths. The path most used will be the customer list. We
provide a customer search facility by partial name, as we did in the
GUI applications.” [See Figure 68 on page 163.]

“Customer search presents a list of matching customers, from where
we can invoke the details of one customer. The details will include all
the cars of the customer, the work orders for each car, including the
list of services and parts of the work order,” Steve continued.

Figure 106. Initial Design for the Car Dealer Application on the Web

Car Dealer
Home

Application Customer Service Item Part Work Order

Description List List List List

Customer Work Order
Detail Details

Vehicle Work Order
Multimedia Bill
Chapter 12. Object REXX and the World Wide Web 241

Web Common Gateway Interface
“Then you can invoke the bill for a selected work order,” said Hanna.

“That’s right,” Steve responded. “And for our multimedia New and
used cars customer, we can display the pictures or play the sounds and
videos. I represented that with the three stacked boxes. The other
paths are to list all service items, parts, or work orders, and I think we
should also have a short application description.”

“Why do you show three stacked boxes for Work Order List?” asked
Curt.

“Ah, yes, I forgot to mention that,” said Steve. “I designed it so that we
can list incomplete work orders, complete work orders, or all work
orders. Remember, we have that search facility implemented in the
Work Order class. When a work order is selected, I will show the
details, including the service items with parts, and the customer and
vehicle. From there, the user can get the customer details or the bill.”

“That all looks very good,” said Curt. “When can we see it running?” he
asked, smirking.

“I will start coding a simple page first, such as the Part List. Once I get
familiar with the CGI technique of invoking an Object REXX program,
it should be a breeze to get the other pages done. Remember, the object
model is working and stable. Retrieving the data from DB2 is simple;
we already have all the methods. It is just a matter of accepting the
parameters from the Web browser and creating the HTML output.”

“Show us your first page tomorrow—I have lots of confidence in you,”
said Hanna, smiling and she left. Steve just stood there, but what
Hanna had said filled him with pride. He would have something run-
ning by the morning.

Web Common Gateway Interface
Steve studied the documentation of the Internet Connection Server
carefully. He found that the way to invoke a CGI program was by
entering the Web browser request as:

 http://hacurs/cgi-bin/progname?parms

This would invoke the program progname in the CGI-BIN subdirectory
of the server (d:\WWW\CGI-BIN). The program could be either a .EXE or
.BAT file. Using a small .BAT file we can also invoke a REXX program.
[See Customizing the File Organization on the Web Server on page 251
for details.]

The parameters would not be passed directly to the program. They
would be stored as environment variables, together with other useful
information about the request [Figure 107].
242 Object REXX for Windows

Web Common Gateway Interface
Steve proceeded to write the first program to list all parts in the data-
base. All he had to do was to initialize the application, output the top
part of the HTML file, iterate through all the parts and output each
part in HTML, conclude the HTML file, and close the application. He
decided to use an HTML table to display the part list [Figure 108].

Steve ran the program and was pleased with the output. He called
Hanna and Curt and showed them how simple the program was.

“This looks really easy!” Curt said in astonishment. “But what are
those first two say instructions?” he asked.

Steve explained: “A CGI program must first tell the server what kind
of output is produced. The string Content-Type: text/html tells the
server that a regular HTML file will be generated, and the second say
instruction must be blank.”

 REMOTE_ADDR TCP/IP address of the requester (xxx.xxx.xxx.xxx)
 SCRIPT_NAME Request string before the ? (/cgi-bin/progname)
 QUERY_STRING Parameters following the ? in the request (parms)
 (blanks are replaced by + signs)
 ...

Figure 107. CGI Environment Variables (Extract)

/*--*/
/* WWW\partall1.cmd CarDealer - Web - Part list 1 ITSO-SJC */
/*--*/
 .Cardeal~initialize
 partclass = .local['Cardeal.Part.class']
 say 'Content-Type: text/html'
 say ''
 say '<html>'
 say '<head><title>Object REXX Car Dealer Application</title></head>'
 say '<body>'
 say '<H2>Part List</H2>'
 say '<table border=2 cellpadding=0>'
 say '<tr>'
 say '<th>Number</th> <th>Description</th> <th>Price</th> <th>Stock</th>'
 say '<tr>'
 do part over partclass~extent
 say '<td>' part~number '</td>'
 say '<td>' part~description '</td>'
 say '<td align=right>' part~price '</td>'
 say '<td align=right>' part~stock '</td>'
 say '<tr>'
 end
 say '</table>'
 say '</body>'
 say '</html>'
 .Cardeal~terminate
 return
::requires carmodel.cfg /* include the configuration file */

Figure 108. CGI Program to List All Parts
Chapter 12. Object REXX and the World Wide Web 243

Web Common Gateway Interface
“I thought you were going to write an HTML class to simplify the cod-
ing of the generated HTML lines,” Hanna interjected.

“That’s true,” said Steve. “But first I wanted to have a simple working
example. Now I can design the HTML class to provide the functions
that are used most.”

“Show us the output in the browser,” demanded Curt, who was excited
and wanted to see the program in action.

“Here we go,” said Steve as he started the Web browser and entered
http://hacurs/cgi-bin/partall1. It took a while, but eventually the
screen filled with the Part List [Figure 109].
80

HTML Class

After a nice lunch at the nearby Mexican cantina, Steve proceeded to
rewrite the code using a new HTML class. He thought of the functions
that are used most often and designed those as methods of the class.

Figure 109. Car Dealer Part List in Web Browser
244 Object REXX for Windows

Web Common Gateway Interface
He also decided that each car dealer output page should have a refer-
ence to the car dealer home page and a common signature area at the
bottom. The redesigned code looked definitively more object-oriented
[Figure 110].

The HTML class allocates an array of lines. Each method basically
adds a line to the array in the proper HTML format. Some of the
methods produce matching start-and-end tags, with the argument
passed as the text between the tags. For example:

 html~h2('Part List') ==> <H2>Part List</H2>

Other HTML tags are produced by individual start-and-end methods:

 html~table('border=2 cellpadding=0') ==> <table border=2 cellpadding=0>
 html~etable ==> </etable>

The title method produces all of the required HTML tags at the start
of the document:

 html~title('xxxxxx') ==> <html> <head> <title>xxxxxx </head> <body>

The carhome method produces the reference to the car dealer home
page, the sign method produces the common ending, and the send
method outputs the whole array as REXX say instructions. Not every
HTML tag has a matching method. Tags without a method can be gen-
erated with generic methods, where the name of the tag is passed, as
well. [See Figure 111 for an extract of the HTML class.]

/*--*/
/* WWW\partall2.cmd CarDealer - Web - Part list 2 ITSO-SJC */
/*--*/
 .Cardeal~initialize
 partclass = .local['Cardeal.Part.class']
 html = .HTML~new
 html~title('Object REXX Car Dealer Application')
 html~carhome /* reference to car dealer home page */
 html~h2('Part List')
 html~table('border=2 cellpadding=0')
 html~tr
 html~~th('Number')~~th('Description')~~th('Price')~~th('Stock')
 html~tr
 do part over partclass~extent
 html~~td(part~number)~~td(part~description)
 html~~td(part~price,'align=right')~~td(part~stock,'align=right')
 html~tr
 end
 html~etable
 html~~p~carhome /* reference to car dealer home page */
 html~sign /* common signature at bottom */
 html~send /* output all the accumulated lines */
 .Cardeal~terminate
 return
::requires html.frm /* HTML class */
::requires carmodel.cfg /* car dealer configuration file */

Figure 110. Object-Oriented CGI Program to List All Parts
Chapter 12. Object REXX and the World Wide Web 245

Web Common Gateway Interface
/* WWW\html.frm CarDealer - Web - HTML Framework ITSO-SJC */

::class HTML public subclass array

::method init /* initialize an html object */
 expose array_index type /* index into the array, docu type */
 array_index = 1 /* start at the first item */
 type = 'text/html' /* default document type */
 forward class (super) /* do superclass initialization */
 /* Start the html array off */
::method put /* over ride of the put method */
 expose array_index /* get the current index */
 parse arg text
 self~put:super(text, array_index)
 array_index = array_index + 1
::method title /* title tag */
 parse arg text
 self~put('<html><head><title>'text'</title></head><body>')
::method h1 /* header 1 tag */
 parse arg text
 self~put('<H1>'text'</H1>')
::method tag 1 /* generate any tag */
 parse arg name, text
 self~put('<'name'>'text)
::method text /* add raw text to the stream */
 parse arg text
 self~put(text)
::method p /* paragraph tag */
 parse arg text
 self~put('<p>'text)
::method ul /* ul tag */
 self~put('')
::method li /* li tag */
 parse arg text
 self~put(''text)
::method table /* table tag */
 parse arg options
 self~put('<table' options'>')
::method td /* td tag */
 parse arg text, options
 if text = '' then self~put('<td' options'>')
 else self~put('<td' options'>'text'</td>')
::method sign /* signature/end */
 self~~hr~b('Hacurs - Car Dealer Application')
 self~br('Ulrich (Ueli) Wahli - IBM ITSO San Jose')
 self~address('wahli@vnet.im.com')
 self~~hr~~etag('body')~~etag('html')
::method send /* send the HTML from the array */
 expose type
 crlf = '0d0a'x
 say 'Content-Type:' type
 say ''
 say '<!doctype html public "html2.0">'
 do line over self /* loop over the array */
 say line /* send out the next line */
 end

Figure 111. HTML Class for CGI Programs (Extract)
246 Object REXX for Windows

Web Common Gateway Interface
Customer Search Form

The next morning, Steve showed the HTML class to Hanna and Curt.
“This will make future coding much easier,” he explained.

“That’s true,” said Hanna. “But how are you going to implement the
customer search facility? Can you put a push button into an HTML
page?”

“I already investigated that last night,” Steve said. “HTML provides
the form facility with entry fields, radio buttons, and check boxes, and
a Submit button to pass the values of the form to the next CGI pro-
gram. The extract of the customer home page for customer search
looks like this.” [Figure 112.]

“Explain this one to me, please,” said Curt.

“Sure, I can do that,” Steve answered. “Just look at the HTML code
that creates this form.” [Figure 113.]

Figure 112. Customer Search Form

<html> <head> <title> Customer Search Test </title> </head> <body>
<form method="GET" action="/cgi-bin/CustList">
 <p> First get a list of customers ...
 <p> If you have been here before, enter the customer name or
 an abbreviated name (such as one letter),
 otherwise just submit the form for a list of all customers.
 <p> <pre>Name search <input name="name" type="text" size="20"> <input type="submit">
 </pre>
</form>
</body> </html>

Figure 113. HTML for Customer Search Form
Chapter 12. Object REXX and the World Wide Web 247

Web Common Gateway Interface
“The form tag defines the method of passing data and the program,
CustList, that is invoked. The GET method passes all data in the
request string, whereas the POST method tells the program to
retrieve the data from the browser once it has been invoked. I speci-
fied the GET method because the amount of data is small.

“The input tags specify the different fields and buttons of the form.
Here I used only one input field name of 20 bytes, and one Submit
button. The <pre> tag specifies that this line is preformatted, with
blanks between the text label, the input field, and the Submit button.
Normally, Web browsers reduce all blanks to a single blank,” Steve
concluded.

“What does the program get passed when I click on the Submit but-
ton?” asked Hanna.

“The browser builds a query string from all of the fields of the form.
Each field is passed in the format fieldname=value, separated by an
ampersand. In our simple form with one field,

 http://hacurs/cgi-bin/CustList?name=D

“would be the request string if you enter D in the search field. If the
form had a name and an address field, the request string would
include both fields, separated by an ampersand.”

“Come see me after lunch, and I’ll show you the customer search in
action,” said Steve, who was confident that it would be fairly easy to
write the second program, using the form and his new HTML class.

After lunch, Steve showed the customer list output to Hanna and
Curt. He had designed a table to hold the customer data. He made the
customer names active so that clicking on a name would invoke the
next program, CustDetail, to generate the customer detail page. [See
Figure 114.]
248 Object REXX for Windows

Web Common Gateway Interface
“Wow, you really did a lot of work!” exclaimed Hanna, who was very
pleased with the progress Steve had made. The other pages would be
fairly easy to add. The work on the object model and the configuration
paid off with every new application based on that model.

“Have you tried to run the application with persistent storage in
files?” asked Curt.

“No problem,” replied Steve. “I am doing most of the test with the file
system because it is faster than the DB2-based application. I just
switch the configuration file [carmodel.cfg], using our car-run pro-
gram. But when we make the Web application available to outside
users, it is better for advertising if it runs on DB2.”

Steve had another ace up his sleeve. He clicked on a customer name in
the list, and the details of the customer showed up in the Web browser
[see Figure 115].

Figure 114. Customer List in Web Browser
Chapter 12. Object REXX and the World Wide Web 249

Web Common Gateway Interface
“What else is there to do?” asked Curt. “Just a few more programs gen-
erating the other Web pages.”

“I think there are a few more items on my list,” Steve replied.

Figure 115. Customer Details in Web Browser
250 Object REXX for Windows

Program Organization
Program Organization
“The car dealer is just the first application we put on the Internet. In
the future, we might add other applications. I have to organize my
files better, so that future applications do not interfere with the car
dealer,” Steve continued.

“Steve, that’s good thinking ahead,” said Hanna. “The Internet could
be useful for many things we do over the next few months. We had bet-
ter start organizing all the programs and HTML files we produce for
the car dealer application.”

Customizing the File Organization on the Web Server

Steve decided to put all the car dealer HTML files and programs into a
separate subdirectory. At first, he considered using a subdirectory
within the Internet Connection Server directory structure but, after
studying the documentation on server administration, he decided to
use a subdirectory within the existing car dealer directory:

 d:\CARDEAL\WWW

He then tailored the server administration file to point to the new
directory. The httpd.cnf administration file is stored in the main Win-
dows directory.

Figure 116 shows an extract of the tailored administration file.

“Why are you making these changes, Steve?” asked Hanna, glancing
over Steve’s shoulder. She had just returned with coffee from the
machine and wondered why Steve was so engrossed in his work.

It was as if Steve had just awakened. He had not realized that Hanna
was standing right behind him. He started to apologize for not notic-
ing her, but then he just shrugged and explained:

1 “The first Welcome line directs the server to display the Hacurs
home page:
 http://www.hacurs.com ==> d:\WWW\HTML\Hacurs.htm
 http://www.hacurs.com/Hacurs.htm ==> same

2 “The second Welcome line directs the server to display the car
dealer home page if the car dealer directory is selected:
 http://www.hacurs.com/cardeal ==> d:\CARDEAL\WWW\cardeal.htm
 http://www.hacurs.com/cardeal/cardeal.htm ==> same

[Note: Point 5 directs any requests beginning with /cardeal to the
d:\CARDEAL\WWW subdirectory.]
Chapter 12. Object REXX and the World Wide Web 251

Program Organization
3 “The Exec line invokes a small batch program, CGI.BAT, for every
CGI request starting with /cgi-bin/cardeal:

 /cgi-bin/cardeal/progname?parms

“The small batch program contains only one line to invoke my
common REXX gateway program, CGIREXX.CMD:

 @rexx cgirexx.cmd

“I plan to write one interface program that handles the environ-
ment variables and some housekeeping before invoking the indi-
vidual function programs.”

“I guess that putting common code into one CGI program will
make the individual programs a little simpler,” remarked Hanna.

Steve nodded and continued:

4 “The first Pass line directs the server to the Media subdirectory for
any /cardeal/media requests. We will need that to display the car
pictures if we run with file persistence.

5 “The second Pass line directs any car dealer request to the WWW sub-
directory.

 # Sample configuration file for IBM Internet Connection Server
 #

 # added for car dealer application (next 2 lines)
 1 Welcome Hacurs.htm
 2 Welcome cardeal.htm
 Welcome Welcome.html
 Welcome welcome.html
 Welcome index.html
 Welcome Frntpage.html

 # added for car dealer application (next 4 lines)
 3 Exec /cgi-bin/cardeal/* D:\CARDEAL\WWW\CGI.BAT
 4 Pass /cardeal/media/* D:\CARDEAL\Media*
 5 Pass /cardeal/* D:\CARDEAL\WWW*
 6 Pass /tmp/* C:\temp*

 Exec /admin-bin/* C:\WWW\ADMIN*
 Exec /cgi-bin/* C:\WWW\CGI-BIN*
 Pass /Docs/* C:\WWW\DOCS*
 Pass /httpd-internal-icons/* C:\WWW\ICONS*
 Pass /icons/* C:\WWW\ICONS*
 Pass /Admin/* C:\WWW\ADMIN*
 Pass /* C:\WWW\HTML*

Figure 116. Tailored Web Server Administration File
Extract of the HTTPD.CNF file in the Windows directory.
252 Object REXX for Windows

Program Organization
6 “The last Pass line directs any requests for /tmp to the temporary
directory of the Windows system. That’s where the pictures are
extracted to when we run with DB2.” [Examples are c:\temp or
c:\Windows\temp.]

“I am impressed!” gasped Hanna. “You have thought of everything.
This keeps all the car dealer files nicely separated from the normal
Web server files.

Have you thought about performance yet?” she added. “How can you
keep all of the class objects in memory?”

Car Dealer Common Interface Program
Next, Steve attacked the common interface program, CGIREXX. He
had to implement a number of common functions:

❑ Pick up the environment variables holding the request and the
parameters from the Web server.

❑ Start the car dealer application. Steve decided to Call the configu-
ration file, carmodel.cfg, and then initialize the application.

❑ Connect to the DB2 database if the application was running with
DB2.

❑ Invoke the individual program to handle the request. He decided
to pass the same Web server environment variables to all pro-
grams, even if they were not needed.

The task was not too difficult, and soon Steve tested the new interface
program shown in Figure 117.

 /* WWW\cgirexx.cmd CarDealer - Web - CGI Rexx Interface */

 parse source env . me .
 envir = 'ENVIRONMENT'
 sourcedir = me~left(me~lastpos('\')-1
 maindir = me~left(me~lastpos('\WWW\')-1))
 script = value('SCRIPT_NAME',,envir) /* Web server variables */
 who = value('REMOTE_ADDR',,envir)
 list = value('QUERY_STRING',,envir)
 parse var script '/cgi-bin/' type /* extract request type */
 list=translate(list, ' ', '+'||'090a0d'x) /* Whitespace, etc. */
 ddir = sourcedir /* CARDEAL\WWW directory */
 sqlca.sqlcode = 0 /* init DB2 return code */
 c = directory(maindir)
 call 'carnodel.cfg' /* configuration file */
 x = directory(sourcedir)
 .Cardeal~initialize /* initialize car dealer */
 if .local['Cardeal.Data.type'] = 'DB2' then do
 call sqlexec "CONNECT RESET" /* just to be sure */
 call sqlexec "CONNECT TO DEALERDB" /* connect to database */
 end

Figure 117. (Part 1 of 2) Car Dealer Common Interface Program
Chapter 12. Object REXX and the World Wide Web 253

Program Organization

 /* analyze the request */
 select
 when .local['Cardeal.Data.type'] = .nil then
 call returnfile ddir'\cardealN.htm' /* CAR DEALER NOT RUNNING */
 when sqlca.sqlcode \= 0 then
 call returnfile ddir'\cardealN.htm' /* DB2 DB CONNECT FAILED */
 when type='cardeal/cardeal' then
 call returnfile ddir'\cardeal.htm' /* cardeal home page */
 when type='cardeal/CustList' then
 call 'custlist.www' file, type, list, who
 when type='cardeal/CustDetail' then
 call 'custdeta.www' file, type, list, who

 /* others similar */

 otherwise
 call error /* returns an HTML error page */
 end
 .Cardeal~terminate /* terminate car dealer */
 return

 /*----------------- return a precoded HTML file ---------------------*/
 RETURNFILE:
 parse arg resultfile
 say 'Location:' ,
 '/cardeal'translate(substr(resultfile,length(ddir)+1),'/','\')
 say ''
 return
 /*----------------- return an error HTML file -----------------------*/
 ERROR:
 say 'Content-Type: text/html'
 say ''
 say '<p>Invalid request of type:' type '
with parms:' list ''
 say '
Who :' who
 say '
Script:' script
 say '
Type :' type
 say '
List :' list
 say '
Dir :' ddir
 say '
'
 return

Figure 117. (Part 2 of 2) Car Dealer Common Interface Program
254 Object REXX for Windows

Multimedia on the Web
Multimedia on the Web
Working late that day, Steve implemented a few more of the individual
CGI programs. The next morning, he called Hanna and Curt over to
his desk and showed them the latest additions.

“Look,” he said. “When you display the multimedia customer [New and
used cars], you get the list of pictures, audio sounds, and videos.” [See
Figure 118.]

“Can you click on one of these to see the picture?” asked Curt.

“Yes, these are active links, and when you click on one of them, you get
a new page that includes the picture of the car. Most Web browsers
handle many picture formats, including BMP, GIF, and JPEG.

“When I click on the Volvo, the picture is displayed.” [See Figure 119.]

Figure 118. New and Used Car List in Web Browser
Chapter 12. Object REXX and the World Wide Web 255

Multimedia on the Web
“I am surprised at how fast the pictures appear,” said Curt, after Steve
clicked on a few more picture lines.

“Remember, we are on a local network,” replied Steve. “For users on
the real Internet, the pictures will appear more slowly because our
BMPs are not compressed. Pictures in GIF or JPEG format are
smaller than BMP, but the GUI builders do not display those formats
in the GUI applications.

“Try out one of the audio sounds now,” he commanded Curt.

Curt clicked on an audio sound, and soon a familiar voice advertised
the features of the Volvo wagon. Clicking on the simple demonstration
video played the movie nicely in the multimedia TV window.

“Does every Web browser support audio and video files?” asked
Hanna.

Figure 119. Vehicle Picture in Web Browser
For a change, we show the Microsoft Internet Explorer.
256 Object REXX for Windows

Interacting with Web Users
“Most browsers can be configured to invoke the operating system’s
multimedia function,” Curt answered, before Steve even had a chance
to explain how he managed to play the multimedia files on his Think-
Pad.

Interacting with Web Users
One morning, Hanna arrived at the office with a new idea. She imme-
diately called Curt and Steve over to explain her idea.

“I had a dream last night,” she said. “We must involve the Web user in
the application. What I want is thus: The user enters his or her name
and address and information about a car. We enter this new customer
and vehicle data into the database and then we let the user create a
work order, select the services to be performed, and, finally, look at the
bill for the job.”

“That’s an amazing idea,” Curt shouted. “The user will come back to
our home page several times to check whether the information is still
there. That will prove how reliable the DB2 database is.”

“What about security?” asked Steve. “The user could pretend to be
somebody else when visiting our home page and create many new cus-
tomers and add work orders to any of our demonstration customers.
We need some control, so that each Web user can add only one car and
not modify any of our own customers in the database.”

“That’s a real concern, Steve, you are right,” said Hanna. “Maybe we
can use the address field of the customer and store the Web user’s
TCP/IP address as a reference. Remember, the Web server passes the
address in an environment variable to the CGI program,” she added.

“That’s a neat solution,” said Steve. “Nobody will be able to touch our
existing customers. But we have to extend the DB2 object model to
include a method to search the customer table by address. That would
enable us to check whether a customer already exists for a given
TCP/IP address.”

“And since we generate the resulting HTML file by the CGI program,
we can include the active link to create a work order only for the cus-
tomer entry of the current Web user.” Curt was thinking quickly, as
well.

“There is just one problem,” he added. “Clever Web users can fake
TCP/IP addresses and change customer records of other Web users.
It’s only a small problem, however, because our existing customer
records cannot be touched.”

“I think that’s good enough for a start,” said Hanna. “Our prospects
are hardly of the hacker kind. Let’s go to work. I will design the layout
of the interactive form so that a Web user can add a customer and a
vehicle. It will be a static HTML file, and I can do that!”
Chapter 12. Object REXX and the World Wide Web 257

Interacting with Web Users
“Curt, you work on the program to create a new work order. You have
to know how to code a CGI program; we cannot depend on Steve
alone,” she said, turning to Steve and smiling.

“And you, Steve, modify the existing customer display program to add
an active link to create a new work order if the customer matches the
TCP/IP address. And while we are at it, we can also allow Web users to
delete the work order and the customer if they so choose,” she con-
cluded.

Hanna felt good, she was in charge. It had been her dream, and
nobody could take away her idea.

Adding a Web Customer

Hanna quickly designed the form for a new customer and car. She
deliberately added a field for the TCP/IP address, which could then be
compared with the address passed by the Web server, thus eliminating
a few cases of users trying to fool the system. [See Figure 120.]

Figure 120. HTML Form for a New Customer and Car
258 Object REXX for Windows

Interacting with Web Users
In the meantime, Steve added a findAddress method to the Customer
class for both file and DB2 persistence. The new code could be tested
with the file system first before running on the DB2 database. Imple-
menting the method for both types of persistence also kept the object
model in sync.

Steve then modified the customer detail page to show an active link to
delete the customer and create a new work order if the address
matched the TCP/IP address passed by the Web server. The additional
code was simple:
 parse arg file, type, list, who
 parse var list 'cust=' custnum '?'
 ...
 customer = custclass~findNumber(custnum)
 ...
 if customer~address = who then
 html~~br~href('CDDelete?cust='customer~number, '==> Click here to delete the customer')
 ...
 if customer~address = who then
 html~~li~href('NewWork?cust='custnum'&car='car~serial, ,
 '==> Click here for new workorder')

He could always replace the active text link with a nice, small picture
icon later. For now, it was important to get his code working before
Curt was ready with the customer delete and the create new work order
routines.

Curt implemented the delete routine with a little pain. It was his first
attempt at CGI programming, and it took a few trials to get the
parameters right, delete the information in the object model, and gen-
erate a suitable HTML reply.

He then tackled the new work order program. Creating a work order
was simple, it just needed a customer and a vehicle; all other
attributes were generated by the model. The hard part was designing
the addition of service items to the work order. He decided to use an
HTML form, display all the service items as check boxes, and let the
user select any number of them before sending the form by using the
Submit button. [See Figure 121.]
Chapter 12. Object REXX and the World Wide Web 259

Interacting with Web Users
Curt decided that after processing the form the resulting Web page
would be the existing customer detail display that Steve had done pre-
viously. [See Figure 115 on page 250.]

The design of the car dealer application on the Web was now complete.
[Figure 122 shows the final application flow diagram.]

Figure 121. HTML Form for a New Work Order
There is a Submit button at the bottom of the form.
260 Object REXX for Windows

Car Dealer Home Page
Car Dealer Home Page
Hanna thought about a few other pages that would enhance the func-
tion of the application, but time was running out. The leased phone
line was installed, and they had to get the application out to the mar-
ket.

There would be another day to make further changes. The Web was an
active place, and enhancements could be added any time. Their object
model and Steve’s CGI program design would make it easy to main-
tain the attractiveness of the application and its currentness in the
face of the ever-changing Web technology.

Figure 122. Final Design for Car Dealer Application on the Web

Car Dealer
Home

Application Customer New ServiceItem Part Work Order
Description List Customer List List List

Customer Work Order
Detail Details

New Vehicle Work Order
Work Order Multimedia Bill
Chapter 12. Object REXX and the World Wide Web 261

Car Dealer Home Page
Hanna completed the car dealer home page with the new function of
user interaction and tested it herself. Then she called Steve and Curt
over and proudly presented the Hacurs car dealer home page [see Fig-
ure 123].

“I think that’s a start,” said Curt, and Steve added, “You cleverly used
our icons as active links to the different programs. Let’s put it out on
the external Internet Connection Server.”

“Let the world enjoy Object REXX and the car dealer on the Web!”
Hanna exclaimed, as she pushed the button to activate the external
connection to their server.

Figure 123. Web Car Dealer Application Home Page
262 Object REXX for Windows

Implementation Notes
Implementation Notes
When installing the IBM Internet Connection Server on a Windows
NT system you can choose to have the server installed as a service.
Alternatively the server is installed as a normal program with an icon
in a folder.

The IBM Internet Connection Server can also be installed on a Win-
dows 95 system. You have to manually add the program library
d:\WWW\BIN to the PATH variable.

You have to configure your browser to handle bitmaps (.BMP), audio
files (.WAV), and video files (.AVI).

Source Code

The source code for the car dealer on the World Wide Web is not listed
in the appendix; it is available in the car dealer directory on the CD, or
on a hard drive after Object REXX has been installed (see Table 29 on
page 303).
Chapter 12. Object REXX and the World Wide Web 263

Implementation Notes
264 Object REXX for Windows

Part 3

Object REXX and
Concurrency

Object
REXX
265

266 Object REXX for Windows

13
Objec
t REXX and
Concurrency
In this chapter, we experiment with the concurrency facilities of
Object REXX. Object REXX provides both inter- and intraobject con-
currency.

Interobject concurrency enables us to run a method against each of
several different objects concurrently. Intraobject concurrency enables
us to run multiple methods concurrently against a single object.

There is a detailed description of Object REXX concurrency in the
Object REXX Reference manual.

Object-Based Concurrency
Every Object REXX object contains its own encapsulated method vari-
ables. It is given the processing power needed to run its methods and
to exchange messages with other objects. Each object is a totally self-
contained entity, and any number of objects can be active at the same
time. This is defined as interobject concurrency. There is no danger of
 267

Object-Based Concurrency
multiple updates to the same object variable because each object vari-
able is owned by only one object, and each object runs only one method
at a time.

Object REXX also supports another type of concurrency, where more
than one method can run against the same object at the same time.
This is defined as intraobject concurrency. Careful planning and syn-
chronization are needed to ensure that the variables shared between
methods are updated by only one method at a time. Object REXX pro-
vides facilities to manage these aspects.

The Object REXX Concurrency Facilities

The facilities provided by Object REXX to manage concurrency are:
early reply, message objects, unguarded methods, and the guard
instruction.

Early Reply
A method can send an early reply to its caller using the reply state-
ment, then continue running. The calling routine will be able to
resume its own work while the called method continues to execute
(Figure 124).

Figure 124. Concurrency with Early Reply

WorkOrder Method exampleBill Printer Method print

::method exampleBill

/* accumulate the bill */ ::method print
bill = .list~new
do servx over self~getServices expose printLines

bill~insert(....) /* accept a list of lines */
end use arg printLines
msg = myprinter~print(bill) nrLines = printLines~items

...
/* continue with work */ reply 'OK - I got' nrLines 'lines'
gui~display(msg) /* Now print the bill */
... self~start

do oneline over printLines
self~printaLine(oneline)

end
return
268 Object REXX for Windows

Object-Based Concurrency
Message Objects
Message objects enable an Object REXX program to start a method
executing in parallel with itself. The caller continues executing and
can later ask the intermediate message object for the results of the
call (see Figure 125).

Note: When the caller asks the message object for the results, Object
REXX makes it wait if the invoked method has not yet completed.

Unguarded Methods
A method can be declared unguarded:

 ::method getnumber unguarded

An unguarded method will run even if another method is already
active for the same object. This enables intraobject concurrency. It is
usually quite safe to make read-only methods unguarded because they
do not modify the shared variable pool. It is, however, possible that
some of the variables in the pool will be inconsistent with others in the
same pool. Suppose, for example, that an object’s methods maintain a
list of numbers and the sum of all the numbers in this list within the
object’s variable pool. If an unguarded method reads the numbers in
this list and compares their sum to the sum maintained by the other
methods, the sums may differ if another method happens to be updat-
ing the list at the time it is read.

Unguarded methods are needed in recursive situations. For example,
the init method for a vehicle invokes the addVehicle method of the cus-
tomer, which, in turn, invokes the getOwner method of the vehicle to
check whether the vehicle is already owned. The getOwner method
must be declared as unguarded so that it can run in parallel with the
init method that is already active for the vehicle in question.

Figure 125. Concurrency with Message Objects

WorkOrder Method exampleBill Printer Method print

::method exampleBill

/* accumulate the bill */ ::method print
bill = .list~new
do servx over self~getServices expose printLines

bill~insert(....) msgobj /* accept a list of lines */
end use arg printLines
msgobj = myprinter~start start nrLines = printLines~items

("print",bill) ...

/* continue with work */ /* Now print the bill */
... (wait) self~start
... do oneline over printLines
msg = msgobj~result self~printaLine(oneline)
gui~display(msg) end
... return
Chapter 13. Object REXX and Concurrency 269

Object-Based Concurrency
The Guard Instruction
The guard instruction acquires or releases exclusive control of an
object’s variable pool. This allows a method to alternate between
exclusive access to all variables and parallel execution with other
methods (Figure 126).

For an examples of the use of guard on when see the fork class of the
philosophers’ forks (Figure 131 on page 275).

Examples of Early Reply with Unguarded and Guarded Methods

The example that follows shows what happens when early reply is
used to achieve intraobject concurrency. We start with completely
unguarded methods, which utilize full intraobject concurrency (see
Figure 127).

The program contains a main routine that creates an object and sends
a repeat1 message to it. The expected result (a string) is displayed
with say. The main routine sleeps for one second, and then displays
the variable cvar.

If we look at the object class example and the three methods repeat1,
repeat2, and repeat3, we see they are all unguarded. Thus, all three
can run concurrently on the same object. The object’s variables reps
and cvar are concurrently available to all three methods.

The first method, repeat1, initializes the variable subpool with the
arguments from the main routine. It immediately calls the repeat2
method for the same object and waits.

 /* method code */
 ...
 guard on /* acquire exclusive control */
 /* wait if another method has exclusive control */
 ...
 x = x + 1 /* process variables */
 ...
 guard off /* release exclusive control, allow others */
 ...
 guard on when z > 0 /* acquire exclusive control when
 variable z is greater than zero */
 ... /* ===> wait until z changes to positive */

Figure 126. Concurrency with Guard
270 Object REXX for Windows

Object-Based Concurrency
The repeat2 method calls the repeat3 method for the same object and
waits. We now have four invocations stacked on the activity chain (the
main routine, repeat1, repeat2, and repeat3). When the repeat3 method
issues a reply command, a new activity chain (thread) is started for
the repeat3 method, and control goes back to the next instruction in
method, repeat2 (the one following the invocation of method repeat3).
Similarly, repeat2 uses an early reply to repeat1, and repeat1 uses an
early reply to the main routine.

 /* Xamples\xmpreply.rex Early reply example - DOS window */

 repetitions = 3 /* may change */
 call RxFuncAdd 'SysSleep', 'RexxUtil', 'SysSleep'
 lvar = '(Main)' /* init variables */
 cvar = 'Main'
 cobj = .example~new /* allocate object */
 say lvar cobj~repeat1(repetitions, cvar) /* - invoke repeat1 */
 call SysSleep 1
 say lvar 'Var =' cvar
 return

 ::class example

 ::method repeat1 unguarded /* repeat1 method */
 expose reps cvar
 use arg reps, cvar
 lvar = '(R1)'
 say lvar self~repeat2 /* - invoke repeat2 */
 reply 'Reply from' lvar /* - early reply */
 do reps /* - loop */
 say lvar '- Var =' cvar
 cvar = 'R1'
 end

 ::method repeat2 unguarded /* repeat2 method */
 expose reps cvar
 lvar = '(R2)'
 say lvar self~repeat3 /* - invoke repeat3 */
 reply 'Reply from' lvar /* - early reply */
 do reps /* - loop */
 say lvar '- Var =' cvar
 cvar = 'R2'
 end

 ::method repeat3 unguarded /* repeat3 method */
 expose reps cvar
 lvar = '(R3)'
 reply 'Reply from' lvar /* - early reply */
 do reps /* - loop */
 say lvar '- Var =' cvar
 cvar = 'R3'
 end

Figure 127. Example of Early Reply with Unguarded and Guarded
Methods
Chapter 13. Object REXX and Concurrency 271

Object-Based Concurrency
Running the program produces the kind of output shown in Figure
128. In the left column (first run) we leave all methods unguarded; in
the middle column, all methods are guarded (remove the keyword
unguarded from the source code); and in the right column, we use a
mix of guarded and unguarded methods.

Notes:

1. Unguarded: The sequence in which this output appears will
change each time the program is run. The three methods run in
parallel and compete for processor time. Which method runs when
is up to the system scheduler.

2. Guarded: Once a method gets control, it will run to completion.
Only after this can another one continue. Method repeat1 gets con-
trol first from the reply of repeat2, and finishes its work.

3. Mixed: Because method repeat1 is unguarded, it can run in paral-
lel with repeat2, whereas repeat3 must wait until repeat2 is fin-
ished.

Other combinations of guarded and unguarded methods can be tried.
You can find the program in xamples\xmpreply.rex.

Figure 128. Sample Output of Early Reply with Unguarded and
Guarded Methods

Methods: UNGUARDED GUARDED MIXED

repeat1: unguarded guarded unguarded
repeat2: unguarded guarded guarded
repeat3: unguarded guarded guarded

output: (R2) Reply from (R3) (R2) Reply from (R3) (R2) Reply from (R3)
(R3) - Var = Main (R1) Reply from (R2) (R1) Reply from (R2)
(R1) Reply from (R2) (Main) Reply from (R1) (R2) - Var = Main
(R3) - Var = R3 (R1) - Var = Main (Main) Reply from (R1)
(R2) - Var = R3 (R1) - Var = R1 (R2) - Var = R2
(Main) Reply from (R1) (R1) - Var = R1 (R1) - Var = R2
(R3) - Var = R3 (R3) - Var = R1 (R2) - Var = R2
(R1) - Var = R3 (R3) - Var = R3 (R1) - Var = R1
(R2) - Var = R2 (R3) - Var = R3 (R3) - Var = R2
(R1) - Var = R1 (R2) - Var = R3 (R1) - Var = R1
(R2) - Var = R2 (R2) - Var = R2 (R3) - Var = R3
(R1) - Var = R1 (R2) - Var = R2 (R3) - Var = R3
(Main) Var = Main (Main) Var = Main (Main) Var = Main

Notes: (1) (2) (3)
272 Object REXX for Windows

Philosophers’ Forks
Philosophers’ Forks
Let’s join our Hacurs team again to see a visual demonstration of
Object REXX’s concurrency capabilities.

On the Monday morning after a rainy weekend in October, Hanna
came into the office beaming.

“Hi, Hanna, why the big smile?” called out Steve. “Are you up to some-
thing?”

“I spent the weekend playing with Object REXX’s concurrency facili-
ties. Let me show you what I built. Do you know the philosophers’
forks problem?” she asked.

“Hmm,” said Curt, “isn’t that the one with five philosophers sitting
around a table trying to grab forks and eat in turn?”

“Yes, that’s the one,” replied Hanna with a smile.

Philosophers’ Forks in an DOS Window

“I wasted my weekend watching the fifth game of the World Series,”
said Steve. “It didn’t produce a winner, and I missed the final game
because I had to go to a cousin’s wedding. So how did you implement
the philosopher’s forks, Hanna?” he asked.

“I developed a main program to control the operation and two
classes—one for philosophers and one for forks,” said Hanna. She
opened her ThinkPad and fired it up. Steve and Curt gathered around
her desk.

The philosophers’ forks

❑ Five philosophers sit around a table. Each one goes through a
cycle of sleeping and eating.

❑ There is a fork between each two philosophers, so there are five
forks on the table, as well.

❑ To eat, a philosopher has to grab the forks on both sides. If a
fork has already been taken by the philosopher on the other side
of the fork, the philosopher must wait until that fork is free.

❑ The philosophers reach for forks in no particular order, but once
they reach out for a fork and have to wait, they don’t change
their mind, even if the other fork is available.

❑ When they have finished eating, the philosophers put down
both forks and go back to sleep.

❑ The times that they sleep and eat vary randomly around given
values.
Chapter 13. Object REXX and Concurrency 273

Philosophers’ Forks
“The main program sets the parameters, creates the forks and philoso-
phers, then runs all philosophers concurrently, using the start
method,” Hanna explained [see Figure 129]. “Then it just waits for
everything to finish.”

“I’m surprised at how straightforward it looks, Hanna,” said Steve.

“The philosopher class is also quite simple,” said Hanna [see Figure
130].

“The init method stores references to the fork objects and prepares an
output string for indentation. The run method loops through sleeping
and eating, picking up the forks, and laying them down again.”

“It may look simple to you, Hanna,” said Curt, “but that’s because you
wrote it. Still, it is pretty short. Where’s the magic?”

 /* oodialog\samples\philfork.rex Philosophers’ Forks - Main */

 arg parms /* parameters default values: */
 if parms = '' then parms = '8 6 any 2' /* - sleep = 8 sec, eat = 6 */
 parse var parms psleep peat pside prepeats /* - grab forks from ANY side */
 T.eat = peat /* - run 2 cycles */
 T.sleep = psleep
 T.veat = trunc(peat / 2) /* random variations */
 T.vsleep = trunc(psleep / 2) /* - for eat and sleep times */
 if pside = 'L' then T.side = 100 /* grab left fork first */
 else if pside = 'R' then T.side = 0 /* grab right fork first */
 else T.side = 50 /* grab in random order */
 T.repeats =prepeats

 f1 = .fork~new(1) /* allocate 5 forks */
 f2 = .fork~new(2)
 f3 = .fork~new(3)
 f4 = .fork~new(4)
 f5 = .fork~new(5)

 p1 = .phil~new(1,f5,f1) /* allocate 5 philosophers */
 p2 = .phil~new(2,f1,f2)
 p3 = .phil~new(3,f2,f3) /* tell them which forks */
 p4 = .phil~new(4,f3,f4) /* they must use */
 p5 = .phil~new(5,f4,f5)

 m1 = p1~start("run",T.) /* start the 5 philosophers */
 m2 = p2~start("run",T.) /* concurrently */
 m3 = p3~start("run",T.)
 m4 = p4~start("run",T.)
 m5 = p5~start("run",T.)

 m1~result /* wait for the 5 message */
 m2~result /* objects to complete */
 m3~result
 m4~result
 m5~result
 return 0

Figure 129. Philosophers’ Forks: Main Program
274 Object REXX for Windows

Philosophers’ Forks
“My secrets are hidden in the fork class,” said Hanna. “That’s where
the concurrency and synchronization are managed, but Object REXX
makes it pretty easy to do.” [See Figure 131.]

 ::class phil /* Philosopher Class */

 ::method init /* initialization */
 expose num rfork lfork out /* store fork objects */
 use arg num, rfork, lfork
 out = ' '~copies(15*num-14) /* prepare output indentation */

 ::method run /* run through the cycle */
 expose num rfork lfork out
 use arg T.
 x = random(1,100,time('S')*num)
 say out 'Philosopher-'num /* announce who you are */
 do i=1 to T.repeats
 stime = random(T.sleep-T.vsleep,T.sleep+T.vsleep)
 say out 'Sleep-'stime /* announce you are sleeping */
 rc=SysSleep(stime) /* sleep some random seconds */
 say out 'Wait' /* announce wait for forks */
 if random(1,100) < T.side then do /* which fork first ? */
 lfork~pickup(1,'left',num) /* - pick up left fork */
 rfork~pickup(2,'right',num) /* then right */
 end
 else do
 rfork~pickup(1,'right',num) /* - pick up right fork */
 lfork~pickup(2,'left',num) /* then left */
 end
 etime = random(T.eat-T.veat,T.eat+T.veat)
 say out 'Eat-'etime /* announce you are eating */
 rc=SysSleep(etime) /* eat some random seconds */
 lfork~laydown(num) /* lay down both forks */
 rfork~laydown(num)
 end
 say out 'Done' /* announce you are done */
 return 1

Figure 130. Philosophers’ Forks: Philosopher Class

 ::class fork /* Fork Class */

 ::method init /* initialization */
 expose used
 used = 0 /* initialize "used" flag */

 ::method pickup /* pick up the fork */
 expose used
 guard on when used = 0 /* WAIT until "used" flag = 0 */
 used = 1 /* set "used" flag "occupied" */

 ::method laydown unguarded /* pay down the fork */
 expose used
 used = 0 /* set "used" flag to "free" */

Figure 131. Philosophers’ Forks: Fork Class
Chapter 13. Object REXX and Concurrency 275

Philosophers’ Forks
“Ah,” said Steve, “now it starts to get interesting. Walk us through this
code, Hanna.”

“The fork’s used variable is the key,” Hanna explained. “It’s initially
set to zero, indicating that the fork is free. The pickup method changes
it to 1, but it contains a guard instruction that forces it to wait until
the fork is free, which happens in the laydown method.”

“Sounds good,” said Curt, “but let’s see it in action!”

Hanna started the program, and soon the window was filled with
announcements of the philosophers’ activities [see Figure 132].

 Philosopher-1
 Sleep-5
 Philosopher-2
 Sleep-10
 Philosopher-3
 Sleep-9
 Philosopher-4
 Sleep-9
 Philosopher-5
 Sleep-5
 Wait
 Eat-8
 ************ Wait
 ************ Wait |
 ************ Eat-6 |
 ************ Wait ************ |
 ************ Wait | ************ |
 Sleep-5 | | ************ |
 Eat-8 | ************ |
 ************ | Sleep-12 |
 ************ | Eat-7
 Wait ************ | ************
 | Sleep-4 | ************
 | Eat-4 ************
 | ************ Sleep-6
 Eat-7 ************
 ************ Wait ************
 ************ | Sleep-4
 ************ | Wait
 ************ | Eat-7
 ************ | ************ Wait
 ************ | Wait ************ |
 Done | | ************ |
 Eat-5 | ************ |
 ************ | Done |
 ************ | Eat-4
 Done | ************
 Eat-3 ************
 Done ************
 Done

Figure 132. Philosophers’ Forks: Sample Output
The output has been enhanced with blocks of asterisks (*) to
indicate eating and vertical lines to indicate waiting. No more
than two philosophers can eat at the same time because of the
shared forks.
276 Object REXX for Windows

Philosophers’ Forks
“Cool!” said Steve. “I wonder if we could OODialog to make this look a
bit more snazzy.”

“Sounds like a great idea, Steve,” said Hanna. “Why don’t you try?
You’ve got Classy Cars running so smoothly, you probably don’t have
anything better to do this week.”

“Me and my big mouth!” said Steve with a rueful smile. “I guess I
walked straight into that one. You knew that I would, didn’t you? You
were just waiting for me to make that suggestion,” he accused Hanna.
Her smile broadened, but she said nothing.

Visualizing Philosophers’ Forks with OODialog

The next day, Steve came to the office late but looking rather smug. He
called Hanna and Curt over to his desk to show off the graphical GUI
version of the philosophers’ forks. He started his ThinkPad and clicked
on an icon to launch the application. A window opened and displayed
Steve’s inventive representation of the classical philosophers’ forks
problem [see Figure 133].

Figure 133. Philosophers’ Forks GUI: OODialog Layout
Chapter 13. Object REXX and Concurrency 277

Philosophers’ Forks
“I implemented philosophers and forks as bitmap buttons, and, what
you can’t see yet, the philosophers have hands to grab the forks,” said
Steve.

“That looks great, but what happens when you run it?” asked Hanna.

Steve clicked on the Start button, and suddenly the philosophers’
faces changed while they were sleeping, waiting, or eating. A hand
appeared when a philosopher was waiting for a fork, and then the
hand held the fork for eating. Hanna and Curt watched the unfolding
story in admiration [see Figure 134].

“The philosophers look boring while sleeping,” Steve explained.

“They turn into angry faces while waiting for a fork,” said Hanna.

“And they lick their mouths while eating,” remarked Curt. “The food
must be very spicy!”

“The forks kind of move around,” added Steve. “They are between the
philosophers when not in use and appear in the hands when the phi-
losophers are eating.”

Figure 134. Philosophers’ Forks GUI: Animation Run
278 Object REXX for Windows

Philosophers’ Forks
As the philosophers completed their specified number of sleeping and
eating cycles, they disappeared from the screen one by one. When all
had finished, the window disappeared.

“Marvelous,” exclaimed Hanna, “that looks much better than my DOS
window version.”

“Can it run any faster?” asked Curt.

“No problem,” replied Steve, “I’ll set the sleep and eat times to 1 sec-
ond each and set it going again. For now I have to make the change in
the code but I might add a setup window later.”

Steve did so. Now the philosophers faces changed much faster than
before, and the three cycles completed in less than 15 seconds.

“Now let’s really soup this up,” said Steve. He set the times to 0 sec-
onds and started again. Faces, hands, and forks flashed rapidly across
the window, and in just about 5 seconds it was all over.

Steve then set the number of cycles to 30 and restarted the applica-
tion. Nothing happened. Steve turned white; he was as angry as the
five philosophers who were all waiting for a fork.

“What’s happening?” asked Curt.

“It’s a deadlock!” exclaimed Hanna. “Look, all the philosophers hap-
pened to grab their left forks at the same time, and now they’re all
waiting for their right forks. How do you get out of this mess, Steve?”

Steve closed the window while he searched for a solution. “I’ll have to
add an interrupt button to take away the forks from the philosophers
and end the deadlock,” he said.

“That should do the trick,” said Hanna, “and it will also allow you to
interrupt the program while it’s running.”

“That won’t take long to do,” said Steve.

The three members of the Hacurs team enjoyed a hot, spicy lunch at a
little Mexican restaurant near their office. Shortly after returning to
his desk, Steve called Hanna and Curt over and showed them the
upgraded application.

“How do you interrupt the application?” asked Hanna.

Steve just smiled and clicked on the Start button. It disappeared, and
an Interrupt button appeared in its place as the application started
running.

“Sneaky!” said Hanna.

“When I click on the Interrupt button, the philosophers quit their
cycle at the end of their loop, and that makes the application stop,”
Steve explained, demonstrating this function as he spoke.

“Let’s see if you can break a deadlock,” said Curt. “Can you force one?”

“Sure,” Steve responded. “I’ll change the logic so that all philosophers
grab the left fork first, and we’ll get a deadlock.”
Chapter 13. Object REXX and Concurrency 279

Philosophers’ Forks
Steve followed this procedure and was able to create a deadlock, then
break it by using the Interrupt button.

GUI Design of the Philosophers’ Forks with OODialog

“Were you able to reuse the logic I developed for the DOS window?”
asked Hanna.

“Oh yes, almost all of it,” replied Steve. “I needed a class for the dialog
with methods to change the bitmaps of the philosophers, hands, and
forks. I decided to use a resource dialog [of class ResDialog] with all
the bitmaps stored in a DLL for fast access. I basically kept your phi-
losopher and fork classes, and just added an instance variable for the
dialog window and the calls to the dialog methods to change the bit-
maps.

Steve opened an editor window and showed the code to Hanna and
Curt [see Figure 135].

Steve continued, “The setphil and setfork methods change the bitmap
which is displayed on the bitmap button. They are implemented as
methods of the dialog. In the main program, I store the IDs of all the
dialog items and bitmaps in a stem and pass it to the new method of
the dialog. This technique enables all the dialog methods to address
the bitmap buttons symbolically.” [See Figure 136.]

 ::class phil

 ::method init
 expose num rfork lfork dlg
 use arg num, rfork, lfork, dlg
 ...
 ::method sleep
 expose num dlg
 use arg ds
 dlg~setphil(num, 'sleep')
 if ds > 0 then call sleepms(ds*100)
 ...

 ::class fork

 ::method init
 expose used num dlg
 use arg num, dlg
 used = 0

 ::method pickup
 expose used num dlg
 guard on when used = 0
 dlg~setfork(num, 'blank')
 used = 1
 ...

Figure 135. Philosophers’ Forks GUI: Model Logic
280 Object REXX for Windows

Philosophers’ Forks
Your main program logic, where the instances of the philosophers and
forks are created and started asynchronously, ended up in the InitDia-
log and MyExecute method of the dialog.” [See Figure 137.]

 /*oodialog\samples\oophil.rex Philosophers’ Forks - Dialog */

 v.oophildll = 'oophil.dll'

 v.anidialog = 100 /* animation dialog graphical */
 v.bmpwait = 1001 /* phil wait */
 v.bmpeat = 1002 /* eat */
 v.bmpsleep = 1003 /* sleep */
 v.bmpfork = 1004 /* fork */
 ...
 v.idp = 100 /* phil 101-105 */
 v.idf = 105 /* fork 106-110 */
 v.idhr = 111 /* hand-r 121,131,141,151,161 */
 v.idhl = 112 /* hand-l 122,132,142,152,162 */
 ...

 dlg = .phildlg~new(v.)
 dlg~~startit~~tothetop~show("SHOWTOP")
 dlg~myexecute(parms.)
 ...

 ::class phildlg subclass ResDialog

 ::method init
 expose v.
 use arg v.
 self~init:super(v.oophildll, v.anidialog, empty.)
 ...

 ::method setphil unguarded
 expose v.
 use arg num, bmp
 self~ChangeBitmapButton(v.idp + num, value('v.bmp'bmp))

 ::method setfork unguarded
 expose v.
 use arg num, bmp
 self~ChangeBitmapButton(v.idf + num, value('v.bmp'bmp))
 ...

Figure 136. Philosophers’ Forks GUI: Dialog Class

 ::class phildlg subclass ResDialog

 ::method InitDialog
 expose f1 f2 f3 f4 f5 p1 p2 p3 p4 p5 v.
 self~InitDialog:super
 self~3Doff
 do i = 1 to 5
 ret = self~ConnectBitmapButton("", v.idp + i, v.bmpblank)
 ret = self~ConnectBitmapButton("", v.idf + i, v.bmpfork)
 ret = self~ConnectBitmapButton("", v.idhl + 10*i, 0)
 ret = self~ConnectBitmapButton("", v.idhr + 10*i, 0)
 end

Figure 137. (Part 1 of 2) Philosophers’ Forks GUI: Dialog Setup and
Run
Chapter 13. Object REXX and Concurrency 281

Philosophers’ Forks
“How did you implement the Interrupt button?” asked Curt.

“I am using a little trick, making the Interrupt button actually the
OK button, which just frees all the forks in the associated OK
method,” Steve concluded [see Figure 138.]

 f1 = .fork~new(1, self) /* create 5 forks */
 f2 = .fork~new(2, self)
 f3 = .fork~new(3, self)
 f4 = .fork~new(4, self)
 f5 = .fork~new(5, self)
 p1 = .phil~new(1,f5,f1, self) /* create 5 philos. */
 p2 = .phil~new(2,f1,f2, self)
 p3 = .phil~new(3,f2,f3, self)
 p4 = .phil~new(4,f3,f4, self)
 p5 = .phil~new(5,f4,f5, self)

 ::method MyExecute
 expose f1 f2 f3 f4 f5 p1 p2 p3 p4 p5
 use arg parms.
 T.sleep = parms.101
 T.eat = parms.102
 T.veat = trunc(T.eat / 2)
 T.vsleep = trunc(T.sleep / 2)
 if parms.104 = 1 then T.side = 100 /* left fork first */
 else if parms.105 = 1 then T.side = 0 /* right */
 else T.side = 50 /* random */
 T.repeats = parms.103
 m1 = p1~start("run",T.) /* run 5 philsophers*/
 m2 = p2~start("run",T.)
 m3 = p3~start("run",T.)
 m4 = p4~start("run",T.)
 m5 = p5~start("run",T.)
 do while(m1~completed+m2~completed+m3~completed+m4~completed ,
 +m5~completed < 5) & (self~finished \= 1)
 self~HandleMessages
 end
 m1~result /* finish dialog */
 m1~result
 m2~result
 m3~result
 m4~result
 m5~result
 self~stopit

 ::method OK
 expose f1 f2 f3 f4 f5 p1 p2 p3 p4 p5 v.
 self~ok:super
 f1~laydown
 f2~laydown
 f3~laydown
 f4~laydown
 f5~laydown

Figure 138. Philosophers’ Forks GUI: Interrupt Logic

Figure 137. (Part 2 of 2) Philosophers’ Forks GUI: Dialog Setup and
Run
282 Object REXX for Windows

Philosophers’ Forks
“That’s a smart design, Steve,” said Hanna. She admired Steve’s work,
but then a new idea crept into her always busy mind. “Isn’t it sad that
the philosophers have nothing to eat?

Curt laughed. “I can see where you are going! You want Steve to
enhance the application and make it even more appealing.”

Hanna just smiled and said: “No, no, Curt. I was actually thinking
that you could contribute some features too. I did the original applica-
tion and Steve did the fancy GUI; now it’s your turn to add the cake!”

“The cake?” Curt asked.

“You got it!” Hanna answered. “Put a nice big cake in the middle, and
every time a philosopher eats, take away one piece. Maybe you could
even change the philosopher’s face while he is eating.”

“And while you are at it, add some audio sounds,” Steve added. “Let
your imagination run wild and present us with the best multimedia
application. A demonstration tomorrow morning would be just fine
with me.”

Curt’s face turned red. “Are you challenging me?” he asked. “I know
that I can do this; a piece of cake actually. Tomorrow, you better bring
a real cake to the office, because I will present you the ultimate multi-
media philosophers’ forks application.”

“Stop fighting, boys,” Hanna interjected.

“OK,” Steve said. “I’m sorry. It wasn’t meant like that. I will bring a
cake tomorrow to celebrate another glorious Hacurs demonstration
application.”

The next morning, Steve came in early. He had brought a white table
cloth and covered one of the desks with it. He put the triple chocolate
cake from the neighborhood bakery in the middle, and went to prepare
a special Brazilian coffee for his partners. He even put an orange rose
for Hanna into a small vase.

Hanna gleamed when she saw the setup half an hour later. “Wow!”
was all she managed to say. She was a bit embarrassed and was happy
that Curt showed up right at this moment.

Curt fired up his ThinkPad to demonstrate the wonderful application
[see Figure 139]. A great looking lemon-chocolate cake appeared in the
middle of the philosophers’ table and the they changed faces while eat-
ing the cake. When the cake was gone, one philosopher even asked for
a new cake.

The Hacurs trio celebrated the day with Steve’s cake and sipped the
imported coffee. Life was good after all!
Chapter 13. Object REXX and Concurrency 283

Philosophers’ Forks
Implementation Notes

The philosophers’ forks application is part of the sample applications
shipped with OODialog. It consists of a REXX program, oophil.rex,
two resource files—oophil1.rc and oophil2.rc—containing the dialog
definitions, and many bitmaps. The bitmaps are loaded into memory
for fast execution. The files are stored in the Object REXX subdirec-
tory OODIALOG\Samples and its subdirectories RC and BMP.

The final application consists of a data entry dialog and the animation
dialog [see Figure 139]. The data entry dialog contains the parameters
of the application, such as the sleeping and eating times, the sequence
in which the forks are picked up (left, right, or random), and the num-
ber of repetitions.

Figure 139. Philosophers’ Forks GUI: The Cake and the Icing
284 Object REXX for Windows

Part 4

Installing Object
REXX, DB2, and
the Sample
Applications

Object
REXX
285

286 Object REXX for Windows

14
Install
ing Object
REXX, DB2, and
the Sample
Applications
In this chapter, we discuss the installation of Object REXX and DB2
for Windows NT and Windows 95, and how to install and run the sam-
ple applications of this redbook.

Object REXX for Windows NT and Windows 95 contains the REXX
interpreter, OODialog to build and run GUI applications, and the IBM
Resource Workshop to layout dialog windows and build resource files.
 287

Content of the CD
Content of the CD
The CD distributed with this redbook contains the products listed
below for installation on your machine:

❑ Object REXX for Windows NT and Windows 95

❑ OODialog and IBM Resource Workshop

❑ The car dealer application

❑ DB2 Version 2.1.2 for Windows NT and Windows 95

The CD also contains ready-to-run versions of Object REXX, OODia-
log, IBM Resource Workshop, and the car dealer application

Installation and Run from the CD

The CD contains two programs to run the sample applications directly
from the CD:

CDStart.bat Batch file to start the Installation and Run dialog.
CDStart.bat sets the PATH to run Object REXX from
the CD and invokes CDStart.rex.

CDStart.rex Dialog to install products and run samples from the CD
(see Figure 140).

Figure 140. Installation and Run Dialog
288 Object REXX for Windows

Installation of Object REXX
You can install the products from the dialog, and you can execute the
sample applications before installing Object REXX on your hard drive.
Note, however, that running from the CD is slower than running from
the hard drive.

Installation of Object REXX
Although you may execute the sample applications directly from the
CD, we suggest that you install Object REXX on your machine. Run
the SETUP program in the INSTALL directory of the CD and follow the
instructions of the installation program.

Select the typical or custom install check box and be sure to mark the
OODialog GUI builder and the redbook car dealer application for
installation.

OODialog and IBM Resource Workshop

The OODialog GUI builder is installed in the OODIALOG subdirectory of
Object REXX. OODialog class definitions are stored in the OODIA-
LOG\SCRIPTS subdirectory. The tokenized version, OODIALOG.CLS, is
stored in the OODIALOG subdirectory.

The Resource Workshop is installed in the main Object REXX direc-
tory and has its own icon in the Object REXX program group.

Running the Car Dealer Application from the CD

The CD directory CARDEAL contains an executable version of the car
dealer application that can be run after Object REXX has been
installed.

Use the CAR-RUN command in the CARDEAL directory to start any of
the car dealer programs:

 rexx car-run a (ASCII window version)
 rexx car-run g (OODialog GUI version)

Play with the sample applications as described in Running the Car
Dealer Application on page 298.

Note: You can run the car dealer application from the CD only with
FAT persistence. We strongly recommend installing the sample appli-
cations on your machine and experiment with the DB2 version of the
car dealer application.
Chapter 14. Installing Object REXX, DB2, and the Sample Applications 289

Installation of DB2 Version 2
Installation of DB2 Version 2
The CD contains a 60-day “try-and-buy” copy of DB2 Version 2.1.2.
This version can be installed on a Windows 95 machine as a single-
user DB2 system, and on a Windows NT machine as a single-user or
server DB2 system.

Start the installation program by running SETUP in the
INSTDB2\DISK1 subdirectory. Two groups are created by the installation
program; DB2 for Windows 95 (or DB2 for Windows NT) and DB2
Information (documentation).

DB2 Installation on Windows 95

Select the single-user version for installation. This version also
enables you to connect to a DB2 system on a Windows NT or OS/2
server.

For the sample applications, you do not need Distributed Database
Connection Services (DDCS) or the DB2 Software Developer’s Kit
(SDK). Select the try-and-buy check box for a 60-day evaluation
license. Select custom installation to limit the amount of code being
installed. Select the administrator’s toolkit and the documentation;
the other components are optional. In the details of the administra-
tor’s toolkit you may remove visual explain and the performance mon-
itor.

Reboot the system after installation. Start DB2 using the DB2START
program in SQLLIB\BIN.

DB2 Installation on Windows NT

Select the single-user version for a stand-alone NT workstation. For a
Windows NT server with Windows 95 clients, select the server version.

Select the same components as described above in DB2 Installation on
Windows 95.

DB2 is started as a service on Windows NT. You will find two DB2 ser-
vices in the Services windows (from Control Panel); DB2 - DB2, and
DB2 Security Server. You can start both services manually, or add
them to the Startup list.
290 Object REXX for Windows

Installing the Car Dealer Application
Installing the Car Dealer Application
The car dealer application is included with Object REXX. Select the
application when installing Object REXX.

Prerequisites for the Car Dealer Application

The car dealer application requires the following:

❑ Object REXX must be installed.

❑ OODialog of Object REXX must be installed to run or modify the
car dealer GUI application.

❑ Windows multimedia support must be installed for audio and
video play; without it, only the color pictures of the cars can be
seen.

❑ DB2 Version 2.1.2 (or 2.1.1) must be installed to run the applica-
tion with the database using BLOBs for multimedia data.

Object REXX Redbook Program Group

During installation a program group is created for the sample applica-
tions of the redbook. It contains icons to set up the DB2 database, con-
figure the car dealer application to run with files or DB2, and to run
the ASCII and GUI versions of the application.

Additional icons start the philosophers’ forks in a window or as a GUI,
the samples delivered with OODialog, and the class browser.

Figure 141 shows the Object REXX Redbook group after installation.

Figure 141. Object REXX Redbook Group
Chapter 14. Installing Object REXX, DB2, and the Sample Applications 291

Installing the Car Dealer Application
Table 18 shows icons that are available in the program group.

Table 18. Icons of the Object REXX Redbook Group
Icon Description

Car Dealer DB2 Setup program to define the DB2 database and
tables, and to load the sample data (db2setup.rex).

Set up Car Dealer to run with FAT persistence (car-run.rex f).

Set up Car Dealer to run with DB2 (car-run.rex d).

Car Dealer Run ASCII Window Program (car-run.rex a). Start the
ASCII version in an DOS window (car-aui.rex).

Run Car Dealer OODialog program (car-run.rex g). Start the GUI
version using OODialog (car-ood.rex).

Run Philosophers’ Forks using OODialog (oophil.rex).

Run Philosophers’ Forks in a DOS window (philfork.rex).

Start the sample programs delivered with OODialog (sample.rex).

Start the experimental Object REXX GUI Browser (browser.rex).
292 Object REXX for Windows

Installing the Car Dealer Application
DB2 Setup for Car Dealer Application

This optional step prepares the DB2 system for the car dealer applica-
tion. The car dealer application can run purely with file persistent
storage, but running with a real database is much more exciting.

Double-click on the DB2 Setup icon in the Object REXX Redbook
group or run the DB2SETUP command in a DB2 Command window in
the CARDEAL\INSTALL directory:

 cd cardeal\install
 rexx db2setup

Note: DB2 commands must run in a DB2 command window, which
can be started from the DB2 program group or by typing DB2CMD in a
DOS window. DB2SETUP invokes DB2DDL in a DB2 command win-
dow:

 db2cmd rexx d:\cardeal\install\db2ddl

The DB2DDL command defines the DB2 database, the tables and
indexes, and loads the sample data.

Make sure that the TMP environment variable is set up; it is used in
the application to extract multimedia data from DB2 BLOBs:

 SET TMP=C:\temp (Windows NT example)
 SET TMP=C:\Windows\temp (Windows 95 example)

Define the DB2 Database
The DB2 database has the name DEALERDB. The setup program
asks for the disk drive of the new database. Be patient while DB2 per-
forms this lengthy step. The command to create the database manu-
ally is:

 DB2 CREATE DATABASE DEALERDB ON C

Define the DB2 Tables
The data is stored in seven tables, one for each of the five classes and
two for the m:m relationships between the classes.

The vehicle table contains the BLOB column for multimedia data, and
two table spaces are defined to separate the basic vehicle data from
the BLOB data.

The DDL statements are shown in the window while they are exe-
cuted (see Figure 142).
Chapter 14. Installing Object REXX, DB2, and the Sample Applications 293

Installing the Car Dealer Application
This step can be rerun at any time to redefine the tables and
indexes—for example, when the space for the multimedia data must
be increased.

The car dealer database can be removed completely by issuing the
command:

 DB2 DROP DATABASE DEALERDB

Load the DB2 Tables
The tables are loaded using two load programs. The first program,
LOAD-DB2, reads the sample data provided in the SampData subdirec-
tory and loads the basic information about customers, vehicles, parts,
services, and work orders. The second program, LOAD-MM, reads the
multimedia data provided in the MEDIA subdirectory and loads the
BLOB column in the vehicle table. A progress window is shown while
loading the tables (see Figure 143).

 -- Create car dealer tables (install\createtb.ddl)

 CREATE TABLE CARDEAL.CUSTOMER
 (CUSTNUM SMALLINT NOT NULL,
 CUSTNAME CHAR(20) NOT NULL,
 CUSTADDR CHAR(20) NOT NULL)

 CREATE TABLE CARDEAL.PART
 (PARTNUM SMALLINT NOT NULL,
 ...
)
 ...

 CREATE REGULAR TABLESPACE VEHICLESPACE
 MANAGED BY DATABASE
 USING (FILE 'vehiclea' 300)

 CREATE LONG TABLESPACE VEHICLESLOB
 MANAGED BY DATABASE
 USING (FILE 'vehicleb' 4000)

 CREATE TABLE CARDEAL.VEHICLE
 (SERIALNUM INTEGER NOT NULL,
 CUSTNUM SMALLINT NOT NULL,
 MAKE CHAR(12) NOT NULL,
 MODEL CHAR(10) NOT NULL,
 YEAR SMALLINT NOT NULL,
 PICTURES BLOB(4M) NOT LOGGED)
 IN VEHICLESPACE LONG IN VEHICLESLOB

 CREATE UNIQUE INDEX CUSTOMER_IX
 ON CARDEAL.CUSTOMER (CUSTNUM)
 ...

Figure 142. DB2 Table and Index Definition
294 Object REXX for Windows

Installing the Car Dealer Application
This step can be rerun at any time to reinitialize the tables with the
original data.

DB2 Setup for Remote Database Access

If you have a Windows NT server and Windows 95 clients you can set
up the DB2 database on the Windows NT machine, and access the
database from the car dealer application running on the Windows 95
clients. DB2 must be installed on all machines.

 Loading customers...
 Execute: 0 : INSERT INTO CARDEAL.CUSTOMER values (101, 'Senator, Dale', 'Washington')
 Execute: 0 : INSERT INTO CARDEAL.CUSTOMER values (102, 'Akropolis, Ida', 'Athens')
 ...
 Loading vehicles...
 Execute: 0 : INSERT INTO CARDEAL.VEHICLE (SERIALNUM, CUSTNUM, MAKE, MODEL, YEAR)
 values (123456, 101, 'Ford', 'T', 1931)
 Execute: 0 : INSERT INTO CARDEAL.VEHICLE (SERIALNUM, CUSTNUM, MAKE, MODEL, YEAR)
 values (297465, 102, 'Volkswagen', 'Camper', 1971)
 ...
 Loading parts...
 Execute: 0 : INSERT INTO CARDEAL.PART values (1, 120, 3, 'Muffler')
 ...
 Loading services...
 Execute: 0 : INSERT INTO CARDEAL.SERVICE values(1, 110, 'Brake job')
 ...
 Execute: 0 : INSERT INTO CARDEAL.SERVPART values(1, 21, 1)
 ...
 Loading workorders...
 Execute: 0 : INSERT INTO CARDEAL.WORKORDER values (1, 101, 123456, -1, '09/06/95', 0)
 ...
 Execute: 0 : INSERT INTO CARDEAL.WORKSERV values(1, 1)
 ...

 Now run Multimedia load next (load-mm.rex)

 Updating serial 999001
 - Fact-sheet length 112 in ..\media\ford.fac
 - Side picture length 64050 in ..\media\fordsid.bmp
 - Front picture length 90190 in ..\media\fordfrt.bmp
 - Back picture length 79462 in ..\media\fordbck.bmp
 - Angle picture length 94678 in ..\media\fordang.bmp
 - Audio length 180268 in ..\media\ford.wav
 Ctlinfo=BIN' 6:Fact-sheet , 112;Side picture , 64050;
 Front picture , 90190;Back picture , 79462;
 Angle picture , 94678;Audio , 180268;@@'
 BLOB length=508946
 SQL=update cardeal.vehicle set pictures = CAST(? AS BLOB(1K)) || CAST(? AS BLOB(4M)) ||
 CAST(? AS BLOB(4M)) || CAST(? AS BLOB(4M)) || CAST(? AS BLOB(4M)) ||
 CAST(? AS BLOB(4M)) || CAST(? AS BLOB(4M)) where serialnum = 999001
 VAR=:ctlinfo, :vpic1, :vpic2, :vpic3, :vpic4, :vpic5, :vpic6
 prepare=0 SQLMSG
 execute=0 SQLMSG
 ...

Figure 143. DB2 Table Load
Chapter 14. Installing Object REXX, DB2, and the Sample Applications 295

Installing the Car Dealer Application
Server Setup for Remote Database Access
Remote database access supports multiple protocols, such as TCP/IP
and NETBIOS. These protocols must be installed on server and client
machines before setting up DB2 remote access. The server setup for
DB2 involves several steps:

❑ First you set up system environment variables for communication
using the System icon in the Control Panel:

 SET DB2COMM=TCPIP,NETBIOS (==> DB2 communications protocols)
 SET TZ=PST8PDT (==> time zone for TCP/IP)

❑ For TCP/IP you set up two ports in the services file
(winnt\system32\drivers\etc\services) by inserting new lines:

 # DB2 connection
 db2fundy 3702/tcp # choose a name and unused number
 db2fundy1 3703/tcp # any name and next higher number

Update the database manager configuration by issuing (in a DB2
command window):

 DB2 UPDATE DBM CFG USING SVCENAME db2fundy

The name db2fundy must match the first name given in the
TCP/IP services file.

❑ For NETBIOS you must update the database manager configura-
tion by issuing:

 DB2 UPDATE DBM CFG USING NNAME myntname

The name myntname is a unique workstation name within the
NETBIOS network; it is stored in upper-case.

If you have more than one network adapter card, check that the
environment variable DB2NBADAPTERS points to the LAN num-
ber of the proper network adapter card:

 SET DB2NBADAPTERS=0

Open the Network dialog in the Control Panel. Find the NETBIOS
interface under Services and open its properties. Assign the Lana
number 0 to the network route starting with Nbf->; assign higher
numbers to NetBT->, and so forth.

❑ Check the configuration for svcename and nname before rebooting
the server:

 DB2 GET DBM CFG

Client Setup for Remote Database Access
The client setup for DB2 involves several steps as well:

❑ For TCP/IP you set up a port in the services file (windows\ser-
vices):

 # DB2 connection
 db2fundy 3702/tcp # same name and number as server
296 Object REXX for Windows

Installing the Car Dealer Application
❑ For NETBIOS you must update the database manager configura-
tion by issuing:

 DB2 UPDATE DBM CFG USING NNAME my95name

The name my95name is a unique workstation name within the
NETBIOS network; it is stored in upper-case. The value can also
be viewed or changed using the DB2 Client Setup icon in the
DB2 program group (select Client menu, Configure..., Communica-
tions tab).

Cataloging the Remote Database q
A remote database must be cataloged in the DB2 system of the client
machine. This task involves cataloging the server node and the data-
base:

❑ For TCP/IP you issue the commands:

 DB2 CATALOG TCPIP NODE mynttcp REMOTE nthost SERVER db2fundy
 DB2 CATALOG DATABASE DEALERDB AS dealerft AT NODE mynttcp

The name mynttcp is any unique node name on the client machine,
nthost is the TCP/IP host name of the server, db2fundy is the ser-
vice name defined in the services file, and dealerft is the unique
local alias name defined for the DEALERDB database on the
server.

❑ For NETBIOS you issue the commands:

 DB2 CATALOG NETBIOS NODE myntnb REMOTE myntname ADAPTER 0
 DB2 CATALOG DATABASE DEALERDB AS dealerfn AT NODE myntnb

The name myntnb is any unique node name on the client machine,
myntname is the NETBIOS workstation name of the server, and
dealerfn is the unique local alias name defined for the
DEALERDB database on the server.

❑ Cataloging of the nodes and the remote databases can also be done
using the DB2 Client Setup icon in the DB2 program group:

• Define the node using the New... selection in the Node pull-
down.

• Define the database by opening the node and using the New...
selection in the Database pull-down.

Authorizing Remote Users on the Server
Remote users have to connect to a database with a userid and pass-
word. Define users on the server with the User Manager in the Admin-
istrative Tools group. Grant users access to the car dealer database by
issuing the DB2 commands:

 DB2 (==> cmd-line processor)
 CONNECT TO DEALERDB
 GRANT DBADM ON DATABASE TO userid1 (==> full authorization)
 GRANT SELECT ON cardeal.customer TO userid2 (==> partial)
Chapter 14. Installing Object REXX, DB2, and the Sample Applications 297

Running the Car Dealer Application
Testing the Remote Database
To test the remote access after setting up communications and cata-
loging the database, open a DB2 command window, then type:

 DB2 (==> command line processor)
 CONNECT TO dealerft USER userid USING password
 SELECT * FROM cardeal.customer
 QUIT

Note: You connect to the alias name dealerft defined for the remote
database. Use a valid userid and password defined on the NT server.
The userid must be authorized to access the database.

Rebinding REXX Programs to a Database
If you reinstall DB2 and recatalog the car dealer database, REXX pro-
grams may terminate with an SQL code of -805. You have to rebind
REXX to the database in a DB2 command window:

 db2 (==> command line processor)
 connect to dealerdb (==> connect to car dealer database)
 bind \sqllib\bnd\@db2ubind.lst grant public (==> bind programs)
 connect reset

The BIND.REX program provided in the CARDEAL\INSTALL subdirectory
executes these commands.

Running the Car Dealer Application
The car dealer application runs with either file persistence or DB2
persistence, and can be started as an ASCII window or OODialog GUI
application. Icons to run the application are provided in the Object
REXX Redbook group (see Figure 141 on page 291).

A command file, car-run.rex, is provided in the main CARDEAL direc-
tory to set up the persistent storage option and to start the applica-
tion:

 rexx car-run f (set up file persistence)
 rexx car-run d (set up DB2 persistence)

 rexx car-run a (run ASCII window version)
 rexx car-run g (run OODialog GUI version)

 rexx car-run d g (set up and run)

Refer to Appearance of ASCII User Interface on page 105 for more
information on the ASCII application, and to The Car Dealer GUI on
page 162 for more information on the OODialog application.
298 Object REXX for Windows

Running the Car Dealer Application
Running the Car Dealer with a Remote Database

The application uses a small control file, database.def, to connect to a
local or remote car dealer database. The first record in the file speci-
fies the database or database alias name, and the userid and password
used to connect to the remote database:

 DEALERDB <=== local database
 DEALERFT userid password <=== remote database
 DEALERFN userid password

Running the Car Dealer Application on the World Wide Web

To run the car dealer application on the Web:

❑ Install the IBM Internet Connection Server (Version 4.1).

❑ Tailor the configuration file (httpd.cnf) as described in Customiz-
ing the File Organization on the Web Server on page 251. The con-
figuration must point to the CARDEAL\WWW subdirectory for HTML
files and CGI programs.

❑ Start the Internet Connection Server and make sure that DB2 is
started if the car dealer configuration file is set up for DB2.

❑ Use a Web browser, for example Netscape Navigator or Microsoft
Internet Explorer, and point to the server:

 http://hostname/cardeal/hacurs.htm

❑ Use the hot links to invoke different pieces of the application.
Chapter 14. Installing Object REXX, DB2, and the Sample Applications 299

Installed Sample Applications
Installed Sample Applications
The distributed code of the car dealer application is installed in the
CARDEAL directory, or in the directory selected during installation of
Object REXX.

Note: The REXX programs in most car dealer directories have been
tokenized. The REXX source code of each directory is stored in a sub-
directory named SRC. Run the TOKEN program to tokenize the car
dealer source after modifications:

 rexx token cardeal

OODialog sample programs are installed in the OODIALOG\Samples sub-
directory of Object REXX. (See OODialog Samples on page 305.)

Car Dealer Directory

Within the CARDEAL directory the code is structured into many sub-
directories, as shown in Tables 19–31.

Table 19. Files of the Master CARDEAL Directory.
Filename Description

car-run.rex Program to run car dealer with FAT, DB2, or RAM

carood.bat Starts the car dealer OODialog GUI application

rxfctsql.rex Program to load REXX-DB2 functions

carerror.rex Program to check for proper directory

carmodel.cfg Active configuration (copy of FAT, DB2, or RAM)

database.def Contains the name of the car dealer database and the userid and
password for remote database connection

rxdb2con.rex Program to connect to a local or remote car dealer database

token.rex Program to tokenize all car dealer source programs

token1.rex Program to tokenize files of a given file mask

*.ico Icon files for redbook program group

SRC Subdirectory with REXX source programs

Table 20. Files of the Sampdata Subdirectory.
Master files with sample data. Used as initial state for FAT
persistent storage and to load the sample data into DB2 tables.

Filename Description

customer.dat Master file with sample customer data

vehicle.dat Master file with sample vehicle data

workord.dat Master file with sample work order data

service.dat Master file with sample service item data

part.dat Master file with sample part data
300 Object REXX for Windows

Installed Sample Applications

Table 21. Files of the Base Subdirectory.
Base class definitions for objects in storage.

Filename Description

carcust.cls Base class definition for customers

carvehi.cls Base class definition for vehicles

carwork.cls Base class definition for work orders

carserv.cls Base class definition for service items

carpart.cls Base class definition for parts

cardeal.cls Car dealer class for initialization and termination

persist.cls Class for definition of persistent methods

Table 22. Files of the FAT Subdirectory.
Class definitions for persistent objects in files.

Filename Description

carcust.cls FAT class definition for customers

carvehi.cls FAT class definition for vehicles

carwork.cls FAT class definition for work orders

carserv.cls FAT class definition for service items

carpart.cls FAT class definition for parts

carmodel.cfg Configuration file for persistence in files

carlist.cfg Configuration file for carlist.rtn (file persistence)

carlist.rtn Additional routines for list on standard output

Data Subdirectory with persistent file storage. Initially, this is a copy of
the SampData subdirectory (see Table 20). Running the car dealer
application updates the files in this directory. The original state
can be restored by copying the files from the SampData directory.

Table 23. Files of the DB2 Subdirectory.
Class definitions for persistent objects in DB2. Initially, DB2 is
loaded with data from the SampData subdirectory.

Filename Description

carcust.cls DB2 class definition for customers

carvehi.cls DB2 class definition for vehicles

carwork.cls DB2 class definition for work orders

carserv.cls DB2 class definition for service items

carpart.cls DB2 class definition for parts

carmodel.cfg Configuration file for persistence in DB2

carlist.cfg Configuration file for carlist.rtn (DB2 persistence)

carlist.rtn Additional routines for list on standard output (DB2)
Chapter 14. Installing Object REXX, DB2, and the Sample Applications 301

Installed Sample Applications

Table 24. Files of the RAM Subdirectory.
Class definitions for objects in RAM. Sample data is loaded
into memory using REXX statements.

Filename Description

carcust.cls RAM class definition for customers

carvehi.cls RAM class definition for vehicles

carwork.cls RAM class definition for work orders

carserv.cls RAM class definition for service items

carpart.cls RAM class definition for parts

carmodel.cfg Configuration file for persistence in RAM

carlist.cfg Configuration file for carlist.rtn (RAM, same as FAT)

Table 25. Files of the AUI Subdirectory.
Class definitions for ASCII interface and menus, and basic list
routines for displaying the class contents on standard output.

Filename Description

caraui.cls AUI class with methods for window interactions

carmenu.cls Menu class for menu display and run

menu.dat Menu definition file

carlist.cfg Configuration file for list on standard output; copy of same-named
file from either FAT or DB2

carlist.rtn Basic list routines

car-aui.rex Program to run car dealer in ASCII window

Table 26. Files of the Media Subdirectory.
Media files (pictures, audio, video).

Filename Description

media.dat List of all multimedia files by vehicle

*.fac Fact sheets

*.bmp Pictures

*.wav Audio files

*.avi Video files

Table 27. (Part 1 of 2) Files of the OOD Subdirectory.
GUI definitions and programs for OODialog.

Filename Description

car-ood.rex Car dealer GUI program using OODialog

ood.mrg Merged dialog source files (:::requires file for GUI program)

build.rex Program to merge all dialog source files (.dlg)
302 Object REXX for Windows

Installed Sample Applications

SRC*.dlg Subprograms, one per dialog window

BMP Subdirectory with bitmaps

RC Subdirectory with resource definitions

Table 28. Files of the StorProc Subdirectory.
Sample commands to use stored procedures in a client/server
environment for DB2 security purposes.

Filename Description

server.rex Command file to start server for stored procedures

gateway.cmd Command file for gateway between client and stored procedures

client.rex Command file for client (user of stored procedure)

read.me A description and instructions

Table 29. Files of the WWW Subdirectory.
Car Dealer on the World Wide Web (Internet)

Filename Description

Hacurs.htm Hacurs home page

cardeal.htm Car dealer main page

*.htm Other car dealer pages

html.frm HTML class definition

cgi.bat Common Gateway Interface batch file to invoke cgirexx.cmd

cgirexx.cmd Common Gateway Interface REXX program

partall*.cmd Part list test programs 1 and 2

*.www Individual CGI programs for car dealer application

hacurs.gif Hacurs logo

car*.gif Car pictures (Hanna, Curt, Steve)

*.gif Small icon pictures for active links

http.cnf Tailored Web server administration file (sample)

Table 30. (Part 1 of 2) Files of the Xamples Subdirectory.
Additional small examples of the redbook.

Filename Description

rexxcx.cmd Command file to invoke the REXXC utility

browser.rex GUI class browser— start program

browser.lst GUI class browser— list of included classes

browser.bld GUI class browser—build program for merged class file

Table 27. (Part 2 of 2) Files of the OOD Subdirectory.
GUI definitions and programs for OODialog.

Filename Description
Chapter 14. Installing Object REXX, DB2, and the Sample Applications 303

Installed Sample Applications
Source Code for Running the Car Dealer Application

The source code of the car dealer run program is listed in Running the
Car Dealer Application on page 527.

Removing Object REXX and the Sample Applications

To remove Object REXX and the sample applications from your sys-
tem:

❑ Select the Deinstall program in the Object REXX group or select
Object REXX in the Add/Remove panel of the system settings.

❑ To remove the CARDEAL database from the DB2 system, start
the DB2 Command Line Processor and enter:

 DROP DATABASE CARDEAL

❑ To remove the car dealer application from your system, but keep
Object REXX, delete the CARDEAL directory and the Object REXX
Redbook group.

browser.cls GUI class browser— OODialog class definition

browscls.rex Experimental Object REXX class browser in a DOS window

xmpreply.rex Early reply example with guarded/unguarded methods

Table 31. Files of the Install Subdirectory.
DB2 setup and load programs and DDL for table definitions.

Filename Description

db2setup.rex Program to set up and load DB2 tables for car dealer application

db2ddl.rex Define DB2 database, tables, and indexes

load-db2.rex Load program for DB2 tables, uses SampData directory

load-mm.rex Load program for multimedia data, uses media.dat (see Table 26)

runsql.rex Program to run SQL DDL through DB2 command line processor

bind.rex Rebind REXX programs to the car dealer database

createdb.ddl DDL to create database DEALERDB

createtb.ddl DDL to create tables for DB2 Version 2

createt1.ddl DDL to create tables without multimedia data

createix.ddl DDL to create indexes on tables

droptb.ddl DDL to drop tables

dropt1.ddl DDL to drop tables (if created without multimedia)

Table 30. (Part 2 of 2) Files of the Xamples Subdirectory.
Additional small examples of the redbook.

Filename Description
304 Object REXX for Windows

OODialog Samples
OODialog Samples
The easiest way to get acquainted with OODialog features is to run
the OODialog samples provided in the \OODIALOG\SAMPLES directory.
Simply type rexx sample to start the samples.

The SAMPLES directory contains a set of Object REXX programs that
use bitmaps, sounds, and resources from the BMP, WAV, and RC subdirec-
tories.

In an effort to avoid creating a dry and boring application, our applica-
tion looks sort of funny, but it enables us to introduce you to such fea-
tures as scrolling messages and animated buttons. So come along and
play!

The main samples dialog provides eight push buttons, which demon-
strate different ways to create a dialog [see Figure 144].

In SAMPLE.REX you can find how easy it is to load a dialog from a
Resource Workshop file, place a bitmap over a push button, or play a
sound.

Figure 144. OODialog Samples
Chapter 14. Installing Object REXX, DB2, and the Sample Applications 305

OODialog Samples
Video Archive

The video archive dialog demonstrates the use of different types of
entry fields and of loading values from a stem variable into a dialog
[see Figure 145].

You can change the values in the entry fields, select an entry in the
Location combo box and in the Lent to list. In the Tapeinformation
group you can select multiple check box entries, but only a single radio
button. The Search button does nothing, except for displaying a mes-
sage window.

If you click on the OK push button, all values you changed or selected
are saved in the file called test.log and listed in the originating DOS
window. If you click on Cancel, you are prompted with a Yes/No dia-
log box for confirmation.

The code for this dialog can be found in the oovideo.rex file.

Figure 145. Video Archive Sample
306 Object REXX for Windows

OODialog Samples
Animals Riddle

The animals riddle dialog features eight push buttons with animal
pictures. When you click on a button, an information message is dis-
played or you might hear the particular voice of the animal—that is, if
you have a sound card installed on your machine. Your task is to
replace all of the unknown animal entry fields with the correct animal
names [see Figure 146].

Use lower case letters to enter the names. When you are finished, click
on the OK button. An error message will show your mistakes. The
Cancel button can save you the embarrassment and let you go back to
the main dialog.

If you have a hard time recognizing the animals, just push the Help
button, and the correct names are displayed for you.

The code for this dialog can be found in the oopet.rex file. A second
file, oopet1.rex, uses bitmaps from a DLL.

Philosophers’ Forks

This dialog runs the philosophers’ forks sample which is discussed in
detail in Philosophers’ Forks on page 273.

Figure 146. Animals Riddle Sample
Chapter 14. Installing Object REXX, DB2, and the Sample Applications 307

OODialog Samples
In the first dialog you can set up the parameters for sleeping and eat-
ing times and for the number of repetitions. You can enter the values
directly or use the spin buttons. The radio buttons let you select which
hand the philosophers will use first to pick up a fork.

The second dialog presents the animation of philosophers fighting for
the forks and eating a cake. It demonstrates the strength of Object
REXX in dealing with multiple threads.

The code for this dialog can be found in the oophil.rex file. Note that
the bitmaps are all preloaded into memory for fast display.

Graphical Demonstration

The first dialog of the graphical demonstration presents different
scrolling messages and buttons [see Figure 147].

The code for this dialog can be found in the oograph.rex file.

Figure 147. Graphical Demonstration Sample: Scrolling
308 Object REXX for Windows

OODialog Samples
By clicking on the Bitmap-Viewer button, you get the bitmap viewer
dialog. Here the combo list has a number of bitmap files. Just select
one and it is displayed [see Figure 148].

You can also type in the full file name of any bitmap (.BMP) file in
your system and display it by clicking on the Show button.

If you select “…” in the combo box instead of a file name, you get the
system Open a File window, where you can search for bitmaps in the
system directories and select one.

You can find the code for the bitmap viewer in the oobmpvu.rex file.

By clicking on the Draw-Color-Demo button in the main dialog (Fig-
ure 147) you start a demonstration of the color and drawing facilities
of OODialog. A dialog is presented filled with concentric rectangles. At
the bottom you can choose among seven push buttons to invoke differ-
ent graphical animations (see Figure 149).

Figure 148. Graphical Demonstration Sample: Bitmap Viewer
Chapter 14. Installing Object REXX, DB2, and the Sample Applications 309

OODialog Samples
The graphical animations include the drawing of colored rectangles,
squares of varying pens, individual colored pixels (not shown in Figure
149), lines arranged as a star, random lines of varying thickness, ran-
domly colored squares on a black background, and circles, ellipses and
pie shapes of varying sizes.

Each of the seven color drawing demonstrations is a long running time
animation. Use the Interrupt button to stop each animation.

The code for the color drawing demonstration can be found in the
oodraw.rex file.

Note: All three graphical dialogs (scrolling, bitmap viewer, and color
drawing) are created dynamically.

Figure 149. Graphical Demonstration Sample: Color Drawing
310 Object REXX for Windows

OODialog Samples
Animation Demonstration

The animation demonstration dialog demonstrates the use of ani-
mated buttons. You can change the horizontal and vertical movements
of the walker dynamically without disrupting the walker’s pace. He
can even go backward if you enter a negative number in the MoveX
entry field. Every time the walker hits the walls of his corridor, a
sound is played [see Figure 150].

By clicking on the Smooth corner wrap check box, the walker will go
smoothly through the walls.

Be aware of the danger zone marked with flashing !!! signs. If the
walker goes through the danger zone with the upper body, the anima-
tion ends with a surprise. The danger zone is steady at first but starts
moving around over time.

The code for this dialog can be found in the oowalker.rex file. A second
version, oowalk2.rex, uses a binary resource for the bitmaps.

Note that the WalkButton class is a subclass of the AnimatedButton
class.

Figure 150. Animation Demonstration Sample
Chapter 14. Installing Object REXX, DB2, and the Sample Applications 311

OODialog Samples
Jack Slot Machine

You can play the jack slot machine game in much the same way as you
would use a real slot machine. Watch for three pictures of the same
kind and click on the Stop button [see Figure 151].

If the slot machine displays three identical pictures after stopping, you
have hit the jackpot! You can adjust the speed of the slot machine
using the scroll bar; the faster it runs, the higher the jackpot. The
jackpot is decreasing over time, and every time you stop and miss, the
jackpot is reduced by 25% (two equal pictures) or 50% (three different
pictures).

The code for this dialog can be found in the oobandit.rex file. The
whole dialog, including the three bitmap buttons, is created dynami-
cally using the DefineDialog method, which overwrites the default
method of the UserDialog class.

Standard Dialogs

This demonstration runs through all the standard dialogs, starting
with a TimedMessage, followed by InputBox, ListChoice, MultiInput-
Box, CheckList, SingleSelection, IntegerBox, PasswordBox, and Multi-
ListChoice dialogs. All of the dialogs are typical for a real application.

Figure 151. Jack Slot Machine Sample
312 Object REXX for Windows

OODialog Samples
The code for this dialog can be found in the oostddlg.rex file. This dia-
log introduces the most important classes provided for simple user
input. All of these small dialogs are created dynamically. The data
entered or selected is displayed in the originating DOS window. An
alternative file, oostdfct.rex, uses the OODialog callable functions.

Let’s Go to the Movies

Imagine that you want to go to movies but are not sure about which
film to see or the particular cinema to attend. The only thing you know
is when you want to go. The sample dialog is not fully implemented; it
just gives you a flavor of the real one. It demonstrates the use of cate-
gorized dialogs.

On the first page, Movies, you can select one or more of the films cur-
rently playing [see Figure 152].

Figure 152. Let’s Go to the Movies Sample: Movies
This page show the drop-down style using a combo box.
Chapter 14. Installing Object REXX, DB2, and the Sample Applications 313

OODialog Samples
Then you go through the pages of the dialog using the selections at the
top or the OK button. On the Cinemas page, check one or more cine-
mas in the region. On the Days page, click on the radio button for the
day of your choice. Finally, on the Ticket page [see Figure 153], the
application lists all films that match the day and cinemas you selected
in the combo list.

All you have to do is click on the Get the Ticket button. Nothing
really happens in the current application, but imagine that you would
be asked for your credit card number and then the ticket be printed.

The code for this dialog can be found in the ooticket.rex file. Note
that you can switch many times between the different pages of the
dialog. Every switch calls the PageHasChanged method, and that is
where the current values on the Ticket page are produced.

Figure 153. Let’s Go to the Movies Sample: Ticket
This page shows the topline style using radio buttons.
314 Object REXX for Windows

Part 5

Reference
Information

Object
REXX
315

316 Object REXX for Windows

15
OODia
log Method
Reference
This chapter is designed to serve as a reference manual for OODialog.
The use of the classes is described in Chapter 7, Graphical User Inter-
faces with OODialog, on page 121, which serves as a user’s guide.

The sequence and flow of the main methods of a dialog is shown in
Figure 55 on page 145.

Syntax diagrams are used extensively to describe the detailed param-
eters of the OODialog methods. The structure of the syntax diagrams
is explained in Appendix C, “Definition for Syntax Diagram Struc-
ture,” on page 529.

OODialog Samples

To learn more about GUI programming with OODialog, check out the
sample programs delivered with OODialog. For brief descriptions of
the sample programs, see OODialog Samples on page 305.
 317 317

OODialog ClassesOODialog Classes
OODialog Classes
The classes provided by OODialog form a hierarchy as shown in Fig-
ure 154.

BaseDialog Base methods regardless of whether the dialog
is implemented as a binary resource, a script,
or dynamically.

UserDialog Subclass of BaseDialog to create a dialog with
all of its control elements, such as push but-
tons, check boxes, radio buttons, entry lines,
and list boxes.

ResDialog Subclass of BaseDialog for dialogs with a
binary (compiled) resource file (.DLL).

CategoryDialog Subclass of UserDialog to create a dialog with
multiple pages that overlay each other on the
same part of the window.

TimedMessage Class to show a message window for a defined
duration.

InputBox Class to dynamically define a dialog with a
message, one entry line, and two push buttons
(OK, Cancel).

Figure 154. OODialog Class Diagram

BaseDialog

Category

UserDialogResDialog

Dialog

Timed
Message InputBox ListChoice CheckList

Single
Selection

Multi
ListChoice

PasswordIntegerBox Box

Multi
InputBox

Standard
Dialogs

Dialog

Animated
Button
318 Object REXX for Windows318 Object REXX for Windows

OODialog External FunctionsOODialog External Functions
IntegerBox Similar to InputBox, but only numeric data
can be entered in the entry line.

PasswordBox Similar to InputBox, but keystrokes in the
entry line are shown as asterisks (*).

MultiInputBox Similar to InputBox, but with multiple entry
lines.

ListChoice Class to dynamically define a dialog with a list
box, where one line can be selected and
returned to the caller.

MultiListChoice Similar to ListChoice, but more than one line
can be selected and returned to the caller.

CheckList Class to dynamically define a dialog with a
group of check boxes, which can be selected
and returned to the caller.

SingleSelection Class to dynamically define a dialog with a
group of radio buttons, where one can be
selected and returned.

Dialog Subclass of UserDialog for your simple dialogs.
You can change the default dialog style from
UserDialog to ResDialog.

AnimatedButton Class to implement an animated button within
a dialog.

OODialog Standard Dialog Functions

The standard dialog classes can also be executed as callable functions.
These functions are described with their respective classes in Stan-
dard Dialog Classes and Functions on page 436.

OODialog External Functions
OODialog provides a number of callable functions that can be used in
your Object REXX programs.

InfoMessage Display an information message window:

 call InfoMessage "some message text"
 ret = InfoMessage("another text")

ErrorMessage Display an error message window:

 call ErrorMessage "some error message text"
 ret = ErrorMessage("another error message")

YesNoMessage Display a message and ask the user for a YES or
NO answer:
Chapter 15. OODialog Method Reference 319 Chapter 15. OODialog Method Reference 319

OODialog External FunctionsOODialog External Functions
 ret = YesNoMessage("press Yes or No")
 if ret = 1 then /* this is yes */

GetScreenSize Query the monitor size in dialog units and pixels:

 val = GetScreenSize()
 parse var val dlgunitx dlgunity pixelx pixely

PlaySoundFile Play a sound file (.WAV):

 call PlaySoundFile "d:\wav\sound.wav"
 ret = PlaySoundFile("d:\wav\sound.wav", "YES")

The optional second parameter YES plays the file
asynchronously, that is the program continues exe-
cution. See also the routine Play on page 390.

PlaySoundFileInLoop
Play a sound file (.WAV) continuously and asyn-
chronously:

 call PlaySoundFileInLoop "d:\wav\sound.wav"

StopSoundFile Stop play of an asynchronous sound file (.WAV):

 call StopSoundFile

GetFileNameWindow
Display an Open File window:

 file = GetFileNameWindow(filename, handle, filter)

Parameters are optional; filename is a preselected
name; handle is the parent window handle; and
filter is a file mask specification, for example:

 "Text files (*.txt)"||'0'x||"*.TXT"||'0'x|| ,
 "All files (*.*)"||'0'x||"*.*"

SleepMS Sleep for a given time interval (milliseconds):

 call SleepMS(3000) /* 3 seconds */

WinTimer Start, stop, and wait for a windows timer:

 tid = WinTimer("START",300) /* 0,3 seconds */
 call WinTimer("WAIT,tid) /* wait... */
 ret = WinTimer("STOP",tid) /* stop premature */

Registering OODialog Functions

OODialog functions are registered automatically when the first dialog
is initialized. If no dialog has been created, register individual or all
functions with:

 call RxFuncAdd fct-name, "OODialog", fct-name /* one function */

 call RxFuncAdd "InstMMFuncs", "OODialog", "InstMMFuncs"
 call InstMMFuncs /* all functions */
320 Object REXX for Windows320 Object REXX for Windows

OODialog External FunctionsOODialog External Functions
Definition of Terms

id Identification number of a dialog or a dialog item.
An ID is assigned by the user when the dialog item
is created using the Resource Workshop or dynam-
ically. IDs 1, 2, and 9 are reserved for the OK,
Cancel, and Help push buttons; IDs 10 to 9999
are available.

handle A handle is a unique reference to a Windows object
and is assigned by the system. It can be a refer-
ence to a dialog window, a particular dialog item,
or a graphic object (pen, brush, font). Handles are
required for certain methods; they can be retrieved
from the system when needed.

device context A device context stores information about the
graphic objects (bitmaps, lines, pixels, etc.) that
are displayed and the tools (pen, brush, font) that
are used to display them. A device context can be
acquired for a dialog window or a button; it must
be explicitly freed when the text or graphic opera-
tions are completed.

pixel Individual addressable point within a window.
VGA screens support 640 by 480 pixels; SVGA
screens support higher resolutions, such as 800 by
600, 1024 by 768, 1280 by 1024, and 1600 by 1200.
Pixel values in a dialog window start at the top left
corner and include the window title and border.

dialog unit Dialog units are used within dialog box templates
to define the size and position of the dialog box and
its control items. There is a horizontal and a verti-
cal dialog base unit to convert width and height of
dialog boxes and controls from dialog units to pix-
els and vice versa. The value of these base unit
depends on the screen resolution and the active
system font; they are stored in attributes FactorX
and FactorY of the UserDialog class.

 xPixels = xDialogUnits * self~FactorX

color Each color supported by the Windows operating
system is assigned a number. The color indexes are
0 (black), 1 (dark red), 2 (dark green), 3 (dark yel-
low), 4 (dark blue), 5 (purple), 6 (blue grey), 7
(light grey), 8 (pale green), 9 (light blue), 10
(white), 11 (grey), 12 (dark grey), 13 (red), 14 (light
green), 15 (yellow), 16 (blue), 17 (pink), and 18
(turquoise).
Chapter 15. OODialog Method Reference 321 Chapter 15. OODialog Method Reference 321

BaseDialog ClassBaseDialog Class
BaseDialog Class
The BaseDialog class implements base methods for all dialogs regard-
less of whether the dialog is implemented as a binary resource, a
resource script, or created dynamically. Binary (compiled) resources
are stored in a DLL. A dialog is created dynamically by using Add...
methods. Dialogs that are implemented using a resource script (.RC)
are semi-dynamically generated dialogs.

See the subclasses UserDialog Class on page 391 and ResDialog Class
on page 419 for additional information.

Requires: Basedlg.cls is the source file of this class. Use the
tokenized version of OODialog, oodialog.cls, to
shorten the dialog startup time.

 ::requires 'oodialog.cls'

Attributes: Instances of the BaseDialog class have the following
attributes:

AutoDetect Automatic data field detection on
(=1, default) or off (=0). For the
UserDialog subclass the default is
off and Connect... methods, Add...
methods, or a resource script are
usually used.

AutomaticMethods A queue containing the meth-
ods that are started concurrently
before the execution of the dialog.

BkgBitmap A handle to a bitmap that is dis-
played in the dialog’s background.

BkgBrushBmp A handle to a bitmap that is used
to draw the dialog’s background.

DataConnection Protected attribute to store connec-
tions between dialog items and the
attributes of the dialog instance.

DlgHandle A handle to the dialog.

Finished 0 if dialog is executing, 1 if termi-
nated with OK, and 2 if canceled.

InitCode Result of the init method; in case
init failed, its value is 1.

IsExtended Protected attribute that is true
(=1) if graphics extension is
installed.

UseStem Protected attribute that is true
(=1) if a stem variable was passed
to init.
322 Object REXX for Windows322 Object REXX for Windows

BaseDialog ClassBaseDialog Class
Routines: See Public Routines on page 390 for a description of
the audio Play routine.

Methods: Instances of the BaseDialog class implement the meth-
ods listed in Table 32.

Table 32. (Part 1 of 5) BaseDialog Instance Methods

Method... ...on page

AddAttribute 341

AddAutoStartMethod 386

AddComboEntry 349

AddListEntry 353

AddUserMsg 339

AutoDetection 334

BackgroundBitmap 366

Cancel 389

Center 386

ChangeBitmapButton 364

ChangeComboEntry 352

ChangeListEntry 355

ClearButtonRect 363

ClearMessages 333

ClearRect 363

ClearWindowRect 363

CombineELwithSB 359

ComboAddDirectory 352

ComboDrop 353

ConnectAnimatedButton 387

ConnectBitmapButton 335

ConnectButton 334

ConnectCheckBox 338

ConnectComboBox 338

ConnectControl 336

ConnectEntryLine 337

ConnectList 337

ConnectListBox 338

ConnectMultiListBox 339

ConnectRadioButton 338
Chapter 15. OODialog Method Reference 323 Chapter 15. OODialog Method Reference 323

BaseDialog ClassBaseDialog Class
ConnectScrollBar 358

CreateBrush 376

CreateFont 373

CreatePen 376

DeInstall 390

DeleteComboEntry 350

DeleteFont 374

DeleteListEntry 354

DeleteObject 377

DisableItem 382

DisplaceBitmap 367

Draw 361

DrawAngleArc 382

DrawArc 379

DrawBitmap 365

DrawButton 361

DrawLine 378

DrawPie 381

DrawPixel 379

EnableItem 382

EndAsyncExecution 331

Execute 329

ExecuteAsync 330

FillDrawing 381

FindComboEntry 350

FindListEntry 354

FontColor 375

FontToDC 374

FreeButtonDC 369

FreeDC 368

FreeWindowDC 368

Get 360

GetArcDirection 380

GetAttrib 348

Table 32. (Part 2 of 5) BaseDialog Instance Methods

Method... ...on page
324 Object REXX for Windows324 Object REXX for Windows

BaseDialog ClassBaseDialog Class
GetBitmapSizeX 365

GetBitmapSizeY 365

GetBmpDisplacement 367

GetButtonDC 368

GetButtonRect 361

GetCheckBox 346

GetComboItems 351

GetComboLine 346

GetCurrentComboIndex 351

GetCurrentListIndex 354

GetData 342

GetDataStem 349

GetDC 368

GetEntryLine 344

GetItem 360

GetListItems 354

GetListLine 344

GetMultiList 345

GetPixel 379

GetPos 360

GetRadioButton 346

GetSBPos 358

GetSBRange 357

GetSize 360

GetTextSize 375

GetValue 347

GetWindowDC 368

GetWindowRect 361

GraphicExtension 375

HandleMessages 332

Help 389

HideItem 383

HideItemFast 383

HideWindow 383

Table 32. (Part 3 of 5) BaseDialog Instance Methods

Method... ...on page
Chapter 15. OODialog Method Reference 325 Chapter 15. OODialog Method Reference 325

BaseDialog ClassBaseDialog Class
HideWindowFast 384

Init 328

InitAutoDetection 388

InitDialog 329

InsertComboEntry 350

InsertListEntry 353

IsDialogActive 331

ItemTitle 343

ListAddDirectory 356

ListDrop 356

LoadBitmap 364

MakeArray 346

Move 385

MoveItem 385

NoAutoDetection 334

ObjectToDC 377

OK 388

OpaqueText 370

Rectangle 378

RedrawButton 362

RedrawRect 362

RedrawWindowRect 362

RemoveBitmap 364

Resize 385

ResizeItem 384

Run 329

ScrollBitmapFromTo 366

ScrollButton 373

ScrollInButton 373

ScrollText 372

SendMessageToItem 333

SetArcDirection 380

SetAttrib 348

SetCheckBox 348

Table 32. (Part 4 of 5) BaseDialog Instance Methods

Method... ...on page
326 Object REXX for Windows326 Object REXX for Windows

BaseDialog ClassBaseDialog Class
SetComboLine 346

SetCurrentComboIndex 351

SetCurrentListIndex 355

SetData 342

SetDataStem 348

SetEntryLine 344

SetListLine 345

SetListTabulators 356

SetMultiList 345

SetRadioButton 346

SetSBPos 358

SetSBRange 357

SetStaticText 343

SetTitle 343

SetValue 348

SetWindowTitle 343

Show 331

ShowItem 383

ShowItemFast 383

ShowWindow 384

ShowWindowFast 384

StartMessageHandling 332

StopIt 331

TiledBackgroundBitmap 366

Title 360

ToTheTop 332

TransparentText 369

Update 386

Validate 389

Write 371

WriteDirect 369

WriteToButton 371

WriteToWindow 370

Table 32. (Part 5 of 5) BaseDialog Instance Methods

Method... ...on page
Chapter 15. OODialog Method Reference 327 Chapter 15. OODialog Method Reference 327

BaseDialog ClassBaseDialog Class
Instance Methods of BaseDialog

The methods of the BaseDialog class are grouped by their usage in
this section (an alphabetical list was in Table 32).

Preparing and Running the Dialog

This section presents the methods used to prepare (initialize) a dialog,
show it, run it, and stop it.

Init

The constructor of the class installs the necessary C functions for the
Object REXX API manager and prepares the dialog management for a
new dialog.

Protected: This method is protected. You cannot create an
instance of BaseDialog. You can only create instances
of its subclasses.

Arguments: The arguments are:

Library This is the file name of a .DLL file. Pass an
empty string if you are not using binary
resources.

Resource The ID of the dialog within the resource
file.

DlgData. A stem variable (do not forget the period)
that contains initialization data for the
dialog. For example, if you assign the
string “Hello world” to DlgData.103, where
103 is the ID of an entry field, it is initial-
ized with this string. If the dialog is termi-
nated with OK, the data of the dialog is
copied into this stem variable.

Example: This example shows how the subclass ResDialog (see
ResDialog Class on page 419) is implemented, over-
writing the init method. If your subclass overwrites
the init method, ensure that it calls the init method of
its superclass:

 ::class ResDialog subclass BaseDialog
 ::method Init
 expose Library Resource DlgData.
 use arg Library, Resource, DlgData.
 return self~init:super(Library, Resource, DlgData.)

aBaseDialog~Init(
Library

Resource
"" , DlgData.

) ,
328 Object REXX for Windows328 Object REXX for Windows

BaseDialog ClassBaseDialog Class
InitDialog

The InitDialog method is called after the Windows dialog has been
created. It is useful for setting attributes of dialog items, and initializ-
ing combo and list boxes. Do not use Set... methods because the Set-
Data method [page 342] is executed automatically afterwards and sets
the values of all dialog items from the attributes.

Protected: The method is designed to be overwritten in sub-
classes; it cannot be called from outside the class.

Example: This sample shows how to use InitDialog to initialize
dialog items; in this case a list box:

 ::class MyDialog subclass Userdialog
 ::method InitDialog
 self~InitDialog:super
 AddListEntry(501, "this is the first line")
 AddListEntry(501, "and this one the second")

Run

The Run method dispatches messages from the Windows dialog until
the user terminates the dialog by one of the following actions:

❑ Push the OK button (that is the push button with ID 1)
❑ Push the Cancel button (that is the push button with ID 2)
❑ Press the Enter key (if OK or Cancel is the default button)
❑ Press the Esc key (same as Cancel)

Protected: Run is a protected method. You cannot call this
method directly; it is called by the Execute method
[page 329].

Execute

The Execute method creates the dialog, shows it (see Show method
[page 331]), starts automatic methods, and destroys the dialog. The
data is passed to the Windows dialog before execution and received
from it after the dialog is terminated.

aBaseDialog~InitDialog

aBaseDialog~Run

aBaseDialog~Execute(
DEFAULT
NORMAL
SHOWTOP
HIDE
MIN
MAX
INACTIVE

, icon
)
Chapter 15. OODialog Method Reference 329 Chapter 15. OODialog Method Reference 329

BaseDialog ClassBaseDialog Class
Return code: The return code is 0 if the dialog was not executed, 1 if
terminated using the OK button, and 2 if terminated
using the Cancel button.

Arguments: The arguments are:

show See Show method [page 331].

icon The resource ID of the application’s icon.

Example: Instantiate a new dialog object (remember that it is
not possible to instantiate an object of the BaseDialog
class), create a dialog template, and run the dialog as
the topmost window:

 MyDialog = .UserDialog~new(...)
 MyDialog~Create(...)
 MyDialog~Execute("SHOWTOP")

ExecuteAsync

The ExecuteAsync method does the same as the Execute method [page
329], except that it dispatches messages asynchronously. Therefore,
the ExecuteAsync method returns immediately after the dialog has
been started.

Return code: The return code is 0 if the dialog started, 1 if error (do
not call EndAsyncExecution in this case).

Arguments: The arguments are:

sleeptime This argument defines the time slice in
milliseconds after which the next message
is processed.

show See Show method [page 331].

icon The resource ID of the application’s icon.

Example: This example starts a dialog and runs the statements
between ExecuteAsync and EndAsyncExecution asyn-
chronously to the dialog:

 ret = MyDialog~ExecuteAsync(1000, "SHOWTOP")
 if ret = 0 then do
 /* statements to run while dialog is executing */
 MyDialog~EndAsyncExecution
 end
 else call ErrorMessage("Could not start dialog")

aBaseDialog~ExecuteAsync(,
DEFAULT
NORMAL
SHOWTOP
HIDE
MIN
MAX
INACTIVE

, icon
)

sleeptime
330 Object REXX for Windows330 Object REXX for Windows

BaseDialog ClassBaseDialog Class
EndAsyncExecution

The EndAsyncExecution method is used to complete the asynchronous
execution of a dialog. It does not terminate the dialog but waits until
the user terminates it. Do not call EndAsyncExecution if ExecuteAsync
failed.

Return code: The return code is 1 if terminated using the OK but-
ton, and 2 if terminated using the Cancel button.

Example: See example in the ExecuteAsync method [page 330].

IsDialogActive

The IsDialogActive method returns 1 if the Windows dialog still exists.

Example: This example tests whether the dialog is active:

 if MyDialog~IsDialogActive then ...

StopIt

The StopIt method removes the Windows dialog from memory. It is
called by the Execute method [page 329], after the user terminates the
dialog.

Protected: This method is protected and for internal use only.

Show

The Show method shows the dialog; it is usually called by Execute
[page 329] or ExecuteAsync [page 330].

Argument: The argument must be one of:

DEFAULT Default, same as NORMAL.
NORMAL Displays dialog in the given size.
SHOWTOP Makes the dialog the topmost dialog.
HIDE Makes the dialog invisible.

aBaseDialog~EndAsyncExecution

aBaseDialog~IsDialogActive

aBaseDialog~StopIt

aBaseDialog~Show (
DEFAULT
NORMAL
SHOWTOP
HIDE
MIN
MAX
INACTIVE

)
Chapter 15. OODialog Method Reference 331 Chapter 15. OODialog Method Reference 331

BaseDialog ClassBaseDialog Class
MIN Minimizes the dialog.
MAX Maximizes the dialog.
INACTIVE Deactivates the dialog.

Example: The following statement hides the dialog:
 MyDialog~Show("HIDE")

ToTheTop

Use the ToTheTop method to make the dialog the topmost dialog.

Example: This sample uses the ToTheTop method to make the
user aware of an alarm event:

 aDialog = .MyDialog~new
 msg = .Message~new(aDialog, 'Remind')
 a = .Alarm~new('17:30:00', msg)

 ::class MyDialog subclass UserDialog
 ...
 ::method Remind
 self~SetStaticText(102, "Don't forget to go home!")
 self~ToTheTop

Note: Message and Alarm are built-in classes of Object
REXX. See the online Object REXX Reference for fur-
ther information.

StartMessageHandling

The StartMessageHandling method starts the asynchronous handling
of dialog messages. It is invoked automatically by the ExecuteAsync
method [page 330]. A message in this context is the name of an object
method that will be processed. You can set the messages that should
be sent by using connect methods (see Connect Methods on page 333).

Protected: This method is protected and for internal use only.

Arguments: The only argument is:

sleeptime The time slice in milliseconds after
which the next message is processed.

HandleMessages

The HandleMessages method handles dialog messages synchronously.
It is called by the Execute method [page 329].

aBaseDialog~ToTheTop

aBaseDialog~StartMessageHandling(sleeptime)

aBaseDialog~HandleMessages
332 Object REXX for Windows332 Object REXX for Windows

BaseDialog ClassBaseDialog Class
ClearMessages

The ClearMessages method clears all pending dialog messages.

SendMessageToItem

The SendMessageToItem method sends a Windows message to a dia-
log item. It is used to influence the behavior of dialog elements. See
also AddUserMsg [page 339] for more information about Windows
messages.

Arguments: The arguments are:

id The ID of the dialog item.

msg The Windows message (you need a Windows
SDK to look up these numbers).

wp The first message parameter (wParam).

lp The second message parameter (lParam).

Example: This example sets the marker to radio button 9001:

 MyDialog~SendMessageToItem(9001, "0x000000F1", 1, 0)

Connect Methods

The methods listed below create a connection between a dialog item
(dialog control) and an Object REXX attribute or method. The behav-
iors of the connections differ according to the dialog item.

❑ For push buttons you connect a method to the button. The con-
nected method is called whenever the button is clicked.

❑ For data items, such as an entry line, list box, or combo box, an
attribute is created and added to the dialog object. The attribute is
used as an interface to the data of the entry line, list box, or combo
box.

❑ Check boxes and radio buttons are data items as well, and they
are therefore connected to an attribute. The only valid values for
these attributes are 1 for selected and 0 for not selected.

❑ For a list box, multiple list box, and combo box, you can also con-
nect a method that is called whenever a line in the box is selected.

In a UserDialog, the Connect... methods are called automatically from
the Add... methods. The proper place for Connect... methods is the
InitDialog method [page 329].

aBaseDialog~ClearMessages

aBaseDialog~SendMessageToItem(id , msg , wp , lp)
Chapter 15. OODialog Method Reference 333 Chapter 15. OODialog Method Reference 333

BaseDialog ClassBaseDialog Class
InitAutoDetection

The InitAutoDetection method is called by the Init method to change
the default setting for the automatic data field detection.

Automatic data field detection means that for every dialog data item a
corresponding Object REXX attribute is created automatically. If you
disable automatic detection, you have to use the Connect... methods to
assign a dialog item to an Object REXX attribute.

Protected: This method is protected. You can overwrite this
method within your subclass to change the standard
behavior.

Example: This example overwrites the method to switch off auto
detection:

 ::class MyDialog subclass UserDialog
 ::method InitAutoDetection
 self~NoAutoDetection

NoAutoDetection

The NoAutoDetection method switches off auto detection.

AutoDetection

The AutoDetection method switches on auto detection.

ConnectButton

The ConnectButton method connects a push button with a method.

Arguments: The arguments are:

id The ID of the dialog element.

msgToRaise The message that is sent whenever the
button is clicked. You should provide a
method with the matching name.

Example: Connections are usually placed in the Init method
[page 328] or InitDialog method [page 329]. If both
methods are defined, use Init as the place for the con-
nections—but not before Init:super has been called:

aBaseDialog~InitAutoDetection

aBaseDialog~NoAutoDetection

aBaseDialog~AutoDetection

aBaseDialog~ConnectButton(id
, msgToRaise

)
334 Object REXX for Windows334 Object REXX for Windows

BaseDialog ClassBaseDialog Class
 ::class MyDlgClass subclass UserDialog
 ::method Init
 self~init:super(...)
 self~ConnectButton(203, "SayHello")
 ::method SayHello
 say "Hello"

ConnectBitmapButton

The ConnectBitmapButton method connects a bitmap and a method
with a push button. The given bitmaps are displayed instead of a Win-
dows push button.

Arguments: The arguments are:

id The ID of the button.

msgToRaise The message that is sent to this object
when the button is clicked.

bmpNormal The name (alphanumeric), resource ID
(numeric), or handle (INMEMORY
option) of a bitmap file. This bitmap is
displayed when the button is not
selected, not focused, and not disabled.
It is used for the other button states in
case the other arguments are omitted.

bmpFocused This bitmap is displayed when the but-
ton is focused. The focused button is
activated when the enter key is
pressed.

bmpSelected This bitmap is displayed while the but-
ton is clicked and held.

bmpDisabled This bitmap is displayed when the but-
ton is disabled.

styleOptions There are four possible keywords:

FRAME Draws a frame around the button.
When using this option, the bitmap
button behaves just like a normal Win-
dows button, except that a bitmap is
shown instead of a text.

aBaseDialog~ConnectBitmapButton(
msgToRaise

, id , bmpNormal

, bmpFocused
, bmpSelected

, bmpDisabled
, styleOptions

)

Chapter 15. OODialog Method Reference 335 Chapter 15. OODialog Method Reference 335

BaseDialog ClassBaseDialog Class
USEPAL Takes the colors of the bitmap file and
stores them as the system color pal-
ette. This option is needed when the
bitmap was created with a palette
other than the default Windows color
palette. Use it for only one button,
because only one color palette can be
active at any time. USEPAL is invalid
for a bitmap loaded through a DLL.

INMEMORY This option must be used if the
named bitmaps are already loaded into
memory by using the LoadBitmap
method [page 364]. In this case, bmp-
Normal, bmpFocused, bmpSelected,
and bmpDisabled specify a bitmap
handle instead of a file.

STRETCH If this option is specified and the
extent of the bitmap is smaller then
the extent of the button rectangle, the
bitmap is adapted to match the extent
of the button. STRETCH has no effect
for bitmaps loaded through a DLL.

Example: This example connects a button with four bitmaps and
a method.

 ::method InitDialog
 self~ConnectBitmapButton(204, "BmpButtonClicked", ,
 "AddBut_n.bmp", "AddBut_f.bmp", ,
 "AddBut_s.bmp", "AddBut_d.bmp", "FRAME")
 ...
 ::method BmpButtonClicked
 ...

See also ChangeBitmapButton method [page 364].

ConnectControl

The ConnectControl method connects dialog controls (buttons, bitmap
buttons, list box, etc.) with a method.

Arguments: The arguments are:

id The ID of the dialog element.

msgToRaise The message that is sent whenever the
button is clicked. You should provide a
method with the matching name.

aBaseDialog~ConnectControl(id
, msgToRaise

)
336 Object REXX for Windows336 Object REXX for Windows

BaseDialog ClassBaseDialog Class
ConnectList

The ConnectList method connects a list box, multiple list box, or
combo box with a method. The method is called whenever the user
selects a new item within the list.

Arguments: The arguments are:

id The ID of the dialog element.

msgToRaise The message that is sent whenever a
list item is selected. You should pro-
vide a method with the matching
name.

ConnectEntryLine

The ConnectEntryLine method creates a new attribute and connects it
to the entry line id. The attribute has to be synchronized with the
entry line manually. This can be done globally with the methods Set-
Data [page 342] and GetData [page 342], or for just one item with the
methods SetEntryLine [page 344] and GetEntryLine [page 344]. It is
done automatically by the Execute method [page 329] when the dialog
starts and after it terminates. If AutoDetection is enabled, or if the dia-
log is created dynamically (manually or based on a resource script),
you do not have to use this method (or the other Connect... methods
that deal with dialog items).

Arguments: The arguments are:

id The ID of the entry field you want to connect.

attributeName
This should be an unused valid REXX symbol,
because an attribute with exactly this name is
added to the dialog object by this method.
Blank spaces, ampersands (&), and colons (:)
are removed from attributeName. If the second
argument is omitted, is invalid, or already
exists, an attribute with the name DATAid is
used (where id is the value of the first argu-
ment).

Example: The entry line with ID 202 is associated with the
attribute Name. Then "Put your name here!" is
assigned to the newly created attribute. Next the dia-
log is executed. That action copies the value from the
attribute Name to the entry line and then executes the

aBaseDialog~ConnectList(id
, msgToRaise

)

aBaseDialog~ConnectEntryLine(id
, attributeName

)
Chapter 15. OODialog Method Reference 337 Chapter 15. OODialog Method Reference 337

BaseDialog ClassBaseDialog Class
dialog. After the dialog has been terminated, the data
of the entry line (which the user may have changed) is
copied back to the attribute Name.

 MyDialog~ConnectEntryLine(202, "Name")
 MyDialog~Name="Put your name here!"
 MyDialog~Execute("SHOWTOP")
 say MyDialog~Name

ConnectComboBox

The ConnectComboBox method creates an attribute and connects it to
a combo box. The value of the combo box, that is, the text in the entry
line or the selected list item, is associated with this attribute. See Con-
nectEntryLine [page 337] for a more detailed description.

ConnectCheckBox

The ConnectCheckBox method connects a check box control to a newly
created attribute. A check box attribute has only two valid values: 1 if
the box has a check mark, and 0 if it doesn’t. See ConnectEntryLine
[page 337] for a more detailed description.

ConnectRadioButton

The ConnectRadioButton method connects a radio button control to a
newly created attribute. A radio button attribute has only two valid
values: 1 if the radio button is marked and 0 if it is not. See Connect-
EntryLine method [page 337] for a more detailed description.

ConnectListBox

The ConnectListBox method connects a list box to a newly created
attribute. The value of the attribute is the number of the selected line.
Therefore, if the attribute value is 3, the third line is currently
selected or will be selected, depending on whether you set data to the
dialog or receive it. See ConnectEntryLine method [page 337] for a
more detailed description.

aBaseDialog~ConnectComboBox(id
, attributeName

)

aBaseDialog~ConnectCheckBox(id
, attributeName

)

aBaseDialog~ConnectRadioButton(id
, attributeName

)

aBaseDialog~ConnectListBox(id
, attributeName

)
338 Object REXX for Windows338 Object REXX for Windows

BaseDialog ClassBaseDialog Class
ConnectMultiListBox

The ConnectMultiListBox method connects a list box to a newly cre-
ated attribute. The list box has the multiple selection style enabled;
that is, you can select more than one item at the same time. The value
of the attribute is a string containing the numbers of the selected
lines. The numbers are separated by blank spaces. Therefore, if the
attribute value is "3 5 6", the third, fifth, and sixth item are currently
selected, or will be selected if the SetData method [page 342] is exe-
cuted. See ConnectEntryLine [page 337] for a more detailed descrip-
tion.

Example: This example defines a list box with the names of the
four seasons. It then preselects the items Summer and
Winter. After execution of the dialog, it parses the
value of the attribute.

 MyDialog = .ResDialog~new(...)
 MyDialog~noAutoDetection
 MyDialog~ConnectMultiListBox(205, "ListBox")
 seasons.1="Spring"
 seasons.2="Summer"
 seasons.3="Autumn"
 seasons.4="Winter"
 do season over seasons
 MyDialog~AddListEntry(205, season)
 end
 MyDialog~ListBox="2 4"
 MyDialog~Execute("SHOWTOP")
 selItems = MyDialog~ListBox
 do until anItem =""
 parse var selItems anItem selItems
 say "You selected: "seasons.anItem
 end

You must have set the MULTI option when adding the
list box to enable the multiple choice feature.

AddUserMsg

The AddUserMsg method connects any Windows message with an
Object REXX method. This message is designed to be used by Win-
dows programmers who are familiar with the Windows API.

aBaseDialog~ConnectMultiListBox(id
, attributeName

)

aBaseDialog~AddUserMsg(msgToRaise , msgWindows

, filt1
, wParam

, filt2
, lParam

, filt3
Chapter 15. OODialog Method Reference 339 Chapter 15. OODialog Method Reference 339

BaseDialog ClassBaseDialog Class
You have to pass the Windows message ID and the two message
parameters (wParam and lParam) to specify the exact event you want
to catch. In addition you can specify filters for each parameter. Filters
are useful for catching more than one message or one parameter with
one method.

Protected: This method is protected. You can use it only within
the scope of the BaseDialog class or its subclasses.

Arguments: The arguments are:

msgToRaise The message that is sent to the Object
REXX dialog object whenever the spec-
ified Windows message is caught. You
must provide a method with the same
name.

msgWindows Message in the Windows environment
that should be caught.

filt1 This filter is used to binary AND the
incoming Windows message.

wParam This is the first parameter that must
be passed along with the Windows
message.

filt2 This filter is used to binary AND the
wParam argument.

lParam This is the second message parameter.

filt3 This is the filter for lParam.

Example: This example shows an implementation of the Con-
nectList method:

 ::class BaseDialog
 ...
 ::method ConnectList
 use arg msgToRaise, id
 self~AddUserMsg(msgToRaise, '0x00000111', '0xFFFFFFFF', ,
 '0x0001'||id~d2x(4), '0xFFFFFFFF', 0, 0)

Assume this method is called with id=254 and msgTo-
Raise="ListChanged". After the ConnectList method
[page 337] is executed, the ListChanged message is
sent to the Object REXX dialog object if the following
conditions are true:

• The message "0x00000111" (WM_COMMAND) is
generated by Windows in answer to an event (for
example, a button is clicked or a list has changed).
The filter "0xFFFFFFFF" ensures that only that
message is caught; if the filter were
"0xFFFFEFFF", the message "0x00001111" would
be caught as well.
340 Object REXX for Windows340 Object REXX for Windows

BaseDialog ClassBaseDialog Class
• The first message parameter is "0x000100FF". The
first part, "0x0001", specifies the event, and the
second part, "0x00FE" (equals decimal 254), speci-
fies the dialog item where the event occurred.
Again, by using another filter it is possible to make
more than one event a trigger for the ListChanged
method; for example, filter "0xFFFFFFFE" would
ignore the last bit of the id, and this the same
event for dialog item 255 would call ListChanged
as well.

• The second message parameter and its filter are
ignored.

This example invokes a user defined method Double-
Click whenever the left mouse button is double-
clicked:
 self~AddUserMsg('DoubleClick','0x00000203','0xFFFFFFFF', ,
 0,0,0,0)

AddAttribute

The AddAttribute method adds an attribute to the dialog object. The
attribute is associated with the given Windows dialog item (id).

Protected: This method is for internal use only.

Arguments: The arguments are:

id The ID of the dialog item.

attributeName
The name you want to give to the attribute.
This name must comply with the conventions
of Object REXX for valid symbols. Add-
Attribute checks whether the argument is
valid. In case of an invalid argument, an
attribute of the name DATA concatenated with
the id is created. This method automatically
removes blanks, ampersands, and colons.

Example: The first and second lines generate attributes ADD
and LISTALLITEMS. The third line generates assem-
bled attribute DATA34 because ListAllItems already
exists. The fourth line creates attribute DATA35
because Update+Refresh is not a valid symbol name.

self~AddAttribute(32, "&Add")
self~AddAttribute(33, "List all items")
self~AddAttribute(34, "ListALLitems:")
self~AddAttribute(35, "Update+Refresh")

aBaseDialog~AddAttribute(id
, attributeName

)
Chapter 15. OODialog Method Reference 341 Chapter 15. OODialog Method Reference 341

BaseDialog ClassBaseDialog Class
Get and Set Methods

Get methods are used to retrieve the data from all or individual dialog
elements of the Windows dialog. Set methods are used to set the val-
ues of all or individual dialog elements, without changing the associ-
ated Object REXX attributes.

GetData

The GetData method receives data from the Windows dialog and cop-
ies it to the associated object attributes.

Example: This example shows how GetData is used at the end of
the dialog to retrieve the user data:

 MyDialog~ConnectEntryLine(102, "ENTRYLINE_1")
 MyDialog~ConnectCheckBox(201,)
 MyDialog~ConnectListbox(203, "LISTBOX_DAYS")
 ...
 /* process the dialog */
 ...
 MyDialog~GetData /* retrieve dialog item value */
 say MyDialog~ENTRYLINE_1
 say MyDialog~DATA201
 say MyDialog~LISTBOX_DAYS

SetData

The SetData method transfers data from the Object REXX attributes
to the Windows dialog.

Example: Dialog items with IDs 102, 201 and 203 are connected
to attributes ENTRYLINE_1, DATA201 and
LISTBOX_DAYS. Attribute DATA201 is generated by
the ConnectCheckBox method. Next, the attributes are
initialized with some values. This will not change the
dialog window, unless you run the SetData method.

 MyDialog~ConnectEntryLine(102, "ENTRYLINE_1")
 MyDialog~ConnectCheckBox(201,)
 MyDialog~ConnectListbox(203, "LISTBOX_DAYS")
 ...
 MyDialog~ENTRYLINE_1="Memorial Day"
 MyDialog~DATA201=1
 MyDialog~LISTBOX_DAYS="Monday"
 MyDialog~SetData

aBaseDialog~GetData

aBaseDialog~SetData
342 Object REXX for Windows342 Object REXX for Windows

BaseDialog ClassBaseDialog Class
Title

The Title method returns the dialog title.

SetTitle

The SetTitle method changes the title of the current dialog window.

Arguments: The only argument is:

aString The new title text.

SetWindowTitle

The SetWindowTitle method changes the title of a window.

Arguments: The arguments are:

hwnd The handle of the window whose title you
want to change. See Get [page 360] on how
to get the window handle.

aString The new title text.

ItemTitle

The ItemTitle method returns the title of the given dialog item.

Arguments: The only argument is:

id The ID of the dialog item.

SetStaticText

The SetStaticText method changes the text of a static text control.

Arguments: The arguments are:

id The ID of the static text control you want
to set.

aString The text that will be put to the static text
control.

aBaseDialog~Title

aBaseDialog~SetTitle(aString)

aBaseDialog~SetWindowTitle(hwnd , aString)

aBaseDialog~ItemTitle(id)

aBaseDialog~SetStaticText(id , aString)
Chapter 15. OODialog Method Reference 343 Chapter 15. OODialog Method Reference 343

BaseDialog ClassBaseDialog Class
GetEntryLine

The GetEntryLine method returns the value of the given entry line.

Arguments: The only argument is:

id The ID of the entry line.

SetEntryLine

The SetEntryLine method puts the value of a string into an entry line.

Arguments: The arguments are:

id The ID of the entry line.

aString The value that will be assigned to the
entry line.

Example: Imagine that three methods are related to a push but-
ton. The SetToDefault method overwrites the value in
the Windows dialog entry line 234 with the value 256
but does not change its associated attribute. Using
SetEntryLine has the same effect as a change to the
entry line made by the user. The associated attribute
in the Object REXX object (DATA234) still has the
original value. Thus it is possible to undo the changes
or confirm them.

 ::method SetToDefault
 self~SetEntryLine(234, "256")
 ::method AcceptValues
 self~GetAttrib(DATA234)
 ::method UndoChanges
 self~SetAttrib(DATA234)

GetListLine

The GetListLine method returns the value of the currently selected
list item. If you need the index of the item, use the GetCurrentListIn-
dex method [page 355]. If no item is selected a null string is returned.

Arguments: The only argument is:

id The ID of the list box.

aBaseDialog~GetEntryLine(id)

aBaseDialog~SetEntryLine(id , aString)

aBaseDialog~GetListLine(id)
344 Object REXX for Windows344 Object REXX for Windows

BaseDialog ClassBaseDialog Class
SetListLine

The SetListLine method assigns the value of a string to the list box.
Thus the item with the value of the given string becomes selected. The
first item is selected if the string is not found. This method does not
work for a multiple selection list box (see SetMultiList [page 345]).

Arguments: The arguments are:

id The ID of the list box.

aString The value of the item that will be selected.

Example: This example selects item "New York" in list box 232:

 MyBaseDialog~SetListLine(232, "New York")

GetMultiList

The GetMultiList method can be applied to a multiple choice list box.
It returns a string containing the indexes of all selected items. The
numbers are separated by blanks.

Arguments: The only argument is:

id The ID of the multiple choice list box.

Example: This example shows how to handle a multiple choice
list box. It parses the returned string as long as it con-
tains an index.

 selLines = MyDialog~GetMultiList(555)
 do until selLines = ""
 parse var selLines aLine selLines
 say 'selected line' aLine
 end

SetMultiList

Use the SetMultiList method to select one or more lines in a multiple
choice list box. Provide the indexes of all lines you want to select (sep-
arated by blanks) in the second argument.

Arguments: The arguments are:

id The ID of the multiple choice list box.

data The indexes of the lines to be selected.

Example: This example selects lines 2, 5, and 6 of the list box:

 MyDialog~SetMultiList(345, "2 5 6")

aBaseDialog~SetListLine(id , aString)

aBaseDialog~GetMultiList(id)

aBaseDialog~SetMultiList(id , data)
Chapter 15. OODialog Method Reference 345 Chapter 15. OODialog Method Reference 345

BaseDialog ClassBaseDialog Class
GetComboLine

The GetComboLine method returns the value of the currently selected
list item of a combo box. If you need the index of the item, use the Get-
CurrentComboIndex method [page 351]. If no item is selected a null
string is returned.

Arguments: The only argument is:

id The ID of the combo box.

SetComboLine

The SetComboLine method assigns a string to the given combo box.
Thus the item with the value of the given string becomes selected. The
first item is selected if the string is not found in the combo box.

Arguments: The arguments are:

id The ID of the combo box.

aString The value of the item that will be selected.

GetRadioButton

The GetRadioButton method returns 1 if the radio button is selected, 0
if it is not selected.

Arguments: The only argument is:

id The ID of the radio button.

SetRadioButton

The SetRadioButton method marks the radio button if the given data
value is 1, and removes the mark if the value is 0.

Arguments: The arguments are:

id The ID of the radio button.

data The value 1 to select the button, 0 to deselect.

GetCheckBox

aBaseDialog~GetComboLine(id)

aBaseDialog~SetComboLine(id , aString)

aBaseDialog~GetRadioButton(id)

aBaseDialog~SetRadioButton(id , data)

aBaseDialog~GetCheckBox(id)
346 Object REXX for Windows346 Object REXX for Windows

BaseDialog ClassBaseDialog Class
The GetCheckBox method returns the value of a check box; 1 if the
check box is selected (has a check mark), 0 if it is not selected.

Arguments: The only argument is:

id The ID of the check box.

SetCheckBox

The SetCheckBox method puts a check mark in the check box if the
given data value is 1, and removes the check mark if the value is 0.

Arguments: The arguments are:

id The ID of the check box.

data The value 1 to check the box or 0 to remove the
check mark.

GetValue

The GetValue method returns the value of a dialog item, regardless of
its type. The item must have been connected before.

Arguments: The only argument is:

id The ID of the dialog item.

SetValue

The SetValue method sets the value of a dialog item. You do not have
to know the type of the dialog item, but it must have been connected
before.

Arguments: The arguments are:

id The ID of the dialog item.

dataString The value that is assigned to the item.
It should be a valid value.

Example: This example sets dialog item 111 to (string) value "1 2
3". This is meaningful if 111 is an entry field, or if it is
a list box that contains the line "1 2 3". However, it is
an error to apply this against a check box. If the list
box has the multiple select style enabled, the SetValue
method will not look for an item with "1 2 3" as a value
but will highlight the first, second, and third line

 MyDialog~SetValue(111, "1 2 3")

aBaseDialog~SetCheckBox(id , data)

aBaseDialog~GetValue(id)

aBaseDialog~SetValue(id , dataString)
Chapter 15. OODialog Method Reference 347 Chapter 15. OODialog Method Reference 347

BaseDialog ClassBaseDialog Class
GetAttrib

The GetAttrib method assigns the value of the a dialog item to the
associated Object REXX attribute. It does not return a value. You do
not have to know the ID or the type of the dialog item.

Arguments: The only argument is:

attributeName The name of the attribute.

Example: This example shows how to get the data value of a dia-
log item without knowing its ID:

 MyDialog~GetAttrib("FirstName")
 if MyDialog~FirstName \= '' then ...

SetAttrib

The SetAttrib method copies the value of an attribute to the associated
dialog item. You do not have to know the ID or the type of the dialog
item.

Arguments: The only argument is:

attributeName The name of the attribute.

Example: This example copies the value of the attribute
DATA101 to the associated dialog item:

 MyBaseDialog~SetAttrib("DATA101")

MakeArray

The MakeArray method returns an array that is filled with the data of
all dialog items.

MakeArray is an Object REXX base method that is internally called in
the loop construct “do anItem over aCollectionObject.”

SetDataStem

The SetDataStem method sets all Windows dialog items to the values
within the given stem; the suffixes of the stem variable are the dialog
IDs.

Protected: This method is protected.

aBaseDialog~GetAttrib(attributeName)

aBaseDialog~SetAttrib(attributeName)

aBaseDialog~MakeArray

aBaseDialog~SetDataStem(dataStem.)
348 Object REXX for Windows348 Object REXX for Windows

BaseDialog ClassBaseDialog Class
Arguments: The only argument is:

dataStem. A stem variable containing initialization
data. Do not forget the trailing period.

Example: This example initializes the dialog items with IDs 21,
22, and 23.

 dlgStem.21="Windows 95"
 dlgStem.22="0"
 dlgStem.23="1 2 3"
 self~SetDataStem(dlgStem.)

GetDataStem

The GetDataStem method gets the values of all dialog items and cop-
ies them into the given stem.

Protected: This method is protected.

Arguments: The only argument is:

dataStem. The name of a stem variable into which
the data is returned. Do not forget the
trailing period.

Combo Box Methods

These methods deal with combo boxes.

AddComboEntry

The AddComboEntry method adds a string to the list of a combo box.
The new item becomes the very last one, if the list does not have the
SORT flag set. In the case of a sorted list, the new item is inserted at
the proper position.

Arguments: The arguments are:

id The ID of a combo box.

aString The data that will be inserted as a new
line.

Example: This example adds the new line, Another item, to the
list of combo box 103:

 MyDialog~AddComboEntry(103, "Another item")

aBaseDialog~GetDataStem(dataStem.)

aBaseDialog~AddComboEntry(id , aString)
Chapter 15. OODialog Method Reference 349 Chapter 15. OODialog Method Reference 349

BaseDialog ClassBaseDialog Class
InsertComboEntry

The InsertComboEntry method inserts a string into the list of a combo
box.

Arguments: The arguments are:

id The ID of the combo box.

index The index (line number) in the list where
you want to insert the new item. If this
argument is omitted, the new item is
inserted after the currently selected item.

string The data string that will be inserted.

Example: This statement inserts The new third line after the
second line into the list of combo box 103:

 MyDialog~InsertComboEntry(103, 2, "The new third line")

DeleteComboEntry

The DeleteComboEntry method deletes a string from the combo box.

Arguments: The arguments are:

id The ID of the combo box.

index The line number of the item that will be
deleted. If omitted, the currently selected
item is deleted.

Example: This example shows a method that deletes the item
that is passed to the method in the form of a text
string from combo box 203:

 ::method DeleteFromCombo
 use arg delStr
 idx = self~FindComboEntry(203, delStr)
 self~DeleteComboEntry(203, idx)

FindComboEntry

The FindComboEntry method returns the index corresponding to a
given text string in the combo box.

Arguments: The arguments are:

aBaseDialog~InsertComboEntry(id ,

index
, string)

aBaseDialog~DeleteComboEntry(id)
index,

aBaseDialog~FindComboEntry(id , aString)
350 Object REXX for Windows350 Object REXX for Windows

BaseDialog ClassBaseDialog Class
id The ID of the combo box.

aString The search string whose index in the
combo box you are looking for.

Example: See DeleteComboEntry [page 350] for an example.

GetComboItems

The GetComboItems method returns the number of items in the combo
box.

Arguments: The only argument is:

id The ID of the combo box.

GetCurrentComboIndex

The GetCurrentComboIndex method returns the index of the currently
selected item within the list. See GetComboLine [page 346] on how to
retrieve the value of the selected combo box item.

Arguments: The only argument is:

id The ID of the combo box.

Example: This sample method displays the line number of the
currently selected combo box item within entry line
240:

 ::class MyListDialog subclass UserDialog
 ...
 ::method Init
 self~Init:super
 self~ConnectList(230, "ListSelected")
 ...
 ::method ListSelected
 line = self~GetCurrentComboIndex(230)
 SetEntryLine(240, line)

Method ListSelected is called whenever the selected
item within the combo box changes.

SetCurrentComboIndex

The SetCurrentComboIndex method selects the item with the given
index within the list. If called without an index, all items are dese-
lected. See SetComboLine [page 346] on how to select a combo box
item using a data value.

aBaseDialog~GetComboItems(id)

aBaseDialog~GetCurrentComboIndex(id)

aBaseDialog~SetCurrentComboIndex(id)
index,
Chapter 15. OODialog Method Reference 351 Chapter 15. OODialog Method Reference 351

BaseDialog ClassBaseDialog Class
Arguments: The arguments are:

id The ID of the combo box.

index The index within the combo box.

ChangeComboEntry

The ChangeComboEntry method changes the value of a given entry of
a combo box to a new string.

Arguments: The arguments are:

id The ID of the combo box.

index The index number of the item you want to
replace (if omitted, the currently selected
item is changed). Use FindComboEntry
[page 350] or GetCurrentComboIndex
[page 351] to find the index.

aString The new text.

Example: The sample method ChangeButtonPressed changes the
currently selected line of combo box 230 to the value in
entry line 250:

 ::method ChangeButtonPressed
 idx = self~GetCurrentComboIndex(230)
 str = self~GetEntryLine(250)
 self~ChangeComboEntry(230, idx, str)

ComboAddDirectory

The ComboAddDirectory method adds all or selected file names within
the given directory to the combo box.

Arguments: The arguments are:

id The ID of the combo box.

drvpath The drive, path, and name pattern.

aBaseDialog~ChangeComboEntry(id ,

index
, aString)

aBaseDialog~ComboAddDirectory(id ,

drvPath , "

READWRITE
READONLY
HIDDEN
SYSTEM
DIRECTORY
ARCHIVE

")
352 Object REXX for Windows352 Object REXX for Windows

BaseDialog ClassBaseDialog Class
fileAttributes Use this argument to specify the file
attributes the files must possess in
order to be added:

READWRITE Fetches normal file, same as none.
READONLY Fetches files with the read-only bit.
HIDDEN Fetches files with the hidden bit.
SYSTEM Fetches files with the system bit.
DIRECTORY Fetches subdirectories.
ARCHIVE Fetches files with the archive bit.

Example: This example fills the combo box list with the names of
all read/write files with extension .REX in the given
directory:

 MyDialog~ComboAddDirectory(203,drive":\"path"*.rex", ,
 "READWRITE")

ComboDrop

The ComboDrop method deletes all items from the list of the given
combo box.

List Box Methods

These methods deal with list boxes.

AddListEntry

The AddListEntry method adds a string to the given list box. See also
AddComboEntry [page 349]. The line is added at the end by default, or
in sorted order if the list box was defined with the sorted flag.

Arguments: The arguments are:

id The ID of the list box.

astring The data inserted as a new line.

InsertListEntry

The InsertListEntry method inserts a string into the given list box.
See also InsertComboEntry [page 350].

aBaseDialog~ComboDrop(id)

aBaseDialog~AddListEntry(id , aString)

aBaseDialog~InsertListEntry(id ,

index
, aString)
Chapter 15. OODialog Method Reference 353 Chapter 15. OODialog Method Reference 353

BaseDialog ClassBaseDialog Class
Arguments: The arguments are:

id The ID of the list box.

item The index (line number starting with 1) of
the item after which the new item is
inserted. If this argument is omitted, the
new item is inserted after the currently
selected item.

aString The text string that will be inserted.

DeleteListEntry

The DeleteListEntry method deletes an item from a list box. See also
DeleteComboEntry [page 350].

Arguments: The arguments are:

id The ID of the list box.

index The line number of the item that is deleted
(if omitted, the currently selected item is
deleted). Use the FindListEntry method
[page 354] to retrieve the index of an item.

FindListEntry

The FindListEntry method returns the index of the given string
within the given list box. The first item has index 1; the second, index
2; and so forth. If the list box does not contain the string, 0 is returned.

Arguments: The arguments are:

id The ID of the list box.

aString The item text you are looking for.

Example: This example shows a method that adds the contents
of an entry line (214) to the list box (215) if no item
with the same value is already in it:

 ::method PutEntryInList
 str = self~GetEntryLine(214)
 if self~FindListEntry(215, str) = 0 then
 self~AddListEntry(215, str)

GetListItems

aBaseDialog~DeleteListEntry(id
index,

)

aBaseDialog~FindListEntry(id , aString)

aBaseDialog~GetListItems(id)
354 Object REXX for Windows354 Object REXX for Windows

BaseDialog ClassBaseDialog Class
The GetListItems method returns the number of items in the list box.

Arguments: The only argument is:

id The ID of the list box.

GetCurrentListIndex

The GetCurrentListIndex method returns the index of the currently
selected list box item, or 0 if no item is selected. See GetListLine [page
344] on how to retrieve the selected list box item.

Arguments: The only argument is:

id The ID of the list box.

SetCurrentListIndex

The SetCurrentListIndex method selects the item with the given index
within the list. If called without an index, all items in the list are dese-
lected. See SetListLine [page 345] on how to select a list box item
using a data value.

Arguments: The arguments are:

id The ID of the list box.

index The index within the list box.

ChangeListEntry

The ChangeListEntry method changes the contents of a line in a list
box.

Arguments: The arguments are:

id The ID of the list box.

index The index of the item that you want to
replace. If this argument is omitted, the
currently selected item is changed.

aString The new text of the item.

aBaseDialog~GetCurrentListIndex(id)

aBaseDialog~SetCurrentListIndex(
index,

) id

aBaseDialog~ChangeListEntry(id ,

index
, aString)
Chapter 15. OODialog Method Reference 355 Chapter 15. OODialog Method Reference 355

BaseDialog ClassBaseDialog Class
SetListTabulators

The SetListTabulators method sets the tabulators for a list box. Thus
you can use items containing tab characters (’09’x), which is useful for
formatting the list in more than one column.

Arguments: The arguments are:

id The ID of the list box.

tab The positions of the tabs relative to the left
edge of the list box in dialog units.

Example: This example creates a four-column list and adds a
tab-formatted row to the list. The tabulator positions
are 10, 20, and 30.

 MyDialog~SetListTabulators(102, 10, 20, 30)
 MyDialog~AddListEntry(102, var1 || '09'x || ,
 var2 || '09'x || var3 || '09'x || var4)

ListAddDirectory

The ListAddDirectory method adds all or selected file names of a given
directory to the list box. See ComboAddDirectory [page 352] for more
information.

ListDrop

The ListDrop method removes all items from the list box.

Arguments: The only argument is:

id The ID of the list box.

aBaseDialog~SetListTabulators(id ,
,
tab)

aBaseDialog~ListAddDirectory(id ,

drvPath , "

READWRITE
READONLY
HIDDEN
SYSTEM
DIRECTORY
ARCHIVE

")

aBaseDialog~ListDrop(id)
356 Object REXX for Windows356 Object REXX for Windows

BaseDialog ClassBaseDialog Class
Scroll Bar Methods

The methods listed below are for setting or getting the behavior of a
scroll bar. You can connect scroll bars to numerical entry fields to edit
the value with the mouse.

GetSBRange

The GetSBRange method returns the range of a scroll bar control. It
returns the two values (minimum and maximum) in one string sepa-
rated by a blank.

Protected: This method is protected.

Arguments: The only arguments is:

id The ID of the scroll bar.

Example: This example demonstrates how to get the minimum
and the maximum values of the scroll bar:

 ::method DumpSBRange
 SBrange = self~GetSBRange(234)
 parse var SBrange SBmin SBmax
 say SBmin " - " SBmax

SetSBRange

The SetSBRange method sets the range of a scroll bar control. It sets
the minimum and maximum values.

Protected: This method is not intended to be used outside of the
BaseDialog class.

Arguments: The arguments are:

id The ID of a scroll bar control.

min The minimum value.

max The maximum value.

redraw A flag indicating whether (=1, default) or
not (=0) the scroll bar should be redrawn.

Example: This example allows the scroll bar to take values
between 1 and 10:

 MyDialog~SetSBRange(234, 1, 10, 1)

aBaseDialog~GetSBRange(id)

aBaseDialog~SetSBRange(id , min , max

)
redraw,
Chapter 15. OODialog Method Reference 357 Chapter 15. OODialog Method Reference 357

BaseDialog ClassBaseDialog Class
GetSBPos

The GetSBPos method returns the current value of a scroll bar control.

Arguments: The only argument is:

id The ID of the scroll bar.

SetSBPos

The SetSBPos method sets the current value of a scroll bar control.

Protected: This method is protected.

Arguments: The arguments are:

id The ID of the scroll bar.

pos The value to which you want to set the
scroll bar. It must be within the defined
range.

redraw A flag indicating whether (=1, default) or
not (=0) the scroll bar should be redrawn.

ConnectScrollBar

The ConnectScrollBar method initializes and connects a scroll bar to
an Object REXX object. Use this method in the InitDialog method
[page 329].

Protected: This method is protected.

Arguments: The arguments are:

id The ID of the scroll bar.

msgWhenUp The method that is called when-
ever the scroll bar is incremented.

msgWhenDown The method that is called when-
ever the scroll bar is decremented.

msgWhenDrag The method that is called when-
ever the scroll bar is dragged with
the mouse.

min, max The minimum and maximum val-
ues for the scroll bar.

id aBaseDialog~GetSBPos()

aBaseDialog~SetSBPos(id , pos)
redraw,

aBaseDialog~ConnectScrollBar(id , msgWhenUp ,

msgWhenDown , min , max , pos) , msgWhenDrag
358 Object REXX for Windows358 Object REXX for Windows

BaseDialog ClassBaseDialog Class
pos The current or preselected value.

Example: In this example, scroll bar 255 is connected to three
methods and initialized with 1 as the minimum, 20 as
the maximum, and 6 as the current value:
 ::class MyDialog subclass UserDialog
 ...
 ::method InitDialog
 self~ConnectScrollBar(255, "Increase", "Decrease", "Drag", ,
 1, 20, 6)
 ...
 ::method Increase
 ...
 ::method Decrease
 ...
 ::method Drag
 ...
 /* see CombineElWithSB below for continuation */

CombineELwithSB

The CombineELwithSB method connects an entry line with a scroll
bar such that whenever the slider of the scroll bar is moved, the value
of the entry field is changed. This method must be used in a method
registered with ConnectScrollBar [page 358].

Arguments: The arguments are:

elid The ID of the entry line.

sbid The ID of the scroll bar.

step The size of one step. If, for example, step is 3
and the current position is 4, the next position
will be 7.

pos If the step value is zero, this sets the position
of the scroll bar and entry line. Use it in the
method registered for drag.

Example: This example continues the example of ConnectScroll-
Bar. In the registered methods an entry line [251] is
combined with the scroll bar [255]:
 ::method Increase
 self~combineElwithSB(251,255,+20)
 ::method Decrease
 self~combineElwithSB(251,255,-20)
 ::method Drag
 use arg wparam, lparam /* wparam=position */
 self~combineElwithSB(251,255,0,wparam)

aBaseDialog~CombineELwithSB(elid ,

sbid , step) , pos
Chapter 15. OODialog Method Reference 359 Chapter 15. OODialog Method Reference 359

BaseDialog ClassBaseDialog Class
Methods for Window Handles, Sizes, and Positions

The methods listed below return information about the dialog or a sin-
gle dialog control.

Get

The Get method returns the handle of the current Windows dialog. A
handle is a unique reference to a particular Windows object. Handles
are used within some of the methods to work on a particular Windows
object.

GetItem

The GetItem method returns the handle of a particular dialog item.

Arguments: The arguments are:

id The ID of the dialog element.

hDlg The handle of the dialog. If it is omitted, the
main dialog handle is used.

Example: This example returns the handle of a push button:

 hndPushButton = MyDialog~GetItem(101)

GetSize

The GetSize method returns the dialog window’s size in pixels. The
values are returned in a string separated by blanks for parsing.

Example: This example moves the Window to the center of the
screen, similar to the Center method [page 386].
GetScreenSize is an external function of OODialog.

 parse value self~GetSize with wx wy
 parse value GetScreenSize() with . . sx sy
 self~Move((sx-wx)%2%self~FactorX, ,
 (sy-wy)%2%self~FactorY, "SHOWWINDOW")

GetPos

The GetPos method returns the dialog window’s position in pixels. The
values are returned in a string separated by blanks for parsing.

aBaseDialog~Get

aBaseDialog~GetItem(id
, hDlg

)

aBaseDialog~GetSize

aBaseDialog~GetPos
360 Object REXX for Windows360 Object REXX for Windows

BaseDialog ClassBaseDialog Class
Example: This example moves the Window towards the left top
of the screen.

 parse value self~GetPos with px py
 self~Move(px%self~FactorX-10, py%self~FactorY-10)

GetButtonRect

The GetButtonRect method returns the size and position of the given
button in pixels. The four values (left, top, right, bottom) are returned
in one string separated by blanks.

Arguments: The only argument is:

id The ID of the button.

GetWindowRect

The GetWindowRect method returns the size and position of the given
window in pixels. The four values (left, top, right, bottom) are returned
in one string separated by blanks.

Arguments: The only argument is:

hwnd The handle of the window. Use the Get
method [page 360] to retrieve the window
handle.

Window Draw Methods

The methods listed below are used to draw, redraw, and clear window
areas.

Draw

The Draw method draws the dialog.

DrawButton

The DrawButton method draws the given button.

Arguments: The only argument is:

id The ID of the button.

aBaseDialog~GetButtonRect(id)

aBaseDialog~GetWindowRect(hwnd)

aBaseDialog~Draw

aBaseDialog~DrawButton(id)
Chapter 15. OODialog Method Reference 361 Chapter 15. OODialog Method Reference 361

BaseDialog ClassBaseDialog Class
RedrawRect

The RedrawRect method redraws the given rectangle. The values are
in pixels.

Arguments: The arguments are:

hwnd The handle of the window. See Get [page
360] on how to get a window handle.

left The horizontal value of the left side of the
rectangle.

top The vertical value of the rectangle’s top.

right The horizontal value of the right side.

bottom The vertical value of the bottom.

erasebkg If true (1), the method deletes the back-
ground before redrawing (default is 0).

RedrawButton

The RedrawButton method redraws the given button.

Arguments: The arguments are:

id The ID of the button.

erasebkg Determines whether (=1) or not (=0,
default) the background of the drawing
area should be erased before redrawing.

RedrawWindowRect

The RedrawWindowRect method redraws the given window rectangle.

Arguments: The arguments are:

hwnd The handle to the window. See Get [page
360] on how to get a window handle.

erasebkg If this argument equals 1, the background
is deleted before redrawing (default is 0).

aBaseDialog~RedrawRect(hwnd , left ,

top , right , bottom)
erasebkg,

aBaseDialog~RedrawButton(id)
erasebkg,

aBaseDialog~RedrawWindowRect(hwnd)
erasebkg,
362 Object REXX for Windows362 Object REXX for Windows

BaseDialog ClassBaseDialog Class
ClearRect

The ClearRect method clears the given rectangle of a window. The val-
ues are in pixels.

Arguments: The arguments are:

hwnd The handle of the window. See Get [page
360] on how to get a window handle.

left The horizontal value of the left side of the
rectangle.

top The vertical value of the rectangle’s top.

right The horizontal value of the right side.

bottom The vertical value of the bottom.

Example: This example clears a rectangle of the size 20 by 20:

 hwnd=MyDialog~Get
 MyDialog~ClearRect(hwnd, 2, 4, 22, 24)

ClearButtonRect

The ClearButtonRect method erases the draw area of the given button.

Arguments: The only argument is:

id The ID of the push button.

ClearWindowRect

The ClearWindowRect method erases the draw area of the given win-
dow.

Arguments: The only argument is:

hwnd The handle of the window. See Get [page
360] on how to get a window handle.

Example: This example gets the window handle and then clears
the window:

 hwnd = MyDialog~Get
 MyDialog~ClearWindowRect(hwnd)

aBaseDialog~ClearRect(hwnd , left ,

top , right , bottom)

aBaseDialog~ClearButtonRect(id)

aBaseDialog~ClearWindowRect(hwnd)
Chapter 15. OODialog Method Reference 363 Chapter 15. OODialog Method Reference 363

BaseDialog ClassBaseDialog Class
Bitmap Methods

The methods listed below deal with bitmaps.

LoadBitmap

The LoadBitmap method loads a bitmap from a file into memory and
returns a handle to the bitmap.

Arguments: The arguments are:

bmpFilename The name of a bitmap file. The name
can include a relative or absolute path.

option You can set the last argument to:

USEPAL This sets the color palette of the bit-
map as the system color palette.

Example: This example loads the bitmap file Walker.bmp from
the BMP subdirectory into memory. hBmp is a handle to
this in-memory bitmap.

 hBmp = MyDialog~LoadBitmap("bmp\Walker.bmp", "USEPAL")

Do not forget to call the RemoveBitmap method [page 364] to free the
memory when the bitmap is no longer in use. You have to specify the
INMEMORY option when using the ConnectBitmapButton method
[page 335] or ChangeBitmapButton method [page 364].

RemoveBitmap

The RemoveBitmap method frees an in-memory bitmap that was
loaded by LoadBitmap method [page 364].

Arguments: The only argument is:

hBitmap The bitmap handle.

ChangeBitmapButton

The ChangeBitmapButton method changes the bitmaps of a bitmap
button.

aBaseDialog~LoadBitmap(bmpFilename

, "USEPAL"
)

aBaseDialog~RemoveBitmap(hBitmap)

aBaseDialog~ChangeBitmapButton(id , bmpNormal

,bmpFocused
,bmpSelected

,bmpDisabled
,styleOptions

)
364 Object REXX for Windows364 Object REXX for Windows

BaseDialog ClassBaseDialog Class
Arguments: The arguments are the same as for ConnectBitmap-
Button [page 335], except for the second argument
(MsgToRaise), which is skipped in this method.

Example: This example replaces the current bitmap with a new
bitmap:

 MyDialog~ChangeBitmapButton(501, "NewBB.bmp")

GetBitmapSizeX

The GetBitmapSizeX method returns the horizontal bitmap extension.

Arguments: The only argument is:

id The ID of the bitmap button.

GetBitmapSizeY

The GetBitmapSizeY method returns the vertical bitmap extension.

Arguments: The only argument is:

id The ID of the bitmap button.

DrawBitmap

The DrawBitmap method draws the bitmap of a button. You can also
use this method to move a bitmap or draw a part of it.

Arguments: The arguments are:

hwnd The handle of the button. If this argu-
ment is omitted the handle of the but-
ton is used automatically.

id The ID of the button.

px, py The upper-left corner of the target
space within the button (default is 0).

srcx, srcy The upper-left corner within the bit-
map (default is 0).

xlen, yLen The extension of the bitmap or a part
of it (default is the whole bitmap).

aBaseDialog~GetBitmapSizeX(id)

aBaseDialog~GetBitmapSizeY(id)

aBaseDialog~DrawBitmap(
hwnd

, id

, px , py
, srcx , srcy

, xlen , ylen

)
Chapter 15. OODialog Method Reference 365 Chapter 15. OODialog Method Reference 365

BaseDialog ClassBaseDialog Class
ScrollBitmapFromTo

The ScrollBitmapFromTo method scrolls a bitmap from one position to
another within a button. Values are in pixels.

Arguments: The arguments are:

id The ID of the button.

fromX, fromY The starting position.

toX, toY The target position.

stepX, stepY The width of one step.

delay The time in milliseconds this method
waits after each move. This determines
the speed at which the bitmap moves
(default is 0).

displace If set to 1, the internal position of the
bitmap (bitmap displacement) is
updated after each move, DisplaceBit-
map [page 367] is called after each
step to adjust the bitmap position. If
the dialog is redrawn, the bitmap is
shown at the correct position, but the
drawing is slower (default is 0).

TiledBackgroundBitmap

The TiledBackgroundBitmap method sets a bitmap as the background
brush (Windows NT only). If the bitmap size is less than the size of the
background, the bitmap is drawn repetitively.

Arguments: The only argument is:

bmpFilename The name of a bitmap file.

BackgroundBitmap

The BackgroundBitmap method sets a bitmap as the dialog’s back-
ground picture.

aBaseDialog~ScrollBitmapFromTo(id ,

fromX , fromY , toX , toY , stepX

, stepY , ,)
delay displace

aBaseDialog~TiledBackgroundBitmap(bmpFilename)

aBaseDialog~BackgroundBitmap(

bmpFilename
, "USEPAL"

)
366 Object REXX for Windows366 Object REXX for Windows

BaseDialog ClassBaseDialog Class
Arguments: The arguments are:

bmpFilename The name of a bitmap file.

option Set the last argument to USEPAL if
you want to use the color palette of the
bitmap. See ConnectBitmapButton
[page 335] for more information.

DisplaceBitmap

The DisplaceBitmap method sets the position of a bitmap within a
button.

Arguments: The arguments are:

id The ID of a button.

x The horizontal displacement in screen pixels.
A negative value can be used.

y The vertical displacement (negative allowed).

Example: This example moves the bitmap within a button four
screen pixels to the right and three to the top:

 MyBaseDialog~DisplaceBitmap(244, 4, -3)

GetBmpDisplacement

The GetBmpDisplacement method gets the position of a bitmap within
a button in pixels.

Arguments: The only argument is:

id The ID of the button.

Example: This example shows how to use the GetButtonRect
[page 361] and GetBmpDisplacement methods:

 bRect = MyBaseDialog~GetButtonRect(244)
 parse var bRect left top right bottom
 bmpPos = MyBaseDialog~GetBmpDisplacement(244)
 parse var bmpPos x y

Device Context Methods

The methods listed below are used to retrieve and release a device con-
text. A device context is associated with a window, a dialog, or a push
button, and is a drawing area managed by a window. A device context

aBaseDialog~DisplaceBitmap(id , x , y)

aBaseDialog~GetBmpDisplacement(id)
Chapter 15. OODialog Method Reference 367 Chapter 15. OODialog Method Reference 367

BaseDialog ClassBaseDialog Class
stores information about the graphic objects (bitmaps, lines, pixels,
etc.) that are displayed and the tools (pen, brush, font, etc.) that are
used to display them.

GetWindowDC

The GetWindowDC method returns the device context of a window. Do
not forget to free the device context after you have completed the oper-
ations (see FreeWindowDC [page 368]).

Arguments: The only argument is:

hwnd The handle of the window.

GetDC

The GetDC method returns the device context of the dialog window. Do
not forget to free the device context after you have completed the oper-
ations (see FreeDC [page 368]).

GetButtonDC

The GetButtonDC method returns the device context of a button. Do
not forget to free the device context after you have completed the oper-
ations (see FreeButtonDC [page 369]).

Arguments: The only argument is:

id The ID of the button.

FreeWindowDC

The FreeWindowDC method frees the device context of a window.

Arguments: The arguments are:

hwnd The window handle.

dc The device context previously received by the
GetWindowDC method [page 368].

FreeDC

aBaseDialog~GetWindowDC(hwnd)

aBaseDialog~GetDC

aBaseDialog~GetButtonDC(id)

aBaseDialog~FreeWindowDC(hwnd , dc)

aBaseDialog~FreeDC(dc)
368 Object REXX for Windows368 Object REXX for Windows

BaseDialog ClassBaseDialog Class
The FreeDC method frees the device context of the dialog window.

Arguments: The only argument is:

dc The device context previously received by the
GetDC method [page 368].

FreeButtonDC

The FreeButtonDC method releases the device context of a button.

Arguments: The arguments are:

id The ID of the button.

dc The device context previously received by the
GetButtonDC method [page 368].

Text Methods

The methods listed below are used to display text dynamically in a
window area and to modify the state of a device context. See GetWin-
dowDC [page 368], GetDC [page 368], and GetButtonDC [page 368] on
how to retrieve a device context.

WriteDirect

The WriteDirect method enables you to write text to a device context
at a given position.

Arguments: The arguments are:

dc A device context.

xPos, yPos The position (in pixels) where the text
is placed.

text The string you want to write to the
window.

TransparentText

The TransparentText method enables you to write text to a device con-
text using WriteDirect [page 369] in transparent mode, that is, without
a white background behind the text. Restore the default mode using
OpaqueText.

aBaseDialog~FreeButtonDC(id , dc)

aBaseDialog~WriteDirect(dc , xPos ,

yPos , text)

aBaseDialog~TransparentText
Chapter 15. OODialog Method Reference 369 Chapter 15. OODialog Method Reference 369

BaseDialog ClassBaseDialog Class
OpaqueText

The OpaqueText method restores the default text mode, that is, writ-
ing text with a white background overlaying whatever is at that posi-
tion in the window. Use OpaqueText after transparent mode was set
using TransparentText.

WriteToWindow

The WriteToWindow method enables you to write text to a window in
the given font and size to the given position. The text is temporary, if
the window is hidden and redisplayed, the text is gone.

Arguments: The arguments are:

hwnd The handle of the window. See Get [page
360] on how to get a valid handle.

xPos, yPos The starting position of the text in pixels.

text The string you want to write to the win-
dow.

fontName The name of a font. If omitted, the System
font is used.

fontSize The size of the font. If omitted, the stan-
dard size (10) is used.

fontStyle The last argument can be one or more of
the keywords listed below. If you use more
than one keyword, put all keywords in one
string separated by blanks.
THIN EXTRALIGHT LIGHT MEDIUM
SEMIBOLD EXTRABOLD BOLD HEAVY
UNDERLINE ITALIC STRIKEOUT

aBaseDialog~OpaqueText

aBaseDialog~WriteToWindow(hwnd , xPos , yPos , text

, fontName
, fontSize

, "

THIN
EXTRALIGHT
LIGHT
MEDIUM
SEMIBOLD
EXTRABOLD
BOLD
HEAVY
UNDERLINE
ITALIC
STRIKEOUT

"

)
370 Object REXX for Windows370 Object REXX for Windows

BaseDialog ClassBaseDialog Class
Example: This example writes the string "Hello world!" to the
dialog window using a 24-point Arial font in bold and
italic style:

 hwnd=MyDialog~Get
 MyDialog~WriteToWindow(hwnd, 23, 15, "Hello world!", ,
 "Arial", 24, "BOLD ITALIC")

WriteToButton

The WriteToButton method enables you to write text to a button in the
given font and size to the given position.

Arguments: The arguments are:

id The ID of a button.

See WriteToWindow [page 370] for a description of the
other arguments.

Write

aBaseDialog~WriteToButton(id , xPos , yPos , text

, fontName
, fontSize

, "

THIN
EXTRALIGHT
LIGHT
MEDIUM
SEMIBOLD
EXTRABOLD
BOLD
HEAVY
UNDERLINE
ITALIC
STRIKEOUT

"

)

aBaseDialog~Write(xPos , yPos , text

, fontName
, fontSize

, "

THIN
EXTRALIGHT
LIGHT
MEDIUM
SEMIBOLD
EXTRABOLD
BOLD
HEAVY
UNDERLINE
ITALIC
STRIKEOUT

"

)
Chapter 15. OODialog Method Reference 371 Chapter 15. OODialog Method Reference 371

BaseDialog ClassBaseDialog Class
The Write method enables you to write text to the dialog in the given
font and size, to the given position. This method does not take a han-
dle or an ID; it always writes to the dialog window.

Arguments: See WriteToWindow [page 370] for a description of the
other arguments.

ScrollText

The ScrollText method scrolls text in a window with the given size,
font, and color. The text is scrolled from right to left. If the method is
started concurrently, call it a second time to stop scrolling.

Arguments: The arguments are:

hwnd The handle of the window in which the
text is scrolled.

text A text string that is scrolled.

displaceY The vertical displacement of the text rela-
tive to the top of the window’s client area
(default 0).

step The size of one step in screen pixels
(default 4).

sleep The time in milliseconds that the program
waits after each movement (default 10).
This determines the speed.

color The color of the text (default 0, black).

See WriteToWindow [page 370] for a description of the
other arguments.

Example: This example scrolls the string “Hello world!” from left
to right within the given window. The text is located 2
pixels below the top of the client area, one move is 3
screen pixels, and the delay time after each movement
is 15 ms.
MyDialog~ScrollText(hwnd, "Hello world!", , , , 2, 3, 15,)

aBaseDialog~ScrollText(hwnd , text ,
fontName

,
fontSize

,

"

THIN
EXTRALIGHT
LIGHT
MEDIUM
SEMIBOLD
EXTRABOLD
BOLD
HEAVY
UNDERLINE
ITALIC
STRIKEOUT

" ,
displaceY

,
step

,
sleep

,
color

)
372 Object REXX for Windows372 Object REXX for Windows

BaseDialog ClassBaseDialog Class
ScrollInButton

The ScrollInButton method scrolls text within a button. It is similar to
the ScrollText method [page 372], except that you have to pass an ID
instead of a window handle.

ScrollButton

The ScrollButton method moves the rectangle within a button. It is
used to move bitmaps within buttons.

Arguments: The arguments are:

id The ID of the button.

xPos, yPos The new position of the
rectangle (in pixels).

left, top, right, bottom The extension of the rect-
angle.

CreateFont

Use the CreateFont method to create a font. It returns a handle that
you can use in the FontToDC method [page 374] to activate the font in
a device context.

aBaseDialog~ScrollInButton(id , text

,
fontName

,
fontSize

,

"

THIN
EXTRALIGHT
LIGHT
MEDIUM
SEMIBOLD
EXTRABOLD
BOLD
HEAVY
UNDERLINE
ITALIC
STRIKEOUT

"

,

)
displaceY

,
step

,
sleep

,
color

aBaseDialog~ScrollButton(id , xPos ,

yPos , left , top , right , bottom)

aBaseDialog~CreateFont(fontName ,

fontSize , fontStyle)
Chapter 15. OODialog Method Reference 373 Chapter 15. OODialog Method Reference 373

BaseDialog ClassBaseDialog Class
Arguments: The arguments are:

fontName The name of a font. You can look for
valid fonts in the Fonts folder of your
Windows Control Panel.

fontSize The size of the font.

fontStyle The last argument can be one or more
of the keywords listed below. Use one
string for multiple keywords separated
by blanks.
THIN EXTRALIGHT LIGHT MEDIUM
SEMIBOLD EXTRABOLD BOLD HEAVY
UNDERLINE ITALIC STRIKEOUT

Example: This example creates a 16-point, italic, Arial font:

 hfnt = MyDialog~CreateFont("Arial", 16, "ITALIC")

FontToDC

The FontToDC method loads a font into the device context of a window
and returns the handle of the previous font. Use the GetWindowDC
[page 368], GetDC [page 368], or GetButtonDC [page 368] methods to
retrieve a window device context, and the CreateFont method [page
373] to get a font handle. To reset the original state use another Font-
ToDC call with the handle of the previous font, and to free the device
context use FreeWindowDC [page 368], FreeDC [page 368], or FreeBut-
tonDC [page 369].

Arguments: The arguments are:

dc The device context of a window or button.

hFont The handle of a font.

Example: This example loads an Arial font into the current win-
dow:

 hfnt = MyDialog~CreateFont("Arial", 16, "ITALIC")
 dc = MyDialog~GetDC
 oldf = MyDialog~FontToDC(dc,hfnt) /* activate font */
 ...
 MyDialog~FontToDC(dc,oldf) /* restore previous */
 MyDialog~FreeDC(dc)

DeleteFont

aBaseDialog~FontToDC(dc hFont) ,

aBaseDialog~DeleteFont(hFont)
374 Object REXX for Windows374 Object REXX for Windows

BaseDialog ClassBaseDialog Class
The DeleteFont method deletes a font. This method should be used to
remove a font that was created using the CreateFont method [page
373]. Restore the previous font or activate another font using Font-
ToDC [page 374] before deleting a font.

Arguments: The only argument is:

hFont The handle of a font.

FontColor

The FontColor method sets the font color for a device context.

Arguments: The arguments are:

color The color index of a color in the system’s
color palette.

dc The device context.

GetTextSize

The GetTextSize method returns the pixels needed to display the given
text in the specified device context. This method is especially useful if
you use a proportional font.

Arguments: The arguments are:

dc The device context.

text A text string.

Example: This example uses the GetTextSize method to center
the text:

 aString = "A simple text string"
 dc = MyDialog~GetDC
 tSize = MyDialog~GetTextSize(dc, aString)
 parse var tSize tHeight tWidth
 MyDialog~Write(300-tWidth%2, 200-tHeight%2, aString)

Graphics Methods

These methods deal with drawing graphics within the device context
of a window. See GetWindowDC [page 368], GetDC [page 368], and
GetButtonDC [page 368] on how to retrieve a device context.

GraphicExtension

aBaseDialog~FontColor(color , dc)

aBaseDialog~GetTextSize(dc , text)

aBaseDialog~GraphicExtension
Chapter 15. OODialog Method Reference 375 Chapter 15. OODialog Method Reference 375

BaseDialog ClassBaseDialog Class
The GraphicExtension method installs API functions necessary for
some graphical methods. It is called automatically.

Protected: This method is protected and for internal use only.

CreateBrush

The CreateBrush method creates a color brush or a bitmap brush. It
returns a handle to a brush object. To remove the brush, use the Dele-
teObject method [page 377]. The brush is used to fill rectangles (see
Rectangle [page 378]), pies (see DrawPie [page 381]), and other out-
lines (see FillDrawing [page 381]).

Arguments: The arguments are:

color The color number.

bmp The name of a bitmap file; if omitted a
solid color is used.

CreatePen

The CreatePen method creates a pen in the given color and style. It
returns a handle to a pen object. To remove the pen, use the DeleteOb-
ject method [page 377]. The pen is used to draw lines and outlines of
rectangles.

Arguments: The arguments are:

width The width of the lines the pen will draw.

style The second argument can be one of:

SOLID DASH DOT DASHDOT
DASHDOTDOT NULL

Values other than SOLID or NULL have
no effect on pens of width greater than 1.

color The color number of the pen.

Example: This example creates a dotted red pen object with
width 1:

 hPen = MyDialog~CreatePen(1, "DOT", 13)

aBaseDialog~CreateBrush(color
bmp

)
,

aBaseDialog~CreatePen(width ,

SOLID
DASH
DOT
DASHDOT
DASHDOTDOT
NULL

, color)
376 Object REXX for Windows376 Object REXX for Windows

BaseDialog ClassBaseDialog Class
ObjectToDC

The ObjectToDC method loads a graphic object (a pen or a brush) into
a device context. Subsequent lines, rectangles, and arcs are drawn
using the pen and brush.

Return code: The function returns the handle of the previous active
pen or brush. This handle can be used to restore the
previous environment.

Arguments: The arguments are:

dc The device context.

obj The object, a pen or a brush.

Example: This example activates a pen for drawing:

 dc = MyDialog~GetDC
 hPen = MyDialog~CreatePen(2, "SOLID", 4)
 MyDialog~ObjectToDC(dc,hpen)
 ... /* do lines, rectangles, ... */
 MyDialog~DeleteObject(hpen)

DeleteObject

The DeleteObject method deletes a graphic object (a pen or a brush).
See CreatePen [page 376] and CreateBrush [page 376] on how to get
the handle of a pen or brush.

Arguments: The only argument is:

obj The handle of a pen or brush.

Graphic Drawing Methods

The methods listed below are used to draw rectangles, lines, pixels,
and arcs in a device context. See GetWindowDC [page 368], GetDC
[page 368], and GetButtonDC [page 368] on how to retrieve a device
context. A pen and a brush can be activated using ObjectToDC [page
377] before invoking the drawing methods.

Note: Because the pixel values include the title bar in a dialog window
it is easier to define a button filling the window, and then draw to the
button.

aBaseDialog~ObjectToDC(dc , obj)

aBaseDialog~DeleteObject(obj)
Chapter 15. OODialog Method Reference 377 Chapter 15. OODialog Method Reference 377

BaseDialog ClassBaseDialog Class
Rectangle

The Rectangle method draws a rectangle to the given device context.
The appearance is determined by the graphics objects currently active
in the device context. The active pen draws the outline and, optionally,
the active brush fills the inside area. The default pen is thin black,
and the default brush is white.

Arguments: The arguments are:

dc The device context (window or button).

x, y The position of the upper left corner of the
rectangle (in pixels).

x2, y2 The position of the lower right corner.

option Specify FILL to have the rectangle filled
with the active brush.

Example: This example draws a red rectangle filled in yellow,
surrounded by a black rectangle:

 dc = self~getButtonDC(100)
 brush = self~createBrush(15) /* yellow */
 pen = self~createPen(10,'solid',13) /* thick-red */
 oldb = self~objectToDC(dc,brush)
 oldp = self~objectToDC(dc,pen)
 self~rectangle(dc,50,50,200,150,"FILL")
 self~objectToDC(dc,oldp); self~deleteObject(pen)
 self~objectToDC(dc,oldb); self~deleteObject(brush)
 self~rectangle(dc,40,40,210,160) /* default */

DrawLine

The DrawLine method draws a line within the device context. The
active pen is used to draw the line.

Arguments: The arguments are:

dc The device context (window or button).

fromX, fromY The starting position (in pixels); if
omitted the previous end point of a line
or arc is used.

toX, toY The target position.

aBaseDialog~Rectangle(dc , x , y , x2 , y2

)
, FILL

aBaseDialog~DrawLine(dc ,
fromX

,
fromY

,

toX , toY)
378 Object REXX for Windows378 Object REXX for Windows

BaseDialog ClassBaseDialog Class
DrawPixel

The DrawPixel method draws a pixel within the device context.

Arguments: The arguments are:

dc The device context (window or button).

x, y The position (in pixels).

color The color number for the single pixel.

GetPixel

The GetPixel method returns the color index of a pixel within the
device context.

Arguments: The arguments are:

dc The device context (window or button).

x, y The position (in pixels).

DrawArc

The DrawArc method draws a circle or ellipse to the given device con-
text using the active pen for the outline. The circle or ellipse is drawn
within the boundaries of an imaginary rectangle whose coordinates
are given. A partial figure can be drawn by giving the end points of
two radials. By default the figure is drawn counterclockwise, but the
direction can be modified using the SetArcDirection method [page
380].

Arguments: The arguments are:

dc The device context (window or button).

x, y The position of the upper left corner of the
imaginary rectangle (in pixels).

x2, y2 The position of the lower right corner of
the imaginary rectangle.

startx, starty, endx, endy
The end points of two radials for drawing
the figure (see below). A full circle or
ellipse is drawn if no start and end are
given. Omitted values default to 0.

aBaseDialog~DrawPixel(dc , x , y , color)

aBaseDialog~GetPixel(dc , x , y)

aBaseDialog~DrawArc(, x , y , x2 , y2

)
, startx , starty , endx , endy

dc
Chapter 15. OODialog Method Reference 379 Chapter 15. OODialog Method Reference 379

BaseDialog ClassBaseDialog Class
Example: This example draws a full ellipse and a quarter circle:

 dc = self~getButtonDC(100)
 pen = self~createPen(4,'solid',13) /* red */
 oldp = self~objectToDC(dc,pen)
 self~drawArc(dc,50,50,200,150) /* full ellipse */
 self~drawArc(dc,100,100,150,150, 200,50,75,75)
 self~objectToDC(dc,oldp); self~deleteObject(pen)

Imaginary radials are drawn from the center to the
start and end points. The circle or ellipse is then
drawn between the intersection of these lines with the
full figure as illustrated in Figure 155.

GetArcDirection

The GetArcDirection method returns the current drawing direction for
the DrawArc method. The value is either COUNTERCLOCKWISE
(default) or CLOCKWISE.

Arguments: The only argument is:

dc The device context (window or button).

SetArcDirection

The SetArcDirection method changes the drawing direction for the
DrawArc and DrawPie method.

Arguments: The arguments are:

dc The device context (window or button).

direction The new drawing direction.

Figure 155. Circle and Ellipse Drawing

50/50 200/50 (start radial)

200/150

75/75 (end radial)

100/100

150/150

aBaseDialog~GetArcDirection(dc)

aBaseDialog~SetArcDirection(dc) COUNTERCLOCKWISE ,
CLOCKWISE
380 Object REXX for Windows380 Object REXX for Windows

BaseDialog ClassBaseDialog Class
DrawPie

The DrawPie method draws a pie of a circle or ellipse to the given
device context using the active pen for the outline and the active brush
to fill the pie. The circle or ellipse is drawn within the boundaries of an
imaginary rectangle whose coordinates are given. The arc is drawn
between start and end radials in the direction specified by SetArcDi-
rection [page 380].

Arguments: The arguments are:

dc The device context (window or button).

x, y The position of the upper left corner of the
imaginary rectangle (in pixels).

x2, y2 The position of the lower right corner of
the imaginary rectangle.

startx, starty, endx, endy
The end points of the two radials (same as
for DrawArc [page 379]).

FillDrawing

The FillDrawing method fills an outline figure in the given device con-
text using the active brush.

Arguments: The arguments are:

dc The device context (window or button).

x, y The inside starting position for filling the
outlined figure with the color of the brush
(in pixels).

color The color number of the figure outline that
will be filled.

Example: This example fills a red ellipse with yellow:

 pen = self~createPen(4,'solid',13) /* red */
 brush = self~createBrush(15) /* yellow */
 oldp = self~objectToDC(dc,pen)
 oldb = self~objectToDC(dc,brush)
 self~drawArc(dc,50,50,200,150) /* full ellipse */
 self~fillDrawing(dc,100,100,13)

aBaseDialog~DrawPie(, x , y , x2 , y2

) , startx , starty , endx , endy

dc

aBaseDialog~FillDrawing(, x , y , color)dc
Chapter 15. OODialog Method Reference 381 Chapter 15. OODialog Method Reference 381

BaseDialog ClassBaseDialog Class
DrawAngleArc

The DrawAngleArc method draws a partial circle (arc) and a line con-
necting the start drawing point with the start of the arc to the given
device context using the active pen for the outline. The circle is drawn
counterclockwise with the given radius between the given angles.

Arguments: The arguments are:

dc The device context (window or button).

xs, ys The start position (in pixels); if omitted the
previous end point of a line or arc is used.

x, y The center of the circle (in pixels).

radius The radius of the circle (in pixels).

startangle, sweepangle
The starting and ending angles for the par-
tial circle in degrees (0 is the x axis).

Enable/Disable and Show/Hide Methods

The methods listed below are used to enable or disable and show or
hide dialog items.

Some of the methods come in two flavors, normal (for example, Show-
Window) and fast (for example, ShowWindowFast). The fast extension
indicates that the method does not redraw the item or window imme-
diately. After modifying several items, invoke the Update method
[page 386] to redraw the dialog.

EnableItem

The EnableItem method enables the given dialog item.

Arguments: The only argument is:

id The ID of the item.

DisableItem

The DisableItem method disables the given dialog item. A disabled
dialog item is usually indicated by a gray instead of a black title or
text; it cannot be changed by the user.

x , , aBaseDialog~DrawAngleArc(dc , , y

) , radius , startangle , sweepangle
xs ys

aBaseDialog~EnableItem(id)

aBaseDialog~DisableItem(id)
382 Object REXX for Windows382 Object REXX for Windows

BaseDialog ClassBaseDialog Class
Arguments: The only argument is:

id The ID of the item.

HideItem

The HideItem method makes the given item disappear from the screen
and thus unavailable to the user. In fact, the item is still in the dialog
and you can transfer its data.

Arguments: The only argument is:

id The ID of the item.

HideItemFast

The HideItemFast method hides an item without redrawing its area. It
is similar to the HideItem method [page 383], but it is faster because
the item’s area is not redrawn. The HideItemFast method is used
when more than one item state is modified. After the operations, you
can manually redraw the dialog window, using the Update method
[page 386].

Arguments: The only argument is:

id The ID of the item.

ShowItem

The ShowItem method makes the given dialog item reappear on the
screen.

Arguments: The only argument is:

id The ID of the item.

ShowItemFast

The ShowItemFast method shows an item without redrawing its area.
It is the counterpart to the HideItemFast method [page 383].

HideWindow

aBaseDialog~HideItem(id)

aBaseDialog~HideItemFast(id)

aBaseDialog~ShowItem(id)

aBaseDialog~ShowItemFast(id)

aBaseDialog~HideWindow(hwnd)
Chapter 15. OODialog Method Reference 383 Chapter 15. OODialog Method Reference 383

BaseDialog ClassBaseDialog Class
The HideWindow method hides a whole dialog window or a dialog
item.

Arguments: The only argument is:

hwnd A handle to the window or dialog item. Use Get
[page 360] to get a handle.

Example: This example hides the whole dialog:

 hwnd = MyDialog~Get
 MyDialog~HideWindow(hwnd)

HideWindowFast

The HideWindowFast method is similar to the HideWindow method
[page 383], but it is faster because the window’s or item’s area is not
redrawn. The HideWindowFast method is used when more than one
state is modified. After the operations, you can manually redraw the
dialog window, using the Update method [page 386].

Arguments: The only argument is:

hwnd A handle to the window or dialog item.

ShowWindow

The ShowWindow method shows the window or item again.

Arguments: The only argument is:

hwnd The handle of a window or an item.

ShowWindowFast

The ShowWindowFast method is the counterpart to the HideWindow-
Fast method [page 384].

ResizeItem

The ResizeItem method changes the size of a dialog item.

aBaseDialog~HideWindowFast(hwnd)

aBaseDialog~ShowWindow(hwnd)

aBaseDialog~ShowWindowFast(hwnd)

aBaseDialog~ResizeItem(id , width ,

height ,
HIDEWINDOW
SHOWWINDOW
NOREDRAW

)
384 Object REXX for Windows384 Object REXX for Windows

BaseDialog ClassBaseDialog Class
Arguments: The arguments are:

id The ID of the dialog item.

width, height The new size in dialog units.

showOptions The last argument can be one of:

HIDEWINDOW Hides the item.
SHOWWINDOW Shows the item.
NOREDRAW Resizes the item without

updating the display. Use the
Update method [page 386] to
manually update the display.

Example: This example resizes a dialog item:

 MyDialog~ResizeItem(123, 40, 30, "SHOWWINDOW")

Resize

The Resize method resizes the dialog window.

Arguments: See ResizeItem [page 384] for a description of the argu-
ments.

MoveItem

The MoveItem method moves a dialog item to another position within
the dialog window.

Arguments: The arguments are:

id The ID of the dialog item you want to
move.

xPos, yPos The new position in dialog units rela-
tive to the dialog window.

showOptions See ResizeItem [page 384] for a
description of the options.

aBaseDialog~Resize(width , height ,

)
HIDEWINDOW
SHOWWINDOW
NOREDRAW

aBaseDialog~MoveItem(id , xPos ,

yPos ,)
HIDEWINDOW
SHOWWINDOW
NOREDRAW
Chapter 15. OODialog Method Reference 385 Chapter 15. OODialog Method Reference 385

BaseDialog ClassBaseDialog Class
Move

The Move method moves the Windows dialog to another position on
the screen.

Arguments: See MoveItem [page 385] for a description of the argu-
ments.

Center

The Center method moves the dialog to the screen center.

Arguments: The only argument can be one of:

HIDEWINDOW Hides the dialog.

SHOWWINDOW Shows the dialog.

NOREDRAW Center the dialog without updat-
ing the display. Use the Update
method [page 386] to manually
update the display.

Update

The Update method redraws the dialog. It is usually invoked after sev-
eral of the fast methods or methods using the NOREDRAW option
have been completed.

Animated Buttons

The methods listed below work with animated buttons.

AddAutoStartMethod

aBaseDialog~Move(xPos , yPos ,

)
HIDEWINDOW
SHOWWINDOW
NOREDRAW

aBaseDialog~Center()
HIDEWINDOW
SHOWWINDOW
NOREDRAW

aBaseDialog~Update

aBaseDialog~AddAutoStartMethod(

InClass
, MethodName)

Parameters,

Parameters
386 Object REXX for Windows386 Object REXX for Windows

BaseDialog ClassBaseDialog Class
The AddAutoStartMethod method adds a method name and parame-
ters to a special internal queue. All methods in this queue will be
started automatically and run concurrently when the dialog is exe-
cuted. The given method (MethodName) in the given class (InClass) is
started concurrently with the dialog when the dialog is activated
using the Execute [page 329] or ExecuteAsync [page 330] methods.
This is useful for processing animated buttons.

Arguments: The arguments are:

InClass The class where the method is
defined. If this argument is omit-
ted, the method is assumed to be
defined in the dialog class.

MethodName The name of the method.

Parameters All parameters that are passed to
this method.

Example: This example installs the ExecuteB method of the
MyAnimatedButton class so that it is processed con-
currently with the dialog execution:

 MyDialog~AddAutoStartMethod("MyAnimatedButton", ,
 "ExecuteB")
 ::class MyAnimatedButton
 ::method ExecuteB
 ...

ConnectAnimatedButton

The ConnectAnimatedButton method installs an animated button and
runs it concurrently with the main activity.

Arguments: The arguments are:

id The ID of the button.

msgToRaise The name of a method within the
same class. This method is called
whenever the button is clicked.

AutoClass The name of the class that controls
the animation (default is Animat-
edButton).

aBaseDialog~ConnectAnimatedButton(

msgToRaise AutoClass

id

bmpFrom ,
bmpTo

moveX , moveY ,

sizeX sizeY
delay , xNow , yNow)

,

,,

,

,

,

Chapter 15. OODialog Method Reference 387 Chapter 15. OODialog Method Reference 387

BaseDialog ClassBaseDialog Class
bmpFrom The ID of the first bitmap in the
animation sequence within a
binary resource. It can also be an
array containing handles of bit-
maps to be animated, and bmpTo
is omitted. See LoadBitmap [page
364] on how to get bitmap handles.
The array starts at index 1.

bmpTo The ID of the last bitmap in the
animation sequence within a
binary resource. If omitted, bmp-
From is expected to be an array of
bitmap handles.

moveX, moveY Size of one move (in pixels).

sizeX, sizeY Size of the bitmaps (if omitted, the
size of the bitmap is retrieved).

delay The time in milliseconds the
method waits after each move.

xnow, ynow The start position of the bitmap.

Example: This example defines and runs an animated button:

 MyDialog~ConnectAnimatedButton(100,"STOP",,1001,,5,0, ,
 ,,20,140,70)

Standard Event Methods

The methods listed below are abstract methods that are called when-
ever a push button with ID 1, 2, or 9 is clicked.

OK

The OK method is called in response to a clicked OK button. The OK
method calls the Validate method [page 389] to get its return code. The
default return code is the finished attribute value, which is usually 1,
and the dialog is terminated. The InitCode attribute is set to 1 if the
dialog is terminated.

Protected: This method is protected. You might want to overwrite
it in your subclass. If you do, forward the OK message
to the parent class after your processing is finished.
Set the finished attribute to 1 or 0 and return it. The
dialog continues if finished is set to 0. See also Vali-
date [page 389].

Example: This example shows how to overwrite the OK method:

aBaseDialog~OK
388 Object REXX for Windows388 Object REXX for Windows

BaseDialog ClassBaseDialog Class
 ::method OK
 ... /* own processing */
 self~ok:super()
 self~finished = 1
 return self~finished

Cancel

The Cancel method is called in response to a clicked Cancel button.
The default return code is the finished attribute value, which is usu-
ally 1 and the dialog is terminated. The InitCode attribute is set to 2 if
the dialog is terminated.

Protected: This method is protected. You might want to overwrite
it in your subclass. If you do, forward the Cancel mes-
sage to the parent class after your processing is fin-
ished. Set the finished attribute to 1 or 0 and return it.
The dialog continues if finished is set to 0.

Help

The Help method is called in response to a clicked Help button.

Protected: This method is protected. You might want to overwrite
it in your subclass.

Validate

The Validate method is an abstract method that is called to determine
whether or not the dialog can be closed. This method is called by the
OK method. The standard implementation is that Validate returns 1
and the dialog is closed. The dialog is not closed if Validate returns 0.

Protected: The method is designed to be defined in a subclass.

Example: In this example Validate checks whether entry line
203 is empty. If it is empty Validate returns 0, which
indicates that the dialog cannot be closed.

 ::class MyDialog subclass UserDialog
 ::method Validate
 if self~GetEntryLine(203) = "" then return 0
 else return 1

aBaseDialog~Cancel

aBaseDialog~Help

aBaseDialog~Validate
Chapter 15. OODialog Method Reference 389 Chapter 15. OODialog Method Reference 389

BaseDialog ClassBaseDialog Class
DeInstall

The DeInstall method removes the external functions from the Object
REXX API manager. DeInstall should be called at the end of each dia-
log. The installed functions are freed when all dialogs are finished.

Public Routines

The routine listed below is used to play audio sounds.

Play

The Play routine can be used to play an audio file using the Windows
multimedia capabilities. See also the PlaySoundFile function in OOD-
ialog External Functions on page 319.

Arguments: The arguments are:

fileName The file name of an audio (.WAV) file.
The file name is looked up in the direc-
tories of the SOUNDPATH environ-
ment variable.

option You can set the last argument to:

YES This plays the audio file asyn-
chronously.

Example: This example plays a welcoming message:

 rc = play('Welcome.wav')

aBaseDialog~DeInstall

Play(fileName
, YES

)
390 Object REXX for Windows390 Object REXX for Windows

UserDialog ClassUserDialog Class
UserDialog Class
The UserDialog class extends the BaseDialog class. (See BaseDialog
Class on page 322). It provides methods to create a dialog with these
control elements:

❑ Entry lines
❑ Push buttons
❑ Check boxes
❑ Radio buttons
❑ List boxes and combo boxes
❑ Frames and rectangles

There are two ways of creating a dialog:

❑ Load the dialog from a resource script (.RC file) using the Load
method. A resource script can be created with a graphical resource
editor such as the Resource Workshop.

❑ Invoke Add... methods to an instance of this class or a subclass
and create the dialog step by step, one method for one dialog item.
The best place to invoke these Add... methods is to overwrite the
DefineDialog method. The DefineDialog method is called automat-
ically when the instance is created.

There are also methods that enable you to define a group of the
same dialog elements together. The names of these methods end
with Group or Stem.

You can also combine loading a dialog from a resource script and add-
ing elements dynamically.

Requires: Userdlg.cls is the source file of this class. Use the
tokenized version of OODialog, oodialog.cls, to
shorten your dialog’s startup time:

 ::requires 'odialog.cls'

Subclass: The UserDialog class is a subclass of BaseDialog (see
page 322).

Attributes: Instances of the UserDialog class have the following
attributes:

AktPtr An attribute for internal use.

BasePtr An attribute for internal use.

DialogItemCount
An attribute for internal use.

FactorX Horizontal size of one dialog unit (in pix-
els).

FactorY Vertical size of one dialog unit (in pixels).

SizeX Width of the dialog in dialog units.

SizeY Height of the dialog in dialog units.
Chapter 15. OODialog Method Reference 391 Chapter 15. OODialog Method Reference 391

UserDialog ClassUserDialog Class
Methods: Instances of the UserDialog class implement the meth-
ods listed in Table 33.

Table 33. (Part 1 of 2) UserDialog Instance Methods

Methods... ...on page

AddBitmapButton 400

AddBlackFrame 416

AddBlackRect 416

AddButton 399

AddButtonGroup 413

AddCheckBox 404

AddCheckBoxStem 411

AddCheckGroup 407

AddComboBox 404

AddComboInput 410

AddEntryLine 402

AddGrayFrame 415

AddGrayRect 415

AddGroupBox 402

AddInput 407

AddInputGroup 409

AddInputStem 410

AddListBox 403

AddOkCancelLeftBottom 416

AddOkCancelLeftTop 417

AddOkCancelRightBottom 416

AddOkCancelRightTop 417

AddPasswordLine 403

AddRadioButton 405

AddRadioGroup 405

AddRadioStem 412

AddScrollBar 412

AddText 401

AddWhiteFrame 415

AddWhiteRect 415

CheckFile 395

CheckID 395
392 Object REXX for Windows392 Object REXX for Windows

UserDialog ClassUserDialog Class
Instance Methods of Class UserDialog

The methods of the UserDialog class are grouped by their usage in
this section (an alphabetical list was in Table 33).

Note: The class also inherits the methods of its parent class (see Base-
Dialog Class on page 322).

Init

The Init method initializes a new dialog object.

Arguments: The only argument is:

DlgData. A stem variable that is used to initialize
the data fields of the dialog. If the dialog is
terminated by means of the OK button,
the values of the dialog’s data fields are
copied to this variable. The ID of the dialog
items is used to name the entry within the
stem.

Example: This example creates a new dialog object:

 MyDialog=.UserDialog~new(aStem.)

Create 394

CreateCenter 395

DefineDialog 396

ErrorFile 396

GetDefaultOpts 417

GetStaticID 417

Init 393

InitAutoDetection 394

Load 396

LoadFrame 397

LoadItems 398

StartIt 417

StopIt 418

Table 33. (Part 2 of 2) UserDialog Instance Methods

Methods... ...on page

aUserDialog~Init(
DlgData.

)
Chapter 15. OODialog Method Reference 393 Chapter 15. OODialog Method Reference 393

UserDialog ClassUserDialog Class
InitAutoDetection

The InitAutoDetection method is called by the Init to determine
whether or not automatic data field detection should be used. For a
UserDialog, autodetection is disabled.

Protected: This method is protected. It is called by the class itself
and can be overwritten.

Example: This example overwrites the method to switch off auto
detection:

 ::class MyClass subclass UserDialog
 ::method InitAutoDetection
 self~NoAutoDetection

Create

The Create method creates a Windows dialog. You can set the size,
title, and style of the dialog. Create calls DefineDialog [page 396]
where you can use Add... methods to place dialog items.

Arguments: The arguments are:

x, y The position of the upper-left edge of the
dialog in dialog units.

cx, cy The extent (width and height) of the dialog
in dialog units.

title The dialog’s title that is displayed in the
title bar.

options Possible values are:

NOMENU Creates a dialog without a menu.
VISIBLE Creates a visible dialog.
NOTMODAL Creates a dialog with a normal

window frame.
SYSTEMMODAL Creates a dialog that blocks all

other windows.
THICKFRAME Creates a dialog with a thick

frame.

aUserDialog~InitAutoDetection

aUserDialog~Create(x , y , cx , cy ,

title ,

"

NOMENU
VISIBLE
NOTMODAL
SYSTEMMODAL

"

,

fontName
,

fontSize
,

expected
)

THICKFRAME
394 Object REXX for Windows394 Object REXX for Windows

UserDialog ClassUserDialog Class
fontName The name of a font used by the dialog for
all text. The default font is System.

fontSize The size of the font used by the dialog. The
default value is 8.

expected This argument determines the maximum
number of dialog elements (entry lines, list
boxes, and the like) the dialog can handle.
The default value is 200. If your dialog has
more than 200 elements, you must set this
value; otherwise, the dialog fails.

Example: This example creates a dialog with a size of 300 by 200
dialog units. The dialog has no system menu in its
upper-left corner. It has a thick frame and a 12-point
font. The dialog has capabilities for up to 100 ele-
ments.
 MyDialog~Create(20, 20, 300, 200, "My first Dialog",,
 "THICKFRAME NOMENU", "Courier", 12, 100)

CreateCenter

The CreateCenter method creates a dialog and centers its position. See
Create [page 394] for a description of all arguments and an example.

CheckFile

The CheckFile method is private and for internal use only.

CheckID

The CheckID method is private and for internal use only. It is used to
check if the control item ID is valid.

aUserDialog~CreateCenter(cx , cy ,

title ,

"

NOMENU
VISIBLE
NOTMODAL
SYSTEMMODAL

"

, fontName
, fontSize

, expected

)
THICKFRAME

aUserDialog~CheckFile(f)

aUserDialog~CheckID(id)
Chapter 15. OODialog Method Reference 395 Chapter 15. OODialog Method Reference 395

UserDialog ClassUserDialog Class
ErrorFile

The ErrorFile method is private and for internal use only.

DefineDialog

The DefineDialog method is called by Create [page 394]. It is designed
to be overwritten in a subclass of UserDialog. You should do all or
additional dialog definitions, such as adding dialog items to the dialog,
within this method.

Protected: This method is protected. There is no need to call this
method from anywhere else than Create.

Example: When the dialog is created, a push button and an
entry line are added to its client area:

 ::method DefineDialog
 self~AddButton(401, 20, 100, 40, 15, "&More...")
 self~AddEntryLine(402, "INPUT", 20, 30, 150)

Load

The Load method creates the dialog based on the data of a given
resource script (a file with the extension .RC). It calls the LoadFrame
[page 397] and LoadItems [page 398] methods to retrieve the dialog
data from the file.

Return code: The return code is 0 for a successful load and 1 other-
wise.

Arguments: The arguments are:

resourceFileName
The name of the resource script.

dialogId The ID (number) of the dialog. Note that
each dialog has a unique ID assigned to it.
There can be more than one dialog defini-
tion in one resource file. If there is only one
dialog resource in the resource file, you do
not have to indicate the ID.

aUserDialog~ErrorFile(f s) ,

aUserDialog~DefineDialog

aUserDialog~Load(resourceFileName , dialogId

,

"

CENTER
CONNECTBUTTONS
CONNECTRADIOS
CONNECTCHECKS

"
, expected

)
396 Object REXX for Windows396 Object REXX for Windows

UserDialog ClassUserDialog Class
options The third argument can be one or more of:

CENTER
The dialog is positioned in the center.

CONNECTBUTTONS
For each button a connection to an object
method is established automatically. See
ConnectButton [page 334] for a description
of connecting buttons to a method.

CONNECTRADIOS
Similar to CONNECTBUTTONS, this
option enforces the method to connect the
radio buttons.

CONNECTCHECKS
This option connects the check box con-
trols.

expected This is the maximum number of dialog ele-
ments the dialog object can handle. See
Create [page 394].

Example: This example creates a dialog based on the values for
dialog 100 in Dialog1.rc. It also connects the push and
radio buttons to a message named after the buttons’
title.

 MyDlg = .UserDialog~new()
 MyDlg~Load("Dialog1.rc", 100, ,
 "CONNECTBUTTONS CONNECTRADIOS")

LoadFrame

The LoadFrame method creates the window frame using the data of
the given dialog resource with dialogid in file resfile. It is usually
called by the Load method [page 396].

Protected: This method is protected. It can only be used inter-
nally within a class method.

Arguments: The arguments are:

resfile The name of the resource file.

dialogid The ID of the dialog. It can be omitted if
there is just one dialog; otherwise it must
be specified.

expected The number of expected dialog items.

aUserDialog~LoadFrame(resfile

,
dialogid ,

"CENTER" , expected

)
Chapter 15. OODialog Method Reference 397 Chapter 15. OODialog Method Reference 397

UserDialog ClassUserDialog Class
Example: This example overwrites the Load method, so it loads
the dialog window (just the frame) but not its contents:

 ::class WindowOnlyDialog subclass UserDialog
 ...
 ::method Load
 self~LoadFrame("Dialog2.rc", 100, "CENTER", 20)

LoadItems

The LoadItems method creates the dialog items, using the data of the
given resource script. It is either called by the Load method, or it can
be used in the context of a category dialog.

Protected: This method cannot be called from outside the class.

Arguments: See Load [page 396] for a description.

Example: In this example, the dialog is created either with the
items of dialog 200 or 300:

 ::class MyDialog subclass UserDialog
 ...
 ::method Load
 use arg view
 self~LoadFrame("Dialog2.rc", 200, "CENTER", 200)
 if view="special" then
 self~LoadItems("Dialog2.rc",300,"CONNECTBUTTONS")
 else
 self~LoadItems("Dialog2.rc",200,"CONNECTBUTTONS")

Add... Methods

The methods listed below (all starting with Add) can be used to create
a dialog dynamically without any resource script (.RC file). They can
also be used in addition to a loaded dialog.

The recommended way to create a dialog is to subclass from UserDia-
log and put all Add... statements into the DefineDialog method [page
396], which is executed when the dialog is about to be created. Add...
methods call the matching Connect... methods to create the associated
Object REXX attribute. Add... methods cannot be used after Execute
has started.

Note: The coordinates are usually set in dialog units, if not mentioned
explicitly.

aUserDialog~LoadItems(resFile

,
dialogId

, "

CONNECTBUTTONS
CONNECTRADIOS
CONNECTCHECKS

"

)
398 Object REXX for Windows398 Object REXX for Windows

UserDialog ClassUserDialog Class
AddButton

The AddButton method adds a push button to the dialog and connects
it with a method that is processed whenever the button is clicked.

Arguments: The arguments are:

id A unique number you have to assign to
the button. You need the ID to refer to
this control in other methods.

x, y The position of the button’s upper-left
corner relative to the dialog measured
in dialog units.

cx, cy The size of the button in dialog units.

text The button’s title which is displayed on
the button.

msgToRaise The name of a method that is invoked
whenever the button is clicked.

options The last argument can be one or more
of:

DEFAULT The button becomes the default
button in the dialog.

OWNER The button is owner drawn. This
option is used for bitmap buttons.

HIDDEN The button is not visible at startup
time.

DISABLED The button is disabled at startup
time.

NOTAB There is no tab stop at the button,
so you cannot get to the button by
using just the keyboard (tab key).

Example: This example creates a push button entitled Get new
Info at position x=100, y=80 and size width=40,
height=15. The button’s ID is 555, and if the button is
clicked, the getInfo message is sent to the dialog object.

 MyDialog~AddButton(555, 100, 80, 40, 15, "&Get new Info", ,
 "getInfo", "NOTAB")

aUserDialog~AddButton(id , x , y ,

cx , cy , text

,
msgToRaise

, "

DEFAULT
OWNER
HIDDEN
DISABLED
NOTAB

"

)
Chapter 15. OODialog Method Reference 399 Chapter 15. OODialog Method Reference 399

UserDialog ClassUserDialog Class
AddBitmapButton

The AddBitmapButton method adds a push button with a bitmap
(instead of plain text) to the dialog. You can provide four different bit-
maps representing the four states of a button.

The bitmaps can be specified by either a file name or a bitmap handle.
You can retrieve a bitmap handle by loading a bitmap stored in a file
into memory, using the LoadBitmap method [page 364]. If you pass a
bitmap handle to the method, you must use the INMEMORY option.

Arguments: The arguments are the same as for AddButton, with
the changes listed below:

bmpNormal A bitmap that is displayed.

bmpFocused A bitmap that is displayed if the but-
ton is focused. The tab key is used to
change the focus between buttons (and
dialog items). Normally the focused
button is surrounded by a dashed
frame.

bmpSelected A bitmap that is displayed while the
button is clicked and held.

bmpDisabled A bitmap that is displayed if the but-
ton is disabled.

options In addition to AddButton, there are
four more options:

FRAME The button has a 3D frame. This gives
your bitmap the same behavior as a
standard Windows button.

aUserDialog~AddBitmapButton(id , x ,

y ,
cx

,
cy

,
text

,

msgToRise
, bmpNormal ,

bmpFocused
,

bmpSelected
,

bmpDisabled

, "

DEFAULT
HIDDEN
DISABLED
NOTAB
FRAME
USEPAL
INMEMORY
STRETCH

"

)
400 Object REXX for Windows400 Object REXX for Windows

UserDialog ClassUserDialog Class
USEPAL The color palette of the bitmap is
loaded and used. This argument
should be specified for just one of the
dialog buttons, because only one color
palette can be active at any time.

INMEMORY Specifies that the bitmap was
loaded into memory before. If you
switch often between different bitmaps
within one button, the loading of all
bitmaps into memory will increase per-
formance.

STRETCH If this option is specified and the
extent of the bitmap is smaller then
the extent of the button rectangle, the
bitmap is adapted to match the extent
of the button.

Example: This example defines a button with ID 601. The bit-
map in the button1.bmp file is displayed for the push
button instead of a black text on a grey background. If
the button is disabled (by using the DisableItem
method [page 382], the bitmap is exchanged and
button1D.bmp is shown instead. If the button is clicked,
the BmpPushed message is sent.

 MyDialog~AddBitmapButton(601, 20, 317, 80, 30, , ,
 "BmpPushed","button1.bmp",,,"button1D.bmp",,
 "FRAME USEPAL")

AddText

The AddText method adds a static text element to the dialog.

Arguments: The arguments are the same as for AddButton [page
399], with the changes listed below:

text The text string to be displayed.

options This argument can be one or more of:

HIDDEN The text is not visible at startup time.
RIGHT The text is aligned to the right.
CENTER The text is centered. If neither RIGHT

or CENTER is specified, the text is
aligned to the left.

aUserDialog~AddText(x , y ,
cx

,
cy

,

text
,

"

HIDDEN
RIGHT
CENTER
BORDER

"
, id

)
Chapter 15. OODialog Method Reference 401 Chapter 15. OODialog Method Reference 401

UserDialog ClassUserDialog Class
BORDER A rectangle is drawn around the text.

id The ID of the item, -1 is used if omit-
ted.

AddGroupBox

The AddGroupBox method adds a group box to the dialog. A group box
has a frame and a title.

Arguments: The arguments are the same as for AddButton [page
399], with the changes listed below:

text The title of the group box.

options There are currently no options for a group
box.

AddEntryLine

The AddEntryLine method adds an entry line to the dialog.

Arguments: The arguments are:

id The unique ID of the entry line.

name This is the name of the entry line. An
attribute with exactly this name is added
to the object and provides data for the dia-
log item automatically. See ConnectEn-
tryLine [page 337].

x, y The position of the upper-left corner rela-
tive to the dialog’s client area, measured in
dialog units.

cx The length of the entry line in dialog units.

cy The height of the entry line. If this argu-
ment is omitted or equal to 0, the height is
calculated to fit the font’s height.

options There are currently no options for an entry
line.

aUserDialog~AddGroupBox(x , y , cx ,

cy , text
,

options , id

)

aUserDialog~AddEntryLine(id ,

name
, x , y , cx

,
cy , options

)
402 Object REXX for Windows402 Object REXX for Windows

UserDialog ClassUserDialog Class
Example: This example puts the entry line with ID 201 and
length of 150 dialog units close to the upper-left corner
of the dialog’s client area. The FIRSTNAME attribute
is created and connected to the dialog item.

 MyDialog~AddEntryLine(201, "FIRSTNAME", 12, 14, 150)

AddPasswordLine

The AddPasswordLine method adds a password entry line that does
not echo the characters entered but displays asterisks (*) instead.

Arguments: See AddEntryLine [page 402] for a description of the
arguments.

AddListBox

Adds a list box to the dialog.

Arguments: The arguments are the same as for AddEntryLine
[page 402], with the changes listed below:

options The last argument can be one or more of:

MULTI Makes the list box a multiple choice
list box, that is you can select more
than one line.

NOTIFY A message is posted whenever the user
selects an item of the list box. To use
this feature you have to the connect
the list to a method using ConnectList
[page 337].

SORT The items in the dialog are listed in
the noted order.

aUserDialog~AddPasswordLine(id ,

name
, x , y , cx

,
cy , options

)

aUserDialog~AddListBox(id ,
name

, x , y , cx , cy

, "

MULTI
NOTIFY
SORT
COLUMNS
VSCROLL

"

)
Chapter 15. OODialog Method Reference 403 Chapter 15. OODialog Method Reference 403

UserDialog ClassUserDialog Class
COLUMNS The list box can handle tab charac-
ters (’09’x). Use this option together
with the SetListTabulators method
[page 356] to have more than one col-
umn in a list.

VSCROLL Adds a vertical scroll bar to the list
box. Scroll bars appear only if the list
contains more lines than can fit in the
available space.

AddComboBox

The AddComboBox method adds a combo box to the dialog. A combo
box is a combination of an entry line and a list box.

Arguments: The arguments are the same as for AddEntryLine
[page 402], with the changes listed below:

options The last argument can be one or more of:

SIMPLE Displays the list box all the time
LIST No free text can be entered in the entry

line; the list contains selectable items
only.

SORT The items in the list are sorted by the
combo box itself.

VSCROLL Adds a vertical scroll bar to the combo
box.

A drop-down list is displayed if neither
SIMPLE nor LIST is specified.

AddCheckBox

The AddCheckBox method adds a check box to the dialog.

Arguments: The arguments are the same as for AddEntryLine
[page 402], with the changes listed below:

aUserDialog~AddComboBox(id ,
name

, x , y , cx , cy

, "

SIMPLE
LIST
SORT
VSCROLL

"

)

aUserDialog~AddCheckBox(id ,
name

, x , y , cx , cy , text
404 Object REXX for Windows404 Object REXX for Windows

UserDialog ClassUserDialog Class
name The name of the check box. If omitted, text
is used.

text The text displayed next to the check box.

AddRadioButton

The AddRadioButton method adds a radio button to the dialog. There
are also methods that create a whole group of buttons automatically;
see AddRadioGroup [page 405] and AddRadioStem [page 412].

Arguments: The arguments are the same as for AddEntryLine
[page 402], with the changes listed below:

name The name of the radio button.

text The text that is displayed next to the radio
button.

options The valid value for the last argument is:

GROUP Makes the radio button the beginning of
a new group. In each group if you select
a radio button, the previously selected
button is automatically deselected.

Example: This example defines seven radio buttons with IDs 501
through 507:

 RText.1="Monday" ; RText.2="Tuesday"
 RText.3="Wednesday"; RText.4="Thursday"
 RText.5="Friday" ; RText.6="Saturday"
 RText.7="Sunday"
 do i=1 to 7
 MyDialog~AddRadioButton(500+i, , 20, i*15+13, 40, ,
 14, RText.i)
 end

AddRadioGroup

The AddRadioGroup method creates a group of radio buttons.

aUserDialog~AddRadioButton(id ,

name
, x , y , cx , cy ,

text
, " GROUP "

)

aUserDialog~AddRadioGroup(startId , x

, y ,
cx

, "

text "

,
"NOBORDER" , idstat

)
Chapter 15. OODialog Method Reference 405 Chapter 15. OODialog Method Reference 405

UserDialog ClassUserDialog Class
Arguments: The arguments are:

startId The ID of the first radio button. The
startId is increased by 1 for each addi-
tional radio button and then assigned to
the dialog item.

x, y The position of the first radio button con-
trol. The other radio buttons are positioned
automatically.

cx The length of the radio buttons plus text. If
omitted, the space needed is calculated.

text The text string for each radio button. Sin-
gle strings have to be separated by blank
spaces. This argument determines the
number of radio buttons in total. See
AddRadioStem [page 412] on how to add a
group of radio buttons with blanks in the
labels.

options The only option is NOBORDER, which
prevents the method from placing a group
box around the group.

idstat This argument is used to set the static
frame ID.

Example: This example adds a group of three radio buttons with
ids 301, 302, and 303 to the dialog (see Figure 156):

 MyDialog = .UserDialog~new
 MyDialog~Create(100,100,80,60,"Radio Button Group")
 MyDialog~AddRadioGroup(301, 10, 5, ,"Fast Medium Slow")
 MyDialog~fast = 1
 MyDialog~Execute

Figure 156. Sample Radio Button Group
406 Object REXX for Windows406 Object REXX for Windows

UserDialog ClassUserDialog Class
AddCheckGroup

The AddCheckGroup method creates a group of check boxes. See
AddRadioGroup [page 405] for a description of the arguments. See
AddCheckBoxStem [page 411] on how to add a group of check boxes
with blanks in the labels.

Example: This example adds a group with four check boxes to
the dialog; two check boxes are preselected (see Figure
157):

 MyDialog~AddCheckGroup(401, 23, 18, , ,
 "Smalltalk C++ ObjectREXX OO-COBOL")
 MyDialog~smalltalk = 1
 MyDialog~objectrexx = 1

AddInput

Figure 157. Sample Check Box Group

aUserDialog~AddCheckGroup(startId , x

, y ,
cx

, "

text "

,
"NOBORDER" , idstat

)

aUserDialog~AddInput(id ,

attrName
, x , y ,

cx1
,

cx2 ,
cy

, text

, options
, idstat

)
Chapter 15. OODialog Method Reference 407 Chapter 15. OODialog Method Reference 407

UserDialog ClassUserDialog Class
The AddInput method adds an entry line with a label (a static text) to
the dialog.

Arguments: The arguments are:

id The unique ID of the entry line.

attrName The name used to create an attribute in
the dialog object that reflects the contents
of the entry line (see AddEntryLine [page
402]). If it is skipped, the text label is used
as the attribute name.

x, y The position of the upper-left edge of the
label. The entry line is aligned automati-
cally.

cx1 The length of the label. If omitted, the
length is calculated.

cx2 The length of the entry field.

cy The height of the entry field. If omitted,
the height is calculated.

text The label displayed in front of the entry
field.

options Possible options are:

HIDDEN Makes the input field
invisible.

PASSWORD Displays asterisks instead
of the typed-in characters.

idstat An ID for the label.

Example: This example creates an entry field and the label Your
e-mail address (placed on the entry field’s left side). It
also creates an attribute with the same name
(YOUREMAILADDRESS). The height of the elements
is calculated (see Figure 158).

 MyUserDialog~AddInput(402, , 20, 30, , 150, , ,
 "Your e-mail address")

Figure 158. Sample Input Field
408 Object REXX for Windows408 Object REXX for Windows

UserDialog ClassUserDialog Class
AddInputGroup

The AddInputGroup method creates a group of one or more entry
lines.

Arguments: The arguments are:

startid An ID that is assigned to the first entry
line. Consecutive numbers are assigned to
the other entry fields.

x, y Position of the input group’s upper-left cor-
ner.

cx1 Length of the entry field labels. If omitted,
the length is calculated.

cx2 Length of the entry fields in dialog units.

text The text strings used for each entry field’s
label. The single strings are to be sepa-
rated by blank spaces. This argument
determines the number of entry fields in
total.

options The only option is NOBORDER, which
prevents the method from placing a group
box around the group.

idstat The ID of the first label. Usually you do
not have to specify this value because
labels are static controls.

Example: This example creates a four-line input group. The sin-
gle entry lines are accessible by IDs 301 through 304.

 MyDialog~AddInputGroup(301, 20, 20, ,130, ,
 "Name FirstName Street City")

Note: If you want to use labels that include blanks (for
example, “First Name” instead of “FirstName”), use
the AddInputStem method [page 410].

aUserDialog~AddInputGroup(startid , x

, y ,
cx1

, cx2 , "

text "

,
"NOBORDER" , idstat

)
Chapter 15. OODialog Method Reference 409 Chapter 15. OODialog Method Reference 409

UserDialog ClassUserDialog Class
AddComboInput

The AddComboInput method adds a combo box and a label string to
the dialog.

Arguments: The arguments are:

id The ID of the combo box.

attrName The name of the combo box. This name is
used as an object attribute name.

x, y Position of the text string of the combo box.

cx1 Length of the text string.

cx2 Width of the combo box.

clines Vertical length of the combo box in number
of lines.

text Label being displayed on the left-hand side
of the combo box.

options See AddComboBox [page 404].

idstat The ID of the label. Usually you do not
have to specify this value because labels
are static controls.

AddInputStem

The AddInputStem method adds a group of input fields to the dialog.
The difference between this method and the AddInputGroup method
[page 409] is that the titles (and names) of the single lines are passed
to the method in a stem variable. Thus, it is possible to use strings
containing blank spaces.

aUserDialog~AddComboInput(id ,

attrName
, x , y ,

cx1
,

cx2 ,
clines

, text ,

, "

SIMPLE
LIST
SORT
VSCROLL

"
, idstat

)

aUserDialog~AddInputStem(startid , x

, y ,
cx1

, cx2 , textStem.

, options
, idstat

)
410 Object REXX for Windows410 Object REXX for Windows

UserDialog ClassUserDialog Class
Arguments: The arguments are:

startid The ID of the first entry line.

x, y The position of the whole group (upper-left
corner).

cx1 The length of the text strings. If omitted,
the size is calculated.

cx2 The width of the entry fields.

textStem. A stem variable containing all labels for
the entry fields. The object attribute for
each field is created on the basis of this
string.

options In addition to the options of the AddInput
method [page 407], NOBORDER can be
used to prevent the method from placing a
group box around the group.

idstat The ID of the first label. Usually you do
not have to specify this value because
labels are static controls.

Example: This example shows how to use AddInputStem. It cre-
ates a four-line input group. For each entry line (with
IDs 401 through 404) an object attribute is provided.
The names might be different from the title because
not all characters can be used for Object REXX sym-
bols. In this example the NAME, FIRSTNAME,
STREETNUMBER, and CITYZIP attributes are
added to the object.

 FNames.1="Narme"
 FNames.2="Fist Name"
 FNames.3="Street & Number"
 FNames.4="City & ZIP"
 MyDialog~AddInputStem(401, 20, 20, , 150, FNames.)

AddCheckBoxStem

The AddCheckBoxStem method creates a group of check box controls.
Unlike the AddCheckGroup method [page 407] you pass the titles of
the check boxes in a stem variable instead of using a string. Thus you
can use labels including blanks.

aUserDialog~AddCheckBoxStem(, x , y ,
cx

,

,
options ,

idstat ,
fontName ,

)

startid max textStem. ,

fontSize
Chapter 15. OODialog Method Reference 411 Chapter 15. OODialog Method Reference 411

UserDialog ClassUserDialog Class
Arguments: See AddCheckGroup [page 407] for a description of the
arguments. The new arguments are:

textStem. A stem variable containing all labels for
the check boxes. The object attribute for
each check box is created on the basis of
this string.

max The maximum number of check box items
in one column. If textStem has more items
than max, a second column is created.

fontName The name of the font used within the dia-
log.

fontSize The size of the font used within the dialog

Example: This example creates a three-column check box group:

 CBNames.1="C"
 CBNames.2="Pascal"
 CBNames.3="Cobol"
 CBNames.4="REXX"
 CBNames.5="Basic"
 CBNames.6="Fortran"
 MyDialog~AddCheckBoxStem(501, 20, 20, ,CBNames, 2, ,
 "NOBORDER", 551, "Courier New", 12)

AddRadioStem

The AddRadioStem method adds a group of radio button controls to
the dialog.

See AddCheckBoxStem [page 411] for a description of the arguments
and an example.

AddScrollBar

The AddScrollBar method adds a scroll bar to the dialog.

aUserDialog~AddRadioStem(startid , x , y ,
cx

, textStem. , max

,
options ,

idstat ,
fontName , fontSize

)

aUserDialog~AddScrollBar(id , x , y , cx ,

cy

, "

VERTICAL
HORIZONTAL
TOPLEFT

"

)

TAB
BOTTOMRIGHT
412 Object REXX for Windows412 Object REXX for Windows

UserDialog ClassUserDialog Class
Arguments: The arguments are:

id This must be a unique number.

x, y The position of the upper-left corner rela-
tive to the dialog’s client area, measured in
dialog units.

cx The length of the scroll bar in dialog units.

cy The height of the scroll bar.

options The last argument can be one or more of:

VERTICAL
The scroll bar is positioned vertically.

HORIZONTAL
The scroll bar is positioned horizontally.

TOPLEFT
The scroll bar is aligned to the top left of
the given rectangle and has a predeter-
mined width (if vertical) or height (if hori-
zontal).

BOTTOMRIGHT
The scroll bar is aligned to the bottom
right of the given rectangle and has a pre-
determined width (if vertical) or height (if
horizontal).

TAB The scroll bar is assigned a tab stop.

AddButtonGroup

Use the AddButtonGroup method to add more than one push button
at once to the dialog. The buttons are arranged in a row or in a col-
umn.

Arguments: The arguments are:

x, y The position of the entire button
group.

cx, cy The size of a single button. One or both
arguments can be skipped. If so, the
default values (cx=40, cy=12) are
taken.

x , y ,

cx
,

cy
, "

text id msg "

,
bottom , options

)

aUserDialog~AddButtonGroup(
Chapter 15. OODialog Method Reference 413 Chapter 15. OODialog Method Reference 413

UserDialog ClassUserDialog Class
text ID msg These arguments are interpreted as
one string containing three words (sep-
arated by blanks) for each button. The
first word is the text that is displayed
on the button, the second is the ID of
the button, and the third is the name
of a message that is sent to the object
whenever the button is clicked. The
fourth to sixth words are for the next
button, and so forth.

bottom This is a flag to switch between a verti-
cal (=0, default) or horizontal (=1)
placement of the buttons.

options If DEFAULT is used, the first button
becomes the default button. For the
other options, see AddButton [page
399].

Example: This example creates three buttons (Add, Delete, and
Update):

 MyDialog~AddButtonGroup(20, 235, , , "&Add 301 AddItem" || ,
 "&Delete 302 DeleteItem" || ,
 "&Update 303 UpdateItem")

Frames and Rectangles

The methods listed below add simple graphical elements to the dialog.
They are useful for giving the dialog a nice finish. Use Figure 159 to
help you find the right element.

Note: There is currently no difference between rectangles and frames.

Figure 159. Frames and Rectangles in 3D Style
414 Object REXX for Windows414 Object REXX for Windows

UserDialog ClassUserDialog Class
AddWhiteRect

The AddWhiteRect method adds a white rectangle to the dialog.

Arguments: The arguments are:

x, y The position of the rectangle’s upper-
left corner relative to the dialog, mea-
sured in dialog units.

cx, cy The size of the rectangle in dialog
units.

options The options can be:

HIDDEN The frame or rectangle is not
visible at startup time.

BORDER A border is drawn around the
rectangle or frame.

id The ID of the item, -1 is used by default.

AddWhiteFrame
The AddWhiteFrame method is currently identical to the AddWhiteR-
ect method.

AddGrayRect

The AddGrayRect method adds a gray rectangle to the dialog.

Arguments: See AddWhiteRect method [page 415] for a description
of the arguments.

AddGrayFrame
The AddGrayFrame method is currently identical to the AddGrayRect
method.

aUserDialog~AddWhiteRect(x , y , cx , cy

,

"

HIDDEN
BORDER

"
, id

)

aUserDialog~AddGrayRect(x , y , cx , cy

,

"

HIDDEN
BORDER

"
, id

)
Chapter 15. OODialog Method Reference 415 Chapter 15. OODialog Method Reference 415

UserDialog ClassUserDialog Class
AddBlackRect

The AddBlackRect method adds a black rectangle to the dialog.

Arguments: See AddWhiteRect method [page 415] for a description
of the arguments.

AddBlackFrame
The AddBlackFrame method is currently identical to the AddBlack-
Rect method.

OK and Cancel Push Buttons

The four methods described in this section add OK and Cancel push
buttons to the dialog. The standard IDs (1 for OK and 2 for Cancel) are
assigned to the buttons.

AddOkCancelRightBottom

The AddOkCancelRightBottom method adds an OK and a Cancel
push button to the lower-right edge of the dialog.

Example: This example adds the two push buttons to the bottom
of the dialog. It further overwrites the standard OK
and Cancel methods.

 ::class MyClass subclass UserDialog
 ::method DefineDialog
 ...
 self~AddOkCancelRightBottom
 ::method OK
 ret = YesNoMessage("Are you sure?")
 if ret=1 then self~ok:super
 ::method Cancel
 ret = YesNoMessage("Do you really want to quit?")
 if ret=1 then self~cancel:super

AddOkCancelLeftBottom

The AddOkCancelLeftBottom method adds an OK and a Cancel push
button to the lower-left edge of the dialog.

aUserDialog~AddBlackRect(x , y , cx , cy

,

"

HIDDEN
BORDER

"
, id

)

aUserDialog~AddOkCancelRightBottom

aUserDialog~AddOkCancelLeftBottom
416 Object REXX for Windows416 Object REXX for Windows

UserDialog ClassUserDialog Class
AddOkCancelRightTop

The AddOkCancelRightTop method adds an OK and a Cancel push
button vertically to the upper-right edge of the dialog.

AddOkCancelLeftTop

The AddOkCancelLeftTop method adds an OK and a Cancel push
button vertically to the upper-left edge of the dialog.

Dialog Control Methods

The methods described in this section control the execution of the dia-
log; they are for internal use only.

GetDefaultOpts

The GetDefaultOpts method is for internal use only.

Protected: This method is protected.

GetStaticID

The GetStaticID method is for internal use only.

Protected: The method can only be used within the same object.

StartIt

The StartIt method is called from Execute [page 329] and is for inter-
nal use only. It creates a real Windows object based on the dialog tem-
plate.

Protected: This method is protected and cannot be called from
outside the instance. It can be overwritten, although
that is not recommended.

Arguments: There is only one argument:

icon This argument has no impact at this time.

aUserDialog~AddOkCancelRightTop

aUserDialog~AddOkCancelLeftTop

aUserDialog~GetDefaultOpts(options)

aUserDialog~GetStaticID

aUserDialog~StartIt()

icon
Chapter 15. OODialog Method Reference 417 Chapter 15. OODialog Method Reference 417

UserDialog ClassUserDialog Class
StopIt

The StopIt method is for internal use only. It is the counterpart to the
BaseDialog class StopIt method to remove the Windows object.

Protected: This method is protected and cannot be called from
outside the instance. It can be overwritten, although
that is not recommended.

aUserDialog~StopIt
418 Object REXX for Windows418 Object REXX for Windows

ResDialog ClassResDialog Class
ResDialog Class
The ResDialog class is designed to be used together with a binary
(compiled) resource. A binary dialog resource is linked to a DLL (that
is, a file with the extension .DLL).

Requires: Resdlg.cls is the source file of this class. Use the
tokenized version of OODialog, oodialog.cls, to
shorten your dialog’s startup time.

 ::requires 'oodialog.cls'

Subclass: The ResDialog class is a subclass of BaseDialog (see
page 322).

Instance Methods

This section describes the methods of the ResDialog class, grouped by
their usage.

Init

The Init method of the parent class, BaseDialog, has been overwritten.

Arguments: The arguments you have to pass to the new method of
the class when creating a new dialog instance are:

Library The file name of the DLL where the
resource is located.

Resource The ID of the resource. This is a unique
number you assigned to the (dialog)
resource while creating it.

DlgData. A stem variable (don’t forget the trailing
period) that contains initialization data.
See Init [page 328] of the BaseDialog class
for more details.

Example: This sample code creates a new dialog object from the
ResDialog class. It uses dialog resource 100 in the
MYDLG.DLL file. The dialog is initialized with the values
of the MyDlgData. stem variable.

 MyDlgData.101="1"
 MyDlgData.102="Please enter your password."
 MyDlgData.103=""
 dlg = ResDialog~new("MYDLG.DLL", 100, MyDlgData.)

aResDialog~Init(Library , Resource ,

DlgData.
)
Chapter 15. OODialog Method Reference 419 Chapter 15. OODialog Method Reference 419

ResDialog ClassResDialog Class
StartIt

The StartIt method is for internal use only. It is necessary to create a
real Windows object based on the dialog template.

Protected: This method is protected and cannot be called from
outside the instance. It can be overwritten, although
that is not recommended.

Arguments: There is only one argument:

icon This argument has no impact at this time.

aUserDialog~StartIt(

icon

)
420 Object REXX for Windows420 Object REXX for Windows

CategoryDialog ClassCategoryDialog Class
CategoryDialog Class
The CategoryDialog class creates and controls a dialog that has more
than one panel. It is similar to the notebook control available in OS/2
or the tabbed dialogs available in the Windows 95 user interface.

Depending on the style you choose, you can switch among different
pages by either clicking radio buttons or selecting an item from a drop
down list. Each page has its own window controls.

Requires: Catdlg.cls is the source file of this class. Use the
tokenized version of OODialog, oodialog.cls, to
shorten your dialog’s startup time.

 ::requires 'oodialog.cls'

Subclass: The CategoryDialog class is a subclass of UserDialog
(see page 391).

Attributes: Instances of the CategoryDialog class have the follow-
ing attributes:

Catalog A directory describing the layout and
behavior of the dialog. This directory is
usually set up in the InitCategories
method [page 425] of the dialog.

StaticID An internal counter.

Methods: Instances of the CategoryDialog class implement the
methods listed in Table 34.

In fact, most of the methods do the same as the meth-
ods in the parent class, UserDialog, except that they
are enabled to work with a category dialog.

Table 34. (Part 1 of 3) CategoryDialog Instance Methods

Methods... ...on page

AddCategoryComboEntry 432

AddCategoryListEntry 433

CategoryComboAddDirectory 433

CategoryComboDrop 433

CategoryListAddDirectory 435

CategoryListDrop 435

CategoryPage 426

ChangeCategoryComboEntry 433

ChangeCategoryListEntry 434

ChangePage 427

CreateCategoryDialog 426
Chapter 15. OODialog Method Reference 421 Chapter 15. OODialog Method Reference 421

CategoryDialog ClassCategoryDialog Class
CurrentCategory 427

DefineDialog 426

DeleteCategoryComboEntry 432

DeleteCategoryListEntry 434

DisableCategoryItem 435

EnableCategoryItem 435

FindCategoryComboEntry 432

FindCategoryListEntry 434

GetCategoryAttrib 431

GetCategoryCheckBox 431

GetCategoryComboItems 432

GetCategoryComboLine 430

GetCategoryEntryLine 429

GetCategoryListItems 434

GetCategoryListLine 429

GetCategoryMultiList 431

GetCategoryRadioButton 430

GetCategoryValue 431

GetCurrentCategoryComboIndex 432

GetCurrentCategoryListIndex 434

GetSelectedPage 427

HideCategoryItem 435

Init 423

InitCategories 425

InitDialog 427

InsertCategoryComboEntry 432

InsertCategoryListEntry 434

NextPage 427

PageHasChanged 428

PreviousPage 427

SetCategoryAttrib 431

SetCategoryCheckBox 431

SetCategoryComboLine 430

SetCategoryEntryLine 429

Table 34. (Part 2 of 3) CategoryDialog Instance Methods

Methods... ...on page
422 Object REXX for Windows422 Object REXX for Windows

CategoryDialog ClassCategoryDialog Class
Instance Methods of Class CategoryDialog

The methods of the CategoryDialog class are grouped by their usage in
this section (an alphabetical list was in Table 34).

Setting Up the Dialog

The methods listed below are used to set up the pages of the dialog
and start it.

Init

The Init method initializes the category dialog object.

Arguments: The arguments are:

DlgData. A stem variable (don’t forget the trailing
period) that contains initialization data for
some or all dialog items. If the dialog is
terminated using the OK button, the val-
ues of the dialog’s data fields are copied to
this variable. The ID of the dialog items is
used to name the entry within the stem.

SetCategoryListLine 430

SetCategoryListTabulators 435

SetCategoryMultiList 430

SetCategoryRadioButton 431

SetCategoryStaticText 429

SetCategoryValue 431

SetCurrentCategoryComboIndex 433

SetCurrentCategoryListIndex 434

ShowCategoryItem 435

StartIt 420

Table 34. (Part 3 of 3) CategoryDialog Instance Methods

Methods... ...on page

aCategoryDialog~Init(
DlgData.

,
catx

,
caty

,
catcx

,

DROPDOWN
TOPLINE

,
cattable

,
catmax

)

" "
WIZZARD

catlabel
,
Chapter 15. OODialog Method Reference 423 Chapter 15. OODialog Method Reference 423

CategoryDialog ClassCategoryDialog Class
catx, caty The position of the category selection con-
trol group (radio buttons or combo box).
The defaults are 10 and 4.

catcx This argument sets the length of one item
of the control group (calculated if omitted).

style This argument determines the style of the
category dialog:

DROPDOWN Creates a drop-down list at
the top (useful if there are
many categories).

TOPLINE Draws a horizontal radio
button group at the top of
the client area.

WIZZARD Adds Backward and For-
ward buttons with IDs 11
and 12 to switch between
category pages.

Without DROPDOWN or TOPLINE, the
default category selection is done by a ver-
tical radio button group, with the dialog
pages to the right of the radio buttons.

cattable This argument can be used to set the cate-
gory names separated by blanks. If omit-
ted, set the category names in the
InitCategories method [page 425].

catlabel This argument defines the label for the
combo box in DROPDOWN style (default is
"Page:")

catmax This argument sets the split point of the
radio button group in default style, or the
number of entries in the combo box drop-
down list.

Example: This example creates a category dialog, using a combo
box as the selection control:

 dlg = MyCategoryDialog~new(MyData.,,,,"DROPDOWN", ,
 "Movies Cinemas Days Ticket","Dialog panel:")
 dlg~createCenter(200, 180, "Let's Go to the Movies")
 dlg~execute("SHOWTOP")
 ...
 ::class MyCategoryDialog subclass CategoryDialog
 ...
 ::method Movies /* define the Movies page */
424 Object REXX for Windows424 Object REXX for Windows

CategoryDialog ClassCategoryDialog Class
InitCategories

The InitCategories method is called by Init to set the characteristics of
the category dialog.

Protected: This method is protected.

Catalog: The InitCategories method should set up the Catalog
directory with information about the layout and the
behavior of the dialog. The directory entries are:

names Array containing the names of the catego-
ries. The array is initialized with the
names given in the Init method (argument
cattable). These names are used as labels
for selection control and as messages sent
to the object to define the single pages. You
have to provide a method for each category
page—with the same name as the label in
this directory—to define the dialog page
using a resource or Add... methods. This is
the only value of Catalog you have to set.

count Number of categories.

handles For internal use only.

id For internal use only.

category For internal use only.

page A directory with the following entries:

font Name of the font used for the dialog.
fsize Size of the font.
style Style of the dialog, see Create [page

394].
expected Total number of expected dialog items

of each category page (200).
btnwidth Width of Backward and Forward push

buttons (see WIZZARD option in Init
method).

leftbtntext Alternate label of Backward button.
rightbtntext Alternate label of Forward button.

The next 4 entries should not be modified:
x Horizontal position of the category

pages relative to the parent dialog.
y Vertical position of the category pages

relative to the parent dialog.
w Width of the category pages.
h Height of the category pages.

aCategoryDialog~InitCategories
Chapter 15. OODialog Method Reference 425 Chapter 15. OODialog Method Reference 425

CategoryDialog ClassCategoryDialog Class
Example: This example sets the category names to Editor, Com-
piler, Linker, and Debugger. The subclass of Category-
Dialog must define four methods named after them.

 ::class MyCategoryDialog subclass CatergoryDialog

 ::method InitCategories
 self~catalog['names']= .array~of("Editor","Compiler",,
 "Linker","Debugger")
 self~catalog['page']['leftbtntext'] = "&Previous"
 self~catalog['page']['rightbtntext'] = "&Next"

 ::method Editor
 ...
 ::method Compiler
 ...

DefineDialog

The DefineDialog method is called after the dialog has been created.
This method must not be overwritten in a subclass because it defines
the layout of the window and calls the single page definition methods.

Protected This method is protected.

CategoryPage

The CategoryPage method adds controls to the base window of a Cate-
gory Dialog. It is used to define the layout of the parent dialog that
contains the single pages.

Protected This method is protected and should not be overwrit-
ten or called. Use the InitCategories method [page 425]
to set up the dialog.

CreateCategoryDialog

The CreateCategoryDialog method creates a single category page.

Protected This method is protected. It is called by another
method and usually does not have to be called manu-
ally.

aCategoryDialog~DefineDialog

aCategoryDialog~CategoryPage

aCategoryDialog~CreateCategoryDialog(x

, y , cx , cy ,
fontName

,

fontSize
, options , expected)
426 Object REXX for Windows426 Object REXX for Windows

CategoryDialog ClassCategoryDialog Class
InitDialog

The InitDialog method is called after the Windows dialog has been
created. It is useful for setting data fields and initializing combo and
list boxes.

Protected This method is protected.

GetSelectedPage

The GetSelectedPage method is used internally to return the currently
selected page using the combo box or radio buttons (1 indicates the
first page).

CurrentCategory

The CurrentCategory method returns the number of the current dialog
page. The first page is numbered 1.

Example: This example tests the current page number:

 if MyCategoryDialog~CurrentCategory=2 then do ...

NextPage

The NextPage method switches the dialog to the next category page.

PreviousPage

The PreviousPage method switches the dialog to the previous category
page.

ChangePage

The ChangePage method switches the dialog to another page and
returns the new page number. It is called by selection control, Next-
Page, and PreviousPage to activate the selected page. ChangePage
invokes PageHasChanged after the new page is activated.

aCategoryDialog~InitDialog

aCategoryDialog~GetSelectedPage

aCategoryDialog~CurrentCategory

aCategoryDialog~NextPage

aCategoryDialog~PreviousPage

aCategoryDialog~ChangePage(
newpage

)
Chapter 15. OODialog Method Reference 427 Chapter 15. OODialog Method Reference 427

CategoryDialog ClassCategoryDialog Class
Arguments: The only argument is:

newpage The page number of the new page (default
is the page selected by the combo box or
radio button).

Example: This example activates the second category page:

 MyCategoryDialog~ChangePage(2)

PageHasChanged

The PageHasChanged method is invoked whenever a new page is acti-
vated. The default implementation returns without an action. The
user can overwrite this method to react to page changes.

Arguments: The arguments are:

oldpage The page number of the previous page.

newpage The page number of the new page.

StartIt

The StartIt method is called by the Execute method [page 329] to cre-
ate a real Windows object based on the dialog template. You might
overwrite it in your subclass, but be sure to forward the message to
the parent method.

Protected This method is protected.

Connect... Methods

The Connect... methods connect dialog elements of certain types with
an attribute or method. The Connect... methods should be placed into
the user defined methods with the names of the categories defined in
InitCategories [page 425]. The Connect... methods are defined for the
BaseDialog class. For more information, see Connect Methods on page
333.

Arguments: The arguments are:

id The ID of the dialog item.

fname The name of the object attribute.

aCategoryDialog~PageHasChanged(oldpage newpage,)

aCategoryDialog~StartIt

aCategoryDialog~Connect...(id, fname)
428 Object REXX for Windows428 Object REXX for Windows

CategoryDialog ClassCategoryDialog Class
Example: This example connects an entry line in the Movies
page with the FIRSTNAME object attribute:

 ::method InitCategories
 self~catalog['names'] = .array~of("Movies", ...)
 ...
 ::method Movies
 self~ConnectEntryLine(101, "FIRSTNAME")

Note: IDs for dialog elements need not be unique across all pages.
However, IDs for buttons and list boxes that are connected to a
method must be unique for the whole category dialog.

Methods for Dialog Items

The methods listed in this section deal with individual dialog items on
one of the pages of the category dialog.

The methods correspond to methods with similar names of the Base-
Dialog class; the word Category is inserted between the verb and the
dialog item in the method name. For example, AddCategoryComboEn-
try for the CategoryDialog class has the same function as AddCom-
boEntry of the BaseDialog class.

Note: The methods listed here have the same parameters as the corre-
sponding methods of the BaseDialog class, with the number of the cat-
egory page as an extra parameter.

Get and Set Methods

SetCategoryStaticText

For more information, see SetStaticText method [page 343].

GetCategoryEntryLine

For more information, see GetEntryLine method [page 344].

SetCategoryEntryLine

For more information, see SetEntryLine method [page 344].

aCategoryDialog~SetCategoryStaticText(
id, data, category)

aCategoryDialog~GetCategoryEntryLine() id, category

aCategoryDialog~SetCategoryEntryLine(

id, data, category)
Chapter 15. OODialog Method Reference 429 Chapter 15. OODialog Method Reference 429

CategoryDialog ClassCategoryDialog Class
GetCategoryListLine

For more information, see GetListLine method [page 344].

SetCategoryListLine

For more information, see SetListLine method [page 345].

GetCategoryMultiList

For more information, see GetMultiList method [page 345].

SetCategoryMultiList

For more information, see SetMultiList method [page 345].

GetCategoryComboLine

For more information, see GetComboLine method [page 346].

SetCategoryComboLine

For more information, see SetComboLine method [page 346].

GetCategoryRadioButton

For more information, see GetRadioButton method [page 346].

aCategoryDialog~GetCategoryListLine(id, category)

aCategoryDialog~SetCategoryListLine(id,

data, category)

aCategoryDialog~GetCategoryMultiList(id, category)

aCategoryDialog~SetCategoryMultiList(
id, data, category)

aCategoryDialog~GetCategoryComboLine(id, category)

aCategoryDialog~SetCategoryComboLine(

id, data, category)

aCategoryDialog~GetCategoryRadioButton(id, category)
430 Object REXX for Windows430 Object REXX for Windows

CategoryDialog ClassCategoryDialog Class
SetCategoryRadioButton

For more information, see SetRadioButton method [page 346].

GetCategoryCheckBox

For more information, see GetCheckBox method [page 346].

SetCategoryCheckBox

For more information, see SetCheckBox method [page 347].

GetCategoryValue

For more information, see GetValue method [page 347].

SetCategoryValue

For more information, see SetValue method [page 347].

GetCategoryAttrib

For more information, see GetAttrib method [page 348].

SetCategoryAttrib

For more information, see SetAttrib method [page 348].

aCategoryDialog~SetCategoryRadioButton(

id, data, category)

aCategoryDialog~GetCategoryCheckBox(id, category)

aCategoryDialog~SetCategoryCheckBox(id,

data, category)

aCategoryDialog~GetCategoryValue(id, category)

aCategoryDialog~SetCategoryValue(id,

data, category)

aCategoryDialog~GetCategoryAttrib(id, category)

aCategoryDialog~SetCategoryAttrib(

aname, category)
Chapter 15. OODialog Method Reference 431 Chapter 15. OODialog Method Reference 431

CategoryDialog ClassCategoryDialog Class
Combo Box Methods

AddCategoryComboEntry

For more information, see AddComboEntry method [page 349].

Arguments: The arguments are:

id The ID of the combo box.

data The text string that is added to the combo
box.

category The category page number where the
combo box is located.

Example: This example adds a text string to the list of the combo
box 101 in the third category page.

 MyCategoryDialog~AddCategoryComboEntry(101, ,
 "I'm one of the choices", 3)

InsertCategoryComboEntry

For more information, see InsertComboEntry method [page 350].

DeleteCategoryComboEntry

For more information, see method DeleteComboEntry method [page
350].

FindCategoryComboEntry

For more information, see FindComboEntry method [page 350].

GetCategoryComboItems

For more information, see GetComboItems method [page 351].

aCategoryDialog~AddCategoryComboEntry(

id, data, category)

aCategoryDialog~InsertCategoryComboEntry(

id, item, data, category)

aCategoryDialog~DeleteCategoryComboEntry(

id, index, category)

aCategoryDialog~FindCategoryComboEntry(

id, data, category)

aCategoryDialog~GetCategoryComboItems(id,) category
432 Object REXX for Windows432 Object REXX for Windows

CategoryDialog ClassCategoryDialog Class
GetCurrentCategoryComboIndex

For more information, see GetCurrentComboIndex method [page 351].

SetCurrentCategoryComboIndex

For more information, see SetCurrentComboIndex method [page 351].

ChangeCategoryComboEntry

For more information, see ChangeComboEntry method [page 352].

CategoryComboAddDirectory

For more information, see ComboAddDirectory method [page 352].

CategoryComboDrop

For more information, see ComboDrop method [page 353].

List Box Methods

AddCategoryListEntry

For more information, see AddListEntry method [page 353].

aCategoryDialog~GetCurrentCategoryComboIndex(

id, category)

aCategoryDialog~SetCurrentCategoryComboIndex(

id, category)
index

,

aCategoryDialog~ChangeCategoryComboEntry(

id, item, data, category)

aCategoryDialog~CategoryComboAddDirectory(

id, drvpath, fattr, category)

aCategoryDialog~CategoryComboDrop(id, category)

aCategoryDialog~AddCategoryListEntry(

id, data, category)
Chapter 15. OODialog Method Reference 433 Chapter 15. OODialog Method Reference 433

CategoryDialog ClassCategoryDialog Class
InsertCategoryListEntry

For more information, see InsertListEntry method [page 353].

DeleteCategoryListEntry

For more information, see DeleteListEntry method [page 354].

FindCategoryListEntry

For more information, see FindListEntry method [page 354].

GetCategoryListItems

For more information, see GetListItems method [page 354].

GetCurrentCategoryListIndex

For more information, see GetCurrentListIndex method [page 355].

SetCurrentCategoryListIndex

For more information, see SetCurrentListIndex method [page 355].

ChangeCategoryListEntry

For more information, see ChangeListEntry method [page 355].

aCategoryDialog~InsertCategoryListEntry(

id, item, data, category)

aCategoryDialog~DeleteCategoryListEntry(

id, index, category)

aCategoryDialog~FindCategoryListEntry(

id, data, category)

aCategoryDialog~GetCategoryListItems(id,) category

aCategoryDialog~GetCurrentCategoryListIndex(id, category)

aCategoryDialog~SetCurrentCategoryListIndex(

id, category)
index

,

aCategoryDialog~ChangeCategoryListEntry(

id, item, data, category)
434 Object REXX for Windows434 Object REXX for Windows

CategoryDialog ClassCategoryDialog Class
SetCategoryListTabulators

For more information, see SetListTabulators method [page 356].

CategoryListAddDirectory

For more information, see ListAddDirectory method [page 356].

CategoryListDrop

For more information, see ListDrop method [page 356].

Enable/Disable and Show/Hide Methods

EnableCategoryItem

For more information, see EnableItem method [page 382].

DisableCategoryItem

For more information, see DisableItem method [page 382].

ShowCategoryItem

For more information, see ShowItem method [page 383].

HideCategoryItem

For more information, see HideItem method [page 383].

aCategoryDialog~SetCategoryListTabulators(

id , tab category

,

) ,

aCategoryDialog~CategoryListAddDirectory(

id, drvpath, fattr, category)

aCategoryDialog~CategoryListDrop(id, category)

aCategoryDialog~EnableCategoryItem(category) id,

aCategoryDialog~DisableCategoryItem(category) id,

aCategoryDialog~ShowCategoryItem(category) id,

aCategoryDialog~HideCategoryItem(category) id,
Chapter 15. OODialog Method Reference 435 Chapter 15. OODialog Method Reference 435

Standard Dialog Classes and FunctionsStandard Dialog Classes and Functions
Standard Dialog Classes and Functions
The standard dialog classes are:

❑ TimedMessage
❑ InputBox
❑ PasswordBox
❑ IntegerBox
❑ MultiInputBox
❑ ListChoice
❑ MultiListChoice
❑ CheckList
❑ SingleSelection

Requires: Stddlg.cls is the source file for the standard dialog
classes. Use the tokenized version of OODialog, oodia-
log.cls, to shorten your dialog’s startup time.

 ::requires 'oodialog.cls'

Preparation: Standard dialogs are prepared by using the new
method of the class, which in turn invokes the Init
method. The parameters are described for the Init
method of each class.

Execution: The dialog is then run by using the Execute method.
Execute returns the user’s input if the OK button is
clicked and the null string if the Cancel button is
clicked to terminate the dialog. If there is more than
one return value, Execute returns the value 1 and
stores the results in an attribute.

Functions: Each standard dialog is also available as a callable
function.

Examples: See Standard Dialog Classes on page 154 and Stan-
dard Dialogs on page 312 for examples.

TimedMessage Class

The TimeMessage class shows a message window for a defined dura-
tion.

Requires: oodialog.cls is required to use this class.

Subclass: This class is a subclass of UserDialog (see page 391).

Execute: Returns 1.

The methods and function listed below are defined by this class.

Init

aTimedMessage~Init(message , title , time)
436 Object REXX for Windows436 Object REXX for Windows

Standard Dialog Classes and FunctionsStandard Dialog Classes and Functions
The Init method prepares the dialog.

Arguments: The arguments are:

message A string that is displayed inside the win-
dow as a message.

title A string that is displayed as the window
title in the title bar of the dialog.

time A number that determines how long (in
milliseconds) the window is shown.

Example: This example shows a window with the Information
title for a duration of three seconds:

 dlg = .TimedMessage~New("Application will be started,",
 "please wait", "Information", 3000)
 dlg~Execute
 drop dlg

DefineDialog

The DefineDialog method is called by the Create method of the parent
class, UserDialog, which in turn is called at the very beginning of Exe-
cute. You do not have to call it. However, you may want to overwrite it
in your subclass to add more dialog controls to the window. If you over-
write it, you have to forward the message to the parent class by using
the keyword super.

Example: This example shows how to subclass the TimedMes-
sage class and how to add a background bitmap to the
dialog window:

 ::class MyTimedMessage subclass TimedMessage
 ::method DefineDialog
 self~DefineDialog:super()
 self~BackgroundBitmap("mybackg.bmp", "USEPAL")

Execute

The Execute method creates and shows the message window. After the
given time (see Init method), it destroys the dialog automatically.

TimedMessage Function
OODialog provides a shortcut function to invoke a TimedMessage dia-
log as a function:

 ret = TimedMessage("We are starting...","Please wait",3000)

The parameters are described in the Init method.

aTimedMessage~DefineDialog

aTimedMessage~Execute
Chapter 15. OODialog Method Reference 437 Chapter 15. OODialog Method Reference 437

Standard Dialog Classes and FunctionsStandard Dialog Classes and Functions
InputBox Class

The InputBox class provides a simple dialog with a title, a message,
one entry line, an OK, and a Cancel push button.

Requires: Oodialog.cls is required to use this class.

Subclass: This class is a subclass of UserDialog (see page 391).

Execute: Returns the user’s input.

The methods and function listed below are defined by this class.

Init

The Init method prepares the input dialog.

Arguments: The arguments are:

message A text string that is displayed in the dia-
log.

title A string that is displayed as the dialog’s
title in the title bar.

preval A string to initialize the entry line. If you
do not want to put any text in the entry
line, just pass an empty string.

len The width of the entry line in dialog units.

Example: This example shows a dialog with the Input title and
an entry line:

 dlg = .InputBox~New("Please enter your email address", ,
 "Input", "user@host.domain", 150)
 value = dlg~Execute
 say "You entered:" value
 drop dlg

DefineDialog

The DefineDialog method is called by the Create method of the parent
class, UserDialog, which in turn is called at the very beginning of Exe-
cute. You do not have to call it. However, you may want to overwrite it
in your subclass to add more dialog controls to the window. If you over-
write it, you have to forward the message to the parent class by using
the keyword super.

aInputBox~Init(message , title ,

preval , len)

aInputBox~DefineDialog
438 Object REXX for Windows438 Object REXX for Windows

Standard Dialog Classes and FunctionsStandard Dialog Classes and Functions
AddLine

The AddLine method is used internally to add one entry line to the
dialog.

Execute

The Execute method creates and shows the dialog. After termination,
the value of the entry line is returned if the user clicks the OK button;
a null string is returned if the user clicks on Cancel.

InputBox Function
OODialog provides a shortcut function to invoke an InputBox dialog as
a function:

 say "Your name:" InputBox("Please enter your name","Personal Data")

The parameters are described in the Init method.

PasswordBox Class

The PasswordBox class is an InputBox dialog with an entry line that
echoes the keys with asterisks (*) instead of characters.

Requires: oodialog.cls is required to use this class.

Subclass: This class is a subclass of InputBox (see page 438).

Execute: Returns the user’s password.

The methods are the same as for InputBox, with the exception of
AddLine.

AddLine

The AddLine overwrites the same method of the parent class, Input-
Box, by using a password entry line instead of a simple entry line.

PasswordBox Function
OODialog provides a shortcut function to invoke a PasswordBox dialog
as a function:

 pwd = PasswordBox("Please enter your password","Security")

The parameters are described in the Init method of the InputBox class.

aInputBox~AddLine(x , y , l)

aInputBox~Execute

aPasswordBox~AddLine(x , y , l)
Chapter 15. OODialog Method Reference 439 Chapter 15. OODialog Method Reference 439

Standard Dialog Classes and FunctionsStandard Dialog Classes and Functions
IntegerBox Class

The IntegerBox class is an InputBox dialog whose entry line allows
only numerical data.

Requires: oodialog.cls is required to use this class.

Subclass: This class is a subclass of InputBox (see page 438).

Execute: Returns the user’s numeric input.

The methods are the same as for InputBox, with the exception of Vali-
date.

Validate

The only method this subclass overwrites is Validate, which is one of
the automatically called methods of UserDialog. It is invoked by the
OK method, which in turn is called in response to a push button event.
This method checks whether or not the entry line contains a valid
numerical value. If the value is invalid, a message window is dis-
played.

IntegerBox Function
OODialog provides a shortcut function to invoke an IntegerBox dialog
as a function:

 say "Your age:" IntegerBox("Please enter your age","Personal Data")

The parameters are described in the Init method of the InputBox class.

MultiInputBox Class

The MultiInputBox class is a dialog that provides a title, a message,
and one or more entry lines. After execution of this dialog you can
access the values of the entry lines.

Requires: oodialog.cls is required to use this class.

Subclass: This class is a subclass of UserDialog (see page 391).

Execute: Returns 1 (if OK was clicked). The values entered by
the user are stored in attributes matching the labels of
the entry lines.

The methods are the same as for the InputBox Class method [page
438] class, with the exception of Init.

aIntegerBox~validate
440 Object REXX for Windows440 Object REXX for Windows

Standard Dialog Classes and FunctionsStandard Dialog Classes and Functions
Init

The Init method is called automatically whenever a new instance of
this class is created. It prepares the dialog.

Arguments: The arguments are:

message A text string that is displayed on top of the
entry lines. Use it to give the user advice
on what to do.

title A text string that is displayed in the title
bar.

labels. A stem variable containing strings that are
used as labels on the left side of the entry
lines. Labels.1 becomes the label for the
first entry line, labels.2 for the second, and
so forth.

datas. A stem variable (do not forget the trailing
period) containing strings that are used to
initialize the entry lines. Datas.101 is the
data for the first entry line.

len The length of the entry lines. All entry
lines get the same length.

Example: This example creates a four-line input box. The data
entered is stored in the object attributes that are dis-
played after dialog execution.

 lab.1 = "&First name" ; lab.2 = "&Last name "
 lab.3 = "&Street and City" ; lab.4 = "&Profession"
 addr.101 = "Ingo Holder" ; addr.102 = "" ; addr.103 = ""
 addr.104 = "Developer in the GSDL Boeblingen"
 dlg = .MultiInputBox~new("Please enter your address", ,
 "Your Address", lab., addr.)
 if dlg~execute = 1 then do
 say "The address is:"
 say dlg~firstname dlg~lastname
 say dlg~StreetandCity
 say dlg~Profession
 end

MultiInputBox Function
OODialog provides a shortcut function to invoke a MultiInputBox dia-
log as a function:

 res = MultiInputBox('Enter your address','Personal Data', ,
 .array~of("&First name","Last &name","&City"), ,
 .array~of("Ueli","Wahli",'San Jose'), 100)

aMultiInputBox~Init(message , title

, labels. , datas.
, len

)
Chapter 15. OODialog Method Reference 441 Chapter 15. OODialog Method Reference 441

Standard Dialog Classes and FunctionsStandard Dialog Classes and Functions
 if res \= .NIL then do entry over res
 say 'Address-line[]= ' entry
 end

The parameters are described in the Init method, but, instead of
stems, arrays are passed into and returned from the function.

ListChoice Class

The ListChoice class provides a dialog with a list box, an OK, and a
Cancel button. The selected item is returned if the OK push button is
used to terminate the dialog.

Requires: oodialog.cls is required to use this class.

Subclass: This class is a subclass of UserDialog (see page 391).

Execute: Returns the user’s choice or a null string.

The method and function listed below is defined by this class.

Init

The Init method is used to initialize a new instance of this class.

Arguments: The arguments are:

message A text string that is displayed on top of the
list box. Use it to give the user advice on
what to do.

title A text string for the dialog’s title.

input. A stem variable (do not forget the trailing
period) containing string values that are
inserted into the list box.

lenx, leny The size of the list box in dialog units.

Example: This example creates a list choice dialog box where the
user can select exactly one dessert:

 lst.1 = "Cookies"
 lst.2 = "Pie"; lst.3 = "Ice cream"; lst.4 = "Fruit"
 dlg = .ListChoice~new("Select the dessert please", ,
 "YourChoice",lst.)
 say "Your ListChoice data:" dlg~execute

aListChoice~Init(message , title ,

input.
, lenx

, leny

)
442 Object REXX for Windows442 Object REXX for Windows

Standard Dialog Classes and FunctionsStandard Dialog Classes and Functions
ListChoice Function
OODialog provides a shortcut function to invoke a ListChoice dialog as
a function:

 day = ListChoice('Select a day','My favorite day', ,
 .array~of("Monday","Tuesday","Wednesday","Thursday", ,
 "Friday","Saturday","Sunday"))
 say "Your favorite day is" day

The parameters are described in the Init method, but instead of an
input stem, an array is passed into the function.

MultiListChoice Class

The MultiListChoice class is an extension of the ListChoice class. It
makes it possible for the user to select more than one line at a time.
The Execute method returns the selected items’ indexes separated by
blank spaces. The first item has index 1.

Requires: oodialog.cls is required to use this class.

Subclass: This class is a subclass of ListChoice (see page 442).

Execute: Returns the index numbers of the entries selected.

The methods are the same as for ListChoice, except that Execute
returns the index numbers of the selected entries.

Example: This example creates a multiple list choice box where
the user can select multiple entries:
 lst.1 = "Monday" ; lst.2 = "Tuesday" ; lst.3 = "Wednesday"
 lst.4 = "Thursday" ; lst.5 = "Friday" ; lst.6 = "Saturday"
 lst.7 = "Sunday"
 dlg = .MultiListChoice~new("Select the days you are" ,
 "working this week", "YourMultipleChoice",lst.)
 s = dlg~execute
 if s \= 0 then do while s \= ''
 parse var s res s
 say lst.res
 end

MultiListChoice Function
OODialog provides a shortcut function to invoke a MultiListChoice
dialog as a function:

 days = MultiListChoice('Select days','My TV Days', ,
 .array~of("Monday","Tuesday","Wednesday", ,
 "Thursday","Friday","Saturday","Sunday"))
 if days \= .NIL then do day over days
 say 'TV day =' day
 end

The parameters are described in the Init method, but, instead of
stems, arrays are passed into and returned from the function. The
return array contains the values of the selected items.
Chapter 15. OODialog Method Reference 443 Chapter 15. OODialog Method Reference 443

Standard Dialog Classes and FunctionsStandard Dialog Classes and Functions
CheckList Class

The CheckList class is a dialog with a group of one or more check
boxes.

Requires: oodialog.cls is required to use this class.

Subclass: This class is a subclass of UserDialog (see page 391).

Execute: Returns 1 (if OK was clicked). The check boxes
selected by the user are marked in a stem variable
with the value 1.

The method and function listed below is defined by this class.

Init

The Init method is used to initialize a new instance of this class.

Arguments: The arguments are:

message A text string that is displayed on top of the
check box group. Use it to give the user
advice on what to do.

title A text string for the dialog’s title.

labels. A stem variable (do not forget the trailing
period) containing all the labels for the
check boxes.

datas. This argument is a stem variable (do not
forget the trailing period) that contains the
result of execution. You can also use it to
preselect the check boxes. The first check
box relates to stem item 101, the second to
102, and so forth. A value of 1 indicates
selected, and a value of 0 indicates dese-
lected.

For example, Datas.103=1 indicates that
there is a check mark on the third box.

len Determines the length of the check boxes
and labels. If omitted, the size is calculated
to fit the largest label.

aCheckList~Init(message , title ,

labels. , datas.

,
len , max

)
444 Object REXX for Windows444 Object REXX for Windows

Standard Dialog Classes and FunctionsStandard Dialog Classes and Functions
max The maximum number of check boxes in
one column. If there are more check boxes
than max—that is labels. has more items
than the value of max—this method con-
tinues with a new column.

Example: This example creates and shows a dialog with seven
check boxes:
 lst.1 = "Monday" ; lst.2 = "Tuesday"; lst.3 = "Wednesday"
 lst.4 = "Thursday"; lst.5 = "Friday"; lst.6 = "Saturday"
 lst.7 = "Sunday"
 do i = 101 to 107
 chk.i = 0
 end
 dlg = .CheckList~new("Please select a day!", ,
 "Day of week",lst., chk.)
 if dlg~execute = 1 then do
 say "You selected the following day(s): "
 do i = 101 to 107
 a = i-100
 if chk.i = 1 then say lst.a
 end
 end

CheckList Function
OODialog provides a shortcut function to invoke a CheckList dialog as
a function:

 weekdays = .array~of("Monday","Tuesday","Wednesday", ,
 "Thursday","Friday","Saturday","Sunday")
 days = CheckList('Check the days','Working Days',weekdays)
 if days \= .NIL then do i = 1 to days~items
 if days[i] then say 'Working day =' weekdays[i]
 end

The parameters are described in the Init method, but, instead of
stems, arrays are passed into and returned from the function.

SingleSelection Class

The SingleSelection class shows a dialog that has a group of radio but-
tons. The user can select only one item of the group.

Requires: oodialog.cls is required to use this class.

Subclass: This class is a subclass of UserDialog (see page 391).

Execute: Returns the number of the radio button selected.

The method and function listed below is defined by this class.
Chapter 15. OODialog Method Reference 445 Chapter 15. OODialog Method Reference 445

Standard Dialog Classes and FunctionsStandard Dialog Classes and Functions
Init

The Init method is used to initialize a new instance of this class.

Arguments: The arguments are:

message A text string that is displayed on top of the
radio button group. Use it to give the user
advice on what to do.

title A text string for the title bar.

labels. This argument is a stem variable contain-
ing all labels for the radio buttons.

data You can use this argument to preselect one
radio button. A value of 1 selects the first
radio button; 2 the second; and so forth.

len Determines the length of the check boxes
and labels. If omitted, the size is calculated
to fit the largest label.

max The maximum number of radio buttons in
one column. If there are more radio but-
tons than max—that is, labels. has more
items than the value of max—this method
continues with a new column.

Example: This example creates and executes a dialog that con-
tains a two-column radio button group. The fifth radio
button (the button with the label May) is preselected.
 mon.1 = "January" ; mon.2 = "February" ; mon.3 = "March"
 mon.4 = "April" ; mon.5 = "May" ; mon.6 = "June"
 ...
 dlg = .SingleSelection~new("Please select a month!", ,
 "Single Selection", mon., 5, , 6)
 s = dlg~execute
 say "You Selected the month: " mon.s

SingleSelection Function
OODialog provides a shortcut function to invoke a SingleSelection dia-
log as a function:

 months = .array~of("Jan","Feb","Mar","Apr","May","Jun",,
 "Jul","Aug","Sep","Oct","Nov","Dec")
 m = SingleSelection('Check it','Born in',months,12,,6)
 say "Born in month" m '=' months[m]

The parameters are described in the Init method, but, instead of a
stem, an array is passed into the function.

aSingleSelection~Init(message , title , labels. ,

data
,

len , max

)
446 Object REXX for Windows446 Object REXX for Windows

AnimatedButton ClassAnimatedButton Class
AnimatedButton Class
The AnimatedButton class provides the methods to implement an ani-
mated button within a dialog.

The attributes and methods are described briefly here. A sample pro-
gram, oowalker.rex, is provided with the OODialog sample programs.
See Animation Demonstration on page 311.

ParentDlg Attribute holding the handle of the parent dialog.

Stopped Animation ends when set to 1 (see Stop method).

Init Initialize the animation parameters:

 but = .AnimatedButton~new(buttonid,from,to, ,
 movex,movey,sizex,sizey,delay, ,
 startx,starty,parentdialog)

These values are stored in a stem variable:

sprite.buttonid ID of animation button.
sprite.from Array of in-memory bitmap handles,

or a bitmap resource ID in a DLL.
sprite.to 0 if sprite.from is an array, or a bit-

map resource ID in a DLL.
sprite.movex Size of one move horizontally (pixels).
sprite.movey Size of one move vertically.
sprite.sizex Horizontal size of all bitmaps (pixels).
sprite.sizey Vertical size of all bitmaps.
sprite.delay Time delay between moves (ms).

Startx and starty are the initial bitmap position, and
parentdialog is stored in the ParentDlg attribute.

Two other values are initialized in the stem variable:

sprite.smooth Set to 1 for smooth edge change (can
be changed to 0 for a bouncy edge
change).

sprite.step Set to 1 as the step size between
sprite.from and sprite.to for bitmaps
in a DLL.

SetSprite Set all sprite. animation values using a stem:

 mysprite.from = .array~of(bmp1,bmp2,...)
 mysprite.to = 0
 mysprite.movex = ...
 ...
 self~setSprite(mysprite.)

GetSprite Retrieve the animation values into a stem:

 self~getSprite(mysprite.)

SetFromTo Set bitmap information (sprite.from and sprite.to):

 self~setFromTo(bmpfrom, bmpto)
Chapter 15. OODialog Method Reference 447 Chapter 15. OODialog Method Reference 447

AnimatedButton ClassAnimatedButton Class
SetMove Set size of one move (sprite.movex and sprite.movey):

 self~setMove(movex, movey)

SetDelay Set delay between moves in milliseconds (sprite.delay):

 self~setDelay(delay)

SetSmooth Set smooth (1) or bouncy (0) edges (sprite.smooth):

 self~setSmooth(0)

SetStep Set the step size (sprite.step) between sprite.from and
sprite.to for bitmaps in a DLL, for example, if bitmap
resources are numbered 202, 204, 206, and so forth:

 self~setFromTo(202,210)
 self~setStep(2)

Run Run the animation by going through all of the bitmaps
until the dialog is stopped; invokes MoveSeq:

 self~run

MoveSeq Animate one sequence through all bitmaps in the
given move steps; invokes MovePos:

 self~moveSeq

MovePos Move the bitmaps by the arguments:

 self~movePos(movex, movey)

MoveTo Move the bitmaps in the predefined steps to the given
position; invokes MoveSeq:

 self~moveTo(posx, posy)

SetPos Set the new starting position of the bitmaps:

 self~setPos(newx, newy)

GetPos Retrieve the current position into a stem:

 self~getPos(pos.)
 say 'pos=' pos.x pos.y

ParentStopped Check the parent dialog window and return its fin-
ished attribute (1 means finished).

Stop Stop animation by setting the stopped attribute to 1.

HitRight Invoked by run when the bitmap hits the right edge
(returns 1 and bitmap starts at left again; you can
return 0 and set the new position yourself).

HitLeft Invoked when the bitmap hits the left edge (default
action is to start at right again).

HitBottom Invoked when the bitmap hits the bottom edge
(default action is to start at top again).

HitTop Invoked when the bitmap hits the top edge (default
action is to start at bottom again).
448 Object REXX for Windows448 Object REXX for Windows

AnimatedButton ClassAnimatedButton Class
To use an animated button, a dialog has to:

❑ Define an owner-drawn button, for example, in a resource file

❑ Load the bitmaps of the animation into memory using an array

❑ Initialize the animated button with the animation parameters

❑ Invoke the run method of the animated button

❑ Stop the animation and remove the bitmaps from memory

The dialog can also dynamically change the parameters (for example,
the size of a move, or the speed) and overwrite actions, such as hitting
an edge.

See the oowalker.rex and oowalk2.rex examples in OODIALOG\SAMPLES.
Chapter 15. OODialog Method Reference 449 Chapter 15. OODialog Method Reference 449

AnimatedButton ClassAnimatedButton Class
450 Object REXX for Windows450 Object REXX for Windows

16
Windo
ws Program
Manager and
Registry
Object REXX ships a file with two classes to access Windows system
information:

WindowsProgramManager Interacts with the Program Manager
to create and delete program groups
and shortcuts

WindowsRegistry Interacts with the Registry to query,
modify, add, and delete entries

The classes are defined in the WINSYSTM.CLS file in the Object REXX
directory.
 451

Windows Program Manager Class and Methods
Windows Program Manager Class and Methods
You can use the WindowsProgramManager class to create program
groups and shortcuts to access your programs.

The class is defined in the WINSYSTM.CLS file. Use a ::requires state-
ment to activate its function:

 ::requires "winsystm.cls"

The WindowsProgramManager class provides the following meth-
ods:

Init Create an instance and load the required external
function package:

 mgr = .WindowsProgramManager~new

AddGroup Add a program group to the Programs group of the
desktop. If the group already exists, it is opened. The
only argument is the name of the program group:

 mgr~addGroup(name)
 mgr~addGroup("Object REXX Redbook")

DeleteGroup Delete a program group from the desktop. The only
argument is the name of the program group:

 mgr~deleteGroup(name)

ShowGroup Open a program group. The arguments are the name
of the group, and, optionally, the style (MIN, MAX). If
the style is omitted, the group is opened in normal
size:

 mgr~showGroup(name, ['MIN' | 'MAX'])
 mgr~showGroup("Object REXX Redbook")

AddItem Add a shortcut to a program group. The only required
arguments are the name of the shortcut and the pro-
gram to be invoked. Optional arguments are the name
of an icon file, the icon number (default 0), and the
working directory. The shortcut is placed in the last
group used with either AddGroup or ShowGroup.

 mgr~addItem(name,program,[iconfile],[iconno],[workdir])
 mgr~addItem('OODialog Samples', ,
 'rexx oodialog\samples\sample.rex', ,
 'oodialog\samples\oodialog.ico')

DeleteItem Delete a shortcut from the most recently used program
group. The name of the shortcut is the only argument:

 mgr~deleteItem(name)
 mgr~deleteItem('OODialog Samples')

A sample program, desktop.rex, is provided in the OBJREXX\SAMPLES
directory.
452 Object REXX for Windows

Windows Registry Class and Methods
Windows Registry Class and Methods
You can use this WindowsRegistry class to query the registry and
modify, add, and delete entries.

The class is defined in the WINSYSTM.CLS file. Use a ::requires state-
ment to activate its function:

 ::requires "winsystm.cls"

The WindowsRegistry class provides the following methods:

Init Create an instance and load the required external
function package. The current key is set to
HKEY_LOCAL_MACHINE:

 rg = .WindowsRegistry~new

Local_Machine Attribute containing the handle of root key
HKEY_LOCAL_MACHINE:

 locmach = rg~local_machine

Current_User Attribute containing the handle of root key
HKEY_CURRENT_USER:

 curuser = rg~current_user

Users Attribute containing the handle of root key
HKEY_USERS:

 usrkey = rg~users

Classes_Root Attribute containing the handle of root key
HKEY_CLASSES_ROOT:

 usr = rg~classes_root

CurrentKey Attribute containing the handle of the current key. The
current key is set by Init, Create, and Open:

 key = rg~current_key

The CurrentKey is used if the key is omitted in other
methods.

Create Add a new subkey to the registry and return its han-
dle. The arguments are the parent key and the new
subkey. The parent key can be a root key or a key
retrieved by using Open. If the parent key is omitted,
the CurrentKey is used:

 newkey = rg~create([parent],subkey)
 objectrexxkey = rg~create(,'OBJECTREXX')
 newkey = rg~create(rg~local_machine,'MyOwnKey')

Open Open a subkey and return its handle. The arguments
are the parent key (see Create for more information),
the subkey, and access. Possible values for access are
ALL (default); WRITE (create subkeys, set values);
READ (query subkeys and values); QUERY (values);
Chapter 16. Windows Program Manager and Registry 453

Windows Registry Class and Methods
EXECUTE (key access, no subkey access); NOTIFY
(change notification); and LINK (create symbolic
links). More than one value can be specified, separated
by a blank:

 key = rg~open([parent],subkey,[access])
 syskey = rg~open(rg~local_machine,'SYSTEM')

Close Close a previously opened key. The only argument is
the handle of the key:

 rg~close([key])
 rg~close(objectrexxkey)

It might take several seconds before all data is written
to disk; use Flush to empty the cache.

List Retrieve the list of subkeys for a given key in a stem
variable. The parameters are the key handle and the
name of the stem variable (including the period). The
keys are returned as stem.1, stem.2, and so forth:

 rg~list([key],stem.)
 rg~list(objectrexxkey,orexxkeys.)
 do i over orexxkeys.
 say orexxkeys.i
 end

Query Retrieve the values of a given key and return them in
a stem variable. The suffixes are class (class name);
subkeys (number of subkeys); values (number of value
entries); and date and time (of last modification):

 var. = rg~query([key])
 myquery. = rg~query(objectrexxkey)
 say "class="myquery.class "at" myquery.date
 say "subkeys="myquery.subkeys "values="myquery.values

Delete Delete a given subkey and all its subkeys and values:

 rg~delete([key])
 rg~delete(obectrexxkey)

ListValues Retrieve all value entries of a given key and store
them in a compound variable. The arguments are the
key and the name of a compound variable (including
the period). The suffixes of the compound variable are
numbered starting with 1, and for each number the
three values are the name (var.i.name), the data
(var.i.data), and the type (var.i.type). The type is NOR-
MAL for alphabetic values, EXPAND for expandable
strings (for example, a PATH), NONE for no specified
type, and OTHER for any other type (for example,
binary):

 rg~listValues([key],var.)
 qstem. = rg~query(objectrexxkey)
 rg~listvalues(objectrexxkey,lv.)
454 Object REXX for Windows

Windows Registry Class and Methods
 do i = 1 to qstem.values
 say "name of value:" lv.i.name "(type="lv.i.type")"
 if lv.i.type = 'NORMAL' then
 say "data of value:" lv.i.data
 end

GetValue Retrieve the data and type for the default or a named
value of a given key. The arguments are the key and
the name of the value. The result is a stem variable
with suffixes data and type. The default value is
returned if the name is blank or omitted:

 var. = rg~getValue([key],[name])
 myval. = rg~getvalue(,'filesystem') /* current key */
 say "Type is" myval.type
 if myval.type = 'NORMAL' then say "Value is" myval.data
 myval. = rg~getvalue(mykey)
 say "my default value is:" myval.data

SetValue Set the default or a named value of a given key. The
arguments are the key, the name of the value (omit or
blank for the default value), the value itself, and the
type (NORMAL, EXPAND, NONE, OTHER):

 rg~setValue([key],[name],value,[type])
 rg~setvalue(objectrexxkey,,'My default','NORMAL')
 rg~setvalue(objectrexxkey,'VERSION','1.0')

DeleteValue Delete the default or a named value for a given key.
The arguments are the key and the name (or blank for
the default value):

 rg~deleteValue([key],[name])
 rg~deletevalue(objectrexxkey)

Connect Open a key, either HKEY_LOCAL_MACHINE or
HKEY_USERS, on a remote computer. The arguments
are the key and the computer name:

 rg~connect([key],computername)

Save Save the entries of a given key into a file. The argu-
ments are the key and the name of the file:

 rg~save([key],filename)
 rg~save(objectrexxkey,'\objrexx\orexx')

Do not use a file extension on a FAT file system.

Load Load the entries of a given key under HKEY_USER or
HKEY_LOCAL_MACHINE from a file. Registry infor-
mation is stored in the form of a hive; that is, a dis-
crete body of keys, subkeys, and values that is rooted
at the top of the registry hierarchy. A hive is backed by
a single file. The arguments are the key and the name
of the file:

 rg~load([key],filename)
 rg~load(aKey,'xxxxxxx')
Chapter 16. Windows Program Manager and Registry 455

Windows Registry Class and Methods
Restore Restore a key from a file. The arguments are a key, the
name of the file, and optionally the VOLATILE key-
word:

 rg~restore([key],filename,['VOLATILE'])
 rg~restore(objectrexxkey,'\objrexx\orexx')

The VOLATILE keyword creates a new memory-only
set of registry information that is valid only until the
system is restarted.

Replace Replace the backup file of a subkey with a new file.
The values in the new file become active when the sys-
tem is restarted. The arguments are a key, a subkey,
the name of the new file, and the name of the old file:

 rg~replace([key],subkey,newfilename,oldfilename)

Unload Remove a subkey and its dependents from the registry
but do not modify the file containing the registry infor-
mation. The arguments are a parent key and the sub-
key to be removed:

 rg~unload([key],subkey)

Flush Force the system to write the cache buffer of a given
key to disk:

 rg~flush([key])

Two sample programs, reg_nt.rex and reg_95.rex, are provided in the
OBJREXX\SAMPLES directory.
456 Object REXX for Windows

17
Objec
t REXX
Demonstration
Workbench
Object REXX provides a workbench that can be used to debug Object
REXX programs. You can interactively run programs, watch and mod-
ify values of variables, set breakpoints, and trace programs.

The workbench is included with Object REXX on the CD as a demon-
stration version, without the full function that will be included in a
future Object REXX for Windows product.

Starting the Object REXX Workbench
You can invoke the workbench program, ORXWB.EXE, directly or through
the shortcut provided in the Object REXX program group.

Figure 160 show the initial layout of the workbench.
 457

Starting the Object REXX Workbench
You can tailor the layout of the windows and button bars (Tools, Input,
Edit, Help, and Trace) by moving them to another position. Figure 161
shows the button bars floating freely in the window.

Figure 160. Object REXX Workbench Layout

Figure 161. Object REXX Workbench Button Bars
458 Object REXX for Windows

Debugging a Program with the Workbench
Debugging a Program with the Workbench
Open a program, using the File pull-down, and load it into the edit
window. Now you can debug the program:

❑ Place the cursor in front of a line and set a breakpoint, using the
Execution pull-down or the push button in the trace bar.

❑ Highlight a variable, modify its value, or add it to the watch win-
dow (right mouse button or Execution pull-down).

❑ Set trace on or off (trace output is in a separate window).

❑ Place the cursor on a program line and start execution, using Run
to Cursor (Execution pull-down or trace bar push button).

Figure 162 shows the program source with a breakpoint set (triangle)
and the current point of execution (circle). Watched variables and cur-
rently exposed variables are displayed in windows at the bottom.

Figure 162. Object REXX Workbench Program Execution
Chapter 17. Object REXX Demonstration Workbench 459

Workbench Function
When debugging OODialog programs, you can use the nontokenized
version of oodialog.cls by setting an additional path in Execution
Settings (see Figure 163).

Workbench Function
The demonstration version of the workbench does not include the
functions of saving the source after modifications and saving the work-
bench layout.

Explore the workbench, using small programs and learn more about
its functions through the online help facility.

Start the REXXTRY program in the workbench, using the shortcut
provided in the Object REXX program group. The scrolling and recall
facilities of the workbench make REXXTRY easier to use than in a
DOS window.

Figure 163. Object REXX Workbench Execution Settings
460 Object REXX for Windows

Part 6

Appendixes

Object
REXX
461

462 Object REXX for Windows

A
New F
eatures in
Object REXX and
Migration
Object REXX for Windows NT and Windows 95 is a superset of classic
REXX and is compatible with Object REXX for OS/2. Therefore, most
REXX programs will run unchanged using Object REXX. Some small
incompatibilities that may arise when migrating existing programs
are discussed at the end of this chapter, in Migration Considerations
on page 485.

Many enhancements have been built into Object REXX. The sample
applications presented in this book demonstrate in detail the OO sup-
port. In this chapter, we summarize the OO support and discuss the
other enhancements in detail.

Object REXX provides the following enhancements:

❑ A full set of OO facilities

➢ Classes and methods with inheritance and polymorphism
➢ Metaclasses and Mixin classes
➢ A new operator, ~, to invoke methods
 463

Object-Oriented Facilities
➢ Concurrency—the ability to run code easily in parallel
➢ New special variables (self, super)
➢ Special and built-in objects

❑ A set of directives that permit

➢ Definition of classes and methods (::class and ::method)
➢ Embedding of source files (::requires)
➢ Creation of improved subroutines with private variables

(::routine)

❑ The REXXC utility, which can be used to distribute programs
without source and to speed up load time

❑ New and enhanced instructions

❑ New and enhanced built-in functions

❑ New condition traps

❑ New REXX utilities, including a set of Windows specific functions
(SysSystemDirectory, SysVolumeLabel, and SysPulseEventStem)

❑ An Object REXX class for the Windows Program Manager to
create program groups and icons

❑ An Object REXX class for the Windows Registry to query and
update the content

Syntax diagrams are used extensively to describe the detailed param-
eters of the new and enhanced instructions. The structure of the syn-
tax diagrams is explained in Appendix C, Definition for Syntax
Diagram Structure, on page 529.

Object-Oriented Facilities
The set of object-oriented facilities is so large that we cannot describe
them all in detail here. Our intention is to add a few concepts and
facilities not described in the earlier chapters of this book. We encour-
age study of the chapters on OO facilities in the Object REXX Refer-
ence manual.

New Special Variables

There are two new special variables:

self The object of the currently running method. Used to
invoke other methods on the same object (self~display) or
to pass as a parameter to a method of another object (.Cus-
tomer~addVehicle(self)).
464 Object REXX for Windows

Directives
super The superclass (parent in inheritance hierarchy) of the
current object. Used to invoke a method in the superclass,
in many cases the method of the same name. For example,
in the init method of a class it is common to invoke the init
method of the parent (self~init:super).

Special and Built-In Objects

Object REXX provides a set of objects that are always available:

.environment
The global environment object. It contains all predefined
class objects (.Object, .String, etc.) and some other objects
(.true, .false, .nil). It can be used for communication within
one process in a Windows system.

.nil The NIL object, an object that does not contain any data. It
can be used to test for nonexistent data—for example, in
an array:

 if myarray[i] = .nil then ...

.local The local environment object. It contains default
input/output streams (.input, .output, .error) and can be
used for communicating among parts of the application
within one process (see The Local Directory on page 225).

.methods A directory of methods defined in the current program
using ::method directives without an associated class.

.rs The return code from any executed command, with values
of -1 (failure), 1 (error), 0 (OK).

Directives
Object REXX provides four directives, two to define classes and meth-
ods, one to define external routines, and one to implement dependen-
cies between source files.

Directives are nonexecutable and must be placed at the end of the
source file. They are processed first to set up a program’s classes,
methods, and routines.

Class Directive

The ::class directive defines a new class. Several options are available:

public Makes the class available in all programs that have a
::requires directive for this program

subclass Inherits from a parent class
Appendix A. New Features in Object REXX and Migration 465

Directives
inherit Inherits from other mixin classes

mixinclass Defines a mixin class for inheritance

metaclass Defines a meta class for additional class methods

Method Directive

The ::method directive defines a method. Multiple method directives
are usually placed directly after the class directive. All options except
protected are described in this redbook. The protected option deals
with the Security Manager, an Object REXX feature that has not been
used in this redbook.

Routine Directive

The ::routine directive defines a callable subroutine. Such routines
behave like external routines but are in the search order before exter-
nal routines (after internal ones). The only option is public, which
makes the routine available to all programs with a ::requires directive
for this program.

classname ::CLASS

METACLASS metaclass

SUBCLASS Object

MIXINCLASS mclass
SUBCLASS
sclass

PUBLIC

INHERIT iclasses
;

(1) (1)

(1)

(2)

(1)

Notes:
1 These options can be specified in any order.
2 If INHERIT is specified, it must be the last option.

::METHOD methodname
CLASS ATTRIBUTE PRIVATE

GUARDED

UNGUARDED PROTECTED
;

Notes:
1 These options can be specified in any order.

(1)

(1)

(1)

(1)

(1) (1)

::ROUTINE routinename
PUBLIC

;
466 Object REXX for Windows

The REXXC Utility
Requires Directive

The ::requires directive specifies that a program requires access to
another source program. In many cases, the other program contains
class definitions needed for execution. The ::requires directive allows
the building of libraries of reusable code and the implementation of
configuration management of REXX programs (see Chapter 11, Con-
figuration Management with Object REXX, on page 215). The
::requires directives must precede all other directives.

The REXXC Utility
The REXXC utility can be used to transform a source program into an
executable image that can be distributed without the source code:

 REXXC inputfile outputfile

When there are multiple programs that call each other, it is necessary
to keep the same file names after transformation. There are basically
two approaches:

❑ Use the same names for the output files but place them in a differ-
ent matching directory structure.

❑ Transform the source into an output file and, when successful,
save the source under a different name and rename the output to
the name of the original source. (With long names support, the
source can be saved as filename.ext.rxc, for example, as imple-
mented in the REXXCX command in the Xamples subdirectory of
the car dealer application.)

See Tokenizing Object REXX Programs on page 75 for more informa-
tion.

New and Enhanced Instructions
The new instructions added to Object REXX are:

❑ EXPOSE
❑ FORWARD
❑ GUARD
❑ RAISE
❑ REPLY
❑ USE

The parameters for four old instructions have been enhanced:

::REQUIRES programname ;
Appendix A. New Features in Object REXX and Migration 467

New and Enhanced Instructions
❑ CALL
❑ DO
❑ PARSE
❑ SIGNAL

The new and changed instructions are discussed in alphabetical order.

CALL (Enhanced)

The first new feature on the CALL instruction is that (var) can now be
used instead of name to specify the routine to be called. The variable is
evaluated first, and the resulting value is used as the target of the
CALL instruction. Observe that this value is not changed to upper-
case, so it must exactly match the label to be called. In this small
example, there are three different ways of calling internal and exter-
nal routines:

 /* TstCALL.CMD - Test of "CALL (var)" instruction */
 Call label calldata /* label is a symbol (constant) */
 label = 'label'
 Do 2
 Call (label) calldata /* label is a variable */
 label = 'newlabel' /* - that changes */
 End
 Call "label" calldata /* label is a string */
 exit
 label:
 Say "The first call was made to label - label:"
 return
 "label":
 Say 'The second call was made to label - "label":'
 return
 "newlabel":
 Say 'The third call was made to label - "newlabel":'
 return

CALL name
(var)

,

expression
OFF ANY

ERROR
FAILURE
HALT
NOTREADY
USER usercondition

ON ANY
ERROR
FAILURE
HALT
NOTREADY
USER usercondition

NAME trapname

;
468 Object REXX for Windows

New and Enhanced Instructions
The last call to "label" bypasses any search for an internal routine
and calls an external command file named LABEL.CMD:

 /* LABEL.CMD - test with external routine */
 Say 'The fourth call was made to external routine - LABEL.CMD'
 return

Running the TstCALL.CMD gave the expected result. The little do loop
(Do 2) caused the same call statement to call two different routines.
The variable label was evaluated correctly.

 [C:\]TstCALL
 The first call was made to label -> label:
 The second call was made to label -> "label":
 The third call was made to label -> "newlabel":
 The fourth call was made to external routine -> LABEL.CMD

Also, the CALL instruction has two new conditions, ANY and USER,
added. They are explained in SIGNAL (Enhanced) on page 474, and
we will come back to these in connection with the rest of the new con-
dition traps in New Condition Traps on page 480.

DO (Enhanced)

The DO instruction has a new repetitor function added that will make
it possible to loop through all values of a stem object or any other col-
lection that provides a makearray method. The repetitor is coded as
control2 OVER collection in the syntax diagram below.

DO
repetitor conditional

;

instruction

repetitor:

controll=expri
TO exprt BY exprb FOR exprf

control2 OVER collection
FOREVER
exprr

conditional:

WHILE exprw
UNTIL expru

name
;

END
Appendix A. New Features in Object REXX and Migration 469

New and Enhanced Instructions
The DO xvar OVER Stemx. sets the variable xvar to each one of the
member names of the Stemx. stem object. This is very useful because
we no longer have to know the names of the tails in a stem variable.
The DO .. OVER gives all the tails, but in any order, so do not rely on
the order.

DO OVER works very well with the collection classes of Object REXX,
such as lists, arrays, sets, tables, bags, and relations. The car dealer
application uses it extensively.

EXPOSE (New)

The EXPOSE instruction is new for Object REXX. Before, we had the
EXPOSE option on the PROCEDURE instruction. The PROCEDURE
instruction protected the variables of the calling routine. If the routine
needed access to some of those variables, we used the EXPOSE option
to make them available. The new EXPOSE instruction has a very sim-
ilar function for the variables of an object. It is used to expose the
instance or class variables of a method from the object’s variable pool.
The EXPOSE instruction can be used only in a method and, if used, it
must be the first instruction after the ::method directive.

FORWARD (New)

This new instruction is used to forward a message that caused the cur-
rently active method to start running. Parts of the forwarded message
can be changed by the different options on the FORWARD instruction.
Target object, arguments, and even the message name can be changed.

One use of FORWARD is to pass on a message to the superclass if the
current method is overriding a method of that class but still wants
that method to run. The CONTINUE option decides whether a return
should be made to the forwarding method. It also decides how any
result should be handled. The FORWARD instruction causes no con-
currency—the forwarding method waits for the return (if CONTINUE
is specified) or exits directly after forwarding the message.

EXPOSE name
(name)

;
470 Object REXX for Windows

New and Enhanced Instructions
GUARD (New)

The GUARD instruction is used to control access to an object’s vari-
able pool. The normal state for an object is that it is guarded from con-
current use by different methods. Sometimes we want to let multiple
methods share the use of one object’s variable pool. This is done by
using either methodname~setunguarded or ::method methodname
unguarded. The GUARD instruction can now be used to temporarily
lock out concurrent use of the object’s variable pool. The option when
expression can make it conditional.

An example of GUARD is used in the fork class of the philosophers’
forks (see Figure 131 on page 275).

PARSE (Enhanced)

The PARSE instruction has two small enhancements. The upper
option is now complemented with a lower option; thus, any character
string to be parsed is first translated to lowercase. The other new
option—caseless—causes any matching done during parsing to be
independent of case; a letter in uppercase is thus equal to the same
letter in lowercase.

FORWARD
CONTINUE ARGUMENTS expra

ARRAY (
,
expri)

MESSAGE exprm

CLASS exprs TO exprt

(1) (1)

(1)

(1)(1)

Notes:
1 These options can be specified in any order.

GUARD ON
WHEN expression

OFF
WHEN expression

;
Appendix A. New Features in Object REXX and Migration 471

New and Enhanced Instructions
Examples:

 parse value 'AbCdEfGhIjKlM' with p1 'FgH' p2
 ===> p1 = 'AbCdEfGhIjKlM', p2 = ''
 parse caseless value 'AbCdEfGhIjKlM' with p1 'FgH' p2
 ===> p1 = 'AbCdE', p2 = 'IjKlM'

RAISE (New)

Traps are normally created totally involuntarily. RAISE is a new
instruction that enables the programmer to create traps in a con-
trolled way.

PARSE
UPPER
LOWER

CASELESS
ARG
LINEIN
PULL
SOURCE
VALUE

expression
WITH

VAR name
VERSION

template list
;

(1)

(1)

(1)

Notes:
1 UPPER and CASELESS or LOWER and CASELESS can be specified in either order.

EXIT
expre

RETURN
exprr

; RAISE condition
ERROR errorcode
FAILURE failurecode
SYNTAX number
USER usercondition
PROPAGATE

options

options:

ADDITIONAL expra

ARRAY (
,
expri)

DESCRIPTION exprd

(1)

Notes:
1 The options can be specified in any order except that if EXIT is specified without expre or RETURN without exprr, it
 must appear last.
472 Object REXX for Windows

New and Enhanced Instructions
One nice use of the RAISE instruction is to have a routine for catching
condition traps for methods without having to add a lot of code to each
method.

The following is an example of raise propagate:

 /* TstRaise.Cmd - Test the new RAISE instruction */
 signal on any
 tm = .myTest~new
 say tm~myMethod
 exit
 any:
 signal off any
 if .local["M.SIGL"] <> .nil then do
 sigl = .local["M.SIGL"]
 .local["M.SIGL"] = .nil
 end
 if var('rc')
 then say 'REXX ['condition("C")'] error' rc 'in line' sigl':' ,
 "ERRORTEXT"(rc)
 else say 'REXX ['condition("C")'] error in line' sigl
 say 'The Source Line is:'"SOURCELINE"(sigl)
 exit
 ::class myTest
 ::method init
 return
 ::method myMethod
 signal on any
 a = 'xyz'
 c = a+2 /* This line causes SYNTAX error */
 return
 any:
 .local["M.SIGL"] = sigl
 raise propagate
 ===> Result:
 REXX [SYNTAX] error 41 in line 25: Bad arithmetic conversion
 The Source Line is: c = a+2

REPLY (New)

REPLY is used to send an early reply from a method to the caller,
removing the method from the current activity stack and letting it run
concurrently with the caller. This is one of the ways to cause concur-
rency under Object REXX. See Examples of Early Reply with
Unguarded and Guarded Methods on page 270. Observe that REPLY
can be used only within methods, and it can be executed only once
within a method.

REPLY
expression

;
Appendix A. New Features in Object REXX and Migration 473

New and Enhanced Instructions
SIGNAL (Enhanced)

SIGNAL is used to cause an abnormal change in the flow of control or,
if ON or OFF is specified, it controls the trapping of specific condi-
tions. In Object REXX, some new conditions have been added:

❑ ANY—traps any condition not specifically enabled by the other
condition settings

❑ LOSTDIGITS—detects when a number in an arithmetic operation
has more digits than the current setting of NUMERIC DIGITS

❑ NOMETHOD—detects when an object receives an unknown mes-
sage and there is no unknown method to receive it

❑ NOSTRING—detects when a string value is required from an
object and it is not supplied

❑ USER usercondition—allows the setup of user conditions invoka-
ble by the RAISE instruction that specifies the same usercondition
name.

For more information on conditions and SIGNAL, see CALL/SIGNAL
(Enhanced) on page 480.

SIGNAL labelname

VALUE
expression

OFF ANY
ERROR
FAILURE
HALT
LOSTDIGITS
NOMETHOD
NOSTRING
NOTREADY
NOVALUE
SYNTAX
USER usercondition

ON ANY
ERROR
FAILURE
HALT
LOSTDIGITS
NOMETHOD
NOSTRING
NOTREADY
NOVALUE
SYNTAX
USER usercondition

NAME trapname

;
474 Object REXX for Windows

New and Enhanced Built-In Functions
USE (New)

USE ARG retrieves the argument objects provided to a program, rou-
tine, function, or method. The objects are assigned into variables.

The difference between USE ARG and PARSE ARG is that PARSE
ARG (and ARG) accesses and parses the string values of the argu-
ments, but USE ARG allows nonstring arguments and does a one-to-
one assignment of arguments to REXX variables. This is the way we
pass objects (not only strings) between routines.

New and Enhanced Built-In Functions
Object REXX has three new built-in functions and some changes to
nine old ones.

ARG (Enhanced)

ARG has two new options. The first is array, which returns the argu-
ments in the form of an array object. The array index corresponds with
the argument position. If the option n is used, the index starts at the
specified position. If any argument is omitted, the corresponding index
is absent. The second new option is normal, which returns the nth
argument, if it exists, or the null string otherwise.

CHANGESTR (New)

CHANGESTR returns a copy of haystack, in which newneedle replaces
all occurrences of needle.

USE ARG
,

name

ARG (
n

,option

)

CHANGESTR (needle,haystack,newneedle)
Appendix A. New Features in Object REXX and Migration 475

New and Enhanced Built-In Functions
CONDITION (Enhanced)

CONDITION has two new options. The additional option makes it
possible to get some additional object information on certain condi-
tions (NOMETHOD, NOSTRING, NOTREADY, SYNTAX, and
USER). The second new option, object, returns an object containing all
the information about the current trapped condition. This can be used
to create a generalized trap-and-debug routine, as described in
CALL/SIGNAL (Enhanced) on page 480.

COUNTSTR (New)

COUNTSTR returns a count of the nonoverlapping occurrences of nee-
dle in haystack. Here is one example:

 countstr('11','101111101110') --> 3 /* observe - no overlap */

DATATYPE (Enhanced)

DATATYPE has two new types. The first one is variable. As an exam-
ple, DATATYPE(xyz,’v’) would return 1 if xyz could be on the left-hand
side of an assignment without causing a SYNTAX condition.

The second new type is 9 Digits. The description specifies that this
type returns 1 if DATATYPE(string,’w’) would return 1 when
NUMERIC DIGITS is set to 9. Thus if NUMERIC DIGITS is larger
than 9, type 9 returns 0 for any whole number larger than 9 digits.
Here is an example:

 numeric digits 12
 datatype('1234567890,'W') --> 1 /* less than digits() */
 datatype('1234567890,'9') --> 0 /* more than 9 digits */

CONDITION (
option

)

COUNTSTR (needle,haystack)

DATATYPE (string
,type

)
476 Object REXX for Windows

New and Enhanced Built-In Functions
DATE (Enhanced)

DATE is now enhanced so that it is possible to work with a date other
than the current one. The string allows input of a date to translate
from one form to another. If the input string is not in the default for-
mat (dd mon yyyy), option2 can be used to specify the format to Object
REXX. For example, if you want to know how many days it is to your
next birthday, enter the following statement in a REXXTRY window
(96/mm/dd is your birthday):

 say date('B','96/mm/dd','O') - date('B') 'days'

Two of the old options have different names. Basedate is now only base
and sorted is changed to standard.

STREAM (Enhanced)

In Object REXX, input and output can be handled two ways. The old
way is to use the built-in functions (STREAM, LINES, LINEIN, LINE-
OUT, CHARIN, and CHAROUT), which still work. STREAM has a lot
of new command strings that we will look at, but we will not go
through them all in detail. The new way is to use the new stream class
(.Stream) in Object REXX, in which all of the built-in functions are
available through methods.

Whichever we choose, we must remember not to mix the two ways for
the same stream object. When we use the built-in I/O functions, the
language processor creates a stream object and maintains it for us. If
we use the new method to create a stream object, the object is
returned to and maintained by our own program.

Because of this, when Object REXX stream methods and stream built-
in functions refer to the same file from the same program, there are
two separate stream objects with different read and write pointers.
This will cause unpredictable results if the stream is written to by
using both methods and built-in functions.

So what are the changes to STREAM that both methods and functions
can use:

1. OPEN has some new options. First, Object REXX now supports
separate pointers for read and write. The default is to open for
both read and write. That can also be specified by option both, in
case we want to point it out or add one of the new position options,
append or replace. The position options are also valid if we open
for WRITE.

DATE (
option

,string
,option2

)
Appendix A. New Features in Object REXX and Migration 477

New and Enhanced Built-In Functions
STREAM (name

,
State

Command , stream_command
Description

stream_command:

OPEN

BOTH
APPEND
REPLACE

READ

WRITE
APPEND
REPLACE

Options

CLOSE
FLUSH

SEEK
POSITION

=

<
+
-

offset READ
WRITE

CHAR

LINE

QUERY DATETIME
EXISTS
HANDLE

SEEK
POSITION

READ
CHAR

LINE

WRITE
CHAR

LINE
SYS

SIZE
STREAMTYPE
TIMESTAMP

Options:

NOBUFFER
BINARY

RECLENGTH length

)
478 Object REXX for Windows

New and Enhanced Built-In Functions
Option nobuffer turns off buffering of the stream. This forces all
data written to the stream to be physically written immediately to
the media.

Binary makes it possible to handle data without regard to any
line-end characters, and reclength makes it possible to define a
fixed record length so that line operations can be used.

2. FLUSH is a new command that forces any data currently buffered
for writing to be written to this stream.

3. SEEK now has a synonym called POSITION. Since we now have
two pointers, we have to choose between the read pointer (default)
and the write pointer. Char (default) specifies that we are seeking
in terms of character position, and line in terms of lines.

4. QUERY is enhanced by four new options:

• Handle—returns the handle associated with the open stream.

• Seek/position—returns the current read or write position of
the file, as qualified by read, write, char, and line.

• Streamtype—returns the type of stream (persistent, transient,
or unknown).

• Timestamp—returns the date and time stamps of a stream in
the form yyyy-mm-dd hh:mm:ss.

TIME (Enhanced)

TIME is now enhanced so that it is possible to work with a time other
than the current one. The string allows input of a date to translate
from one form to another. If the input string is not in the default for-
mat (hh:mm:ss), option2 can be used to specify the format to Object
REXX.

VAR (New)

VAR is a new built-in function. It returns 1 if name is the name of a
variable (that is, a symbol that has been assigned a value), or 0 other-
wise.

TIME (
option

,string
,option2

)

VAR (name)
Appendix A. New Features in Object REXX and Migration 479

New Condition Traps
New Condition Traps
New condition traps are implemented in both the CALL and SIGNAL
instructions.

CALL/SIGNAL (Enhanced)

The new conditions are explained in SIGNAL (Enhanced) on page 474.
Note that the RAISE condition does not trap on the level issued. It
shows up as a trap on the calling statement in the parent routine.

The code examples below show the use of a generalized trap routine. A
main program requires the class definition and a generalized trap rou-
tine. It creates an object and runs a method that causes a syntax error.

The main program:

 /* TstRaise.Cmd - Test the new RAISE instruction */
 signal on any
 tm = .myTest~new
 say tm~myMethodA
 exit
 any: interpret .local["M.TRAPDSP"]
 ::requires 'TstRaise.CaM' /* myTest class and methods */
 ::requires 'TrapDisp.Cmd' /* generalized trap routine */

The program containing the Object REXX class and methods:

 /* TstRaise.CaM - Class & Method directives for TstRaise.Cmd */
 ::class myTest public
 ::method init
 return
 ::method myMethodA
 signal on any
 x = self~myMethodB
 return x
 any: interpret .local["M.TRAPRTN"]
 ::method myMethodB
 signal on any
 a = 'xyz'
 c = a+2 /* this line will cause SYNTAX error */
 return c
 any: interpret .local["M.TRAPRTN"]

CALL
SIGNAL

OFF condition
USER usercondition

ON condition
USER usercondition NAME trapname

;
480 Object REXX for Windows

New Condition Traps
The generalized trap routine:

 /* TrapDisp.Cmd - Error condition trap and display routines */
 .local["M.TRAPRTN"] = 'trace "o"; ',
 'if .local["M.SIGL"] = .nil then do; ',
 ' .local["M.SIGL"] = sigl; ',
 ' .local["M.COBJ"] = condition("O"); ',
 ' PARSE SOURCE with . sourceid; ',
 ' .local["M.COBJ"]["M.MODULE"] = sourceid; ',
 ' .local["M.COBJ"]["M.LINE"] = sourceline(sigl); ',
 'end; ',
 'raise propagate; '
 .local["M.TRAPDSP"] = 'trace "o"; ',
 'signal off any; ',
 'if .local["M.SIGL"] <> .nil then do; ',
 ' sigl = .local["M.SIGL"]; ',
 ' .local["M.SIGL"] = .nil; ',
 ' CObj = .local["M.COBJ"]; ',
 'end; ',
 'else do; ',
 ' CObj = condition(o); ',
 ' CObj["M.MODULE"] = CObj["PROGRAM"]; ',
 ' CObj["M.LINE"] = sourceline(sigl); ',
 'end; ',
 'if var("rc"); ',
 ' then say "REXX ["CObj["CONDITION"]"] error" rc ',
 ' "in line" sigl":" "ERRORTEXT"(rc); ',
 ' else say "REXX ["CObj["CONDITION"]"] error in line" sigl; ',
 'say "The Source Module is: "CObj["M.MODULE"]; ',
 'say "Source line is:" CObj["M.LINE"]; ',
 'exit; '

Sample execution:
 [C:\]TstRaise
 REXX [SYNTAX] error 41 in line 16: Bad arithmetic conversion
 The Source Module is: C:\TstRaise.CaM
 Source line is: c = a+2 /* this line will cause SYNTAX error */
Appendix A. New Features in Object REXX and Migration 481

New REXX Utilities
New REXX Utilities
A set of new REXX utilities has been added in Object REXX. These are
described in detail in the Object REXX manuals; therefore, we include
only a short description here.

Utilities for Semaphores

If the system API functions do not return a value, the GetLastError()
return code is returned to the caller.

SysCreateEventSem
Creates or opens a Windows event semaphore. Returns an
event semaphore handle that can be used with the
SysOpenEventSem, SysCloseEventSem, SysRe-
setEventSem, SysPostEventSem, SysWaitEventSem,
and SysPulseEventSem functions. Returns a null string
if the semaphore cannot be created or opened.

SysOpenEventSem
Opens a Windows event semaphore and returns the
OpenEvent return codes.

SysPostEventSem
Posts an Windows event semaphore and returns the Set-
Event return codes.

SysWaitEventSem
Waits on an Windows event semaphore and returns the
WaitForSingleObject return codes.

SysResetEventSem
Resets an Windows event semaphore and returns the Sys-
ResetEventSem return codes.

SysCloseEventSem
Closes an Windows event semaphore and returns the
CloseHandle return codes.

SysCreateMutexSem
Creates or opens a Windows mutex semaphore. Returns a
mutex semaphore handle that can be used with the
SysOpenMutexSem, SysCloseMutexSem, SysRe-
questMutexSem, and SysReleaseMutexSem functions.
Returns a null string if the semaphore cannot be created
or opened.

SysOpenMutexSem
Opens a Windows mutex semaphore and returns the
OpenMutex return codes.

SysRequestMutexSem
Requests a Windows mutex semaphore and returns the
WaitForSingleObject codes.
482 Object REXX for Windows

New REXX Utilities
SysReleaseMutexSem
Releases a Windows mutex semaphore and returns the
ReleaseMutex return codes.

SysCloseMutexSem
Closes an Windows mutex semaphore and returns the
CloseHandle return codes.

SysPulseEventSem
Posts and immediately resets an event semaphore, and
returns the PulseEvent return code.

Utilities for REXX Macros

SysAddRexxMacro
Adds a routine to the REXX macrospace and returns the
RexxAddMacro return codes.

SysQueryRexxMacro
Queries the existence of a macrospace function. Returns
either the placement order of the macrospace function or a
null string if the function does not exist in the macrospace.

SysReorderRexxMacro
Changes the search-order position of a loaded macrospace
function. The new search-order position could be either
before or after any registered functions and external
REXX files. SysReorderRexxMacro returns the
RexxReorderMacro return codes.

SysDropRexxMacro
Removes a routine from the REXX macrospace and
returns the RexxDropMacro return codes.

SysClearRexxMacroSpace
Removes all loaded routines from the REXX macrospace
and returns the RexxClearMacro return codes.

SysLoadRexxMacroSpace
Loads all functions from a file created with the SysSav-
eRexxMacroSpace utility. If any of the functions already
exists in the macrospace, the entire load request is dis-
carded and the macrospace remains unchanged. SysLoa-
dRexxMacroSpace returns the RexxLoadMacro
return codes.

SysSaveRexxMacroSpace
Saves all REXX macrospace functions to a file. Observe
that saved macrospaces can be loaded only with the same
interpreter level that created the image. SysSaveRexx-
MacroSpace returns the RexxSaveMacro return codes.
Appendix A. New Features in Object REXX and Migration 483

New REXX Utilities
Utilities for Windows Systems

SysBootDrive
Returns the drive used to boot Windows, for example, C:.

SysFileSystemType
Returns the name of the file system for a drive (FAT,
HPFS, LAN, etc.). If the drive is not accessible, a null
string is returned.

SysLoadFuncs
Loads all RexxUtil functions (or other packages). After a
REXX program calls SysLoadFuncs, the RexxUtil func-
tions are available in all Windows sessions:

 call RxFuncAdd 'SysLoadFuncs', 'RexxUtil', 'SysLoadFuncs'
 call SysLoadFuncs

SysSetPriority
Changes the priority of the current process and returns
the SysSetPriority return codes.

SysSwitchSession
Makes the named application the foreground application.

SysSystemDirectory
Returns the Windows system directory.

SysVolumeLabel
Returns the label of the specified or current drive.
484 Object REXX for Windows

Migration Considerations
Migration Considerations
Migration considerations are described in the Object REXX Reference
manual. Here we provide a short extract:

Stems Stems behave a little differently in Object REXX. The
symbol functions return VAR (not LIT) because a stem
object is automatically created the first time used, and a
NOVALUE condition is never raised. Stems can be
assigned to each other (a. = z.), and they point to the same
object.

In many cases, it may be desirable to use some of the new
collections provided by Object REXX, instead of a stem
variable.

Parse version
Return n.nn, the current version.

Streams Avoid mixing methods (aStream~linein) and functions
(linein(aStream)) because they work on different objects
representing the same file. For nonexisting files LINEIN
and CHARIN return the null string, and LINES and
CHARS return 0.

Earlier error detection
Before the program is started, Object REXX performs
some syntax checking and the program might never get
control. For example, missing END statements and miss-
ing parameters are detected before starting the program.

Global environment
The global environment directory .environment is not
global across processes in a Windows system. It cannot be
used to communicate between multiple processes.
Appendix A. New Features in Object REXX and Migration 485

Migration Considerations
486 Object REXX for Windows

B
Car De
aler Source
Code
This appendix describes the location of all the source code of the sam-
ple applications and contains an extract of the source code of the car
dealer application.

The following sections of the car dealer source code are listed in this
appendix:

❑ Sample data
❑ Classes and methods
❑ Running the car dealer programs

Note: Only an extract of the programs is listed here. All the programs
are available on the CD, and on your hard drive once the sample appli-
cations have been installed.
 487

Directory Structure
Directory Structure

The sample applications are stored in two main directories, one for the
car dealer application, and one for the OODialog sample applications.

Car Dealer Application

The car dealer application is available in the CARDEAL directory on the
CD and in a directory of your choice when Object REXX is installed on
your hard drive. The subdirectories and a description of their content
are listed in Table 35.

Philosophers’ Forks and OODialog Samples

The philosophers’ fork and the other OODialog sample applications
are available in the OBJREXX\OODIALOG\SAMPLES directory on the CD and
in the OODIALOG\SAMPLES subdirectory of Object REXX when installed
on your hard drive.

Table 35. Subdirectories of the Car Dealer Application
Subdirectory Description Details

(main) Master directory of car dealer application Table 19 on page 300

SampData Master files with sample data Table 20 on page 300

Base Base class definitions for objects in storage Table 21 on page 301

FAT Class definitions for persistent objects in files Table 22 on page 301

DB2 Class definitions for persistence in DB2 Table 23 on page 301

RAM Class definitions for objects in RAM Table 24 on page 302

AUI Class definitions for ASCII interface Table 25 on page 302

Media Multimedia files Table 26 on page 302

Ood GUI definitions and executable for OODialog Table 27 on page 302

StorProc Sample commands for stored procedures in a
DB2 client/server environment

Table 28 on page 303

WWW Car dealer on the World Wide Web Table 29 on page 303

Xamples Additional small examples Table 30 on page 303

Install Installation programs and DB2 setup Table 31 on page 304

Src Source code of REXX programs of the main
directory

....\Src Subdirectory in above directories with source
code of REXX programs
488 Object REXX for Windows

Sample Data
Sample Data

The original sample data files are stored in the SAMPDATA subdirectory
of the car dealer application. The actual files in use with persistent file
storage are stored in the FAT\DATA subdirectory. You can restore the
original data at any time by copying the files from SAMPDATA into
FAT\DATA.

Note: The not signs (¬) represent tab characters in the sample data
listings below.

Sample Customer Data

/*--*/
/* SampData\customer.dat CarDealer - Customer data file ITSO-SJC */
/*--*/
/*number name address */
/*--*/
101¬Senator, Dale ¬Washington
102¬Akropolis, Ida ¬Athens
103¬Dolcevita, Felicia ¬Rome
104¬DuPont, Jean ¬Paris
105¬Deutsch, Hans ¬Stuttgart
106¬Helvetia, Toni ¬Zurich
107¬Rising Star ¬Hollywood
108¬Zabrowski, Russkie ¬Moscow
109¬Valencia, Maria de ¬Barcelona
601¬Wahli, Ueli ¬ITSO San Jose
602¬Turton, Trevor ¬Johannesburg
603¬Holder, Ingo ¬Boeblingen
/*--*/
999¬New and used cars ¬For sale

Figure 164. Sample Customer Data (sampdata\customer.dat)
Appendix B. Car Dealer Source Code 489

Sample Data
Sample Vehicle Data

Sample Work Order Data

/*--*/
/* SampData\vehicle.dat CarDealer - Vehicle data file ITSO-SJC */
/*--*/
/*serial make model year customer */
/*--*/
123456¬Ford ¬T ¬1931¬101
297465¬Volkswagen ¬Camper ¬1971¬102
111111¬Porsche ¬Targa ¬1989¬102
222222¬Lamborghini ¬Countach ¬1992¬103
398674¬Cadillac ¬Allante ¬1991¬103
334455¬Chevrolet ¬Impala ¬1985¬104
456456¬Toyota ¬Camry ¬1988¬105
543543¬Pontiac ¬Firebird ¬1979¬106
911911¬Chrysler ¬Le Baron ¬1982¬106
298653¬Mercury ¬Sable ¬1987¬106
176549¬Olsmobile ¬Aurora ¬1993¬107
199999¬Acura ¬Legend ¬1990¬107
777777¬Mercedes ¬380S ¬1990¬108
666888¬Lincoln ¬Towncar ¬1986¬109
601001¬Audi ¬5000-Wagon¬1984¬601
602002¬BMW ¬735S ¬1991¬602
603003¬Porsche ¬944 S2Conv¬1989¬603
/*---new/used cars----*/
999001¬Ford ¬Windstar ¬1995¬999
999002¬Audi ¬V8 Quattro¬1990¬999
999003¬Volvo ¬860 Wagon ¬1995¬999
999004¬Honda ¬Civic ¬1994¬999
999005¬MixedStuff ¬Fun ¬1995¬999
/*---not a car!-------*/
999666¬ThinkPad ¬701 ¬1995¬999
999777¬Airplane ¬Tumble ¬1993¬999
999999¬ORexxRedbook¬Team ¬1995¬999

Figure 165. Sample Vehicle Data (sampdata\vehicle.dat)

/*--*/
/* SampData\workord.dat CarDealer - WorkOrder data file ITSO-SJC */
/*--*/
/*number date cost complete custmr serial serv.items */
/*--*/
1¬09/06/95¬-1 ¬0¬101¬123456¬1
2¬09/07/95¬-1 ¬0¬103¬398674¬10¬9¬4
3¬09/08/95¬-1 ¬0¬106¬911911¬7¬6
4¬09/09/95¬-1 ¬0¬108¬777777¬11
5¬08/01/95¬100¬1¬107¬199999¬2¬3

Figure 166. Sample Work Order Data (sampdata\workord.dat)
490 Object REXX for Windows

Sample Data
Sample Service Item Data

Sample Part Data

/*--*/
/* SampData\service.dat CarDealer - ServiceItem data file ITSO-SJC */
/*--*/
/*number description labor part quant part quan */
/*--*/
1 ¬Brake job ¬110¬21¬1¬22¬2¬23¬2¬24¬2
2 ¬Check fluids ¬25 ¬10¬5¬11¬1¬31¬1
3 ¬Tire rotate/balance¬20
4 ¬Tires new Sedan ¬0 ¬51¬4
5 ¬Tires new Sport ¬10 ¬52¬4
6 ¬Starter ¬75 ¬71¬1
7 ¬Alternator ¬90 ¬72¬1
8 ¬Heating system ¬45 ¬61¬1¬62¬1¬81¬1¬82¬1
9 ¬Electrical ¬85 ¬45¬3¬91¬1
10¬Exhaust system ¬85 ¬1 ¬1
11¬Fenders ¬45 ¬41¬2

Figure 167. Sample Service Item Data (sampdata\service.dat)

/*--*/
/* SampData\part.dat CarDealer - Part data file ITSO-SJC */
/*--*/
/*number description cost stock */
/*--*/
1 ¬Muffler ¬120¬3
10¬Oil 10-40 quart¬5 ¬30
11¬Oil filter ¬22 ¬15
21¬Brake cylinder ¬120 3
22¬Brake fluid ¬7 ¬13
23¬Brake drum ¬28 ¬6
24¬Brake disk ¬35 ¬9
31¬Steering fluid ¬8 ¬40
41¬Fender ¬67 ¬2
45¬Light bulb ¬2 ¬20
51¬Tire 185-70 ¬57 ¬8
52¬Tire 205-60 ¬73 ¬12
61¬Belt ¬12 ¬2
62¬Radiator ¬133¬1
71¬Starter ¬189¬4
72¬Alternator ¬165¬2
81¬Water pump ¬97 ¬1
82¬Heating control¬43 ¬1
91¬Cruise control ¬54 ¬2

Figure 168. Sample Part Data (sampdata\part.dat)
Appendix B. Car Dealer Source Code 491

Multimedia Setup
Multimedia Setup

Multimedia Data Definition File

/*--*/
/* Media\media.dat CarDealer - Multi-media definition ITSO-SJC */
/*--*/
/* serial, title of file , filename */
/*--*/
 999001, Fact-sheet , ford.fac
 999001, Side picture , fordsid.bmp
 999001, Front picture , fordfrt.bmp
 999001, Back picture , fordbck.bmp
 999001, Angle picture , fordang.bmp
 999001, Audio , ford.wav
 999002, Fact-sheet , audi.fac
 999002, Side picture , audisid.bmp
 999002, Front picture , audifrt.bmp
 999002, Back picture , audibck.bmp
 999002, Audio , audi.wav
 999003, Fact-sheet , volvo.fac
 999003, Side picture , volvosid.bmp
 ...
 999005, Fact-sheet , mixed.fac
 999005, Tow truck , towtruck.bmp
 999005, Truck , truck.bmp
 999005, Pickup , pickup.bmp
 999005, Fire engine , fireeng.bmp
 999005, Motor cycle , motocycl.bmp
 999005, Audio , mixed.wav
 999666, Fact-sheet , ibm701i.fac
 999666, ThinkPad 701 , ibm701i.bmp
 999666, Video , ibm701i.avi
 999777, Fact-sheet , tumble.fac
 999777, The plane , tumble1.bmp
 999777, Straight ahead , tumble2.bmp
 999777, Upside down! , tumble3.bmp
 999777, Video , tumble1.avi
 999999, Facts: Redbook team , orexxred.fac
 999999, Ueli Wahli , ueli1.bmp
 999999, Ingo Holder , ingo1.bmp
 999999, Trevor Turton , trevor.bmp
 999999, Audio , orexxred.wav
 601001, Facts: Ueli Wahli , wahli.fac
 601001, Ueli's portrait , ueli.bmp
 601001, Ueli's car , audi.bmp
 601001, License plates , licenses.bmp
 601001, Cactus garden , cactus.bmp
 601001, Facts: Boxie (cat) , boxie.fac
 601001, Boxie the cat , boxie.bmp
 601001, Boxie in trouble , cat.bmp
 601001, Audio , wahli.wav
 602002, Facts: Trevor Turton, turton.fac
 602002, Trevor's portrait , trevor2.bmp
 603003, Facts: Ingo Holder , holder.fac
 603003, Ingo's portrait , ingo2.bmp
 603003, Facts: Porsche , porsche.fac
 603003, Porsche front view , porsche1.bmp
 603003, Porsche side view , porsche2.bmp
 603003, Audio , ingo.wav

Figure 169. Multimedia Data Definition File (media\media.dat)
492 Object REXX for Windows

Base Classes
Base Classes

Base Customer Class

/*--*/
/* Base\carcust.cls CarDealer - Customer class (base) ITSO-SJC */
/*--*/

::class CustomerBase public

/*----- class methods --*/

::method initialize class /* preprare class */
 expose extent
 extent = .set~new /* - keep track of cust. */
 self~persistentLoad /* - and load into memory */

::method add class /* add new customer */
 expose extent
 use arg custx
 if custx~class = self then do /* - check if already there*/
 do custo over extent
 if custo~number = custx~number then return
 end
 extent~put(custx) /* - add to extent */
 end

::method remove class /* remove customer from */
 expose extent /* extent */
 use arg custx
 if custx~class = self then
 extent~remove(custx)

::method findNumber class /* find customer by number */
 expose extent
 parse arg custnum
 do custx over extent /* - search extent */
 if custx~number = custnum then return custx /* - return when found */
 end
 return .nil

::method findName class /* find customer by name */
 arg custsearch
 custnames = .list~new /* - prepare result list */
 do custx over self~extent /* - check extent */
 if abbrev(translate(custx~name),custsearch) then do
 custstring = custx~number~right(3)|| ,
 '-'custx~name'-'custx~address
 custnames~insert(custstring) /* - add a match */
 end
 end
 return custnames~makearray /* - return result array */

Figure 170. (Part 1 of 4) Base Customer Class (base\carcust.cls)
Appendix B. Car Dealer Source Code 493

Base Classes
::method findAddress class /* find customer by address*/
 arg custsearch
 do custx over self~extent /* - check extent */
 if custx~address = custsearch then
 return custx~number /* - return customer number*/
 end
 return '' /* - return not found */

::method extent class /* return extent of cust. */
 expose extent
 return extent~makearray /* - as an array */

::method heading class /* return a heading */
 return 'Number Name Address'

/*----- instance methods ---*/

::method init /* initialize new customer */
 expose customerNumber name address cars orders
 self~init:super /* - call parent */
 use arg customerNumber, name, address
 cars = .set~new /* - prepare cars/orders */
 orders = .set~new
 if arg() < 3 | arg() > 4 then return self~setnil
 if \datatype(customerNumber,'W') then return self~setnil
 if customerNumber<100 | customerNumber>999 then return self~setnil
 self~class~add(self) /* - add to extent */
 if arg() = 4 then self~persistentInsert /* - a real new customer */

::method setnil private /* set customer data nil */
 expose customerNumber name address cars orders
 self~class~remove(self) /* - remove from extent */
 cars = .nil
 orders = .nil
 customerNumber = 0
 name = '-none-'
 address = '-none-'
 return .nil

::method delete /* delete a customer */
 expose cars orders
 do carx over cars /* - delete all cars */
 carx~delete
 end
 do workx over orders /* - delete all workorders */
 workx~delete
 end
 self~class~remove(self) /* - remove from extent */
 self~persistentDelete /* - delete permanent stor */
 self~setnil

::method number unguarded /* */
 expose customerNumber
 return customerNumber

::method name attribute /* customer's name */

::method address attribute /* customer's address */

Figure 170. (Part 2 of 4) Base Customer Class (base\carcust.cls)
494 Object REXX for Windows

Base Classes
::method update /* update customer data */
 expose name address
 if arg() = 2 then do
 use arg name, address
 self~persistentUpdate /* - update persistent stor*/
 end

::method addVehicle /* add a vehicle */
 expose cars
 use arg newcar
 owner = newcar~getowner /* - check its owner */
 if owner = self | owner = .nil then do
 cars~put(newcar) /* - add if no owner */
 if owner = .nil then
 newcar~setowner(self) /* - set new owner */
 end
 else do /* - error if other owner */
 say 'Cannot add car' newcar~makemodel 'to customer' self~name
 say ' it belongs to' newcar~getowner~name
 end

::method removeVehicle /* remove vehicle from cust*/
 expose cars
 use arg oldcar
 oldcar~deleteOwner /* - delete owner */
 cars~remove(oldcar) /* - remove from cars */

::method checkVehicle /* check if car in set */
 expose cars
 use arg somecar
 if cars~hasindex(somecar) then return 1 /* - yes it is */
 else return 0

::method getVehicles /* return array of cars */
 expose cars
 return cars~makearray

::method findVehicle /* find car by serial */
 expose cars
 use arg serial
 do carx over cars /* - check all cars */
 if carx~serial = serial then return carx
 end
 return .nil

::method addOrder /* add order to customer */
 expose orders
 use arg newwork
 orders~put(newwork) /* - add order to set */

::method removeOrder /* remove order from cust. */
 expose orders
 use arg oldwork
 orders~remove(oldwork) /* - remove order from set */

::method getOrders /* return all orders */
 expose orders
 return orders~makearray /* - as an array */

Figure 170. (Part 3 of 4) Base Customer Class (base\carcust.cls)
Appendix B. Car Dealer Source Code 495

Base Classes
Base Vehicle Class

::method detail /* return a detail line */
 expose customerNumber name address
 return customerNumber~right(5) ' ' name~left(20) ' ' address~left(20)

::method makestring /* default string output */
 expose customerNumber name
 return 'Customer:' customerNumber name

::method display /* display customer data */
 expose customerNumber name address cars orders
 say '-'~copies(78)
 say self~class~heading
 say self~detail
 if cars~items > 0 then
 do carx over cars
 say ' Vehicle:' carx~detail
 end
 if orders~items > 0 then do
 do orderx over orders
 say ' WorkOrder:' orderx~detail
 end
 end

Figure 170. (Part 4 of 4) Base Customer Class (base\carcust.cls)

/*--*/
/* Base\carvehi.cls CarDealer - Vehicle class (base) ITSO-SJC */
/*--*/

::class VehicleBase public

/*----- class methods --*/

::method initialize class /* prepare class */
 self~persistentLoad /* - load into memory */

/*----- instance methods ---*/

::method init /* initialize new vehicle */
 expose serialNumber make model year owner
 self~init:super
 use arg serialNumber, make, model, year, owner
 if arg() < 5 | arg() > 6 then self~setnil
 if owner \= .nil then
 owner~addVehicle(self) /* - add car to customer */
 if arg() = 6 then self~persistentInsert /* - insert real new car */

::method setnil private /* set vehicle data nil */
 expose serialNumber make model year owner
 if owner \= .nil then
 owner~removeVehicle(self) /* - remove from customer */
 serialNumber = 0
 make = '-none-'

Figure 171. (Part 1 of 2) Base Vehicle Class (base\carvehi.cls)
496 Object REXX for Windows

Base Classes
 model = '-none-'
 year = 0
 owner = .nil

::method delete /* delete a vehicle */
 expose serialNumber make model year owner
 if owner \= .nil then do
 do workx over owner~getOrders /* - remove work orders */
 if workx~getVehicle = self then workx~delete
 end
 owner~removeVehicle(self) /* - remove car from cust. */
 end
 self~persistentDelete /* - from permanent stor */
 self~setnil

::method serial /* return serial number */
 expose serialNumber
 return serialNumber
::method make attribute /* vehicle's make */
::method model attribute /* vehicle's model */
::method year attribute /* vehicle's year */

::method update /* update vehicle data */
 expose make model year
 if arg() = 3 then do
 use arg make, model, year
 self~persistentUpdate /* - in permanent storage */
 end

::method makemodel unguarded /* return make and model */
 expose make model
 return make~strip'-'model~strip /* - as string */

::method getOwner unguarded /* return owner (customer) */
 expose owner
 return owner
::method setOwner /* set a new owner (cust) */
 expose owner
 use arg newowner
 if owner = .nil then
 if newowner~checkVehicle(self) then /* - if its the proper one */
 use arg owner
::method deleteOwner /* delete the owner (cust) */
 expose owner
 owner = .nil

::method detail /* return a detail line */
 expose serialNumber make model year
 return serialNumber~right(8) ' ' make~left(12) ' ' model~left(10) ,
 ' ' year
::method makestring /* default string output */
 expose serialNumber make model
 return 'Vehicle:' serialNumber make model
::method display /* display vehicle data */
 expose serialNumber make model year owner
 if owner = .nil then ownerst = '-no owner-'
 else ownerst = owner~number
 say serialNumber~right(8) ' ' make~left(12) ' ' model~left(10) ,
 ' ' year ' ' ownerst

Figure 171. (Part 2 of 2) Base Vehicle Class (base\carvehi.cls)
Appendix B. Car Dealer Source Code 497

Base Classes
Base Work Order Class

/*--*/
/* Base\carwork.cls CarDealer - WorkOrder class (base) ITSO-SJC */
/*--*/

::class WorkOrderBase public

/*----- class methods --*/

::method initialize class /* prepare the class */
 expose extent WorkServRel
 extent = .list~new /* - extent of work orders */
 if .local['Cardeal.WorkServRel'] = .nil then /* - prepare relation to */
 .local['Cardeal.WorkServRel'] = .Relation~new
 WorkServRel = .local['Cardeal.WorkServRel'] /* - service items */
 self~persistentLoad /* - load into memory */

::method getWorkServRel class /* return the relation */
 expose WorkServRel
 return WorkServRel

::method add class /* add workorder to extent */
 expose extent
 use arg workx
 if workx~class = self then do
 do worko over extent /* - check if already there*/
 if worko~number = workx~number then return worko~getindex
 end
 return extent~insert(workx, .nil) /* - insert new at start */
 end

::method remove class /* remove order from extent*/
 expose extent
 use arg indx, workx
 if extent~at(indx) = workx then /* - ckeck and remove */
 extent~remove(indx)

::method findNumber class /* find workorder by number*/
 expose extent
 use arg worknum
 do workx over extent /* - check the extent */
 if workx~number = worknum then return workx
 end
 return .nil

::method findStatus class /* find workorder by status*/
 expose extent
 use arg xstatus
 worklist = .list~new /* - prepare result */
 xstat1 = 0 /* - 0 is incomplete */
 xstat2 = 1 /* - 1 is complete */
 if xstatus = 0 then xstat2=0
 if xstatus = 1 then xstat1=1
 do workx over extent /* - go over all orders */
 xstatus = workx~getstatus /* - and check the status */
 if xstatus >= xstat1 & xstatus <= xstat2 then do

Figure 172. (Part 1 of 5) Base Work Order Class (base\carwork.cls)

498 Object REXX for Windows

Base Classes
 if xstatus = 0 then statusx = 'Incomplete'
 else statusx = 'Complete'
 workstring = workx~number~left(3) '' workx~date ,
 workx~cost~right(6) statusx~left(11) ,
 (workx~getvehicle~make~strip || ,
 '-'workx~getvehicle~model~strip)~left(20) ,
 workx~getcustomer~name
 worklist~insert(workstring,.nil) /* - add to result */
 end
 end
 return worklist~makearray /* - return result as array*/

::method newNumber class /* return a new number */
 expose extent
 if extent~items = 0 then return 1
 newnum = 0
 do workx over extent /* - find maximum number */
 newnum = max(newnum, workx~number)
 end
 return newnum + 1 /* - return next higher */

::method extent class
 expose extent /* return extent as array */
 return extent~makearray

/*----- instance methods ---*/

::method init /* initialize new workorder*/
 expose orderNumber cost date status customer car listindex
 self~init:super
 status = 0 /* - incomplete */
 cost = -1 /* - unknown cost */
 orderNumber = 0
 if arg() = 3 then do /* - new work order */
 use arg date, customer, car
 orderNumber = self~class~newNumber /* - find new number */
 listindex = self~class~add(self) /* - add to extent */
 customer~addOrder(self) /* - add to customer */
 self~persistentInsert /* - add to persistent stor*/
 end
 else if arg() = 6 then do /* - load from persistent */
 use arg orderNumber, date, cost, status, customer, car
 listindex = self~class~add(self) /* - add to extent */
 customer~addOrder(self) /* - add to customer */
 end
 else self~setnil

::method setnil private /* set workorder data nil */
 expose orderNumber cost date status customer car listindex
 customer~removeOrder(self)
 self~class~remove(listindex,self) /* - remove from extent */
 status = 0
 cost = -1
 orderNumber = 0
 date = '00/00/00'
 customer = .nil
 car = .nil
 listindex = 0
 return .nil

Figure 172. (Part 2 of 5) Base Work Order Class (base\carwork.cls)
Appendix B. Car Dealer Source Code 499

Base Classes
::method delete /* delete a work order */
 expose orderNumber cost date status customer car listindex
 self~class~remove(listindex,self) /* - remove from extent */
 self~persistentDelete /* - delete persistent stor*/
 self~setnil

::method number unguarded /* return workorder number */
 expose orderNumber
 return orderNumber

::method cost unguarded /* return cost of workorder*/
 expose cost
 return cost

::method date unguarded /* return date of workorder*/
 expose date
 return date

::method setstatus /* change the status */
 expose status
 use arg newstatus
 if newstatus = 0 | newstatus = 1 then do /* - change peristent stor */
 if status \= newstatus then self~persistentUpdate
 status = newstatus
 end

::method getstatus unguarded /* return the status */
 expose status
 return status

::method getstatust unguarded /* return status as text */
 expose status
 if status = 0 then return 'incomplete'
 else return 'complete'

::method getindex unguarded private /* return index in extent */
 expose listindex
 return listindex

::method getCustomer unguarded /* return the customer */
 expose customer
 return customer

::method getVehicle unguarded /* return the vehicle */
 expose car
 return car

::method getServices /* return all services */
 return self~class~getWorkServRel~allat(self)

::method addServiceItem /* add service to workorder*/
 expose cost status
 use arg itemx
 workserv = self~class~getWorkServRel /* - get the relation */
 if workserv~hasitem(itemx,self) then return /* - cannot add same item */
 workserv[self] = itemx /* - record in relation */
 if status = 0 then cost = -1
 if arg() = 2 then return self~persistentInsertServ(itemx~number)

Figure 172. (Part 3 of 5) Base Work Order Class (base\carwork.cls)
500 Object REXX for Windows

Base Classes
::method removeServiceItem /* remove a service */
 expose cost status
 use arg itemx
 workserv = self~class~getWorkServRel
 workserv~removeitem(itemx,self) /* - remove in relation */
 if status = 0 then cost = -1
 if arg() = 2 then return self~persistentDeleteServ(itemx~number)

::method getTotalCost /* compute total cost */
 expose cost
 totalcost = 0
 do servx over self~getServices /* - sum up all services */
 totalcost = totalcost + servx~laborcost + servx~getPartsCost
 end
 if cost \= totalcost then do /* - update cost attribute */
 cost = totalcost
 self~persistentUpdate
 end
 return totalcost

::method checkAndDecreaseStock /* check if enough parts */
 expose status
 if status = 1 then return 0 /* - not for complete ones */
 enough = 1
 do servx over self~getServices /* - check all services */
 partsx = servx~getparts
 do partx over partsx /* - and parts in service */
 quan = servx~getquantity(partx)
 partno = partx~number /* - get part number */
 if symbol("stock."partno) = 'LIT' then /* - record stock */
 stock.partno = partx~stock
 stock.partno = stock.partno - quan
 if stock.partno < 0 then do /* - check temporary stock */
 enough = 0
 say ''servx
 say ' --> Not enough stock for' partx
 end
 end
 end
 if enough then do /* - all stocks are OK */
 do servx over self~getServices /* - go over all services */
 partsx = servx~getparts
 do partx over partsx /* - and all parts */
 quan = servx~getquantity(partx)
 x = partx~decreaseStock(quan) /* - decrease stock of part*/
 end
 end
 status = 1
 x = self~getTotalCost /* - and compute total cost*/
 end
 return enough

::method generateBill /* prepare the bill */
 expose orderNumber date customer car
 separ = '-'~copies(78)
 bill = .list~new /* - result lines */
 bill~insert('Bill for work order' orderNumber left(' ',30) 'Date:' date)
 bill~insert(separ)
 bill~insert(' Customer:' customer~name)

Figure 172. (Part 4 of 5) Base Work Order Class (base\carwork.cls)
Appendix B. Car Dealer Source Code 501

Base Classes
 bill~insert(' Vehicle:' car~makemodel)
 bill~insert(separ)
 bill~insert('Description Parts Unit ' ,
 'Partcost Laborcost')
 bill~insert(separ)
 do servx over self~getServices /* - over all services */
 bill~insert(servx~description~left(54) servx~getPartsCost~right(8) ,
 servx~laborcost~right(10))
 partsx = servx~getparts
 do partx over partsx /* - and parts in service */
 quan = servx~getquantity(partx)
 costx = quan * partx~price
 bill~insert(' '~left(18) quan~right(3) partx~description~left(16) ,
 '$'partx~price~right(4) '=' costx~right(5))
 end
 end
 bill~insert(separ)
 bill~insert('Total cost of work order'~left(65) self~getTotalCost~right(8))
 bill~insert(separ)
 return bill~makearray

::method detail /* return a detail line */
 expose orderNumber cost date status
 return orderNumber~right(3) ' Date:' date~left(8) ' Cost:' ,
 cost~right(5) ' Status: ' self~getstatust

::method detailcust /* return cust/vehicle */
 expose customer car
 return ' Customer:' customer~name~left(20) ,
 ' Vehicle:' car~makemodel~left(20)

::method makestring /* return default string */
 expose orderNumber cost date status customer car
 return 'Workorder:' orderNumber date self~getstatust ,
 '('customer~name~left(10)'/'car~makemodel~left(10)')'

::method makeline /* return a short line */
 expose orderNumber cost date status customer car
 return orderNumber~left(3) '' date cost~right(6) ,
 self~getstatust~left(11) car~makemodel customer~name

::method display /* display work order data */
 expose orderNumber cost date status customer car
 separ = '-'~copies(78)
 say workx~detail
 say workx~detailcust
 first = 1
 do servx over self~getServices
 if first then say ' Services:' servx~number~right(3) servx~description
 else say ' ' servx~number~right(3) servx~description
 first = 0
 lines = lines + 1
 end

Figure 172. (Part 5 of 5) Base Work Order Class (base\carwork.cls)
502 Object REXX for Windows

Base Classes
Base Service Item Class

/*--*/
/* Base\carserv.cls CarDealer - ServiceItem class(base) ITSO-SJC */
/*--*/

::class ServiceItemBase public

/*----- class methods --*/

::method initialize class /* prepare the class */
 expose extent WorkServRel
 extent = .list~new /* - extent as a list */
 if .local['Cardeal.WorkServRel'] = .nil then /* - prepare relation */
 .local['Cardeal.WorkServRel'] = .Relation~new
 WorkServRel = .local['Cardeal.WorkServRel'] /* - to work orders */
 self~persistentLoad /* - load into memory */

::method getWorkServRel class /* return the relation */
 expose WorkServRel
 return WorkServRel

::method add class /* add service to extent */
 expose extent
 use arg servx
 if servx~class = self then /* - add to extent */
 return extent~insert(servx)

::method remove class /* remove service from ext.*/
 expose extent
 use arg indx, servx
 if extent~at(indx) = servx then /* - remove ffrom extent */
 extent~remove(indx)

::method findNumber class /* find service by number */
 expose extent
 parse arg servnum
 if extent~items > 0 then /* - check the extent */
 do servx over extent
 if servx~number = servnum then return servx
 end
 return .nil

::method extent class /* return extent as array */
 expose extent
 return extent~makearray

::method heading class /* return a heading line */
 return 'Item LaborCost Description Quantity Part'

Figure 173. (Part 1 of 3) Base Service Item Class (base\carserv.cls)
Appendix B. Car Dealer Source Code 503

Base Classes
/*----- instance methods ---*/

::method init /* initialize new service */
 expose itemNumber description laborCost parts quantity. listindex
 self~init:super
 use arg itemNumber, description, laborCost
 parts = .set~new /* - set of parts */
 quantity. = '' /* - with quantity */
 if arg() \= 3 then self~setnil
 else listindex = self~class~add(self) /* - add to extent list */

::method setnil private /* set service data nil */
 expose itemNumber description laborCost parts listindex
 self~class~remove(listindex,self) /* - remove from extent */
 itemNumber = 0
 description = '-none-'
 laborCost = 0
 parts = .nil
 quantity. = ''
 listindex = 0
 return .nil

::method delete /* delete a service item */
 expose listindex
 self~class~remove(listindex,self) /* - remove from extent */
 /* self~persistentDelete */
 self~setnil

::method number unguarded /* return service number */
 expose itemNumber
 return itemNumber

::method laborcost unguarded /* return labor cost */
 expose laborCost
 return laborCost

::method description unguarded /* return description */
 expose description
 return description

::method usesPart /* record used part */
 expose parts quantity.
 if arg() \= 2 then return
 use arg partx, quan
 parts~put(partx) /* - add to parts list */
 quantity.partx = quan /* - with quantity */

::method getParts /* return all parts */
 expose parts
 return parts~makearray /* - as an array */

::method getQuantity /* return quantity */
 expose quantity.
 use arg partx
 return quantity.partx /* - of a part */

Figure 173. (Part 2 of 3) Base Service Item Class (base\carserv.cls)
504 Object REXX for Windows

Base Classes
Base Part Class

::method getPartsCost /* calculate cost of parts */
 expose parts quantity.
 partcost = 0
 do partx over parts /* - over all parts */
 partcost = partcost + partx~price * quantity.partx
 end
 return partcost

::method getWorkOrders /* return workorders */
 return self~class~getWorkServRel~allindex(self)/* - using this service */

::method detail /* return detail line */
 expose itemNumber description laborCost
 return itemNumber~right(3) laborCost~right(11) '' description~left(20)

::method makestring /* return default string */
 expose itemNumber description laborCost
 return 'ServiceItem:' itemNumber '($'laborCost')' description

::method display /* display service data */
 expose itemNumber description laborCost parts quantity.
 say '-'~copies(78)
 say self~class~heading
 say self~detail
 do partx over parts
 say ' '~left(30) quantity.partx~right(6) ' ' ,
 partx~number~right(3) partx~description
 end
 do workx over self~getWorkOrders
 say '-' workx
 end

Figure 173. (Part 3 of 3) Base Service Item Class (base\carserv.cls)

/*--*/
/* Base\carpart.cls CarDealer - Part class (base) ITSO-SJC */
/*--*/

::class PartBase public

/*----- class methods --*/

::method initialize class /* prepare the class */
 expose extent
 extent = .set~new /* - extent of parts */
 self~persistentLoad /* - load into memory */

::method add class /* add new part to extent */
 expose extent
 use arg partx
 if partx~class = self then /* - add to extent */
 extent~put(partx)

Figure 174. (Part 1 of 3) Base Part Class (base\carpart.cls)

Appendix B. Car Dealer Source Code 505

Base Classes
::method remove class /* remove part from extent */
 expose extent
 use arg partx
 if partx~class = self then /* - remove */
 extent~remove(partx)

::method findNumber class /* find part by number */
 expose extent
 parse arg partnum
 do partx over extent /* - check the extent */
 if partx~number = partnum then return partx
 end
 return .nil

::method extent class /* return extent as array */
 expose extent
 return extent~makearray
::method heading class /* return a heading line */
 return 'Partid Description Price Stock'

/*----- instance methods ---*/

::method init /* initialize a new part */
 expose partid description price stock
 self~init:super
 use arg partid, description, price, stock
 if arg() \= 4 & arg() \= 5 then self~setnil
 else self~class~add(self) /* - add to extent */
 if arg() = 5 then self~persistentInsert /* - add to persistent */

::method setnil private /* set part data nil */
 expose partid description price stock
 self~class~remove(self) /* - remove from extent */
 partid = 0
 description = '-none-'
 price = 0
 stock = 0
 return .nil

::method delete /* delete a part */
 self~class~remove(self) /* - remove from extent */
 /* self~persistentDelete */ /* - not implemented */
 self~setnil

::method number unguarded /* return parts number */
 expose partid
 return partid

::method price unguarded /* return price of part */
 expose price
 return price

::method description unguarded /* return description */
 expose description
 return description

::method stock unguarded /* return stock of part */
 expose stock
 return stock

Figure 174. (Part 2 of 3) Base Part Class (base\carpart.cls)
506 Object REXX for Windows

Base Classes
Persistent Class

::method increaseStock /* increase stock of part */
 expose stock
 parse arg stockchange
 stock = stock + stockchange /* - add change */
 return self~persistentUpdate /* - store persistently */

::method decreaseStock /* decrease stock of part */
 expose stock
 parse arg stockchange
 if stockchange > stock then return -1 /* - check if possible */
 stock = stock - stockchange /* - subtract change */
 return self~persistentUpdate /* - store persistently */

::method detail /* return a detail line */
 expose partid description price stock
 return partid~right(5) ' ' description~left(15) ' ' ,
 price~right(8) ' ' stock~right(5)

::method makestring /* return default string */
 expose partid description
 return 'Part:' partid description

::method display /* display part data */
 expose partid description price stock
 say partid~right(5) ' ' description~left(15) ' ' ,
 price~right(8) ' ' stock~right(5)

Figure 174. (Part 3 of 3) Base Part Class (base\carpart.cls)

/*--*/
/* Base\persist.cls CarDealer - Persistent class ITSO-SJC */
/*--*/

::class Persistent public mixinclass Object

/*----- class methods --*/
::method persistentLoad class /* default load into memory*/
 return 0
::method persistentStore class /* default store back */
 return 0

/*----- instance methods ---*/
::method persistentInsert /* default new object */
 return self~class~persistentStore
::method persistentDelete /* default delete object */
 return self~class~persistentStore
::method persistentUpdate /* default update object */
 return self~class~persistentStore
::method persistentInsertServ /* new work-serv relation */
 return self~class~persistentStore
::method persistentDeleteServ /* delete work-serv relat. */
 return self~class~persistentStore

Figure 175. Persistent Class (base\persist.cls)
Appendix B. Car Dealer Source Code 507

Base Classes
Cardeal Class

/*--*/
/* Base\cardeal.cls CarDealer - Cardeal class ITSO-SJC */
/*--*/

 .local['Cardeal.Cardeal.class'] = .Cardeal

::class Cardeal public

/*----- class methods --*/

::method initialize class /* prepare the class */
 expose env envir
 parse source env . /* - where are we running */
 if env = 'OS/2' then envir = 'OS2ENVIRONMENT'
 else envir = 'ENVIRONMENT'
 if RxFuncQuery('SysLoadFuncs') then do /* - load rexx utilities */
 call RxFuncAdd 'SysLoadFuncs', 'RexxUtil', 'SysLoadFuncs'
 call SysLoadFuncs
 end
 x = RxFuncDrop('PlaySoundFile') /* - drop multimedia funct.*/
 self~mciRxInit /* - init multimedia funct.*/
 .local['Cardeal.Part.class']~initialize /* - initialize all classes*/
 .local['Cardeal.ServiceItem.class']~initialize
 .local['Cardeal.Customer.class']~initialize
 .local['Cardeal.Vehicle.class']~initialize
 .local['Cardeal.WorkOrder.class']~initialize
 return 0

::method terminate class /* application terminate */
 expose envir
 if .local['Cardeal.Data.type'] = 'DB2' then do /* - check if DB2 */
 call sqlexec "CONNECT RESET" /* - disconnect */
 if arg() = 0 then do
 temp = value('TMP',,envir)
 if temp = '' then temp = directory()
 call SysFileTree temp"\t*.*", tempfiles, 'FO'
 do i=1 to tempfiles.0 /* - erase temp files */
 parse upper value substr(tempfiles.i,lastpos('\',tempfiles.i)+1) ,
 with fn '.' fx
 if pos('.'fx'.','.BMP.WAV.AVI.')>0 & fn~right(1)~datatype('W')=1
 then "@erase" tempfiles.i
 end
 end
 end
 do localx over .local~makearray /* - delete all local */
 if localx~left(8) = 'Cardeal.' then .local~remove(localx)
 end

::method playaudio class /* play an audio file */
 expose MultiMedia
 arg filename
 if filename = '' | Multimedia = 0 then return
 call PlaySoundFile filename, "YES"

Figure 176. (Part 1 of 2) Cardeal Class (base\cardeal.cls)
508 Object REXX for Windows

Persistence in Files
Persistence in Files

Configuration for File Storage

::method playvideo class /* play a video file */
 expose MultiMedia env
 arg filename
 if filename = '' | Multimedia = 0 then return
 parse var filename fanme '.' ext
 select
 when ext = 'AVI' & env = 'Windows95' then "mplayer /PLAY" filename
 when ext = 'AVI' & env = 'WindowsNT' then "mplay32 /PLAY" filename
 when ext = 'MOV' then "play32" filename
 otherwise nop
 end

::method mciRxInit class private /* initialize multimedia */
 expose done MultiMedia
 if symbol('done') = 'VAR' then return MultiMedia
 if RxFuncQuery('PlaySoundFile') then /* - load rex functions */
 MultiMedia = (RXFUNCADD('PlaySoundFile','OODIALOG','PlaySoundFile')=0)
 else MultiMedia = 1
 done = 1
 return MultiMedia

Figure 176. (Part 2 of 2) Cardeal Class (base\cardeal.cls)

/*--*/
/* FAT\carmodel.cfg CarDealer - Model Config. (FAT) ITSO-SJC */
/*--*/

 Parse source . . me
 maindir = me~left(me~lastpos('\')-1) /* main cardeal directory */
 if stream(maindir'\base\cardeal.cls',c,'query exists') = '' then
 call carerror maindir

 .local['Cardeal.Data.type'] = 'FAT' /* Data in Files */
 .local['Cardeal.Data.dir'] = maindir'\FAT\Data'/* Data directory */
 .local['Cardeal.Media.dir'] = maindir'\Media' /* Media directory */

::requires 'base\cardeal.cls'

::requires 'fat\carcust.cls'
::requires 'fat\carvehi.cls'
::requires 'fat\carpart.cls'
::requires 'fat\carserv.cls'
::requires 'fat\carwork.cls'

Figure 177. Configuration for File Storage (fat\carmodel.cfg)
Appendix B. Car Dealer Source Code 509

Persistence in Files
File Customer Class

/*--*/
/* FAT\carcust.cls CarDealer - Customer class (FAT) ITSO-SJC */
/*--*/

 .local['Cardeal.Customer.class'] = .Customer

::requires 'base\carcust.cls'
::requires 'base\persist.cls'

::class Customer public subclass CustomerBase inherit Persistent

/*----- class methods --*/

::method persistentLoad class /* load customers from file*/
 expose file
 file = .local['Cardeal.Data.dir']'\customer.dat'
 call stream file, 'c', 'open read'
 do i = 0 by 1 while lines(file) /* - read the file */
 parse value linein(file) with customerNumber '9'x name '9'x address
 if left(customerNumber,2) = '/*' then iterate
 self~new(strip(customerNumber), strip(name), strip(address))
 end
 call stream file, 'c', 'close'
 return i

::method persistentStore class /* store customers in file */
 expose file
 call stream file, 'c', 'open write replace'
 do custx over self~extent /* - run over extent */
 x = lineout(file,custx~fileFormat)
 end
 call stream file, 'c', 'close'
 return 0

/*----- instance methods ---*/

::method fileFormat /* prepare record for file */
 return strip(self~number)'9'x || left(self~name,20)'9'x || ,
 left(self~address,20)

Figure 178. File Customer Class (fat\carcust.cls)
510 Object REXX for Windows

Persistence in Files
File Vehicle Class

/*--*/
/* FAT\carvehi.cls CarDealer - Vehicle class (FAT) ITSO-SJC */
/*--*/

 .local['Cardeal.Vehicle.class'] = .Vehicle

::requires 'base\carvehi.cls'
::requires 'base\persist.cls'

::class Vehicle public subclass VehicleBase inherit Persistent

/*----- class methods --*/

::method persistentLoad class /* load vehicles from file */
 expose file
 file = .local['Cardeal.Data.dir']'\vehicle.dat'
 custclass = .local['Cardeal.Customer.class']
 call stream file, 'c', 'open read'
 do i = 0 by 1 while lines(file) /* - read the file */
 parse value linein(file) ,
 with serialNumber '9'X make '9'X model '9'X year '9'X owner
 if left(serialNumber,2) = '/*' then iterate
 self~new(strip(serialNumber), strip(make), strip(model), strip(year), ,
 custclass~findNumber(owner))
 end
 call stream file, 'c', 'close'
 return i

::method persistentStore class /* store vehicle in file */
 expose file
 call stream file, 'c', 'open write replace' /* - run over customers */
 do custx over .local['Cardeal.Customer.class']~extent
 do carx over custx~getVehicles /* - and their vehicles */
 x = lineout(file,carx~fileFormat)
 end
 end
 call stream file, 'c', 'close'
 return 0

/*----- instance methods ---*/

::method fileFormat /* prepare record for file */
 return strip(self~serial)'9'x || left(self~make,12)'9'x || ,
 left(self~model,10)'9'x || strip(self~year)'9'x || ,
 strip(self~getowner~number)

Figure 179. (Part 1 of 2) File Vehicle Class (fat\carvehi.cls)
Appendix B. Car Dealer Source Code 511

Persistence in Files
::method getmedianumber /* return number of media */
 expose medianumber mediacontrol picfile
 if symbol('medianumber') = 'VAR' then return medianumber
 medianumber = 0
 mediacontrol = ''
 picfile = .array~new
 mediafile = .local['Cardeal.Media.dir']'\media.dat'
 do i=1 by 1 while lines(mediafile)>0 /* - read media controlfile*/
 line = linein(mediafile)
 if left(line,2) = '/*' then iterate
 parse var line serial ',' title ',' file
 if self~serial = strip(serial) then do /* - check for serial */
 medianumber = medianumber + 1
 picfile[medianumber] = strip(file) /* - build control info */
 mediacontrol = mediacontrol''left(strip(title),20)',file ;'
 end
 end
 x = stream(mediafile,'c','close')
 return medianumber

::method getmediacontrol /* return media controlinfo*/
 expose medianumber mediacontrol
 if symbol("medianumber") = 'LIT' then return ''
 return mediacontrol

::method getmediainfo /* return a media file */
 expose medianumber mediacontrol picfile
 if symbol("medianumber") = 'LIT' then return ''
 arg medianum
 if medianumber = 0 | mediacontrol = '' | ,
 medianum > medianumber | medianum <= 0 then return ''
 mediatitle = substr(mediacontrol,medianum*30-29,20)
 vfacts = .local['Cardeal.Media.dir']'\'picfile[medianum]
 if left(mediatitle,4) = 'Fact' then do
 factdata = linein(vfacts)
 x = stream(vfacts,'c','close')
 vfacts = factdata
 end
 return mediatitle'::'vfacts

Figure 179. (Part 2 of 2) File Vehicle Class (fat\carvehi.cls)
512 Object REXX for Windows

Persistence in Files
File Work Order Class

/*--*/
/* FAT\carwork.cls CarDealer - WorkOrder class (FAT) ITSO-SJC */
/*--*/

 .local['Cardeal.WorkOrder.class'] = .WorkOrder

::requires 'base\carwork.cls'
::requires 'base\persist.cls'

::class WorkOrder public subclass WorkOrderBase inherit Persistent

/*----- class methods --*/

::method persistentLoad class /* load work orders file */
 expose file
 file = .local['Cardeal.Data.dir']'\workord.dat'
 custclass = .local['Cardeal.Customer.class']
 servclass = .local['Cardeal.ServiceItem.class']
 call stream file, 'c', 'open read'
 do i = 0 by 1 while lines(file) /* - read the file */
 parse value linein(file) with orderno '9'x date '9'x cost ,
 '9'x status '9'x owner '9'x car '9'x items
 if left(orderno,2) = '/*' then iterate
 custx = custclass~findNumber(owner) /* - create new work order */
 wo = self~new(strip(orderno), strip(date), strip(cost), ,
 strip(status), custx, custx~findVehicle(car))
 do while items \= '' /* - add services to order */
 parse var items itemx '9'x items
 wo~addServiceItem(servclass~findNumber(itemx))
 end
 end
 call stream file, 'c', 'close'
 return i

::method persistentStore class /* store workorders in file*/
 expose file
 call stream file, 'c', 'open write replace'
 do ordrx over self~extent /* - run over extent */
 x = lineout(file,ordrx~fileFormat)
 end
 call stream file, 'c', 'close'
 return 0

/*----- instance methods ---*/

::method fileFormat /* prepare record for file */
 out = strip(self~number)'9'x || strip(self~date)'9'x || ,
 strip(self~cost)'9'x || strip(self~getstatus)'9'x || ,
 strip(self~getcustomer~number)'9'x || strip(self~getvehicle~serial)
 workserv = self~class~getWorkServRel
 do servx over workserv~allat(self)
 out = out'9'x || servx~number
 end
 return out

Figure 180. File Work Order Class (fat\carwork.cls)
Appendix B. Car Dealer Source Code 513

Persistence in Files
File Service Item Class

/*--*/
/* FAT\carserv.cls CarDealer - ServiceItem class (FAT) ITSO-SJC */
/*--*/

 .local['Cardeal.ServiceItem.class'] = .ServiceItem

::requires 'base\carserv.cls'
::requires 'base\persist.cls'

::class ServiceItem public subclass ServiceItemBase inherit Persistent

/*----- class methods --*/

::method persistentLoad class /* load service from file */
 expose file
 file = .local['Cardeal.Data.dir']'\service.dat'
 partclass = .local['Cardeal.Part.class']
 call stream file, 'c', 'open read'
 do i = 0 by 1 while lines(file) /* - read the file */
 parse value linein(file) with ,
 itemNumber '9'x description '9'x laborCost '9'x parts
 if left(itemNumber,2) = '/*' then iterate
 si = self~new(strip(itemNumber), strip(description), strip(laborCost))
 do while parts \= '' /* - add parts to service */
 parse var parts partnum '9'x quant '9'x parts
 si~usesPart(partclass~findNumber(partnum), strip(quant))
 end
 end
 call stream file, 'c', 'close'
 return i

::method persistentStore class /* store services in file */
 /* no change in data ever */
 return 0

/*----- instance methods ---*/

::method fileFormat /* prepare record for file */
 /* never used since service items are not updated */
 out = strip(self~number)'9'x || left(self~description,20)'9'x || ,
 strip(self~laborcost)
 do partx over parts
 out = out'9'x || right(partx~number,2) || ,
 '9'x || right(self~getquantity(partx),2)
 end
 return out

Figure 181. File Service Item Class (fat\carserv.cls)
514 Object REXX for Windows

Persistence in Files
File Part Class

/*--*/
/* FAT\carpart.cls CarDealer - Part class (FAT) ITSO-SJC */
/*--*/

 .local['Cardeal.Part.class'] = .Part

::requires 'base\carpart.cls'
::requires 'base\persist.cls'

::class Part public subclass PartBase inherit Persistent

/*----- class methods --*/

::method persistentLoad class /* load parts from file */
 expose file
 file = .local['Cardeal.Data.dir']'\part.dat'
 call stream file, 'c', 'open read'
 do i = 0 by 1 while lines(file) /* - read the file */
 parse value linein(file) with ,
 partid '9'x description '9'x price '9'x stock
 if left(partid,2) = '/*' then iterate
 self~new(strip(partid), strip(description), strip(price), strip(stock))
 end
 call stream file, 'c', 'close'
 return i

::method persistentStore class /* store parts in file */
 expose file
 call stream file, 'c', 'open write replace'
 do partx over self~extent /* - run over extent */
 x = lineout(file,partx~fileFormat)
 end
 call stream file, 'c', 'close'
 return 0

/*----- instance methods ---*/

::method fileFormat /* prepare record for file */
 return strip(self~number)'9'x || left(self~description,15)'9'x || ,
 strip(self~price)'9'x || strip(self~stock)

Figure 182. File Part Class (fat\carpart.cls)
Appendix B. Car Dealer Source Code 515

Persistence in DB2
Persistence in DB2

Configuration for DB2 Storage

DB2 Customer Class

/*--*/
/* DB2\carmodel.cfg CarDealer - Model Config. (DB2) ITSO-SJC */
/*--*/

 Parse source . . me
 maindir = me~left(me~lastpos('\')-1) /* main cardeal directory */
 if stream(maindir'\base\cardeal.cls',c,'query exists') = '' then
 call carerror maindir

 call rxdb2con /* Rexx DB2 connect */
 if result>0 then exit 16

 .local['Cardeal.Data.type'] = 'DB2' /* Data in DB2 */
 .local['Cardeal.Data.dir'] = '-none-' /* Data in DB2 */
 .local['Cardeal.Media.dir'] = '-none-' /* Media in DB2 */

::requires 'base\cardeal.cls'

::requires 'db2\carcust.cls'
::requires 'db2\carvehi.cls'
::requires 'db2\carpart.cls'
::requires 'db2\carserv.cls'
::requires 'db2\carwork.cls'

Figure 183. Configuration for DB2 Storage (db2\carmodel.cfg)

/*--*/
/* DB2\carcust.cls CarDealer - Customer class (DB2) ITSO-SJC */
/*--*/

 .local['Cardeal.Customer.class'] = .Customer

::requires 'base\carcust.cls'

::class Customer public subclass CustomerBase

/*----- class methods --*/

::method persistentLoad class /* null, load by demand */
 return 0

Figure 184. (Part 1 of 3) DB2 Customer Class (db2\carcust.cls)
516 Object REXX for Windows

Persistence in DB2
::method findNumber class /* load customer by number */
 use arg custnum
 vehiclass = .local['Cardeal.Vehicle.class']
 workclass = .local['Cardeal.WorkOrder.class']
 custx = self~findNumber:super(custnum) /* - check if in memory */
 if custx \= .nil then return custx
 stmt = 'select c.custname, c.custaddr' ,
 ' from cardeal.customer c' ,
 ' where c.custnum =' custnum
 call sqlexec 'PREPARE s1 FROM :stmt'
 call sqlexec 'DECLARE c1 CURSOR FOR s1'
 call sqlexec 'OPEN c1'
 call sqlexec 'FETCH c1 INTO :xcustn, :xcusta'
 if sqlca.sqlcode = 0 then do
 custx = self~new(custnum, xcustn, xcusta)
 vehiclass~persistentLoadByCust(custx) /* - load vehicles of cust.*/
 workclass~persistentLoadByCust(custx) /* - load workorders */
 end
 else custx = .nil
 call sqlexec 'CLOSE c1'
 return custx

::method findName class /* find customer by name */
 use arg custsearch
 custnames = .list~new /* - prepare result list */
 stmt = "select c.custnum, c.custname, c.custaddr" ,
 " from cardeal.customer c" ,
 " where c.custname like ? order by 2"
 call sqlexec 'PREPARE s1 FROM :stmt'
 call sqlexec 'DECLARE c1 CURSOR FOR s1'
 xsearch = "'"custsearch"%'"
 call sqlexec "OPEN c1 USING :xsearch"
 do icust=0 by 1 until rcc \= 0 /* - search table with LIKE*/
 call sqlexec 'FETCH c1 INTO :xcustno, :xcustn, :xcusta'
 rcc = sqlca.sqlcode
 if rcc = 0 then do
 custstring = xcustno~right(3)'-'xcustn'-'xcusta
 custnames~insert(custstring)
 end
 end
 call sqlexec 'CLOSE c1'
 return custnames~makearray /* - return result array */

::method findAddress class /* find customer by address*/
 use arg custsearch
 stmt = "select c.custnum, c.custname, c.custaddr" ,
 " from cardeal.customer c" ,
 " where c.custaddr = ?"
 call sqlexec 'PREPARE s1 FROM :stmt'
 call sqlexec 'DECLARE c1 CURSOR FOR s1'
 xsearch = "'"custsearch"'"
 call sqlexec "OPEN c1 USING :xsearch"
 call sqlexec 'FETCH c1 INTO :xcustno, :xcustn, :xcusta'
 rcc = sqlca.sqlcode
 call sqlexec 'CLOSE c1'
 if rcc = 0 then return xcustno /* return customer number */
 else return ''

Figure 184. (Part 2 of 3) DB2 Customer Class (db2\carcust.cls)
Appendix B. Car Dealer Source Code 517

Persistence in DB2
DB2 Vehicle Class

/*----- instance methods ---*/

::method persistentInsert /* store new customer */
 insertstmt = "insert into cardeal.customer" ,
 " values("self~number",'"self~name"','"self~address"')"
 call sqlexec 'EXECUTE IMMEDIATE :insertstmt'
 if sqlca.sqlcode \= 0 then do
 say 'cust insert' sqlca.sqlcode sqlmsg
 self~setnil
 end
 else call sqlexec 'COMMIT'
 return sqlca.sqlcode

::method persistentUpdate /* update a customer */
 updatetstmt = "update cardeal.customer" ,
 " set custname = '"self~name"', custaddr ='"self~address"'" ,
 " where custnum =" self~number
 call sqlexec 'EXECUTE IMMEDIATE :updatetstmt'
 if sqlca.sqlcode \= 0 then say 'customer update' sqlca.sqlcode sqlmsg
 else call sqlexec 'COMMIT'
 return sqlca.sqlcode

::method persistentDelete /* delete a customer */
 delstmt = 'delete from cardeal.customer where custnum =' self~number
 call sqlexec 'EXECUTE IMMEDIATE :delstmt'
 if sqlca.sqlcode \= 0 then say 'cust delete' sqlca.sqlcode sqlmsg
 else call sqlexec 'COMMIT'
 return sqlca.sqlcode

Figure 184. (Part 3 of 3) DB2 Customer Class (db2\carcust.cls)

/*--*/
/* DB2\carvehi.cls CarDealer - Vehicle class (DB2) ITSO-SJC */
/*--*/

 .local['Cardeal.Vehicle.class'] = .Vehicle

::requires 'base\carvehi.cls'

::class Vehicle public subclass VehicleBase

/*----- class methods --*/

::method persistentLoad class /* null, load by demand */
 return 0
::method persistentLoadByCust class /* load vehicle of customer*/
 use arg custx
 customerNumber = custx~number
 stmt = 'select v.serialnum, v.make, v.model, v.year' ,
 ' from cardeal.vehicle v where v.custnum =' customerNumber
 call sqlexec 'PREPARE s2 FROM :stmt'
 call sqlexec 'DECLARE c2 CURSOR FOR s2'
 call sqlexec 'OPEN c2'

Figure 185. (Part 1 of 3) DB2 Vehicle Class (db2\carvehi.cls)
518 Object REXX for Windows

Persistence in DB2
 do until rcv \= 0 /* - run over vehicles */
 call sqlexec 'FETCH c2 INTO :xserial, :xmake, :xmodel, :xyear'
 rcv = sqlca.sqlcode
 if rcv = 0 then
 carx = self~new(xserial, xmake, xmodel, xyear, custx)
 end
 call sqlexec 'CLOSE c2'
 return 0

/*----- instance methods ---*/

::method persistentInsert /* store new vehicle */
 custnum = self~getowner~number
 insertstmt = "insert into cardeal.vehicle" ,
 " (serialnum, custnum, make, model, year)" ,
 " values("self~serial","custnum",'"self~make"'," ,
 "'"self~model"',"self~year")"
 /* say 'created' self 'in DB2' */
 call sqlexec 'EXECUTE IMMEDIATE :insertstmt'
 if sqlca.sqlcode \= 0 then do
 say 'vehicle insert' sqlca.sqlcode sqlca.sqlerrmc
 self~setnil
 end
 call sqlexec 'COMMIT'

::method persistentUpdate /* update vehicle data */
 updatetstmt = "update cardeal.vehicle" ,
 " set make ='"self~make"', model ='"self~model"'," ,
 "year =" selfyear ,
 " where serialnum =" self~serial
 call sqlexec 'EXECUTE IMMEDIATE :updatetstmt'
 if sqlca.sqlcode \= 0 then say 'customer update' sqlca.sqlcode sqlmsg
 else call sqlexec 'COMMIT'
 return sqlca.sqlcode

::method persistentDelete /* delete a vehicle */
 delstmt = 'delete from cardeal.vehicle where serialnum =' self~serial
 call sqlexec 'EXECUTE IMMEDIATE :delstmt'
 if sqlca.sqlcode \= 0 then say 'vehicle delete' sqlca.sqlcode sqlmsg
 else call sqlexec 'COMMIT'
 return sqlca.sqlcode

::method getmedianumber /* number of media files */
 expose medianumber mediacontrol /* - in the BLOB */
 if symbol("medianumber") = 'VAR' then return medianumber
 medianumber = 0
 mediacontrol = '' /* - prepare control info */
 stmt = 'select substr(v.pictures,1,3)' ,
 ' from cardeal.vehicle v where v.serialnum =' self~serial
 call sqlexec 'PREPARE s2 FROM :stmt'
 if sqlca.sqlcode \= 0 then return 0
 vpicind = -1
 call sqlexec 'DECLARE c2 CURSOR FOR s2'
 call sqlexec 'OPEN c2'
 call sqlexec 'FETCH c2 INTO :vpic :vpicind'
 call sqlexec 'CLOSE c2'
 if vpicind >=0 then medianumber = vpic
 return medianumber

Figure 185. (Part 2 of 3) DB2 Vehicle Class (db2\carvehi.cls)
Appendix B. Car Dealer Source Code 519

Persistence in DB2
 ::method getmediacontrol /* return media controlinfo*/
 expose medianumber mediacontrol
 if symbol("medianumber") = 'LIT' then return ''
 if medianumber <= 0 then return ''
 stmt = 'select substr(v.pictures,5,30*'medianumber')' ,
 ' from cardeal.vehicle v where v.serialnum =' self~serial
 call sqlexec 'PREPARE s2 FROM :stmt'
 call sqlexec 'DECLARE c2 CURSOR FOR s2'
 call sqlexec 'OPEN c2'
 call sqlexec 'FETCH c2 INTO :vpic :vpicind'
 rcv = sqlca.sqlcode
 call sqlexec 'CLOSE c2'
 if rcv = 0 & vpicind >= 0 then mediacontrol = vpic
 return mediacontrol

::method getmediainfo /* return one media file */
 expose medianumber mediacontrol
 parse source env .
 if env = 'OS/2' then env = 'OS2ENVIRONMENT'
 else env = 'ENVIRONMENT'
 if symbol("medianumber") = 'LIT' then return ''
 if mediacontrol = '' then self~getmediacontrol
 arg medianum
 if medianumber = 0 | medianum > medianumber | medianum <= 0 | ,
 mediacontrol = '' then return ''
 mediatitle = substr(mediacontrol,medianum*30-29,20)
 medialength = substr(mediacontrol,medianum*30- 8, 8)
 mediastart = 7 + 30 * medianumber
 do i=1 to medianum -1
 blg = substr(mediacontrol,i*30-8,8)
 mediastart = mediastart + blg
 end
 call sqlexec 'CLEAR SQL VARIABLE DECLARATIONS'
 call sqlexec 'DECLARE :vpic3 LANGUAGE TYPE BLOB FILE'
 vpic3.file_options = 'OVERWRITE'
 temp = value('TMP',,env)
 if temp = '' then temp = directory()
 tnam = 't'self~serial''medianum
 shorttitle = mediatitle~left(4)
 select
 when shorttitle = 'Fact' then vpic3.name = ''
 when shorttitle = 'Audi' then vpic3.name = temp'\'tnam'.WAV'
 when shorttitle = 'Vide' then vpic3.name = temp'\'tnam'.AVI'
 otherwise vpic3.name = temp'\'tnam'.BMP'
 end
 vfacts = vpic3.name
 stmt = 'select substr(v.pictures,'mediastart','medialength')' ,
 ' from cardeal.vehicle v where v.serialnum =' self~serial
 call sqlexec 'PREPARE s2 FROM :stmt'
 call sqlexec 'DECLARE c2 CURSOR FOR s2'
 call sqlexec 'OPEN c2'
 if vfacts = '' then call sqlexec 'FETCH c2 INTO :vfacts'
 else call sqlexec 'FETCH c2 INTO :vpic3 :vpicind3'
 if sqlca.sqlcode \= 0 then vfacts = ''
 call sqlexec 'CLOSE c2'
 call sqlexec 'CLEAR SQL VARIABLE DECLARATIONS'
 return mediatitle'::'vfacts

Figure 185. (Part 3 of 3) DB2 Vehicle Class (db2\carvehi.cls)
520 Object REXX for Windows

Persistence in DB2
DB2 Work Order Class

/*--*/
/* DB2\carwork.cls CarDealer - WorkOrder class (DB2) ITSO-SJC */
/*--*/

 .local['Cardeal.WorkOrder.class'] = .WorkOrder

::requires 'base\carwork.cls'

::class WorkOrder public subclass WorkOrderBase

/*----- class methods --*/

::method persistentLoad class /* null, load by demand */
 return 0

::method findNumber class /* find workorder by number*/
 use arg worknum
 custclass = .local['Cardeal.Customer.class']
 workx = self~findNumber:super(worknum) /* - check in memory first */
 if workx \= .nil then return workx /* - return if found */
 stmt = 'select w.custnum' ,
 ' from cardeal.workorder w where w.ordernum =' worknum
 call sqlexec 'PREPARE s3 FROM :stmt'
 call sqlexec 'DECLARE c3 CURSOR FOR s3'
 call sqlexec 'OPEN c3'
 call sqlexec 'FETCH c3 INTO :xcustnum'
 rcw = sqlca.sqlcode
 call sqlexec 'CLOSE c3'
 if rcw = 0 then do
 custx = custclass~findNumber(xcustnum)
 if custx \= .nil then
 do workx over self~extent
 if workx~number = worknum then return workx
 end
 end
 return .nil

::method findStatus class /* find workorder by status*/
 use arg xstatus
 worklist = .list~new /* - prepare result list */
 stmt = 'select w.ordernum, w.orderdate, w.cost, w.status,' ,
 ' c.custname, v.make, v.model' ,
 ' from cardeal.workorder w, cardeal.customer c, cardeal.vehicle v' ,
 ' where w.custnum = c.custnum and w.serialnum = v.serialnum' ,
 ' and w.status in (?, ?)' ,
 ' order by 1'
 hostvar = ':xordno, :xdate, :xcost, :xstatus, :xcustn, :xmake, :xmodel'
 call sqlexec 'PREPARE s3 FROM :stmt'
 call sqlexec 'DECLARE c3 CURSOR FOR s3'
 xstat1 = 0
 xstat2 = 1
 if xstatus = 0 then xstat2=0
 if xstatus = 1 then xstat1=1
 call sqlexec 'OPEN c3 USING :xstat1, :xstat2'

Figure 186. (Part 1 of 3) DB2 Work Order Class (db2\carwork.cls)
Appendix B. Car Dealer Source Code 521

Persistence in DB2
 do iwork = 0 by -1 until rcw \= 0
 call sqlexec 'FETCH c3 INTO' hostvar
 rcw = sqlca.sqlcode
 if rcw = 0 then do
 if xstatus = 0 then statusx = 'Incomplete'
 else statusx = 'Complete'
 workstring = xordno~left(3) '' xdate xcost~right(6) statusx~left(11) ,
 (xmake~strip'-'xmodel~strip)~left(20) xcustn
 worklist~insert(workstring,.nil)
 end
 end
 call sqlexec 'CLOSE c3'
 return worklist~makearray

::method newNumber class /* create new order number */
 stmt = 'select max(ordernum) from cardeal.workorder'
 call sqlexec 'PREPARE s3 FROM :stmt'
 call sqlexec 'DECLARE c3 CURSOR FOR s3'
 call sqlexec 'OPEN c3'
 call sqlexec 'FETCH c3 INTO :xmax'
 call sqlexec 'CLOSE c3'
 return xmax + 1

::method persistentLoadByCust class /* load workorders of cust.*/
 use arg custx
 servclass = .local['Cardeal.ServiceItem.class']
 customerNumber = custx~number
 stmt = 'select w.ordernum, w.cost, w.orderdate, w.status, w.serialnum' ,
 ' from cardeal.workorder w where w.custnum =' customerNumber
 call sqlexec 'PREPARE s4 FROM :stmt'
 call sqlexec 'DECLARE c4 CURSOR FOR s4'
 call sqlexec 'OPEN c4'
 do until rcw \= 0 /* - run over orders */
 call sqlexec 'FETCH c4 INTO :xorder, :xcost, :xdate, :xstatus, :xserial'
 rcw = sqlca.sqlcode
 if rcw = 0 then do
 cars = custx~getVehicles
 do carx over cars /* - find matching car */
 if carx~serial = xserial then do /* for work order */
 orderx = self~new(xorder, xdate, xcost, xstatus, custx, carx)
 servitems = servclass~extent
 stmt2 = 'select r.itemnum' ,
 ' from cardeal.workserv r where r.ordernum =' xorder
 call sqlexec 'PREPARE s5 FROM :stmt2'
 call sqlexec 'DECLARE c5 CURSOR FOR s5'
 call sqlexec 'OPEN c5'
 do until rcs \= 0 /* - and add rels to serv, */
 call sqlexec 'FETCH c5 INTO :xitem'
 rcs = sqlca.sqlcode
 if rcs = 0 then
 do servx over servitems
 if servx~number = xitem then
 orderx~addServiceItem(servx)
 end
 end
 call sqlexec 'CLOSE c5'
 end
 end /*cars*/

Figure 186. (Part 2 of 3) DB2 Work Order Class (db2\carwork.cls)
522 Object REXX for Windows

Persistence in DB2
 end /*rcw=0*/
 end
 call sqlexec 'CLOSE c4'
 return 0

/*----- instance methods ---*/

::method persistentInsert /* store new work order */
 custnum = self~getcustomer~number
 carserial = self~getvehicle~serial
 insertstmt = "insert into cardeal.workorder" ,
 " values("self~number","custnum","carserial"," ,
 self~cost",'"self~date"',"self~getstatus")"
 call sqlexec 'EXECUTE IMMEDIATE :insertstmt'
 if sqlca.sqlcode \= 0 then do
 say 'workorder insert' sqlca.sqlcode sqlmsg
 self~setnil
 end
 else call sqlexec 'COMMIT'
 return sqlca.sqlcode

::method persistentDelete /* delete work order */
 delstmt = 'delete from cardeal.workorder where ordernum =' self~number
 call sqlexec 'EXECUTE IMMEDIATE :delstmt'
 if sqlca.sqlcode \= 0 then say 'order delete' sqlca.sqlcode sqlca.sqlerrmc
 delstmt = 'delete from cardeal.workserv where ordernum =' self~number
 call sqlexec 'EXECUTE IMMEDIATE :delstmt'
 if sqlca.sqlcode \= 0 & sclca.sqlcode \= 100 then
 say 'order-serv delete' sqlca.sqlcode sqlmsg
 else call sqlexec 'COMMIT'
 return sqlca.sqlcode

::method persistentInsertServ /* add service item */
 use arg itemnum
 insertstmt = 'insert into cardeal.workserv values('self~number',' itemnum')'
 call sqlexec 'EXECUTE IMMEDIATE :insertstmt'
 rci = sqlca.sqlcode
 if rci \= 0 then say 'workserv insert' sqlca.sqlcode sqlmsg
 else call sqlexec 'COMMIT'
 return sqlca.sqlcode

::method persistentDeleteServ /* delete service item */
 use arg itemnum
 deletestmt = 'delete from cardeal.workserv' ,
 ' where ordernum =' self~number 'and itemnum =' itemnum
 call sqlexec 'EXECUTE IMMEDIATE :deletestmt'
 if sqlca.sqlcode \= 0 then say 'workserv delete' sqlca.sqlcode sqlca.sqlerrmc
 else call sqlexec 'COMMIT'
 return sqlca.sqlcode

::method persistentUpdate /* update work order data */
 updatestmt = 'update cardeal.workorder' ,
 ' set cost =' self~cost', status =' self~getstatus ,
 ' where ordernum =' self~number
 call sqlexec 'EXECUTE IMMEDIATE :updatestmt'
 if sqlca.sqlcode \= 0 then say 'workorder update' sqlca.sqlcode sqlmsg
 else call sqlexec 'COMMIT'
 return sqlca.sqlcode

Figure 186. (Part 3 of 3) DB2 Work Order Class (db2\carwork.cls)
Appendix B. Car Dealer Source Code 523

Persistence in DB2
DB2 Service Item Class

/*--*/
/* DB2\carserv.cls CarDealer - ServiceItem class (DB2) ITSO-SJC */
/*--*/

 .local['Cardeal.ServiceItem.class'] = .ServiceItem

::requires 'base\carserv.cls'

::class ServiceItem public subclass ServiceItemBase

/*----- class methods --*/

::method persistentLoad class /* load all service items */
 partclass = .local['Cardeal.Part.class']
 stmt = 'select s.itemnum, s.labor, s.description' ,
 ' from cardeal.service s' ,
 ' order by 1'
 hostvar = ':xitem, :xlabor, :xdesc1'
 call sqlexec 'PREPARE s1 FROM :stmt'
 if sqlca.sqlcode \= 0 then
 say 'sqlerror service items prepare:' sqlca.sqlcode sqlmsg
 call sqlexec 'DECLARE c1 CURSOR FOR s1'
 call sqlexec 'OPEN c1'
 if sqlca.sqlcode \= 0 then
 say 'sqlerror service items open:' sqlca.sqlcode sqlmsg
 do iserv = 0 by 1 until sqlca.sqlcode \= 0 /* - run over service table*/
 call sqlexec 'FETCH c1 INTO' hostvar
 if sqlca.sqlcode \= 0 & sqlca.sqlcode \= 100 then
 say 'sqlerror service items fetch:' sqlca.sqlcode sqlmsg
 else if sqlca.sqlcode = 0 then do
 /* say 'creating service item' xitem */
 servx = self~findNumber(xitem)
 if servx = .nil then
 servx = self~new(xitem, xdesc1, xlabor)
 end
 end
 call sqlexec 'CLOSE c1'
 if sqlca.sqlcode \= 0 then
 say 'sqlerror service items close:' sqlca.sqlcode sqlmsg
 /* say 'Loaded' self~getextent~items 'service items' */
 /* - add service-part rels */
 stmt = 'select r.itemnum, r.quantity, r.partnum' ,
 ' from cardeal.servpart r'
 hostvar = ':xitem, :xquan, :xpartid'
 call sqlexec 'PREPARE s1 FROM :stmt'
 if sqlca.sqlcode \= 0 then
 say 'sqlerror service-parts prepare:' sqlca.sqlcode sqlmsg
 call sqlexec 'DECLARE c1 CURSOR FOR s1'
 call sqlexec 'OPEN c1'
 if sqlca.sqlcode \= 0 then
 say 'sqlerror service-parts open:' sqlca.sqlcode sqlmsg

Figure 187. (Part 1 of 2) DB2 Service Item Class (db2\carserv.cls)
524 Object REXX for Windows

Persistence in DB2
DB2 Part Class

 do iservprt = 0 by 1 until sqlca.sqlcode \= 0 /* - run over servpart tab.*/
 call sqlexec 'FETCH c1 INTO' hostvar
 if sqlca.sqlcode \= 0 & sqlca.sqlcode \= 100 then
 say 'sqlerror service-parts fetch:' sqlca.sqlcode sqlmsg
 else if sqlca.sqlcode = 0 then do
 /* say 'creating service-part' xitem xpartid */
 partx = partclass~findNumber(xpartid)
 if partx = .nil then
 say 'Service item' xitem 'uses non-existing part' xpartid
 servx = self~findNumber(xitem)
 if servx = .nil then
 say 'Service item' xitem 'not in service table'
 else
 servx~usesPart(partx, xquan)
 end
 end
 call sqlexec 'CLOSE c1'
 if sqlca.sqlcode \= 0 then
 say 'sqlerror service-parts close:' sqlca.sqlcode sqlmsg
 /* say 'Loaded' partclass~getextent~items 'parts' */
 /* say 'Loaded' iservprt 'service/part relationships' */
 /* say 'All sample data read' */
 return iserv

Figure 187. (Part 2 of 2) DB2 Service Item Class (db2\carserv.cls)

/*--*/
/* DB2\carpart.cls CarDealer - Part class (DB2) ITSO-SJC */
/*--*/

 .local['Cardeal.Part.class'] = .Part

::requires 'base\carpart.cls'

::class Part public subclass PartBase

/*----- class methods --*/

::method persistentLoad class /* load all parts from DB2 */
 stmt = 'select p.partnum, p.price, p.stock, p.description' ,
 ' from cardeal.part p' ,
 ' order by 1'
 hostvar = ':xpartid, :xprice, :xstock, :xdesc2'
 call sqlexec 'PREPARE s1 FROM :stmt'
 if sqlca.sqlcode \= 0 then
 say 'sqlerror parts prepare:' sqlca.sqlcode sqlmsg
 call sqlexec 'DECLARE c1 CURSOR FOR s1'
 call sqlexec 'OPEN c1'
 if sqlca.sqlcode \= 0 then
 say 'sqlerror parts open:' sqlca.sqlcode sqlmsg

Figure 188. (Part 1 of 2) DB2 Part Class (db2\carpart.cls)
Appendix B. Car Dealer Source Code 525

Persistence in DB2
 do ipart = 0 by 1 until sqlca.sqlcode \= 0 /* - run over all parts */
 call sqlexec 'FETCH c1 INTO' hostvar
 if sqlca.sqlcode \= 0 & sqlca.sqlcode \= 100 then
 say 'sqlerror parts fetch:' sqlca.sqlcode sqlmsg
 else if sqlca.sqlcode = 0 then do
 partx = self~findNumber(xpartid)
 if partx = .nil then
 partx = self~new(xpartid, xdesc2, xprice, xstock)
 end
 end
 call sqlexec 'CLOSE c1'
 if sqlca.sqlcode \= 0 then
 say 'sqlerror parts close:' sqlca.sqlcode sqlmsg
 return ipart

/*----- instance methods ---*/

::method persistentUpdate /* update a part */
 use arg quant
 updatestmt = 'update cardeal.part set stock =' self~stock ,
 ' where partnum =' self~number
 call sqlexec 'EXECUTE IMMEDIATE :updatestmt'
 if sqlca.sqlcode \= 0 then say 'part-update' sqlca.sqlcode sqlmsg
 else call sqlexec 'COMMIT'
 return sqlca.sqlcode

::method persistentInsert /* store new part */
 insertstmt = "insert into cardeal.part" ,
 " values("self~number","self~price","self~stock"," ,
 "'"self~description"')"
 call sqlexec 'EXECUTE IMMEDIATE :insertstmt'
 if sqlca.sqlcode \= 0 then say 'part-insert' sqlca.sqlcode sqlmsg
 else call sqlexec 'COMMIT'
 return sqlca.sqlcode

Figure 188. (Part 2 of 2) DB2 Part Class (db2\carpart.cls)
526 Object REXX for Windows

Running the Car Dealer Application
Running the Car Dealer Application

Program to Run the Car Dealer Application

/*--*/
/* car-run.rex CarDealer - Run Car Dealer ITSO-SJC */
/* (AUI or GUI, File or DB2) */
/*--*/

parse source . . me
sourcedir = me~left(me~lastpos('\')-1)
curdir = directory() /* save current directory */
new = directory(sourcedir) /* make CARDEAL current directory */

arg p1 p2 p3 '(' quiet
if quiet \= '' then talk = 0
else talk = 1

if p1 = '' | p1 = '?' then do
 say 'Syntax: CAR-RUN [F | D | M] [A | G]'
 say ' first parm: F = File, D = DB2/2, M = in Memory only'
 say ' second parm: A = Ascii window, G = GUI'
 say ' parameters : in any sequence, blank separated'
 say ' setup F|D|M is saved'
 return
end

opt = left(strip(p1),1)''left(strip(p2),1)''left(strip(p3),1)

/* setup data storage */

select
 when pos('F',opt)>0 then do; "copy FAT\carmodel.cfg >nul"
 if talk then say 'Setup for FAT data'; end
 when pos('D',opt)>0 then do; "copy DB2\carmodel.cfg >nul"
 if talk then say 'Setup for DB2 data'; end
 when pos('M',opt)>0 then do; "copy RAM\carmodel.cfg >nul"
 if talk then say 'Setup for Memory data'; end
 otherwise nop
end

/* Run program in AUI or GUI mode */

select
 when pos('A',opt)>0 then call "AUI\car-aui"
 when pos('G',opt)>0 then call "OOD\car-ood"
 otherwise if talk then
 say 'You can now run any Car Dealer application (ASCII or GUI)'
end

curdir = directory(curdir) /* restore current directory */
return

Figure 189. Command to Run the Car Dealer (\car-run.rex)
Appendix B. Car Dealer Source Code 527

Running the Car Dealer Application
528 Object REXX for Windows

Defini
C

tion for
Syntax Diagram
Structure
Throughout this book, syntax is described using the structure defined
below:

❑ Syntax diagrams are read from left to right, top to bottom, follow-
ing the path of the line.

The symbol indicates the beginning of a statement.

The symbol indicates that the statement syntax is con-
tinued on the next line.

The symbol indicates that a statement is continued
from the previous line.

The symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements
start with the symbol and end with the symbol.
 529

❑ Required items appear on the horizontal line (the main path).

❑ Optional items appear below the main path.

❑ Choices appear vertically, in a stack. If one item must be chosen, it
will appear on the main path.

If choosing one of the items is optional, the entire stack appears
below the main path.

❑ If one of the items is the default, it appears above the main path,
and the remaining choices are shown below it.

❑ An arrow returning to the left above the main line indicates an
item that can be repeated.

A repeat arrow above a stack indicates that the items in the stack
can be repeated.

❑ Keywords appear in uppercase (for example, PARM1). They must be
spelled exactly as shown but can be entered in lowercase. Vari-
ables appear in all lowercase letters (for example, parmx). They
represent user-supplied names or values.

❑ If punctuation marks, parentheses, arithmetic operators, or such
symbols are shown, they must be entered as part of the syntax.

STATEMENT required_item

STATEMENT
optional_item

STATEMENT required_choice1
required_choice2

STATEMENT
optional_choice1
optional_choice2

STATEMENT
default_choice

optional_choice
optional_choice

STATEMENT repeatable_item
530 Object REXX for Windows

Specia
D

l Notices

This publication is intended to help programmers use the new Object
REXX language to create object-oriented applications. The informa-
tion in this publication is not intended as the specification of any pro-
gramming interfaces that are provided by Object REXX for Windows
NT and Windows 95.

References in this publication to IBM products, programs or services
do not imply that IBM intends to make these available in all countries
in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM’s product, pro-
gram, or service may be used. Any functionally equivalent program
that does not infringe on any of IBM’s intellectual property rights may
be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific
hardware and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not
give you any license to these patents. You can send license inquiries, in
writing, to the IBM Director of Licensing, IBM Corporation, 500
Columbus Avenue, Thornwood, NY 10594 USA.
 531

The information contained in this document has not been submitted to
any formal IBM test and is distributed AS IS. The use of this informa-
tion or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and
integrate them into the customer’s operational environment. While
each item may have been reviewed by IBM for accuracy in a specific
situation, there is no guarantee that the same or similar results will
be obtained elsewhere. Customers attempting to adapt these tech-
niques to their own environments do so at their own risk.

The following document contains examples of data and reports used in
daily business operations. To illustrate them as completely as possible,
the examples contain the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is
entirely coincidental.

The following terms are trademarks of the International Business
Machines Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Freelance is a trademark of Lotus Development Corporation.

C-bus is a trademark of Corollary, Inc.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other coun-
tries licensed exclusively through X/Open Company Limited.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trade-
marks of Microsoft Corporation.

Other trademarks are trademarks of their respective companies.

AIX C Set ++

CUA DB2

DB2/2 Distributed Database Connection Services/2

ES/9000 IBM

MVS/ESA OS/2

OS/400 ThinkPad

VisualAge
532 Object REXX for Windows

Relate
E

d
Publications
The publications listed in this section are considered particularly suit-
able for a more detailed discussion of the topics covered in this docu-
ment.

International Technical Support Organization
Publications

❑ OS/2 REXX: From Bark to Byte, GG24-4199

❑ Object-Oriented Databases, ObjectStore, Introduction and Sample
Application, GG24-4128

(This book is based on the same car dealer application that we use
in our book.)

❑ Object REXX for OS/2, SG24-4586, ISBN 0-13-273467-2

(The original book on Object REXX, following a similar structure
and content.)
 533

Other Publications
A complete list of International Technical Support Organization publi-
cations, known as redbooks, with a brief description of each, may be
found in:

International Technical Support Organization Bibliography of
Redbooks, GG24-3070.

Other Publications

These publications are also relevant fur further information sources:

❑ Object REXX Reference [ORXW_REF.INF]

❑ Object REXX Programming Guide [ORXW_PRG.INF]

❑ OODialog Method Reference [OODIALOG.INF]

The first two books listed above are not available in hardcopy, but are
shipped in online format with Object REXX.

❑ The REXX Language, A Practical Approach to Programming, by
Mike Cowlishaw, published by Prentice Hall, 1990, ZB35-5100-01,
ISBN 0-13-780651-5.

❑ The Essential Client/Server Survival Guide, by Robert Orfali, Dan
Harkey, and Jeri Edwards, published by John Wiley & Sons, Inc.,
1994, SR28-5572-00, ISBN 0-471-13119-9.

❑ The Essential Distributed Objects Survival Guide, by Robert
Orfali, Dan Harkey, and Jeri Edwards, published by John Wiley &
Sons, Inc., 1995, SR28-5898-00, ISBN 0-471-12993-3.

How to Get ITSO Redbooks
This section explains how both customers and IBM employees can find
out about ITSO redbooks, CD-ROMs, workshops, and residencies. A
form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is contin-
ually subject to change. The latest information may be found at URL:

http://www.redbook.ibm.com/redbooks
534 Object REXX for Windows

How to Get ITSO Redbooks
How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager
BOOKs, and CD-ROMs) and information about redbooks, workshops,
and residencies in the following ways:

❑ PUBORDER — to order hardcopies in the United States

❑ GOPHER link to the Internet - type:

GOPHER.WTSCPOK.ITSO.IBM.COM

❑ Tools disks

To get LIST3820s of redbooks, type one of the following com-
mands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE
 (second line for Canadian users only)

To get lists of redbooks:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and red-
books:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product areas specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

❑ Redbooks Home Page on the World Wide Web
http://w3.itso.ibm.com/redbooks/redbooks.html

❑ IBM Direct Publications Catalog on the World Wide Web
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

❑ ITSO4USA category on INEWS

❑ Online — send orders to:
USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

❑ Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM
Announcement Listserver. To initiate the service, send an E-mail
note to announce@webster.ibmlink.ibm.com with the keyword sub-
scribe in the body of the note (leave the subject line blank). A cat-
egory form and detailed instructions will be sent to you.
Appendix E. Related Publications 535

How to Get ITSO Redbooks
How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager
BOOKs, and CD-ROMs) and information about redbooks, workshops,
and residencies in the following ways:

❑ Online Orders (Do not send credit card information over the
Internet) — send orders to:

❑ Telephone orders

❑ Mail Orders — send orders to:

❑ Fax — send orders to:

❑ 1-800-IBM-4FAX (United States) or
(+1) 415 855 43 29 (Outside USA) — ask for:
 Index # 4421 Abstracts of new redbooks
 Index # 4422 IBM redbooks
 Index # 4420 Redbooks for last six months

❑ Direct Services - send note to softwareshop@vnet.ibm.com

❑ On the World Wide Web
Redbooks Home Page: http://www.redbooks.ibm.com
IBM Direct Publications: http://www.elink.ibmlink.ibm.com/pbl/pbl

❑ Internet Listserver
With an Internet E-mail address, anyone can subscribe to an IBM
Announcement Listserver. To initiate the service, send an E-mail note to
announce@webster.ibmlink.ibm.com with the keyword subscribe in the
body of the note (leave the subject line blank).

 IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU
Outside North America: (long distance charges apply)
 (+45) 4810-1320 - Danish
 (+45) 4810-1420 - Dutch
 (+45) 4810-1540 - English
 (+45) 4810-1670 - Finnish
 (+45) 4810-1220 - French

 (+45) 4810-1020 - German
 (+45) 4810-1620 - Italian
 (+45) 4810-1270 - Norwegian
 (+45) 4810-1120 - Spanish
 (+45) 4810-1170 - Swedish

IBM Publications
Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Aller⁄ d
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)
536 Object REXX for Windows

How to Get ITSO Redbooks
IBM Redbook Order Form

Please send me the following:

❒ Please put me on the mailing list for updated versions of the IBM Red-
book Catalog

❒ Invoice to customer number __

❒ Credit card number __

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Pay-
ment by credit card not available in all countries. Signature mandatory for
credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET

Title Order Number Quantity

First name Last name

Company

 Address

 City Postal code Country

Telephone number Telefax number VAT number
Appendix E. Related Publications 537

Sample Code on the Internet
Sample Code on the Internet
If you do not have World Wide Web access, you can obtain the list of all
current redbooks through the Internet by anonymous FTP:

 ftp ftp.almaden.ibm.com
 cd /redbooks
 get itsopub.txt

This FTP server also stores the sample code developed for this red-
book. To retrieve the sample files, issue the following commands from
the redbooks directory:

 lcd d:\carinst <=== any local directory for installation files
 binary
 cd SG244825
 mget *.*
 ascii
 get read.me

For IBM people without access to the external FTP server, the code is
also available as RXREDWIN PACKAGE on the PCTOOLS conference
disk.

To install the sample code, follow the directions in the read.me file, in
conjunction with Installing Object REXX, DB2, and the Sample Appli-
cations on page 287.
538 Object REXX for Windows

Index

Special Characters

(var) parameter of the CALL instruction 468
.environment 465
.local 225, 465
.methods 465
.nil 465
.output 101
.rs 465

A

AddAttribute 341
AddAutoStartMethod 386
AddBitmapButton 400
AddBlackFrame 416
AddBlackRect 416
AddButton 399
AddButtonGroup 413
AddCategoryComboEntry 432
AddCategoryListEntry 433
AddCheckBox 404
AddCheckBoxStem 411
AddCheckGroup 407
AddComboBox 404
AddComboEntry 349
AddComboInput 410
AddEntryLine 402
AddGrayFrame 415
AddGrayRect 415
AddGroupBox 402
AddInput 407
AddInputGroup 409
AddInputStem 410
AddLine 439
AddListBox 403
AddListEntry 353
AddOkCancelLeftBottom 416
AddOkCancelLeftTop 417
AddOkCancelRightBottom 416
AddOkCancelRightTop 417
AddPasswordLine 403
AddRadioButton 405
AddRadioGroup 405
AddRadioStem 412
AddText 401
AddUserMsg 339
Index
AddWhiteFrame 415
AddWhiteRect 415
animals riddle 307
Animated Button 319
animation demonstration 311
ARG

enhanced built-in function 475
ASCII user interface

car dealer 97
object 101

attribute 65, 66
audio 98, 192

World Wide Web 256
AUI class 102
AutoDetection 334

B

BackgroundBitmap 366
BaseDialog 318, 322
Bind 298
bitmap button 141
bitmap viewer 309
BLOB 188

DB2 185, 291
in Object REXX 188
multimedia 192
self-defining 193

Boxie the cat 187
browser

class 74
World Wide Web 234, 235

built-in functions 32
enhanced

ARG 475
CONDITION 476
DATATYPE 476
DATE 477
STREAM 477
TIME 479

new
CHANGESTR 475
COUNTSTR 476
VAR 479

C

CAE 208
CALL

enhanced instruction 468
CALL instruction
539

(var) parameter 468
Cancel 389
car dealer

add services GUI window 167
application 79
ASCII user interface 105
bill GUI window 169
class 230
class relationships 218
configurations 221
customer window 163
DB2 setup 293
directories 300
directory structure 219
file structure 222
GUI 162
home page 261
installation 287
main GUI window 162
methods 84
model 82
multimedia files 492
objects 81
part list GUI window 170
relationships 89
remote database 299
remove installation 304
run from CDROM 289
run on World Wide Web 299
sample data 489
simple installation GUI window 228
source code 487
source code for base classes 493
source code for DB2 persistence 516
source code for file persistence 509
source code for running the

programs 527
use case 80
vehicle window 165
work orders GUI window 166
World Wide Web 261

CategoryComboAddDirectory 433
CategoryComboDrop 433
CategoryDialog 149, 318, 421
CategoryListAddDirectory 435
CategoryListDrop 435
CategoryPage 426
CCD 186
CDROM

content 288
running car dealer application 289
running Object REXX 288

Center 386
CGI 233, 236, 242

environment variables 243
540
REXX interface 252, 253
ChangeBitmapButton 364
ChangeCategoryComboEntry 433
ChangeCategoryListEntry 434
ChangeComboEntry 352
ChangeListEntry 355
ChangePage 427
CHANGESTR

new built-in function 475
check list 159
CheckFile 395
CheckID 395
CheckList 159, 319, 444
class 59

abstract 61
browser 74, 291
communication 224
directive 59, 465
library 73
meta 70
mixin 117
persistence 117
structure 114

class browser
OODialog 74

Classic REXX
built-in functions 32
compound symbols 38
compound variables 38
conditions 13
function 29
host commands 36
introduction 5
loop 11
procedural programming 20
procedure 25
recursive functions 34
rxqueue 37
selection 14
sequence 7
stem 38
structured programming 7
subroutine 22
subroutines 20

Classy Cars 98, 122, 176, 185, 205
ClearButtonRect 363
ClearMessages 333
ClearRect 363
ClearWindowRect 363
client/server 208, 214
CLOB 188
collection classes 73, 84, 90
color 321
color and drawing demonstration 309
CombineELwithSB 359
Object REXX for Windows

ComboAddDirectory 352
ComboDrop 353
Common Gateway Interface , See CGI
component 54
compound symbols 38
compound variables 38
concurrency 44, 267
CONDITION

enhanced built-in function 476
condition traps

debug routine 480
SIGNAL and CALL 480

conditions 13
configuration

car dealer 221
DB2 229
file system 229

configuration file 220
configuration management 215
ConnectAnimatedButton 387
ConnectBitmapButton 335
ConnectButton 334
ConnectCheckBox 338
ConnectComboBox 338
ConnectControl 336
ConnectEntryLine 337
ConnectList 337
ConnectListBox 338
ConnectMultiListBox 339
ConnectRadioButton 338
ConnectScrollBar 358
cookies

chocolate chip 103
CORBA 54
COUNTSTR

new built-in function 476
Create 394
CreateBrush 376
CreateCategoryDialog 426
CreateCenter 395
CreateFont 373
CreatePen 376
CRUD methods 84
CurrentCategory 427

D

DAP 2
DATATYPE

enhanced built-in function 476
DATE

enhanced built-in function 477
DB2
Index
authorization 204
Bind 298
bind 298
BLOB 185, 188
client setup for remote access 296
database 178, 293
implementation 182
installation 290
load 179, 294
multimedia implementation 199
persistence 175
persistent methods 180
prerequisites 291
remote access 295
remote database 297
security 203
setup 293
stored procedures 207
tables 293
user authorization 297

DBCLOB 188
deadlock 279
debugging

condition traps 480
REXXTRY 42
trace 42
workbench 459

declaratives 57
DefineDialog 396, 426, 437, 438
DeInstall 390
DeleteCategoryComboEntry 432
DeleteCategoryListEntry 434
DeleteComboEntry 350
DeleteFont 374
DeleteListEntry 354
DeleteObject 377
demonstration workbench 457
DEVCON 2
device context 321
Dialog 319
dialog

classes 126
creation 130
summary 145
unit 321

digital camera 186
directives

class 59, 465
method 59, 466
Object REXX 464, 465
requires 116, 220, 467
routine 94, 466

DisableCategoryItem 435
DisableItem 382
DisplaceBitmap 367
541

DO
enhanced instruction 469

do over 44, 470
DOS 98
drag and drop 188
Draw 361
DrawAngleArc 382
DrawArc 379
DrawBitmap 365
DrawButton 361
DrawLine 378
DrawPie 381
DrawPixel 379
dynamic SQL 204

E

EnableCategoryItem 435
EnableItem 382
encapsulation 52, 65
EndAsyncExecution 331
ErrorFile 396
ErrorMessage 319
Execute 329, 437, 439
ExecuteAsync 330
EXPOSE

new instruction 470
expose 65

F

factorials 34
FAT 107
file locator host variable 189
FillDrawing 381
FindCategoryComboEntry 432
FindCategoryListEntry 434
FindComboEntry 350
FindListEntry 354
FontColor 375
FontToDC 374
FORWARD

new instruction 470
FreeButtonDC 369
FreeDC 368
FreeWindowDC 368
function 29
542
G

Get 360
GetArcDirection 380
GetAttrib 348
GetBitmapSizeX 365
GetBitmapSizeY 365
GetBmpDisplacement 367
GetButtonDC 368
GetButtonRect 361
GetCategoryAttrib 431
GetCategoryCheckBox 431
GetCategoryComboItems 432
GetCategoryComboLine 430
GetCategoryEntryLine 429
GetCategoryListItems 434
GetCategoryListLine 430
GetCategoryMultiList 430
GetCategoryRadioButton 430
GetCategoryValue 431
GetCheckBox 346
GetComboItems 351
GetComboLine 346
GetCurrentCategoryComboIndex 433
GetCurrentCategoryListIndex 434
GetCurrentComboIndex 351
GetCurrentListIndex 355
GetData 342
GetDataStem 349
GetDC 368
GetDefaultOpts 417
GetEntryLine 344
GetFileNameWindow 320
GetItem 360
GetListItems 354
GetListLine 344
GetMultiList 345
GetPixel 379
GetPos 360
GetRadioButton 346
GetSBPos 358
GetSBRange 357
GetScreenSize 320
GetSelectedPage 427
GetSize 360
GetStaticID 417
GetTextSize 375
GetValue 347
GetWindowDC 368
GetWindowRect 361
global environment directory 465
graphical demonstration 308
GraphicExtension 375
graphics 141
Object REXX for Windows

group , See program group
GUARD

new instruction 471
guard 270, 276
GUI

car dealer add services window 167
car dealer bill window 169
car dealer customer window 163
car dealer main window 162
car dealer part list window 170
car dealer service items window 171
car dealer vehicle window 165
car dealer work orders window 166

GUI builder 122

H

Hacurs 1, 5, 79
home page 237

handle 321
HandleMessages 332
Help 389
HideCategoryItem 435
HideItem 383
HideItemFast 383
HideWindow 383
HideWindowFast 384
home page 235, 237

car dealer 261
Hacurs 237

host commands 36
host variable

file locator 190
HTML 233, 235

class 244
form 247

Hypertext Markup Language , See HTML

I

id 321
InfoMessage 319
inheritance 60

car dealer 113
meta class 70
multiple 63

Init 328, 393, 419, 423, 436, 438, 441, 442,
444, 446

InitAutoDetection 334, 394
InitCategories 425
InitDialog 329, 427
Index
input box 155
InputBox 155, 318, 438, 439
InsertCategoryComboEntry 432
InsertCategoryListEntry 434
InsertComboEntry 350
InsertListEntry 353
installation 287

Object REXX 289
remove sample applications 304
sample applications 291

installation program
considerations 226

instructions
enhanced

CALL 468
DO 469
PARSE 471
SIGNAL 474

new
EXPOSE 470
FORWARD 470
GUARD 471
RAISE 472
REPLY 473
USE 475

integer box 155
IntegerBox 155, 319, 440
Internet , See World Wide Web
Internet Connection Server 235, 242

administration file 251
Internet Explorer 235
IsDialogActive 331
ItemTitle 343

J

jack slot machine 312

L

large objects , See BLOB
let’s go to the movies 313
list choice 157
ListAddDirectory 356
ListChoice 157, 319, 442
ListDrop 356
Load 396
load on demand 183
LoadBitmap 364
LoadFrame 397
LoadItems 398
543

LOB 188
local directory 225, 465
loop 11

bottom-driven loop 12
repetitive loop 12
top-driven loop 12

M

MakeArray 348
menu 103

data file 104
loop 104
object 103
operations 103

message object 268
meta class 70
method 58, 68

class 69
directive 59, 65, 466
init 67
instance 69
new 67
private 69
reference manual 317
unguarded 269

migration considerations 485
mixin 117
Move 386
MoveItem 385
movies 313
MultiInputBox 156, 319, 440, 441
MultiListChoice 158, 319, 443
multimedia 98, 192, 291

BLOB 185
files 492
World Wide Web 255

multiple input box 156
multiple list choice 158
multiple selection 17

N

nested dialogs 144
Netscape Navigator 235
new

method 67
NextPage 427
NoAutoDetection 334
544
O

object
concurrency 267
cooperation 53
creation 67, 91
destruction 68, 91
file persistence 107
instance 67
instance management 92
message 268
methods 58
model 93
persistence 107
relationships 89
stream (file) format 111

object management group 54
Object REXX

class library 73
concurrency 267
configuration management 215
DB2 stored procedures 207
dialog classes 126
enhanced instructions 467
GUI builder 122
installation 289
migration 485
new features 463
new instructions 467
program group 291
security 203
shared objects 208
tokenizing 161
using BLOBs 188
why 55
workbench 457
World Wide Web 233

object-oriented
benefits 46
languages 49
why 46

ObjectToDC 377
OK 388
OMG 54
OODialog

base dialog 322
car dealer add services window 167
car dealer bill window 169
car dealer customer window 163
car dealer main window 162
car dealer part list window 170
car dealer service items window 171
car dealer simple installation

window 228
Object REXX for Windows

car dealer vehicle window 165
car dealer work orders window 166
categorized dialog 421
CDROM 288
class browser 74
class files 174
classes

AnimatedButton 319
BaseDialog 322
CategoryDialog 149, 421
CheckList 159, 444
Dialog 319
InputBox 155, 438
IntegerBox 155, 440
ListChoice 157, 442
MultiInputBox 156, 440
MultiListChoice 158, 443
PasswordBox 155, 439
ResDialog 147, 419
SingleSelection 160, 445
TimedMessage 154, 436
UserDialog 126, 130, 145, 391

dialog creation 130
functions 319

CheckList 445
ErrorMessage 319
GetFileNameWindow 320
GetScreenSize 320
InfoMessage 319
InputBox 439
IntegerBox 440
ListChoice 443
MultiInputBox 441
MultiListChoice 443
PasswordBox 439
Play 390
PlaySoundFile 320
PlaySoundFileInLoop 320
SingleSelection 446
SleepMS 320
StopSoundFile 320
TimedMessage 437
WinTimer 320
YesNoMessage 319

graphics 141
introduction 122
method flow 145
methods

AddAttribute 341
AddAutoStartMethod 386
AddBitmapButton 400
AddBlackFrame 416
AddBlackRect 416
AddButton 399
AddButtonGroup 413
Index
AddCategoryComboEntry 432
AddCategoryListEntry 433
AddCheckBox 404
AddCheckBoxStem 411
AddCheckGroup 407
AddComboBox 404
AddComboEntry 349
AddComboInput 410
AddEntryLine 402
AddGrayFrame 415
AddGrayRect 415
AddGroupBox 402
AddInput 407
AddInputGroup 409
AddInputStem 410
AddLine 439
AddListBox 403
AddListEntry 353
AddOkCancelLeftBottom 416
AddOkCancelLeftTop 417
AddOkCancelRightBottom 416
AddOkCancelRightTop 417
AddPasswordLine 403
AddRadioButton 405
AddRadioGroup 405
AddRadioStem 412
AddScrollBar 412
AddText 401
AddUserMsg 339
AddWhiteFrame 415
AddWhiteRect 415
AutoDetection 334
BackgroundBitmap 366
Cancel 389
CategoryComboAddDirectory 433
CategoryComboDrop 433
CategoryListAddDirectory 435
CategoryListDrop 435
CategoryPage 426
Center 386
ChangeBitmapButton 364
ChangeCategoryComboEntry 433
ChangeCategoryListEntry 434
ChangeComboEntry 352
ChangeListEntry 355
ChangePage 427, 428
CheckFile 395
CheckID 395
ClearButtonRect 363
ClearMessages 333
ClearRect 363
ClearWindowRect 363
CombineELwithSB 359
ComboAddDirectory 352
ComboDrop 353
545

ConnectAnimatedButton 387
ConnectBitmapButton 335
ConnectButton 334
ConnectCheckBox 338
ConnectComboBox 338
ConnectControl 336
ConnectEntryLine 337
ConnectList 337
ConnectListBox 338
ConnectMultiListBox 339
ConnectRadioButton 338
ConnectScrollBar 358
Create 394
CreateBrush 376
CreateCategoryDialog 426
CreateCenter 395
CreateFont 373
CreatePen 376
CurrentCategory 427
DefineDialog 396, 426, 437, 438
DeInstall 390
DeleteCategoryComboEntry 432
DeleteCategoryListEntry 434
DeleteComboEntry 350
DeleteFont 374
DeleteListEntry 354
DeleteObject 377
DisableCategoryItem 435
DisableItem 382
DisplaceBitmap 367
Draw 361
DrawAngleArc 382
DrawArc 379
DrawBitmap 365
DrawButton 361
DrawLine 378
DrawPie 381
DrawPixel 379
EnableCategoryItem 435
EnableItem 382
EndAsyncExecution 331
ErrorFile 396
Execute 329, 437, 439
ExecuteAsync 330
FillDrawing 381
FindCategoryComboEntry 432
FindCategoryListEntry 434
FindComboEntry 350
FindListEntry 354
FontColor 375
FontToDC 374
FreeButtonDC 369
FreeDC 368
FreeWindowDC 368
Get 360
546
GetArcDirection 380
GetAttrib 348
GetBitmapSizeX 365
GetBitmapSizeY 365
GetBmpDisplacement 367
GetButtonDC 368
GetButtonRect 361
GetCategoryAttrib 431
GetCategoryCheckBox 431
GetCategoryComboItems 432
GetCategoryComboLine 430
GetCategoryEntryLine 429
GetCategoryListItems 434
GetCategoryListLine 430
GetCategoryMultiList 430
GetCategoryRadioButton 430
GetCategoryValue 431
GetCheckBox 346
GetComboItems 351
GetComboLine 346
GetCurrentCategoryComboIndex 4

33
GetCurrentCategoryListIndex 434
GetCurrentComboIndex 351
GetCurrentListIndex 351, 354, 355,

432, 434
GetData 342
GetDataStem 349
GetDC 368
GetDefaultOpts 417
GetEntryLine 344
GetItem 360
GetListItems 354
GetListLine 344
GetMultiList 345
GetPixel 379
GetPos 360
GetRadioButton 346
GetSBPos 358
GetSBRange 357
GetSelectedPage 427
GetSize 360
GetStaticID 417
GetTextSize 375
GetValue 347
GetWindowDC 368
GetWindowRect 361
GraphicExtension 375
HandleMessages 332
Help 389
HideCategoryItem 435
HideItem 383
HideItemFast 383
HideWindow 383
HideWindowFast 384
Object REXX for Windows

Init 328, 393, 419, 423, 436, 438,
441, 442, 444, 446

InitAutoDetection 334, 394
InitCategories 425
InitDialog 329, 427
InsertCategoryComboEntry 432
InsertCategoryListEntry 434
InsertComboEntry 350
InsertListEntry 353
IsDialogActive 331
ItemTitle 343
ListAddDirectory 356
ListDrop 356
Load 396
LoadBitmap 364
LoadFrame 397
LoadItems 398
MakeArray 348
Move 386
MoveItem 385
NextPage 427
NoAutoDetection 334
ObjectToDC 377
OK 388
OpaqueText 370
PageHasChanged 428
PreviousPage 427
Rectangle 378, 379, 380, 381, 382
RedrawButton 362
RedrawRect 362
RedrawWindowRect 362
RemoveBitmap 364
Resize 385
ResizeItem 384
Run 329
ScrollBitmapFromTo 366
ScrollButton 373
ScrollInButton 373
ScrollText 372
SendMessageToItem 333
SetArcDirection 380
SetAttrib 348
SetCategoryAttrib 431
SetCategoryCheckBox 431
SetCategoryComboLine 430
SetCategoryEntryLine 429
SetCategoryListLine 430
SetCategoryListTabulators 435
SetCategoryMultiList 430
SetCategoryRadioButton 431
SetCategoryStaticText 429
SetCategoryValue 431
SetCheckBox 347
SetComboLine 346
Index
SetCurrentCategoryComboIndex 4
33

SetCurrentCategoryListIndex 434
SetCurrentComboIndex 351
SetCurrentListIndex 355
SetData 342
SetDataStem 348
SetEntryLine 344
SetListLine 345
SetListTabulators 356
SetMultiList 345
SetRadioButton 346
SetSBPos 358
SetSBRange 357
SetStaticText 343
SetValue 347
SetWindowTitle 343
Show 331
ShowCategoryItem 435
ShowItem 383
ShowItemFast 383
ShowWindow 384
ShowWindowFast 384
StartIt 417, 420, 428
StartMessageHandling 332
StopIt 331, 418
TiledBackgroundBitmap 366
Title 343
ToTheTop 332
TransparentText 369
Update 386
Validate 389, 440
Write 371
WriteDirect 369
WriteToButton 371
WriteToWindow 370

nested dialogs 144
philosophers’ forks 277
program structure 173
resource dialog 419
resource workshop 124, 127
samples 174, 305, 317
standard dialogs 154, 312, 436
terms 321
tokenizing 161
user dialogs 130

oodialog.cls 174, 322
OpaqueText 370

P

PageHasChanged 428
PARSE
547

enhanced instruction 471
parse 44
password box 155
PasswordBox 155, 319, 439
persistence

DB2 175
DB2 methods 180
file system 107
persistent class 117

philosophers’ forks 273
DOS window 276
OODialog sample 307
OODialog window 277

pictures
camera 186
World Wide Web 255

pixel 321
Play 390
PlaySoundFile 320
PlaySoundFileInLoop 320
polymorphism 70
PPP 234
prerequisites 291
PreviousPage 427
procedural programming 20
procedure 25
productivity 46
program group

Object REXX Redbook 291
Program Manager 452
propagate parameter of RAISE 473
prototyping 49

R

RAISE
new instruction 472
test of propagate parameter 473

rc 37
Rectangle 378
recursion 34
recursive functions 34
redbook examples

folder 291
source code 487

RedrawButton 362
RedrawRect 362
RedrawWindowRect 362
reference

OODialog methods 317
Registry 453
RemoveBitmap 364
REPLY
548
early 268
example 270
new instruction 473

requires
directive 44, 116, 220, 467

ResDialog 147, 318, 419
Resize 385
ResizeItem 384
resource workshop 124, 127, 288
reuse 47, 52
REXX macros 483
REXXC 75
REXXC utility 205, 464, 467
REXXTRY 42, 460
RexxUtil 33
routine

directive 94, 466
Run 329
rxqueue 37, 209
RXSAVETOKENS 76

S

sample applications
directories 300
installation 291
OODialog 174, 305
remove 304

ScrollBitmapFromTo 366
ScrollButton 373
ScrollInButton 373
ScrollText 372
security 203
selection 14
self

variable 464
Semaphores 482
SendMessageToItem 333
sequence 7
server

World Wide Web 235
service items GUI window 171
SetArcDirection 380
SetAttrib 348
SetCategoryAttrib 431
SetCategoryCheckBox 431
SetCategoryComboLine 430
SetCategoryEntryLine 429
SetCategoryListLine 430
SetCategoryListTabulators 435
SetCategoryMultiList 430
SetCategoryRadioButton 431
SetCategoryStaticText 429
Object REXX for Windows

SetCategoryValue 431
SetCheckBox 347
SetComboLine 346
SetCurrentCategoryComboIndex 433
SetCurrentCategoryListIndex 434
SetCurrentComboIndex 351
SetCurrentListIndex 355
SetData 342
SetDataStem 348
SetEntryLine 344
SetListLine 345
SetListTabulators 356
SetMultiList 345
SetRadioButton 346
SetSBPos 358
SetSBRange 357
SetStaticText 343
SetTitle 343
SetValue 347
SetWindowTitle 343
Show 331
ShowCategoryItem 435
ShowItem 383
ShowItemFast 383
ShowWindow 384
ShowWindowFast 384
SIGNAL

enhanced instruction 474
signal 44
single selection 15, 160
SingleSelection 160, 319, 445
SleepMS 320
SLIP 234
Smalltalk 46, 63
SOM

object 44
object broker 55

source code
base classes 493
car dealer 487
car dealer run 527
DB2 persistence 516
file persistence 509
multimedia 492
sample data 489

source code listings
CARCUST.CLS 493, 510, 516
CARDEAL.CLS 508
CARMODEL.CFG 509, 516
CARPART.CLS 505, 515, 525
CAR-RUN.REX 527
CARSERV.CLS 503, 514, 524
CARVEHI.CLS 496, 511, 518
CARWORK.CLS 498, 513, 521
CUSTOMER.DAT 489
Index
MEDIA.DAT 492
PART.DAT 491
PERSIST.CLS 507
SERVICE.DAT 491
VEHICLE.DAT 490
WORKORD.DAT 490

spiral method 48
standard dialogs 154, 312, 436
standard dialogs sample 312
StartIt 417, 420, 428
StartMessageHandling 332
stem 38, 73, 485
StopIt 331, 418
StopSoundFile 320
stored procedures 207
stream 485
STREAM - enhanced built-in function 477
structured programming 7
subclass 60
subdirectories

car dealer 219
subroutines 20, 22, 44
super

variable 465
syntax diagram descriptions 529, 538
syscls 33

T

tilde 58, 68
TiledBackgroundBitmap 366
TIME

enhanced built-in function 479
timed message 154
TimedMessage 154, 318, 436, 437
Title 343
tokenizing 42, 75, 161
ToTheTop 332
trace 42
TransparentText 369
Trusty Trucks 79, 107

U

unguarded method 269
Update 386
USE

example 68
new instruction 475

use case 80
user interface
549

ASCII 97
GUI 121

UserDialog 126, 130, 145, 318, 391
utilities

new 482

V

Validate 389, 440
VAR

new built-in function 479
variable

methods and 84
pool 65
special 464

video 98, 192
World Wide Web 256

video archive 306

W

waterfall method 48
Web , See World Wide Web
which 307
Windows 95 98
Windows Program Manager 452, 485
Windows Registry 453
Windows utilities 484
WinTimer 320
workbench 457
World Wide Web

audio 256
browser 234
car dealer 261
home page 235
Internet Connection Server 235
Internet name 236
multimedia 255
Object REXX 233
pictures 255
server 235
video 256

Write 371
WriteDirect 369
WriteToButton 371
WriteToWindow 370
550
Y

YesNoMessage 319
Object REXX for Windows

ACKNOWLEDGMENT
YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT, AND AGREE TO BE

BOUND BY ITS TERMS AND CONDITIONS. YOU ALSO AGREE THAT THIS AGREEMENT IS THE COMPLETE AND
EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN YOU AND THE COMPANY AND SUPERSEDES ALL
PROPOSALS OR PRIOR AGREEMENTS, ORAL, OR WRITTEN, AND ANY OTHER COMMUNICATIONS BETWEEN
YOU AND THE COMPANY OR ANY REPRESENTATIVE OF THE COMPANY RELATING TO THE SUBJECT MATTER
OF THIS AGREEMENT.

Should you have any questions concerning this Agreement or if you wish to contact the Company for any reason,
please contact in writing at the address below.

Robin Short
Prentice Hall PTR
One Lake Street
Upper Saddle River, New Jersey 07458

IBM OBJECT REXX FOR WINDOWS EVALUATION LICENSE

BEFORE USING THIS PROGRAM YOU SHOULD CAREFULLY READ THE FOLLOWING
TERMS AND CONDITIONS. USING THE PROGRAM INDICATES YOUR ACCEPTANCE OF
THE FOLLOWING TERMS AND CONDITIONS.

IBM Object REXX for Windows NT and Windows 95 ("Program") is copyrighted and licensed,
not sold. The term "Program" means the original and all whole or partial copies of it. Interna-
tional Business Machines Corporation or one of its subsidiaries ("IBM") owns or has licensed
from the owner copyrights in the Program.

IBM grants you free of charge a non-exclusive, nontransferable license to download the Pro-
gram and use it to enable you to evaluate the potential usefulness of the Program to you.

You may copy the Program for back-up purposes only. You may not distribute, sublicense, lease
or rent the Program, or create derivative works, reverse compile, reverse assemble or otherwise
attempt to translate or seek to gain access to the Program's source code, except as permitted by
law without the possibility of contractual waiver.

The term of your License will be one year from your first use. You must destroy and/or delete
the Program within ten (10) days after the expiration of this one year period.

You may terminate this license at any time. IBM may terminate this license at any time if you
are in breach of any of its terms. In either event, you must destroy all copies of the Program.

IBM IS PROVIDING THE PROGRAM TO YOU "AS IS", WITHOUT ANY WARRANTIES
(EXPRESS OR IMPLIED) OR SUPPORT WHATSOEVER, INCLUDING BUT NOT LIMITED
TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR ANY PAR-
TICULAR PURPOSE.

IN NO EVENT WILL IBM BE LIABLE FOR ANY DAMAGE WHATSOEVER, INCLUDING,
BUT NOT LIMITED TO, LOST PROFITS, LOST SAVINGS, INCIDENTAL OR INDIRECT
DAMAGES OR OTHER ECONOMIC CONSEQUENTIAL DAMAGES, EVEN IF IBM HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ADDITION, IBM WILL
NOT BE LIABLE FOR ANY DAMAGES CLAIMED BY YOU BASED ON ANY THIRD-PARTY
CLAIM.

The above limitation of remedies also applies to any developer and/or supplier of the Program.
Such developer and/or supplier is an intended beneficiary of these limitation terms.

As your testing and evaluation of this Program is important to IBM, this license is granted
without charge. You agree that IBM may use all suggestions, improvements and written materi-
als you may furnish IBM in connection with your use of this Program, and that IBM may
include them in any IBM product without accounting to you.

If you acquire the Program in the United States, this license is governed by the laws of the
State of New York. If you acquire the Program in Canada, this license is governed by the laws of
the Province of Ontario. Otherwise, the license is governed by the laws of the country in which
you acquire the Program.

Note to U.S. Government Users -- Documentation related to Restricted Rights -- Use, duplica-
tion, or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM
Corporation

IBM RESOURCE WORKSHOP, ILINK, IVIEW, AND OODIALOG
EVALUATION LICENSE

BEFORE USING THIS PROGRAM YOU SHOULD CAREFULLY READ THE FOLLOWING
TERMS AND CONDITIONS. USING THE PROGRAM INDICATES YOUR ACCEPTANCE OF
THE FOLLOWING TERMS AND CONDITIONS.

IBM Resource Workshop, ILINK, IVIEW, and OODialog ("Program") is copyrighted and
licensed, not sold. The term "Program" means the original and all whole or partial copies of it.
International Business Machines Corporation or one of its subsidiaries ("IBM") owns or has
licensed from the owner copyrights in the Program.

IBM grants you free of charge a non-exclusive, nontransferable license to download the Pro-
gram and use it to enable you to evaluate the potential usefulness of the Program to you.

You may copy the Program for back-up purposes only. You may not distribute, sublicense, lease
or rent the Program, or create derivative works, reverse compile, reverse assemble or otherwise
attempt to translate or seek to gain access to the Program's source code, except as permitted by
law without the possibility of contractual waiver.

The term of your License will be one year from your first use. You must destroy and/or delete
the Program within ten (10) days after the expiration of this one year period.

You may terminate this license at any time. IBM may terminate this license at any time if you
are in breach of any of its terms. In either event, you must destroy all copies of the Program.

IBM IS PROVIDING THE PROGRAM TO YOU "AS IS", WITHOUT ANY WARRANTIES
(EXPRESS OR IMPLIED) OR SUPPORT WHATSOEVER, INCLUDING BUT NOT LIMITED
TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR ANY PAR-
TICULAR PURPOSE.

IN NO EVENT WILL IBM BE LIABLE FOR ANY DAMAGE WHATSOEVER, INCLUDING,
BUT NOT LIMITED TO, LOST PROFITS, LOST SAVINGS, INCIDENTAL OR INDIRECT
DAMAGES OR OTHER ECONOMIC CONSEQUENTIAL DAMAGES, EVEN IF IBM HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ADDITION, IBM WILL
NOT BE LIABLE FOR ANY DAMAGES CLAIMED BY YOU BASED ON ANY THIRD-PARTY
CLAIM.

The above limitation of remedies also applies to any developer and/or supplier of the Program.
Such developer and/or supplier is an intended beneficiary of these limitation terms.

As your testing and evaluation of this Program is important to IBM, this license is granted
without charge. You agree that IBM may use all suggestions, improvements and written materi-
als you may furnish IBM in connection with your use of this Program, and that IBM may
include them in any IBM product without accounting to you.

If you acquire the Program in the United States, this license is governed by the laws of the
State of New York. If you acquire the Program in Canada, this license is governed by the laws of
the Province of Ontario. Otherwise, the license is governed by the laws of the country in which
you acquire the Program.

Note to U.S. Government Users -- Documentation related to Restricted Rights -- Use, duplica-
tion, or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM
Corporation.

IBM EVALUATION AGREEMENT
FOR DB2 FOR WINDOWS NT AND WINDOWS 95

This is a no charge Evaluation License ("License") between you and International Business
Machines Corporation ("IBM") for the evaluation of IBM's software and related documentation
("Program").

IBM grants you a non-exclusive, non-transferable license to the Program only to enable you to
evaluate the potential usefulness of the Program to you. You may not use the Program for any
other purpose and you may not distribute any part of it, either alone or with any of your soft-
ware products.

IBM retains ownership of the Program and any copies you make of it. You may use the Program
on one (1) machine only.

You may not decompile, disassemble or otherwise attempt to translate or seek to gain access to
the Program's source code.

The term of your License will be from the date of first use of the Program, and will terminate 60
days later, unless otherwise specified. THE PROGRAM WILL STOP FUNCTIONING WHEN
THE LICENSE TERM EXPIRES. You should therefore take precautions to avoid any loss of
data that might result. You must destroy and/or delete all copies you have made of the Program
within ten (10) days of the expiry of your License.

If you are interested in continuing to use the Program after the end of your License, you must
place an order for a full license to the Program and pay the applicable license fee. In that event,
your use of the Program will be governed by the provisions of the applicable IBM license for the
Program.

IBM accepts no liability for damages you may suffer as a result of your use of the Program. In
no event will IBM be liable for any indirect, special or consequential damages, even if IBM has
been advised of the possibility of their occurrence.

YOU UNDERSTAND THAT THE PROGRAM IS BEING PROVIDED TO YOU "AS IS", WITH-
OUT ANY WARRANTIES (EXPRESS OR IMPLIED) WHATSOEVER, INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, PERFOR-
MANCE OR FITNESS FOR ANY PARTICULAR PURPOSE. Some jurisdictions do not allow
the exclusion or limitation of warranties or consequential or incidental damages, so the above
may not apply to you.

IBM may terminate your License at any time if you are in breach of any of its terms.

This License will be governed by and interpreted in accordance with the laws of the State of
New York.

This License is the only understanding and agreement we have for your use of the Program. It
supersedes all other communications, understandings or agreements we may have had prior to
this License.

LICENSE AGREEMENT AND LIMITED WARRANTY

(reserved for Prentice Hall)

	Object REXX for Windows NT and Windows 95
	Object REXX for Windows NT and Windows 95
	Abstract
	Contents
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

	Figures
	Tables
	Preface
	How This Document Is Organized
	The Team That Wrote This Redbook
	Acknowledgments
	Comments Welcome

	Introducing the Hacurs Company
	Introducing Classic REXX and Object REXX
	Introducing Classic REXX
	A Lesson in Classic REXX
	Structured Programming
	The Sequence
	The Loop
	The Selection

	Procedural Programming Using Subroutines
	The Subroutine
	The Procedure
	The Function

	Host Commands
	Stems and Compound Variables
	Hints and Tips

	Introducing Object REXX
	What’s New in Object REXX?
	Why REXX?
	Why Object Orientation?
	The Productivity Problem
	The Reuse Solution
	The Waterfall Method
	The Spiral Method
	Prototyping
	The Paradigm Shift
	Better Reuse from the OO Approach

	Communities of Cooperative Objects
	Bloated PC Software
	Standard Software Components
	Liberating Objects from Applications
	The CORBA Standard

	So Why Object REXX?

	How Does Object REXX Implement OO?
	Objects
	Classes
	Inheritance
	Abstract Classes
	Multiple Inheritance

	Object REXX Variable Pools
	Object Instances
	Object Creation
	Object Destruction

	Methods
	Private and Public Methods
	Class and Instance Methods
	Meta Classes

	Polymorphism
	The Object REXX Class Library
	The Object REXX Class Library Browser
	Experimental Class Browser
	OODialog Class Browser

	Tokenizing Object REXX Programs
	Automatic Tokenizing

	The Car Dealer Scenario
	The Car Dealer Application
	The Car Dealer Opportunity
	The Application Model
	Methods and Variables
	Relationships Among Objects
	The Object REXX Collection Classes
	Object Creation and Destruction
	Implementation of the Model in Memory
	Implementation Notes
	Sample Class Definition
	Source Code for Base Class Implementation

	ASCII User Interface
	Designing the User Interface
	ASCII User Interface As an Object
	The AUI Class
	The AUI Operations

	ASCII Menus as Objects
	The Menu Operations
	Implementing the Menus

	Appearance of ASCII User Interface
	Source Code for ASCII User Interface

	Persistent Objects on Disk
	Storing Objects in FAT Files
	Format of the Objects
	Implementing the Changes in Code

	The Class Structure
	The Requires Directive
	The Persistent Class
	Source Code and Sample Data for FAT Class Implementation

	Graphical User Interfaces with OODialog
	The Setup
	Resource Workshop
	Object REXX Dialog Classes
	Using the Resource Workshop
	Creating a Dialog with Object REXX
	The UserDialog Class
	Changing the Dialog Behavior
	What’s Going On Inside
	Implementing a Method for a Push Button
	Doing Graphics with OODialog
	Nesting Dialogs

	Summary of User Dialog
	OODialog Classes
	The ResDialog Class
	The CategoryDialog Class
	Standard Dialog Classes
	Standard Dialog Functions
	Timed Message Box
	Input Box, Integer Box, Password Box
	Multiple Input Box
	List Choice
	Multiple List Choice
	Check List
	Single Selection

	Tokenizing OODialog Scripts
	The Car Dealer GUI
	Main Dialog
	Customer Dialog
	Vehicle Dialog
	Work Orders Dialog
	Add Service Items Dialog
	Bill Dialog

	Parts List Dialog
	Service Items Dialog
	Source Code for OODialog GUI Interface

	How to Structure OODialog Programs
	OODialog Class Files

	OODialog Sample Programs

	Persistent Objects in DB2
	Storing Objects in DB2
	Persistent Methods for DB2 Support
	Implementation of DB2 Support
	Implementation of Load at Application Start
	Implementation of Load-on-Demand
	Implementation Notes
	Setting Up DB2 on Windows NT and Windows 95
	Source Code for DB2 Class Implementation

	Using Advanced DB2 Facilities
	Multimedia in DB2 BLOBs
	Using DB2 BLOBs from Object REXX
	Multiple Multimedia Files in BLOBs

	Multimedia in the Car Dealer Application
	Implementing the DB2 Multimedia Support
	Implementation Notes
	Source Code for DB2 Multimedia Implementation

	Data Security with Object REXX and DB2
	The Security Problem
	Coding Stored Procedures with Object REXX

	Configuration Management with Object REXX
	Breaking an Application into Multiple Files
	Using Multiple Subdirectories

	Configuration Files
	Overall Car Dealer File Structure

	Communication Among Classes
	The Local Directory

	Installation Program Considerations
	Implementation of Configuration Files
	Using the Configuration File
	Configuration File for List Routines
	Implementation of the Car Dealer Class
	Using the Car Dealer Class

	Source Code for Configuration Management

	Object REXX and the World Wide Web
	Hacurs Connects to the Internet
	Hacurs Makes a Plan for the Web

	Hacurs Designs a Home Page
	The Home Page

	Web Car Dealer Application
	Web Common Gateway Interface
	HTML Class
	Customer Search Form

	Program Organization
	Customizing the File Organization on the Web Server
	Car Dealer Common Interface Program

	Multimedia on the Web
	Interacting with Web Users
	Adding a Web Customer

	Car Dealer Home Page
	Implementation Notes
	Source Code

	Object REXX and Concurrency
	Object REXX and Concurrency
	Object-Based Concurrency
	The Object REXX Concurrency Facilities
	Early Reply
	Message Objects
	Unguarded Methods
	The Guard Instruction

	Examples of Early Reply with Unguarded and Guarded Methods

	Philosophers’ Forks
	Philosophers’ Forks in an DOS Window
	Visualizing Philosophers’ Forks with OODialog
	GUI Design of the Philosophers’ Forks with OODialog
	Implementation Notes

	Installing Object REXX, DB2, and the Sample Applications
	Installing Object REXX, DB2, and the Sample Applications
	Content of the CD
	Installation and Run from the CD

	Installation of Object REXX
	OODialog and IBM Resource Workshop
	Running the Car Dealer Application from the CD

	Installation of DB2 Version 2
	DB2 Installation on Windows 95
	DB2 Installation on Windows NT

	Installing the Car Dealer Application
	Prerequisites for the Car Dealer Application
	Object REXX Redbook Program Group
	DB2 Setup for Car Dealer Application
	Define the DB2 Database
	Define the DB2 Tables
	Load the DB2 Tables

	DB2 Setup for Remote Database Access
	Server Setup for Remote Database Access
	Client Setup for Remote Database Access
	Cataloging the Remote Database
	Authorizing Remote Users on the Server
	Testing the Remote Database
	Rebinding REXX Programs to a Database

	Running the Car Dealer Application
	Running the Car Dealer with a Remote Database
	Running the Car Dealer Application on the World Wide Web

	Installed Sample Applications
	Car Dealer Directory
	Source Code for Running the Car Dealer Application
	Removing Object REXX and the Sample Applications

	OODialog Samples
	Video Archive
	Animals Riddle
	Philosophers’ Forks
	Graphical Demonstration
	Animation Demonstration
	Jack Slot Machine
	Standard Dialogs
	Let’s Go to the Movies

	Reference Information
	OODialog Classes
	OODialog Standard Dialog Functions

	OODialog External Functions
	Registering OODialog Functions
	Definition of Terms

	BaseDialog Class
	Instance Methods of BaseDialog
	Preparing and Running the Dialog
	Init
	InitDialog
	Run
	Execute
	ExecuteAsync
	EndAsyncExecution
	IsDialogActive
	StopIt
	Show
	ToTheTop
	StartMessageHandling
	HandleMessages
	ClearMessages
	SendMessageToItem

	Connect Methods
	InitAutoDetection
	NoAutoDetection
	AutoDetection
	ConnectButton
	ConnectBitmapButton
	ConnectControl
	ConnectList
	ConnectEntryLine
	ConnectComboBox
	ConnectCheckBox
	ConnectRadioButton
	ConnectListBox
	ConnectMultiListBox
	AddUserMsg
	AddAttribute

	Get and Set Methods
	GetData
	SetData
	Title
	SetTitle
	SetWindowTitle
	ItemTitle
	SetStaticText
	GetEntryLine
	SetEntryLine
	GetListLine
	SetListLine
	GetMultiList
	SetMultiList
	GetComboLine
	SetComboLine
	GetRadioButton
	SetRadioButton
	GetCheckBox
	SetCheckBox
	GetValue
	SetValue
	GetAttrib
	SetAttrib
	MakeArray
	SetDataStem
	GetDataStem

	Combo Box Methods
	AddComboEntry
	InsertComboEntry
	DeleteComboEntry
	FindComboEntry
	GetComboItems
	GetCurrentComboIndex
	SetCurrentComboIndex
	ChangeComboEntry
	ComboAddDirectory
	ComboDrop

	List Box Methods
	AddListEntry
	InsertListEntry
	DeleteListEntry
	FindListEntry
	GetListItems
	GetCurrentListIndex
	SetCurrentListIndex
	ChangeListEntry
	SetListTabulators
	ListAddDirectory
	ListDrop

	Scroll Bar Methods
	GetSBRange
	SetSBRange
	GetSBPos
	SetSBPos
	ConnectScrollBar
	CombineELwithSB

	Methods for Window Handles, Sizes, and Positions
	Get
	GetItem
	GetSize
	GetPos
	GetButtonRect
	GetWindowRect

	Window Draw Methods
	Draw
	DrawButton
	RedrawRect
	RedrawButton
	RedrawWindowRect
	ClearRect
	ClearButtonRect
	ClearWindowRect

	Bitmap Methods
	LoadBitmap
	RemoveBitmap
	ChangeBitmapButton
	GetBitmapSizeX
	GetBitmapSizeY
	DrawBitmap
	ScrollBitmapFromTo
	TiledBackgroundBitmap
	BackgroundBitmap
	DisplaceBitmap
	GetBmpDisplacement

	Device Context Methods
	GetWindowDC
	GetDC
	GetButtonDC
	FreeWindowDC
	FreeDC
	FreeButtonDC

	Text Methods
	WriteDirect
	TransparentText
	OpaqueText
	WriteToWindow
	WriteToButton
	Write
	ScrollText
	ScrollInButton
	ScrollButton
	CreateFont
	FontToDC
	DeleteFont
	FontColor
	GetTextSize

	Graphics Methods
	GraphicExtension
	CreateBrush
	CreatePen
	ObjectToDC
	DeleteObject

	Graphic Drawing Methods
	Rectangle
	DrawLine
	DrawPixel
	GetPixel
	DrawArc
	GetArcDirection
	SetArcDirection
	DrawPie
	FillDrawing
	DrawAngleArc

	Enable/Disable and Show/Hide Methods
	EnableItem
	DisableItem
	HideItem
	HideItemFast
	ShowItem
	ShowItemFast
	HideWindow
	HideWindowFast
	ShowWindow
	ShowWindowFast
	ResizeItem
	Resize
	MoveItem
	Move
	Center
	Update

	Animated Buttons
	AddAutoStartMethod
	ConnectAnimatedButton

	Standard Event Methods
	OK
	Cancel
	Help
	Validate
	DeInstall

	Public Routines
	Play

	UserDialog Class
	Instance Methods of Class UserDialog
	Init
	InitAutoDetection
	Create
	CreateCenter
	CheckFile
	CheckID
	ErrorFile
	DefineDialog
	Load
	LoadFrame
	LoadItems

	Add... Methods
	AddButton
	AddBitmapButton
	AddText
	AddGroupBox
	AddEntryLine
	AddPasswordLine
	AddListBox
	AddComboBox
	AddCheckBox
	AddRadioButton
	AddRadioGroup
	AddCheckGroup
	AddInput
	AddInputGroup
	AddComboInput
	AddInputStem
	AddCheckBoxStem
	AddRadioStem
	AddScrollBar
	AddButtonGroup

	Frames and Rectangles
	AddWhiteRect
	AddWhiteFrame
	AddGrayRect
	AddGrayFrame
	AddBlackRect
	AddBlackFrame

	OK and Cancel Push Buttons
	AddOkCancelRightBottom
	AddOkCancelLeftBottom
	AddOkCancelRightTop
	AddOkCancelLeftTop

	Dialog Control Methods
	GetDefaultOpts
	GetStaticID
	StartIt
	StopIt

	ResDialog Class
	Instance Methods
	Init
	StartIt

	CategoryDialog Class
	Instance Methods of Class CategoryDialog
	Setting Up the Dialog
	Init
	InitCategories
	DefineDialog
	CategoryPage
	CreateCategoryDialog
	InitDialog
	GetSelectedPage
	CurrentCategory
	NextPage
	PreviousPage
	ChangePage
	PageHasChanged
	StartIt

	Connect... Methods
	Methods for Dialog Items
	Get and Set Methods
	SetCategoryStaticText
	GetCategoryEntryLine
	SetCategoryEntryLine
	GetCategoryListLine
	SetCategoryListLine
	GetCategoryMultiList
	SetCategoryMultiList
	GetCategoryComboLine
	SetCategoryComboLine
	GetCategoryRadioButton
	SetCategoryRadioButton
	GetCategoryCheckBox
	SetCategoryCheckBox
	GetCategoryValue
	SetCategoryValue
	GetCategoryAttrib
	SetCategoryAttrib

	Combo Box Methods
	AddCategoryComboEntry
	InsertCategoryComboEntry
	DeleteCategoryComboEntry
	FindCategoryComboEntry
	GetCategoryComboItems
	GetCurrentCategoryComboIndex
	SetCurrentCategoryComboIndex
	ChangeCategoryComboEntry
	CategoryComboAddDirectory
	CategoryComboDrop

	List Box Methods
	AddCategoryListEntry
	InsertCategoryListEntry
	DeleteCategoryListEntry
	FindCategoryListEntry
	GetCategoryListItems
	GetCurrentCategoryListIndex
	SetCurrentCategoryListIndex
	ChangeCategoryListEntry
	SetCategoryListTabulators
	CategoryListAddDirectory
	CategoryListDrop

	Enable/Disable and Show/Hide Methods
	EnableCategoryItem
	DisableCategoryItem
	ShowCategoryItem
	HideCategoryItem

	Standard Dialog Classes and Functions
	TimedMessage Class
	Init
	DefineDialog
	Execute
	TimedMessage Function

	InputBox Class
	Init
	DefineDialog
	AddLine
	Execute
	InputBox Function

	PasswordBox Class
	AddLine
	PasswordBox Function

	IntegerBox Class
	Validate
	IntegerBox Function

	MultiInputBox Class
	Init
	MultiInputBox Function

	ListChoice Class
	Init
	ListChoice Function

	MultiListChoice Class
	MultiListChoice Function

	CheckList Class
	Init
	CheckList Function

	SingleSelection Class
	Init
	SingleSelection Function

	AnimatedButton Class

	OODialog Method Reference
	OODialog Samples

	Windows Program Manager and Registry
	Windows Program Manager Class and Methods
	Windows Registry Class and Methods

	Object REXX Demonstration Workbench
	Starting the Object REXX Workbench
	Debugging a Program with the Workbench
	Workbench Function

	Appendixes
	New Features in Object REXX and Migration
	Object-Oriented Facilities
	New Special Variables
	Special and Built-In Objects

	Directives
	Class Directive
	Method Directive
	Routine Directive
	Requires Directive

	The REXXC Utility
	New and Enhanced Instructions
	CALL (Enhanced)
	DO (Enhanced)
	EXPOSE (New)
	FORWARD (New)
	GUARD (New)
	PARSE (Enhanced)
	RAISE (New)
	REPLY (New)
	SIGNAL (Enhanced)
	USE (New)

	New and Enhanced Built-In Functions
	ARG (Enhanced)
	CHANGESTR (New)
	CONDITION (Enhanced)
	COUNTSTR (New)
	DATATYPE (Enhanced)
	DATE (Enhanced)
	STREAM (Enhanced)
	TIME (Enhanced)
	VAR (New)

	New Condition Traps
	CALL/SIGNAL (Enhanced)

	New REXX Utilities
	Utilities for Semaphores
	Utilities for REXX Macros
	Utilities for Windows Systems

	Migration Considerations

	Car Dealer Source Code
	Directory Structure
	Car Dealer Application
	Philosophers’ Forks and OODialog Samples

	Sample Data
	Sample Customer Data
	Sample Vehicle Data
	Sample Work Order Data
	Sample Service Item Data
	Sample Part Data

	Multimedia Setup
	Multimedia Data Definition File

	Base Classes
	Base Customer Class
	Base Vehicle Class
	Base Work Order Class
	Base Service Item Class
	Base Part Class
	Persistent Class
	Cardeal Class

	Persistence in Files
	Configuration for File Storage
	File Customer Class
	File Vehicle Class
	File Work Order Class
	File Service Item Class
	File Part Class

	Persistence in DB2
	Configuration for DB2 Storage
	DB2 Customer Class
	DB2 Vehicle Class
	DB2 Work Order Class
	DB2 Service Item Class
	DB2 Part Class

	Running the Car Dealer Application
	Program to Run the Car Dealer Application

	Definition for Syntax Diagram Structure
	Special Notices
	Related Publications
	International Technical Support Organization Publications
	Other Publications
	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Sample Code on the Internet

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

