
Using the ooTest Framework to Write
ooRexx Test Cases

Quick Start
Version 1.0.0 Edition
Draft - SVN Rev 7054

June 23, 2009

Mark Miesfeld

Using the ooTest Framework to Write ooRexx Test Cases: Quick Start
by
Mark Miesfeld

Version 1.0.0 Edition
Published June 23, 2009
Copyright © 2008, 2009 Rexx Language Association. All rights reserved.

This program and the accompanying materials are made available under the terms of the Common Public License Version 1.0.

Before using this information and the product it supports, be sure to read the general information under Notices.

Thanks to Julian Choy for the ooRexx logo design.

Table of Contents
About This Book ..v

1. Related Information ...v
2. Getting Help ...v

2.1. The Rexx Language Association Mailing List ..v
2.2. The Open Object Rexx SourceForge Site..v
2.3. comp.lang.rexx Newsgroup..vi

1. First Steps ...1
1.1. ooRexxUnit Snapshots ..1
1.2. Download ..1
1.3. Extract the Files ..2
1.4. Test Your Install ..2
1.5. Understanding What you See..5

2. Starting to Write a Test Case..7
2.1. A First Test Case ...7
2.2. Contributing to the ooRexx Project...7

3. Starting a Test Group from Scratch...11
3.1. Starting a Test Group ..11
3.2. Editing STREAM.testGroup...11
3.3. STREAM.testGroup Continued ..13
3.4. Finally, the Interesting Part ...14
3.5. The Core, Validating Results ..15
3.6. The Finale, Executing our Test ...15
3.7. One More Quick Test ..16

4. Some Reference Documentation...19
4.1. The assertXXX() Methods ..19

5. How to Become a Committer..23
6. Negative Tests ...25

6.1. Example One...25
6.2. Example Two...26

A. Notices ..31
A.1. Trademarks...31
A.2. Source Code For This Document ...32

B. Common Public License Version 1.0 ...33
B.1. Definitions ..33
B.2. Grant of Rights ...33
B.3. Requirements..34
B.4. Commercial Distribution ..34
B.5. No Warranty ...35
B.6. Disclaimer of Liability ...35
B.7. General ...36

Index..37

ooTest Quick Start Version 1.0.0 iii Draft - SVN Rev 7054

Draft - SVN Rev 7054 iv ooTest Quick Start Version 1.0.0

About This Book
ooTest is a testing framework that facilitates the testing of the ooRexx interpreter. It sits on top of the
ooRexxUnit framework which is a generic testing framework that anyone can use to test their Rexx
applications.

This PDF attempts to give anyone, even those with only a small understanding of Rexx, a quick start to
writing test cases that test the ooRexx interpreter. In particular, it is geared towards the person who says:
I would like to help the ooRexx project by writing test cases, but I don’t understand that object stuff.

The Quick Start comes from a series of e-mail messages I posted on the ooRexx Developer’s list. As
such it has a rather informal tone. The basic idea driving this book is that by using a few mechanical
techniques along with some boilerplate code, anyone who can write a small piece of Rexx code can write
a working test case. Although the ooTest framework is object orientated, you do not need to know
objects, or even understand objects, to write test cases.

It is not my intention to fully explain every detail here. My intention is to get some people started writing
test cases. I believe that if you use the boilerplate code to start writing test cases, some of the object stuff
will just seep in. Because of this, writing test cases is a good way to slowly get used to using objects in
your own ooRexx code.

1. Related Information
See also: Open Object Rexx: Reference

2. Getting Help
The Open Object Rexx Project has a number of methods to obtain help for ooRexx. These methods, in
no particular order of preference, are listed below.

2.1. The Rexx Language Association Mailing List
The Rexx Language Association (http://www.rexxla.org/) maintains a mailing list for its members. This
mailing list is only available to RexxLA members thus you will need to join RexxLA in order to get on
the list. The dues for RexxLA membership are small and are charged on a yearly basis. For details on
joining RexxLA please refer to the RexxLA Home Page (http://rexxla.org/) or the RexxLA Membership
Application (http://www.rexxla.org/rexxla/join.html) page.

2.2. The Open Object Rexx SourceForge Site
The Open Object Rexx Project (http://www.oorexx.org/) utilizes SourceForge (http://sourceforge.net/) to
house the ooRexx Project (http://sourceforge.net/projects/oorexx) source repositories, mailing lists and
other project features. Here is a list of some of the most useful facilities.

ooTest Quick Start Version 1.0.0 v Draft - SVN Rev 7054

About This Book

The ooRexx Forums

The ooRexx project maintains a set of forums that anyone may contribute to or monitor. They are
located on the ooRexx Forums (http://sourceforge.net/forum/?group_id=119701) page. There are
currently three forums available: Help, Developers and Open Discussion. In addition, you can
monitor the forums via email.

The Developer Mailing List

You can subscribe to the oorexx-devel mailing list at ooRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is for discussing ooRexx project
development activities and future interpreter enhancements. It also supports a historical archive of
past messages.

The Users Mailing List

You can subscribe to the oorexx-users mailing list at ooRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is for discussing using ooRexx. It
also supports a historical archive of past messages.

The Announcements Mailing List

You can subscribe to the oorexx-announce mailing list at ooRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is only used to announce significant
ooRexx project events.

The Bug Mailing List

You can subscribe to the oorexx-bugs mailing list at ooRexx Mailing List Subscriptions
(http://sourceforge.net/mail/?group_id=119701) page. This list is only used for monitoring changes
to the ooRexx bug tracking system.

Bug Reports

You can create a bug report at ooRexx Bug Report
(http://sourceforge.net/tracker/?group_id=119701&atid=684730) page. Please try to provide as
much information in the bug report as possible so that the developers can determine the problem as
quickly as possible. Sample programs that can reproduce your problem will make it easier to debug
reported problems.

Request For Enhancement

You can suggest ooRexx features at the ooRexx Feature Requests
(http://sourceforge.net/tracker/?group_id=119701&atid=684733) page.

Patch Reports

If you create an enhancement patch for ooRexx please post the patch using the ooRexx Patch Report
(http://sourceforge.net/tracker/?group_id=119701&atid=684732) page. Please provide as much
information in the patch report as possible so that the developers can evaluate the enhancement as
quickly as possible.

Please do not post bug patches here, instead you should open a bug report and attach the patch to it.

Draft - SVN Rev 7054 vi ooTest Quick Start Version 1.0.0

About This Book

2.3. comp.lang.rexx Newsgroup
The comp.lang.rexx (news:comp.lang.rexx) newsgroup is a good place to obtain help from many
individuals within the Rexx community. You can obtain help on Open Object Rexx or on any number of
other Rexx interpreters and tools.

ooTest Quick Start Version 1.0.0 vii Draft - SVN Rev 7054

About This Book

Draft - SVN Rev 7054 viii ooTest Quick Start Version 1.0.0

Chapter 1. First Steps
We’ll start with a quick explanation of how to get started and a little bit of an overview.

1.1. ooRexxUnit Snapshots
Download one of the ooRexxUnit snapshots from SourceForge. Through out this discussion I use the
term ooRexxUnit and ooTest interchangeably. ooRexxUnit is a generic testing framework and the term
first used when talking about testing ooRexx. Some things retain that name. What I am really concerned
with is ooTest which is a framework whose sole purpose is to test the ooRexx interpreter.

As the ooRexx interpreter evolves, so does the ooTest framework. For that reason you need to grab a
snapshot that matches the version of ooRexx that you will be writing and executing your tests with.

It can not be stressed enough how valuable a contribution to the ooRexx project test cases are. You do not
need to write and execute test cases using the most current non-released version of ooRexx. Most people
should write and execute test cases using the most recent released version of ooRexx. This provides a
solid base of good test cases with known results. These test cases then make it far easier for the
developers to improve and enhance ooRexx. After any code changes the suite of known working test
cases can be executed to ensure the new code did not break anything.

An ooRexxUnit X.X.X Snapshot is a package released by the ooRexx team that contains both the testing
framework and the set of tests used in testing the ooRexx interpreter at that X.X.X level. As the version
name implies, it is a snapshot of ooRexxUnit at that point in time. The package contains all the currently
available test groups written to test the X.X.X interpreter. These test groups are an excellent source of
techniques for using ooRexxUnit.

The primary purpose of releasing snapshot versions of ooRexxUnit is to encourage individuals and
organizations to contribute test cases for the interpreter.

Writing test groups to test the interpreter requires nothing other than an installed X.X.X interpreter and a
framework package. If an individual has limited knowledge of ooRexx programming, then writing test
cases will be a excellent way to learn the language.

Individuals wishing to contribute to ooRexx through writing test case can get advice and help by joining
the oorexx-devel list. The list is free and open to anyone. Go to: Subscribe oorexx-devel list
(https://sourceforge.net/mail/?group_id=119701) to join the list.

In addition the RexxLA mailing list is also a good place to seek advice or help in writing test units. If not
already a member of RexxLA, more information on the group can be found at: RexxLA Home Page
(http://rexxla.org/)

1.2. Download
Go to the file download section of the ooRexx project on SourceForge: SourceForge.net Files
(https://sourceforge.net/project/showfiles.php?group_id=119701) and download the snapshot for your
version of ooRexx.

ooTest Quick Start Version 1.0.0 1 Draft - SVN Rev 7054

Chapter 1. First Steps

Most of the time the snapshots are packaged in both zip and tar format. However, the ooTest framework
and files are completely platform independent. Either package will work on any system that ooRexx is
working on. Pick the packaging type that is most convenient for your needs.

1.3. Extract the Files
Open a console window and unzip or untar the snapshot in a convenient spot. After unpackaging you will
end up with a directory structure similar to this:

ooRexxUnit.X.X.X

|

*------*framework

| |

| *-----<subdirectories>

|

*------*misc

| |

| *-----<subdirectories>

|

*------*ooRexx

|

*-----<subdirectories>

The framework directory and subdirectories contain additional documentation and examples.

The ooRexx directory and subdirectories contain all the tests implemented using the ooTest framework.
These sub-directories contain the tests used in testing the ooRexx interpreter.

The misc directory has, well miscellaneous stuff. The most important of which for this discussion is a
template file that can be used to start your test group files and several examples of test group files.

1.4. Test Your Install
After unpackaging the snapshot, cd into the top level directory and read the ReadMe.first file. The top
level directory will look similar to below:

E:\work.ooRexx\ooRexxUnit\3.2.0>dir

Volume in drive E is Blackfoot

Volume Serial Number is 9C3D-6D2A

Directory of E:\work.ooRexx\ooRexxUnit\3.2.0

07/03/2008 08:00 PM <DIR> .

07/03/2008 08:00 PM <DIR> ..

07/03/2008 08:00 PM <DIR> framework

07/03/2008 08:06 PM <DIR> misc

07/03/2008 08:06 PM <DIR> ooRexx

11/29/2007 05:47 PM 11,839 CPLv1.0.txt

Draft - SVN Rev 7054 2 ooTest Quick Start Version 1.0.0

Chapter 1. First Steps

12/19/2007 09:15 PM 2,822 directory.structure.tests

06/30/2008 05:47 PM 1,737 Expected.Results

01/18/2008 10:39 AM 69,323 ooTest.frm

06/30/2008 05:47 PM 5,918 ReadMe.first

01/02/2008 08:03 PM 9,139 runTestGroups.rex

12/04/2007 08:07 PM 2,437 setTestEnv.bat

12/04/2007 08:06 PM 3,062 setTestEnv.sh

01/13/2008 01:15 PM 4,441 testOORexx.rex

01/12/2008 08:44 PM 18,190 worker.rex

10 File(s) 128,908 bytes

6 Dir(s) 14,359,519,232 bytes free

Note: For the sake of this document I am going to show examples on Windows. But, the same
general thing applies to Linux. Just translate the slashes. In addition the examples are from the 3.2.0
version of ooTest. The same general principles apply to whatever snapshot you have.

The program file testOORexx.rex is what drives the automated execution of the test cases. Provided that
you have a standard ooRexx install, you can execute the entire test suite as follows. This command will
execute the entire test suite. Depending on your system itwill take several minutes to finish.

E:\work.ooRexx\ooRexxUnit\3.2.0>rexx testOORexx.rex -V 5

Searching for test containers..

Executing automated test suite..

...

..........

ooTest Framework - Automated Test of the ooRexx Interpreter

Interpreter: REXX-ooRexx_3.2.0(MT) 6.02 30 Oct 2007

ooRexxUnit: 2.0.0_3.2.0 ooTest: 1.0.0_3.2.0

Tests ran: 16600

Assertions: 537835

Failures: 2

(Known failures:) 42

Errors: 2

Exceptions: 0

Skipped files: 0

Messages: 0

[failure] [20080819 17:37:57.809000]

Test: TEST_MULTIPLE_INHERITANCE_WITH_MULTIPLE_METACLASSES

Class: Class.testGroup

File: E:\work.ooRexx\ooRexxUnit\3.2.0\ooRexx\base\class\Class.testGroup

Line: 576

Failed: assertEquals

Expected: [[’123.’], identityHash="495954478"]

ooTest Quick Start Version 1.0.0 3 Draft - SVN Rev 7054

Chapter 1. First Steps

Actual: [[’231.’], identityHash="421451928"]

[failure] [20080819 17:37:57.825000]

Test: TEST_SUBCLASSES

Class: Class.testGroup

File: E:\work.ooRexx\ooRexxUnit\3.2.0\ooRexx\base\class\Class.testGroup

Line: 684

Failed: assertTrue

Expected: [1]

Actual: [[0], identityHash="535806184"]

[error] [20080819 17:37:57.809000]

Test: TEST_MIXINCLASS_01

Class: Class.testGroup

File: E:\work.ooRexx\ooRexxUnit\3.2.0\ooRexx\base\class\Class.testGroup

Event: [SYNTAX 97.1] raised unexpectedly.

Object "NOT_AN_EXISTING_CLASS" does not understand message "NEW"

Line: 509

509 *-* cl=.object~mixinclass("subTest_01", not_an_existing_class)

[error] [20080819 17:37:57.825000]

Test: TEST_SUBCLASS_01

Class: Class.testGroup

File: E:\work.ooRexx\ooRexxUnit\3.2.0\ooRexx\base\class\Class.testGroup

Event: [SYNTAX 97.1] raised unexpectedly.

Object "NOT_AN_EXISTING_CLASS" does not understand message "NEW"

Line: 616

616 *-* cl=.object~subclass("subtest_01", not_an_existing_class)

Interpreter: REXX-ooRexx_3.2.0(MT) 6.02 30 Oct 2007

ooRexxUnit: 2.0.0_3.2.0 ooTest: 1.0.0_3.2.0

Tests ran: 16600

Assertions: 537835

Failures: 2

(Known failures:) 42

Errors: 2

Exceptions: 0

Skipped files: 0

Messages: 0

File search: 00:00:51.456000

Suite construction: 00:00:02.000000

Test execution: 00:02:17.632000

Total time: 00:03:11.620000

E:\work.ooRexx\ooRexxUnit\3.2.0>

Draft - SVN Rev 7054 4 ooTest Quick Start Version 1.0.0

Chapter 1. First Steps

You should get results similar to the above. Included with the snapshot is a file called Expected.results.
That file should show you results similar to what you actually get.

1.5. Understanding What you See
We looked at the entire output from running the automated test suite. Let’s examine some of the sections
in more detail. The below stats show:

Interpreter: REXX-ooRexx_3.2.0(MT) 6.02 30 Oct 2007

ooRexxUnit: 2.0.0_3.2.0 ooTest: 1.0.0_3.2.0

Tests ran: 16600

Assertions: 537835

Failures: 2

(Known failures:) 42

Errors: 2

Exceptions: 0

Skipped files: 0

Messages: 0

File search: 00:00:51.456000

Suite construction: 00:00:02.000000

Test execution: 00:02:17.632000

Total time: 00:03:11.620000

that 16,600 tests ran, comprising 537,835 assertations, taking about 3 minutes total to finish. There were
2 failures, 42 known failures, and 2 errors.

For a little terminology. When you write a test case there are 2 expected outcomes. It is expected that the
test case either passes or fails. So in ooTest, a failure is a test case that did not pass. An error is an
unexpected event. We are going to ignore the errors for now. In general they indicate something is
wrong, maybe with the framework, maybe with the interpreter.

I’m going to just explain one of the failures. You have this output:

[failure] [20080819 17:37:57.809000]

Test: TEST_MULTIPLE_INHERITANCE_WITH_MULTIPLE_METACLASSES

Class: Class.testGroup

File: E:\work.ooRexx\ooRexxUnit\3.2.0\ooRexx\base\class\Class.testGroup

Line: 576

Failed: assertEquals

Expected: [[’123.’], identityHash="495954478"]

Actual: [[’231.’], identityHash="421451928"]

The above shows that the name of the failed test was
TEST_MULTIPLE_INHERITANCE_WITH_MULTIPLE_METACLASSES and it can be found on line 576 in the file
Class.testGroup.

What failed was an assertion that two things were equal. The thing was expected to be equal to ’123’ but
it actually was ’231’

ooTest Quick Start Version 1.0.0 5 Draft - SVN Rev 7054

Chapter 1. First Steps

Unfortunately these failing two test are a little complex, maybe not the best for an intro, but to continue
with what we have. If we look at the failing test file on line 576 we see:

self~assertEquals("’123.’", .class123~info)

Okay, it has a method, but just bear with me for a second. This is the heart of writing a test case.

assertEquals("123", .class123~info)

Think of the method just as a routine for now with some prefix on it that you do not need to worry about.
The routine name is assertEquals. The routine has 2 args and what we are doing is asserting that the 2
args are equal.

If they are not equal, the test case fails and the ooTest framework takes care of all the details of reporting
the failure. That is the print out you see above. For now, don’t worry about how the framework does this,
just accept that it does it.

Next, let’s look at the lines around 567, and you see this:

::method "test_MULTIPLE_INHERITANCE_WITH_MULTIPLE_METACLASSES"

self~assertEquals("’123.’", .class123~info)

Think of the method as a routine, for now, that is named:
test_MULTIPLE_INHERITANCE_WITH_MULTIPLE_METACLASSES. And that is the test name, the name
reported in the print out. Next is the assertion, assertEquals().The test writer is asserting that "123" is
equal to .class123~info. The assertion failed, the test failed.

You and I don’t need to figure out what .class123~info is right now.

Enough for an introduction.

Draft - SVN Rev 7054 6 ooTest Quick Start Version 1.0.0

Chapter 2. Starting to Write a Test Case
In the last section we looked at this, which I said was the heart of a test case:

::method "test_MULTIPLE_INHERITANCE_WITH_MULTIPLE_METACLASSES"

self~assertEquals("’123.’", .class123~info)

In this section we will start to write our own test case.

2.1. A First Test Case
Say we want to test that the interpreter is adding 2 + 3 correctly. We expect our test case either to show
that the interpreter is adding 2 + 3 correctly or that it is not.

To write a test case, it has to be in a method, which always starts as follows:

::method

That is boilerplate, just type it. Then the next key thing is that the framework executes each method
whose name begins with ’test’, case not significant, as a test case. We need to name the test case method,
so we do this:

::method test_simpleAddition

That’s also boilerplate, make up a name, start it with test. I usually add the underscore, but it is not
needed.

What’s the test? We know that 2 + 3 is 5, so if the interpreter adds 2 + 3 we would expect the result to be
5. We write some code that adds 2 + 3 and then assert that the result is 5:

::method test_simpleAdditon

val = 2 + 3

self~assertEquals(5, val)

That is all there is to it. The above 3 lines of code will test that the interpreter adds 2 plus 3 correctly. The
framework takes care of all the other details.

Well there is a little more to it, we need to add the test case methods to a file, I’ll show that later.

To summarize, to get started: Think of ::method as a the beginning of a function definition, where the
function name comes right after the ::method. Think of assertEquals() as a function call. And just note
that the function call has to start with a prefix of ’self~’. You do not need to really understand the
’self~’ part at first. Just know that you have to add it. We’ll worry about learning about classes some
other time. This is enough to write test cases.

ooTest Quick Start Version 1.0.0 7 Draft - SVN Rev 7054

Chapter 2. Starting to Write a Test Case

2.2. Contributing to the ooRexx Project
At this point, I’m going to interject a little info on contributing to the ooRexx project / contributing to the
ooRexx test suite.

The test suite is enormously helpful to the project. Everyone and any one can contribute to this effort.
Even though we have a large number of tests, we still have a lot of holes in the coverage.

There are 4 main ways someone can contribute:

• You could write a whole new *.testGroup file.

• You can add tests to an existing *.testGroup file.

• You can examine existing test case code for correctness and correct or improve wrong or weak test
cases.

• You can help organize or promote the contribution of test cases into the project.

It is my strong opinion that all the .testGroup files in the test suite are works in progress. In addition, we
could really use more pairs of eye examining the existing .testGroup files with a critical eye.

Any one and every one is encouraged to either add to an existing file or to say hey this test is wrong, it
should be written this way. Or to say, hey the Lines.testGroup does not have a test for this option, here’s
a method that does test it.

The other thing that is really important, is that just because something is working now, that doesn’t mean
there shouldn’t be a test for it. There is no guarantee that anything that is working today will be working
after I make my next commit. If I break something with my next commit, and we have a test case for it, it
will show up right away and get fixed.

For example, you may think that there is no way the say instruction could be broken. But what about if
you have this in a Rexx file:

/* Simple.rex */

say ’Hello World’

and then run it like this:

E:\>rexx Simple.rex > myTest.file

You would expect myTest.File to contain 1 line consisting of:

Hello World<endOfLineCharacter>

Well, a real life bug we just had was that instead of the normal Windows end of line which is 0x0d0a we
were actually getting 0x0d0d0a.

Now, running the test suite did catch this, but not because we had a test for it. The test suite caught it
because some other tests were failing with what appeared to be no reason. It took quite awhile to locate
what was really wrong.

Draft - SVN Rev 7054 8 ooTest Quick Start Version 1.0.0

Chapter 2. Starting to Write a Test Case

We did not, and still don’t, have a simple test case that asserts that a say statement redirected to a file
produces what it should. The simple test should assert that the bytes in the file are exactly 13 and then
assert that byte 1 is 0x48, byte 2 is 0x45, ... byte 12 is 0x0d, byte 13 is 0x0a.

Next chapter, create a testGroup file from the template and start a test group.

ooTest Quick Start Version 1.0.0 9 Draft - SVN Rev 7054

Chapter 2. Starting to Write a Test Case

Draft - SVN Rev 7054 10 ooTest Quick Start Version 1.0.0

Chapter 3. Starting a Test Group from Scratch
In the ooTest framework, tests are orgainized as follows. An assertation is a single test. A single method
represents a test case. Each test case would contain at least one assertion, but often a test case will
contain several assertation. Then a number of test cases for a similar area are gathered together in a file,
which we call a test group.

3.1. Starting a Test Group
I’m going to assume that the reader has been following along in the thread and try not to repeat myself.
The idea behind this thread is to show how to start writing test cases even if you do not understand
classes by using boilerplate code.

If you downloaded a snapshot and unzipped it, it will have created a directory tree. We start in the root of
the tree which will be named ooRexxUnit.X.X.X.

There is the misc/ subdirectory. It has a template file. Pick a name for the test group and figure out
roughly where it should go. Copy the template to the subdirectory renaming it in the copy. I am going to
work with the stream BIF, since we do not even have a test group started for that important BIF. This
example is on Linux

Raven:/ooRexxUnit.3.2.0 # cp misc/template.testGroup ooRexx/base/bif/STREAM.testGroup

You don’t even have to put it in the proper subdirectory. To get started you could just put it anywhere
under the ooRexx subdirectory.

Raven:/ooRexxUnit.3.2.0 # cp misc/template.testGroup ooRexx/STREAM.testGroup

3.2. Editing STREAM.testGroup
Open the file in an editor. The first thing I do is a search and replace of template.testGroup with
STREAM.testGroup. I’m not going to give editor lessons, but if you do not understand classes, be sure you
don’t skip this first step.

Then starting at the top of the editor we have the first 41 lines that you just ignore and leave alone. The
first few are:

#!/usr/bin/rexx

/*

SVN Revision: $Rev: 2267 $

Change Date: $Date: 2008-01-18 09:41:04 -0800 (Fri, 18 Jan 2008) $

*/

Which are just book keeping. The #!/usr/bin/rexx causes the file to execute as a script on Linux, etc.
The next is just svn book keeping. Then there is the license text.

ooTest Quick Start Version 1.0.0
11 Draft - SVN Rev 7054

Chapter 3. Starting a Test Group from Scratch

Starting on line 42 through 51 we have what I think of as the entry point to an ooRexx program that has
directives in it. You do not need to understand this to start off with, it is the code that lets the framework
automate the execution of tests. You just need to be sure you changed template.testGroup to
STREAM.testGroup. The lines look like:

parse source . . s

group = .TestGroup~new(s)

group~add(.STREAM.testGroup)

if group~isAutomatedTest then return group

testResult = group~suite~execute~~print

return testResult

-- End of entry point.

Briefly what this does is:

• Create a new TestGroup object using the full path name of the file.

• Add the STREAM.testGroup class to the test group

• Magically test if the invocation of the program is part of an automated test. If so the group object is
returned and the code execution is done.

• If it is not an automated test, it is a stand alone test. The test group executes all the tests it contains and
prints out the results, then returns the test result object. This allows you to execute the tests by just
invoking the file as an ooRexx program. I am not going to go into details about that now.

When working on just your own test group file, it is best to just run the single test group by itself through
the frame work. Right now you have a complete test group that will execute. You can run it using this
command:

Raven:/ooRexxUnit.3.2.0 # ./testOORexx.rex -R ooRexx -f STREAM

(The above should work, but I can not try it right now, so I am going to show it on Windows.)

E:\ooRexxUnit.3.2.0>testOORexx.rex -R ooRexx\ -f STREAM

Searching for test containers..

Executing automated test suite..

ooTest Framework - Automated Test of the ooRexx Interpreter

Interpreter: REXX-ooRexx_3.2.0(MT) 6.02 30 Oct 2007

ooRexxUnit: 2.0.0_3.2.0 ooTest: 1.0.0_3.2.0

Tests ran: 4

Assertions: 2

Failures: 0

Draft - SVN Rev 7054 12 ooTest Quick Start Version 1.0.0

Chapter 3. Starting a Test Group from Scratch

Errors: 0

Skipped files: 0

File search: 00:00:00.047000

Suite construction: 00:00:00.000000

Test execution: 00:00:00.000000

Total time: 00:00:01.000000

E:\ooRexxUnit.3.2.0>

Okay, that’s it. You created and executed your first group of tests. 4 tests ran using 2 assertions with no
failures or errors. On my system the total execution time was 1 second.

That takes care of all the initial steps. You have a working test group.

The next installment will show adding some test cases to the new test group.

3.3. STREAM.testGroup Continued
Picking up with writing the new test group STREAM.testGroup.

The last section showed the top boilerplate from the the template file. This picks up with the actual test
case class. I’m not to going to explain too much about the class part of this, I’ll save that for later. This is
about just editing the boilerplate to quickly get started.

This is the rest of the file, leaving out some comment lines. Format your code however you like.

-- End of entry point.

::requires ’ooTest.frm’

::class "STREAM.testGroup" public subclass ooTestCase

::method test_YYY

self~assertTrue(.true)

::method test_XXX

self~assertSame(’dog’, ’dog’)

The ::requires line pulls in the ooTest framework. That is what provides the backing code for our test
cases.

Then we have our STREAM.testGroup class which is a subclass of ooTestCase. Once you do the replace
of template.testGroup with STREAM.testGroup you are done with those lines. You can just leave the
boilerplate alone and figure out what this means later.

Then, to restate what I’ve said earlier. Each individual test is a method of the test case class where the
method names starts with ’test’ Here our test case class is: STREAM.testGroup and we see that we have 2
methods: test_YYY and test_XXX.

That is why executing the STREAM.testGroup actually runs some tests, even though we didn’t add any
tests to the file yet.

ooTest Quick Start Version 1.0.0 13 Draft - SVN Rev 7054

Chapter 3. Starting a Test Group from Scratch

If you don’t understand classes yet, just think of the two methods as two routines, or functions, or
procedures. Whichever terminology you are comfortable with. I’m going to call them methods, because
that’s what they are.

The 2 methods are in the template to jog your memory and get you started. I start out by editing the first
method and coding an actual test. We are doing a group of tests for the stream BIF, so an easy way to get
started is to look at the documentation for the stream BIF.

If you are following along and don’t understand stream at all, the advice is that the principles here apply
to writing any test cases, pick some area of Rexx you do understand. Plus, I have to add, if you don’t
understand stream, then digging in to it enough to write some test cases is a great way to learn about
stream.

Looking at the doc, we see that it says stream returns a string, which string is dependent on the args to
stream, and that the first arg names the stream to be worked with. The second arg can be one of: State,
Command, or Description.

For the Description arg it says that it returns the same string as State, but with a colon at the end, maybe
followed by some text describing an error or not ready condition. That suggests a test. If we use the
Description arg, the returned string must have a colon in it.

3.4. Finally, the Interesting Part
This is the interesting part. If you like to program, then it is usually fun to think of a way to code a test
for this. Here is one way.

The mechanics of this are to change the name of the first method. The restriction is that every method in
the class has to have an unique name. If there is a failure, the name of the method gets printed out. If the
name of the method reflects the test, it is a little easier to discern what the test is about. But, you could
just name every method test_001, test_002, test_003 and so on.

Here goes, rename the method:

::method test_description_arg

One of the most common types of streams is file input or output. The name of the stream is the file name.
One approach is to use a file name for the stream name, use the Description arg, and validate the return:

::method test_description_arg

streamName = ???

retString = stream(streamName, "Description")

<check retString>

Remember this is going to be an automated test that should run on any system. We don’t want to use a file
name that is on your system, but is not on Rick’s system. What file name are we absolutely sure exists?

Draft - SVN Rev 7054 14 ooTest Quick Start Version 1.0.0

Chapter 3. Starting a Test Group from Scratch

The STREAM.testGroup file, for sure, because that is the file we are using. We can get that name from
parse source. If you don’t know parse source, look it up in the doc.

::method test_description_arg

parse source junk notUsed streamName

retString = stream(streamName, "Description")

<check retString>

Now we just need to code the check of retString.

3.5. The Core, Validating Results
Here we are at the core of the ooTest framework. We validate expected results by using one of the
assertXXX() methods. I will list the different assertXXX a little later.

In the template code we already had:

self~assertTrue(.true)

The meaning of that should be easy enough to discern. We are asserting that .true is true.

Okay, our test is about the stated fact that the Description arg must return a string with a colon in it. We
need to write some code that we can get true out of. There are a number of ways to do this. I’ll use a BIF
since this is directed toward people who may not know classes too well.

We know that if the returned string has a colon in it, then the pos bif will return a non-zero position for
the colon. Here is the complete test case:

::method test_description_arg

parse source junk notUsed streamName

retString = stream(streamName, "Description")

p = pos(retSting, ":")

self~assertTrue(p > 0)

3.6. The Finale, Executing our Test
And here is the output from executing this test group (stripped of a little bit):

C:\ooRexxUnit.3.2.0>rexx testOORexx.rex -R ooRexx -f stream

...

Tests ran: 4

Assertions: 1

Failures: 1

Errors: 0

Skipped files: 0

[failure] [20080701 07:48:09.882000]

ooTest Quick Start Version 1.0.0 15 Draft - SVN Rev 7054

Chapter 3. Starting a Test Group from Scratch

Test: TEST_DESCRIPTION_ARG

Class: STREAM.testGroup

File: C:\work.ooRexx\ooRexxUnit\3.2.0\ooRexx\STREAM.testGroup

Line: 68

Failed: assertTrue

Expected: [1]

Actual: [[0], identityHash="535806184"]

This is perfect! Okay, the output shows that the test named TEST_DESCRIPTION_ARG failed. Whoa, that’s
the one I just wrote. It shows that what failed was assertTrue and that it was on line 68.

What was expected was 1 (true) but the actual was 0 (false) Let’s look at the test case again:

p = pos(retSting, ":")

self~assertTrue(p > 0)

I always forget the args to pos. They are needle, haystack. I coded haystack, needle. Well the astute
observer may have noticed that I also coded retSting rather than retString. The fixed test case:

::method test_description_arg

parse source junk notUsed streamName

retString = stream(streamName, "Description")

p = pos(":", retString)

self~assertTrue(p > 0)

The output:

Interpreter: REXX-ooRexx_3.2.0(MT) 6.02 30 Oct 2007

ooRexxUnit: 2.0.0_3.2.0 ooTest: 1.0.0_3.2.0

Tests ran: 4

Assertions: 2

Failures: 0

Errors: 0

Skipped files: 0

File search: 00:00:00.160000

Suite construction: 00:00:00.000000

Test execution: 00:00:00.000000

Total time: 00:00:00.160000

Alright. Now, if someone rewrote the stream libraries, a lot of work, and had some trivial error that
forgot to tack on the ":" for the Description arg, we have a test case that would catch it.

Draft - SVN Rev 7054 16 ooTest Quick Start Version 1.0.0

Chapter 3. Starting a Test Group from Scratch

3.7. One More Quick Test
Let’s do one more quickly.

The doc also says that the Description arg returns the same string as the State arg, with a colon and some
other possible text added after the colon. That suggests a test.

Here is the code. Notice the use of assertSame() which really fits in with the semantics of the test. We
are testing that the Description and State args return the same string:

::method test_description_state_same

parse source junk notUsed streamName

retDiscrpt = stream(streamName, "Description")

retState = stream(streamName, "State")

retDiscrpt = left(retDiscrpt, pos(":", retDiscrpt) - 1)

self~assertSame(retDiscrpt, retState)

Here is the output:

C:\ooRexxUnit.3.2.0>rexx testOORexx.rex -R ooRexx -f stream

...

Interpreter: REXX-ooRexx_3.2.0(MT) 6.02 30 Oct 2007

ooRexxUnit: 2.0.0_3.2.0 ooTest: 1.0.0_3.2.0

Tests ran: 4

Assertions: 2

Failures: 0

Errors: 0

Skipped files: 0

File search: 00:00:00.160000

Suite construction: 00:00:00.000000

Test execution: 00:00:00.000000

Total time: 00:00:00.160000

To code the 2 tests, we really just used classic Rexx. The ’object’ stuff is confined to some boilerplate
code that you should be able to use without really understanding it. The process of just writing this, will
allow the ’object’ stuff to start seeping in.

Next installment: I am always threatening to write the documentation for the ooTest framework, but it is
an empty threat. Or - what are the assertXXX methods?

ooTest Quick Start Version 1.0.0 17 Draft - SVN Rev 7054

Chapter 3. Starting a Test Group from Scratch

Draft - SVN Rev 7054 18 ooTest Quick Start Version 1.0.0

Chapter 4. Some Reference Documentation
This chapter will provide some basic documentation for the ooTest framework. In the spirit of the rest of
this document, it is minimalistic. Just enough to write simple tests.

The best way to get more information if you are stuck is to join the ooRexx-Devel list and ask questions.
Asking questions on that list will help in several ways. You’ll get your question answered. Other people
that have the same question will benefit from the answer. The question and answer become part of the
permanent archive. And, hopefully, that information will migrate from the list into the ooTest
documentation in a similar manner to the way the information in this document was migrated.

4.1. The assertXXX() Methods
The main thing that is left is to list the different assertXXX() methods. They are:

• assertEquals(expected, actual,[msg])

• assertNotEquals(expected, actual,[msg])

• assertNull(actual,[msg])

• assertNotNull(actual, [msg])

• assertSame(expected, actual,[msg])

• assertNotSame(expected, actual,[msg])

• assertTrue(actual,[msg])

• assertFalse(actual,[msg])

Some key points.

1.) All of these are methods, so to use them in your tests you do, for example:

self~assertTrue(.true)

If you are hazy on objects, just think of that as a routine with a mandatory prefix of ’self~’

2.) Where you have expected and actual args, expected always comes first.

val = 2 + 3

self~assertSame(5, val)

5 is expected, val is the actual.

3.) Where you just have the actual arg, it is the actual thing.

val = .true

self~assertTrue(val)

ooTest Quick Start Version 1.0.0
19 Draft - SVN Rev 7054

Chapter 4. Some Reference Documentation

or

val = 2 + 3

self~assertTrue(val == 5)

4.) As the above shows, there are usually several ways to write the same assertion. Pick what you are
comfortable with.

5.) All the assertions have an optional ’message’ argument that is the last arg. The message is printed out
if the assertion fails.

Here is an example:

::method test_addition

val = 2 + 3

self~assertSame(6, val, ’Special test, 2 plus 3 must equal 6’)

and the output:

[failure] [20080701 09:19:45.455000]

Test: TEST_ADDITION

Class: STREAM.testGroup

File: C:\work.ooRexx\ooRexxUnit\3.2.0\ooRexx\STREAM.testGroup

Line: 82

Failed: assertSame

Expected: [[6], identityHash="535894080"]

Actual: [[5], identityHash="535906054"]

Message: Special test 2 plus 3 must equal 6

The intention of the message is to give some idea about what the test is testing. Here we see that the test
writer has some special purpose in mind for this test.

Without the message and a non-descriptive test name we would see:

[failure] [20080701 09:22:45.367000]

Test: TEST_001

Class: STREAM.testGroup

File: C:\work.ooRexx\ooRexxUnit\3.2.0\ooRexx\STREAM.testGroup

Line: 82

Failed: assertSame

Expected: [[6], identityHash="535894080"]

Actual: [[5], identityHash="535906054"]

Draft - SVN Rev 7054 20 ooTest Quick Start Version 1.0.0

Chapter 4. Some Reference Documentation

which, if you were not the one that wrote the test, might leave you clueless. Then if you look at the test
you would see:

::method test_001

val = 2 + 3

self~assertSame(6, val)

And you might really wonder what the test writer had in mind for this test in the STREAM test group.
(Of course even with the message, we still don’t know why 2 + 3 should equal 6.)

In general you don’t need a message. But, it can help clarify what the test is about by using a message
that states what is expected.

6.) The assertXXX() methods are pretty self explanatory, with maybe the exception of assertSame() and
assertEquals().

assertSame() (and assertNotSame()) assert that 2 things are stictly equal.

5 == 5

assertEquals() (and assertNotEquals()) assert that 2 things are loosely equal.

’dog ’ = ’dog’

Equals is also used to test if 2 collections are loosely equal.

a1 = .array~of(1, 2, 3)

a2 = .array~of(1, 2, 3)

self~assertEquals(a1, a2)

assertNull() and assertNotNull() might also need some explaining. They test if the actual is .nil (or
not .nil).

7.) The assertXXX() methods are located in the OOREXXUNIT.CLS file. Since this is open source you
can always browse the file to see what assertXXX() methods are available to you. Which is what I do
since I can never remember them and no one has produced easy to find documentation for the framework.

OOREXXUNIT.CLS is located in the framework subdirectory:

ooTest Quick Start Version 1.0.0 21 Draft - SVN Rev 7054

Chapter 4. Some Reference Documentation

C:\ooRexxUnit.3.2.0>dir framework\OOREXXUNIT.CLS

Volume in drive C has no label.

Volume Serial Number is B4C0-DCBA

Directory of C:\ooRexxUnit.3.2.0\framework

05/12/2008 01:15 PM 65,321 OOREXXUNIT.CLS

Speaking of doc etc., in the misc subdirectory there are some sample test group files. Looking at those
should be helpful. I believe I tried to comment them well.

C:\ooRexxUnit.3.2.0>dir misc

Volume in drive C has no label.

Volume Serial Number is B4C0-DCBA

Directory of C:\ooRexxUnit.3.2.0\misc

01/18/2008 10:41 AM 5,755 SampleOLEObject.testGroup

01/16/2008 01:40 PM 5,638 Simplest.testGroup

01/16/2008 04:17 PM 5,775 SimpleWithOneTimeSetup.testGroup

01/16/2008 04:28 PM 5,609 SimpleWithSomeSetup.testGroup

There is also doc and more examples in the framework directory. However, those docs and examples are
from the original ooRexxUnit framework.

The framework we are using here is the ooTest framework, which sits on top of ooRexxUnit. The
ooRexxUnit doc does not necessarily apply to ooTest. And, I have made changes to ooRexxUnit, but
have not been rigorous about maintaining the ooRexxUnit doc and examples.

Draft - SVN Rev 7054 22 ooTest Quick Start Version 1.0.0

Chapter 5. How to Become a Committer
Armed with this quick start, I think that anyone who can program in Rexx and is using ooRexx to some
degree can begin writing test cases for the ooRexx interpreter.

Ask questions when you get stuck. Contribute test cases to the project. Earn yourself the status of a
committer.

About that last sentence. Want to have the exalted rank of a committer on an Open Source project? But
you don’t know C or C++. Contribute test cases to the ooRexx project and I guarantee I will push to
make you a committer. And, Rick will vote in favor of making you a committer.

ooTest Quick Start Version 1.0.0 23 Draft - SVN Rev 7054

Chapter 5. How to Become a Committer

Draft - SVN Rev 7054 24 ooTest Quick Start Version 1.0.0

Chapter 6. Negative Tests
In my original series of e-mail posts, Rick pointed out that I forgot to include how to do negative tests.
This is really an important part of testing, and since I spent a lot of time in test, I’m kicking myself for
overlooking it. <grin>

6.1. Example One
We’ll continue with the STREAM.testGroup and look at what the doc says about the second arg. Which is
exactly: "The second argument can be one of the following strings ..." and it the lists exactly 3 strings:
State, Description, and Command.

So a negative test is what happens when you do something that is incorrect. In this case what happens if
you don’t follow a requirement. (Well there are other types of negative tests, but let’s not get too
complicated here.)

The requirement is that the second arg be one of only 3 different things. What we want to test, is what
happens if we don’t use of the 3 specified args. Say if we use FILESTATE ?

Staying with the same STREAM.testGroup. How do we test this? Maybe something along those lines?

::method test_wrong_2nd_arg

parse source junk notUsed streamName

retDiscrpt = stream(streamName, "FILESTATE")

Output:

[error] [20080701 12:06:53.206000]

Test: TEST_WRONG_2ND_ARG

Class: STREAM.testGroup

File: C:\work.ooRexx\ooRexxUnit\3.2.0\ooRexx\STREAM.testGroup

Event: [SYNTAX 40.904] raised unexpectedly.

STREAM argument 2 must be one of SDC; found "FILESTATE"

Line: 83

83 *-* retDiscrpt = stream(streamName, "FILESTATE")

Now if you look closely at that, it was not a failure, it was an error.

If you remember back to what I said about terminology, I said with a test case you expect one of 2
outcomes. You either expect the test to pass, or you expect the test to fail.

Errors are something totally unexpected. We can see from the output that the interpreter is handling this
the way it should. But, what we want is a test case for this that passes.

ooTest Quick Start Version 1.0.0
25 Draft - SVN Rev 7054

Chapter 6. Negative Tests

In this case we expect the error condition. So our test case will pass when we get an error. The
framework provides for these types of test with the expectSyntax() method.

We code our test like this:

::method test_wrong_2nd_arg

parse source junk notUsed streamName

self~expectSyntax(40.904)

retDiscrpt = stream(streamName, "FILESTATE")

And the output we get is:

C:\ooRexxUnit.3.2.0>rexx testOORexx.rex -R ooRexx -f stream

..

Interpreter: REXX-ooRexx_3.2.0(MT) 6.02 30 Oct 2007

ooRexxUnit: 2.0.0_3.2.0 ooTest: 1.0.0_3.2.0

Tests ran: 5

Assertions: 3

Failures: 0

Errors: 0

Skipped files: 0

File search: 00:00:00.160000

Suite construction: 00:00:00.000000

Test execution: 00:00:00.000000

Total time: 00:00:00.160000

Great, we now have 3 tests coded and they all pass.

6.2. Example Two
What else can we test in this way? We see from the doc that the first arg to stream is required. What
happens if we leave it out? We should get some type of error. And the interpreter should not blow up.

Now how to code it? Similar to what we just did:

::method test_no_args

--self~expectSyntax(40.904)

retDiscrpt = stream()

Draft - SVN Rev 7054 26 ooTest Quick Start Version 1.0.0

Chapter 6. Negative Tests

But, what syntax error do we expect? The best thing to do, is to look up the error numbers and
descriptions and decide for yourself what you think it should be.

The error message list is in the back of the doc, in an appendix. I don’t want to drag this out, so I’m
going to say, since the first error was in the 40. range, that is a good place to start. Looking there we see:

001

External routine "routine" failed

Okay, that seems reasonable. Though, there is also:

005

Missing argument in invocation of routine; argument argument_number is required

Aha, that is it. Argument 1 is required, says the doc. So the message: "Missing argument in invocation of
STREAM; argument 1 is required" seems perfect.

Our test looks like:

::method test_no_args

self~expectSyntax(40.005)

retDiscrpt = stream()

and our output looks like this:

[error] [20080701 12:27:15.323000]

Test: TEST_NO_ARGS

Class: STREAM.testGroup

File: C:\work.ooRexx\ooRexxUnit\3.2.0\ooRexx\STREAM.testGroup

Event: [SYNTAX 40.3] raised unexpectedly.

Not enough arguments in invocation of STREAM; minimum expected is 1

Line: 90

90 *-* retDiscrpt = stream()

ooTest Quick Start Version 1.0.0 27 Draft - SVN Rev 7054

Chapter 6. Negative Tests

Eureka! We found a bug! This is what it is all about, finding bugs. <grin> But, let’s investigate a little.
What is 40.3?

003

Not enough arguments in invocation of routine; minimum expected is number

Making the message: Not enough arguments in STREAM; minimum expected is 1 Well, okay, that
message also seems to fit. What to do? If you find something like this, that you think is a bug, then the
thing to do is bring it up on the developer’s list and lay out your case for why you think this is a bug.

In this instance, you would not prevail with your case. The reason being that 40.3 is applicable and it is
what has been used in the past. Therefore, changing it because you think 40.5 is better has the potential
of breaking existing code that is checking for this specific error code.

So, the test looks like this:

::method test_no_args

self~expectSyntax(40.003)

retDiscrpt = stream()

output:

[error] [20080701 12:39:59.063000]

Test: TEST_NO_ARGS

Class: STREAM.testGroup

File: C:\work.ooRexx\ooRexxUnit\3.2.0\ooRexx\STREAM.testGroup

Event: [SYNTAX 40.3] raised unexpectedly.

Not enough arguments in invocation of STREAM; minimum expected is 1

Line: 90

90 *-* retDiscrpt = stream()

Great!! Now we REALLY found a bug! It is supposed to be error 40.003. Well, again, do a little
research. What the doc says is:

Some errors have associated subcodes. A subcode is a one- to

three-digit decimal extension to the error number, for example, 115 in

40.115

Draft - SVN Rev 7054 28 ooTest Quick Start Version 1.0.0

Chapter 6. Negative Tests

A subcode is a one to three digit number.

Okay, no bug. Our test looks like this:

::method test_no_args

self~expectSyntax(40.3)

retDiscrpt = stream()

output:

Interpreter: REXX-ooRexx_3.2.0(MT) 6.02 30 Oct 2007

ooRexxUnit: 2.0.0_3.2.0 ooTest: 1.0.0_3.2.0

Tests ran: 6

Assertions: 4

Failures: 0

Errors: 0

Skipped files: 0

File search: 00:00:00.160000

Suite construction: 00:00:00.000000

Test execution: 00:00:00.000000

Total time: 00:00:00.160000

Now we have 4 tests of an area that hadn’t been touched. The 4 additional tests add 0 seconds to the
overall test execution time. 2 of the tests are positive tests, 2 are negative.

ooTest Quick Start Version 1.0.0 29 Draft - SVN Rev 7054

Chapter 6. Negative Tests

Draft - SVN Rev 7054 30 ooTest Quick Start Version 1.0.0

Appendix A. Notices
Any reference to a non-open source product, program, or service is not intended to state or imply that
only non-open source product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any Rexx Language Association (RexxLA) intellectual
property right may be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-open source product, program, or service.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurement may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-open source products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. RexxLA has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to
non-RexxLA packages. Questions on the capabilities of non-RexxLA packages should be addressed to
the suppliers of those products.

All statements regarding RexxLA’s future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

A.1. Trademarks
Open Object Rexx™ and ooRexx™ are trademarks of the Rexx Language Association.

The following terms are trademarks of the IBM Corporation in the United States, other countries, or both:

1-2-3
AIX
IBM
Lotus
OS/2
S/390
VisualAge

AMD is a trademark of Advance Micro Devices, Inc.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the Unites States, other
countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in

ooTest Quick Start Version 1.0.0
31 Draft - SVN Rev 7054

Appendix A. Notices

the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

A.2. Source Code For This Document
The source code for this document is available under the terms of the Common Public License v1.0
which accompanies this distribution and is available in the appendix Common Public License Version
1.0. The source code itself is available at
http://sourceforge.net/project/showfiles.php?group_id=119701.

The source code for this document is maintained in DocBook SGML/XML format.

Draft - SVN Rev 7054 32 ooTest Quick Start Version 1.0.0

Appendix B. Common Public License Version
1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT’S ACCEPTANCE OF THIS AGREEMENT.

B.1. Definitions
"Contribution" means:

1. in the case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and

2. in the case of each subsequent Contributor:

a. changes to the Program, and

b. additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by that particular
Contributor. A Contribution ’originates’ from a Contributor if it was added to the Program by such
Contributor itself or anyone acting on such Contributor’s behalf. Contributions do not include additions
to the Program which: (i) are separate modules of software distributed in conjunction with the Program
under their own license agreement, and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all Contributors.

B.2. Grant of Rights

1. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly
display, publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell, import
and otherwise transfer the Contribution of such Contributor, if any, in source code and object code
form. This patent license shall apply to the combination of the Contribution and the Program if, at
the time the Contribution is added by the Contributor, such addition of the Contribution causes such

ooTest Quick Start Version 1.0.0 33 Draft - SVN Rev 7054

Appendix B. Common Public License Version 1.0

combination to be covered by the Licensed Patents. The patent license shall not apply to any other
combinations which include the Contribution. No hardware per se is licensed hereunder.

3. Recipient understands that although each Contributor grants the licenses to its Contributions set
forth herein, no assurances are provided by any Contributor that the Program does not infringe the
patent or other intellectual property rights of any other entity. Each Contributor disclaims any
liability to Recipient for claims brought by any other entity based on infringement of intellectual
property rights or otherwise. As a condition to exercising the rights and licenses granted hereunder,
each Recipient hereby assumes sole responsibility to secure any other intellectual property rights
needed, if any. For example, if a third party patent license is required to allow Recipient to distribute
the Program, it is Recipient’s responsibility to acquire that license before distributing the Program.

4. Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

B.3. Requirements
A Contributor may choose to distribute the Program in object code form under its own license
agreement, provided that:

1. it complies with the terms and conditions of this Agreement; and

2. its license agreement:

a. effectively disclaims on behalf of all Contributors all warranties and conditions, express and
implied, including warranties or conditions of title and non-infringement, and implied
warranties or conditions of merchantability and fitness for a particular purpose;

b. effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;

c. states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and

d. states that source code for the Program is available from such Contributor, and informs
licensees how to obtain it in a reasonable manner on or through a medium customarily used for
software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and

2. a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

Draft - SVN Rev 7054 34 ooTest Quick Start Version 1.0.0

Appendix B. Common Public License Version 1.0

B.4. Commercial Distribution
Commercial distributors of software may accept certain responsibilities with respect to end users,
business partners and the like. While this license is intended to facilitate the commercial use of the
Program, the Contributor who includes the Program in a commercial product offering should do so in a
manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor ("Commercial Contributor")
hereby agrees to defend and indemnify every other Contributor ("Indemnified Contributor") against any
losses, damages and costs (collectively "Losses") arising from claims, lawsuits and other legal actions
brought by a third party against the Indemnified Contributor to the extent caused by the acts or omissions
of such Commercial Contributor in connection with its distribution of the Program in a commercial
product offering. The obligations in this section do not apply to any claims or Losses relating to any
actual or alleged intellectual property infringement. In order to qualify, an Indemnified Contributor must:
a) promptly notify the Commercial Contributor in writing of such claim, and b) allow the Commercial
Contributor to control, and cooperate with the Commercial Contributor in, the defense and any related
settlement negotiations. The Indemnified Contributor may participate in any such claim at its own
expense.

For example, a Contributor might include the Program in a commercial product offering, Product X. That
Contributor is then a Commercial Contributor. If that Commercial Contributor then makes performance
claims, or offers warranties related to Product X, those performance claims and warranties are such
Commercial Contributor’s responsibility alone. Under this section, the Commercial Contributor would
have to defend claims against the other Contributors related to those performance claims and warranties,
and if a court requires any other Contributor to pay any damages as a result, the Commercial Contributor
must pay those damages.

B.5. No Warranty
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED
ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER
EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR
CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Each Recipient is solely responsible for determining the appropriateness of
using and distributing the Program and assumes all risks associated with its exercise of rights under this
Agreement, including but not limited to the risks and costs of program errors, compliance with applicable
laws, damage to or loss of data, programs or equipment, and unavailability or interruption of operations.

B.6. Disclaimer of Liability
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT
LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE

ooTest Quick Start Version 1.0.0 35 Draft - SVN Rev 7054

Appendix B. Common Public License Version 1.0

PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

B.7. General
If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect the
validity or enforceability of the remainder of the terms of this Agreement, and without further action by
the parties hereto, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to
software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by that
Contributor to such Recipient under this Agreement shall terminate as of the date such litigation is filed.
In addition, if Recipient institutes patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program with
other software or hardware) infringes such Recipient’s patent(s), then such Recipient’s rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails to comply with any of the material
terms or conditions of this Agreement and does not cure such failure in a reasonable period of time after
becoming aware of such noncompliance. If all Recipient’s rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.
However, Recipient’s obligations under this Agreement and any licenses granted by Recipient relating to
the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid inconsistency
the Agreement is copyrighted and may only be modified in the following manner. The Agreement
Steward reserves the right to publish new versions (including revisions) of this Agreement from time to
time. No one other than the Agreement Steward has the right to modify this Agreement. IBM is the
initial Agreement Steward. IBM may assign the responsibility to serve as the Agreement Steward to a
suitable separate entity. Each new version of the Agreement will be given a distinguishing version
number. The Program (including Contributions) may always be distributed subject to the version of the
Agreement under which it was received. In addition, after a new version of the Agreement is published,
Contributor may elect to distribute the Program (including its Contributions) under the new version.
Except as expressly stated in Sections 2(a) and 2(b) above, Recipient receives no rights or licenses to the
intellectual property of any Contributor under this Agreement, whether expressly, by implication,
estoppel or otherwise. All rights in the Program not expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.

Draft - SVN Rev 7054 36 ooTest Quick Start Version 1.0.0

Index

C
Common Public License, 33
CPL, 33

L
License, Common Public, 33
License, Open Object Rexx, 33

N
Notices, 31

O
ooRexx License, 33
Open Object Rexx License, 33

ooTest Quick Start Version 1.0.0 37 Draft - SVN Rev 7054

	Using the ooTest Framework to Write ooRexx Test Cases
	Table of Contents
	About This Book
	1. Related Information
	2. Getting Help
	2.1. The Rexx Language Association Mailing List
	2.2. The Open Object Rexx SourceForge Site
	2.3. comp.lang.rexx Newsgroup

	Chapter 1. First Steps
	1.1. ooRexxUnit Snapshots
	1.2. Download
	1.3. Extract the Files
	1.4. Test Your Install
	1.5. Understanding What you See

	Chapter 2. Starting to Write a Test Case
	2.1. A First Test Case
	2.2. Contributing to the ooRexx Project

	Chapter 3. Starting a Test Group from Scratch
	3.1. Starting a Test Group
	3.2. Editing STREAM.testGroup
	3.3. STREAM.testGroup Continued
	3.4. Finally, the Interesting Part
	3.5. The Core, Validating Results
	3.6. The Finale, Executing our Test
	3.7. One More Quick Test

	Chapter 4. Some Reference Documentation
	4.1. The assertXXX() Methods

	Chapter 5. How to Become a Committer
	Chapter 6. Negative Tests
	6.1. Example One
	6.2. Example Two

	Appendix A. Notices
	A.1. Trademarks
	A.2. Source Code For This Document

	Appendix B. Common Public License Version 1.0
	B.1. Definitions
	B.2. Grant of Rights
	B.3. Requirements
	B.4. Commercial Distribution
	B.5. No Warranty
	B.6. Disclaimer of Liability
	B.7. General

	Index
	C
	L
	N
	O

