
LOCAL ENVIRONMENT AND SCOPES IN
OBJECT REXX

Rony G. Flatscher

Department of Management and Information Systems

Vienna University of Economics and Business Administration

„7th International Rexx Symposium“, Austin/Texas, May 13th-15th, 1996

ABSTRACT

Object Rexx extends Rexx with additional concepts of scopes. Firstmost the

developers refer to the scope in which an individual object is executing in and describe

„scope“ in the online manual (version 16th February, 96) as:

„A scope is the methods and object variables defined in a single class. Only methods

defined in a particular scope can access object variables within that scope. This means

that object variables in a subclass can have the same names as object variables in a

superclass, because the object variables are at different scopes.“

This scope is relevant in discussing the possibilities of concurrent access to object

variables, if multiple methods are supposed to execute in parallel for the same object.

But looking closer at Object Rexx it turns out that there are many more (non-object

related) scopes available which are worthwhile to explore: scopes of procedures, routines

and methods.

In addition to the scopes related to a single program the concept of the „local

environment“ adds another dimension to the discussion of scopes: the local environment

itself and the visibility - and therefore accessibility of classes and routines.

Local Environment and Scopes in Object Rexx, page 1-16 (rgf)

1 SCOPES OF TRADITIONAL REXX PROGRAMS

In traditional Rexx (abbreviated T-Rexx) the scope (also named „standard scope“) of

variables and labels is global, i.e. variables and labels are visible and accessible thruout

the entire Rexx program.

If the definition of a label is immediately followed by a „PROCEDURE“-statement and

this label gets CALLed, then T-Rexx defines a separate scope for variables at the entry of

that label („procedure scope“). This in effect hides all variables of the caller from the code

constituting a procedure or a function, yet, labels remain still visible. Therefore it is

possible to change the flow of control by CALLing or SIGNALling any label in the

T-Rexx-program.

/* */
a = 1
b = 2
SAY a /* displays "1" */
SAY b /* displays "2" */

CALL proc1
SAY a /* displays "4" */
SAY b /* displays "5" */

CALL proc2
SAY a /* displays "4" */
SAY b /* displays "2" */
EXIT

PROC1 :
 a = 4
 b = 5
 RETURN

 /* local scope with access to global "b" */
PROC2 : PROCEDURE EXPOSE b
 a = 1
 b = 2
 RETURN

Figure 1: T-Rexx global and local scopes

If the programmer so desires, it is possible to allow access to some variables of the

caller from within the called procedure/function by using the EXPOSE keyword and

Local Environment and Scopes in Object Rexx, page 2-16 (final)

denominating those variables which should get incorporated into the procedure’s scope

and thereby becoming accessible again.

Figure 1 depicts the scopes of T-Rexx programs, procedure PROC1 changes the

values of the globally visible variables „a“ and „b“. By contrast PROC2 creates a procedure

scope allowing access to the global variable „b“ (via the EXPOSE keyword): changes to

variable „a“ remain local, changes to variable „b“ occur globally in this case.

2 OBJECT REXX

2.1 Local Environment

The session in which an Object Rexx program executes constitutes a „local

environment“ in the sense that any Rexx program loaded by another Rexx program (via a

CALL-statement or a ::REQUIRES directive) is mereley added to the session’s memory. All

the Rexx programs build a tree whereby the root is simply the very first Rexx program

invoked. Keeping all Rexx programs which form an application in memory allows for

passing objects effectively by reference.

Routines and classes with the attribute „PUBLIC“ are brought into the scope of the

calling Rexx program („program scope“) right after a CALL to an external Rexx program

returns or right after a ::REQUIRES -directive has been resolved. Only those public routines

and classes of „children“ are added to the program scope of the caller, which are not

already defined there. Therefore it is not possible that called/required Rexx programs

override routines and classes of the caller itself.

In the case that several Rexx „children“ contain public routines and classes by the

same name those prevail, which are nearest to the caller with respect to the number of

Rexx program „nodes“ in between and in case of a tie, the program scope of the Rexx

program is used which was called last. See figure 2 demonstrating the effects of

::REQUIRE -directives and CALL-statements (output in figure 3).

Local Environment and Scopes in Object Rexx, page 3-16 (rgf)

/* main.cmd */

SAY
SAY "in MAIN.CMD (executing) ..."
CALL hi /* call routine named HI (in PROC2.CMD) */
CALL proc3.cmd
CALL hi /* call routine named HI (in PROC3.CMD) */
CALL proc4.cmd
CALL hi /* call routine named HI (in PROC4.CMD) */
CALL hi /* call routine named HI (in PROC4.CMD) */
SAY "leaving MAIN.CMD."

:: REQUIRES proc1.cmd /* load PROC1.CMD into local environment */

/* proc1.cmd */

SAY
SAY "in PROC1.CMD (initializing) ..."
CALL hi /* local routine prevails */
SAY "... leaving PROC1.CMD."

:: REQUIRES proc2 /* load PROC2.CMD into local environment */

:: ROUTINE hi /* non-public ! */
 SAY "... in routine 'HI' of PROC1.CMD (private!)"

/* proc2.cmd */

SAY
SAY "in PROC2.CMD (initializing) ..."
CALL hi /* local routine prevails */
SAY "... leaving PROC2.CMD."

:: ROUTINE hi PUBLIC
 SAY "... in routine 'HI' of PROC2.CMD, which is public"

/* proc3.cmd */

SAY "in PROC3.CMD (initializing) ..."
CALL hi /* local routine prevails */
SAY "... leaving PROC3.CMD."

:: ROUTINE hi PUBLIC
 SAY "... in routine 'HI' of PROC3.CMD, which is public"

/* proc4.cmd */

SAY "in PROC4.CMD (initializing) ..."
CALL hi /* local routine prevails */
SAY "... leaving PROC4.CMD."

:: ROUTINE hi PUBLIC
 SAY "... in routine 'HI' of PROC4.CMD, which is public"

Figure 2: Requiring and calling Object Rexx programs (code)

Local Environment and Scopes in Object Rexx, page 4-16 (final)

in PROC2.CMD (initializing) ...
... in routine 'HI' of PROC2.CMD, which is public
... leaving PROC2.CMD.

in PROC1.CMD (initializing) ...
... in routine 'HI' of PROC1.CMD (private!)
... leaving PROC1.CMD.

in MAIN.CMD (executing) ...
... in routine 'HI' of PROC2.CMD, which is public
in PROC3.CMD (initializing) ...
... in routine 'HI' of PROC3.CMD, which is public
... leaving PROC3.CMD.
... in routine 'HI' of PROC3.CMD, which is public
in PROC4.CMD (initializing) ...
... in routine 'HI' of PROC4.CMD, which is public
... leaving PROC4.CMD.
... in routine 'HI' of PROC4.CMD, which is public
... in routine 'HI' of PROC4.CMD, which is public
leaving MAIN.CMD.

Figure 3: Requiring and calling Object Rexx programs (output)

2.3 Environment Symbols

Environment symbols allow programmers to access directory entries in Object Rexx

supplied directories like .LOCAL or .ENVIRONMENT, without the need to know in which

particular directory to look. Some maintenance directories are not even named and hence

not directly accessible to programmers. E.g. all class objects defined in Rexx programs

are directly accessible via environment symbols only.

An example for utilizing the session directory denominated by „.LOCAL“:

 .local ~ rgf.test = "This is some string."

The easiest way to retrieve the directory entry for „RGF.TEST“ is by usage of another

environment symbol: by simply prepending a dot to the entry name, i.e. „.RGF.TEST “.

Alternatively „.local ~ entry('RGF.TEST') “ would work also.

Please note, environment symbols are not variables and they must start with a dot!

They are a valid means of accessing entries of Object Rexx administered directories.

Local Environment and Scopes in Object Rexx, page 5-16 (rgf)

This brings us to the rules which Object Rexx follows in order to resolve environment

symbols:

1) Object Rexx searches an unnamed program specific directory - let us call it „source“

- for an entry, if this fails it

2) searches the directory „source“ of the Rexx programs incorporated via „::REQUIRES “

directives or CALL-statements recursively, if this fails it

3) searches the session wide available and named directory „.LOCAL“, if this fails it

4) searches the operating system wide available and named directory „.ENVIRONMENT“,

if this fails it

5) searches another unnamed directory - let us call it „bottom“ -, now if this fails

6) Object Rexx will return the environment symbol as a string constant, with all letters in

uppercase.

Rules 1) and 2) are needed for making it possible e.g. to address class objects

defined in Rexx programs, like

anObject = .MyClass ~ new

where „.MYCLASS“ is an environment symbol relating to a class object which may

have been defined via a directive like „::CLASS MyClass “. Rule 2 follows the program

scopes in that Object Rexx tries to find such public class objects in leaf Rexx programs.

The Directory „ .LOCAL“

For every separate session (operating system process) the Rexx interpreter creates

a directory object accessible via the environment symbol named „.LOCAL“. This directory

allows for storing and retrieving objects for all Rexx programs loaded into the local

environment of that particular session.

Local Environment and Scopes in Object Rexx, page 6-16 (final)

As .LOCAL is visible to all executing Rexx-programs, it becomes possible to pass

objects (data) between Rexx programs and even between different directives (i.e.

::ROUTINE - and ::METHOD -directives).

The Directory „ .ENVIRONMENT“

In the system there exists one directory object which gets created by Object Rexx on

startup of the system and is accessible via the environment symbol named

„.ENVIRONMENT“. Most of the documented Object Rexx classes are accessible via this

directory.

Like .LOCAL it allows for exchanging objects among Object Rexx programs, in this

case even across session (process) borders!

Once objects are stored in the .ENVIRONMENT directory all session related

information is kept, so the object is guaranteed to have its valid working environment

present (e.g. routines and other classes of the program scope where the object stems

from). Therefore objects placed into the .ENVIRONMENT-directory should be removed once

they are not needed anymore, so the garbage collecting system can reclaim the space.

2.6 Scopes of Object Rexx Programs and Directives

The T-Rexx scopes remain valid for Object Rexx programs as long as there are no

directives defined with them. Directives, which are led in by two consecutive colons („:: “),

allow for defining:

- the merging of additional Rexx programs („::Requires “),

- routines („::Routine “),

- methods („::Method “), and

- classes („::Class “).

Local Environment and Scopes in Object Rexx, page 7-16 (rgf)

Every single directive gets its own, individual scope, as if every single directive was

an Object Rexx program of its own. This has the effect, that previously defined variables

or labels (!) of the Rexx program in question are not available anymore.

On the other hand, because directives have their own scope, the basic T-Rexx scope

rules apply for them. With other words, it is possible and very feasible to define „global“

variables and labels within the scope of a directive, only visible from within it.

Coding of Rexx-statements is possible within the directives ::ROUTINE and :METHOD

only.

::REQUIRES Directive

When the Object Rexx interpreter first parses a Rexx program, it will check the code

for syntactical errors and collect all directives. Then it will:

1) CALL (!) the Rexx program(s) denoted by the ::REQUIRES directive(s) in the order

they appear,

2) initialize the defined classes in the called Rexx program,

3) passing control to the very first statement in the Rexx program.

This resolution will work recursively on all required Rexx programs. The result are

program scopes for all Rexx programs involved.

The same steps are taken at the moment an external Rexx program is called

explicitly with a CALL-statement.

::ROUTINE Directive

A ::Routine -directive defines a procedure or a function, which gets added to the

program scope and may be therefore called from any part of an Object Rexx program,

even from within directives. If the attribute „PUBLIC“ is given, then parent Rexx programs

may get these routines added to their program scopes too.

Local Environment and Scopes in Object Rexx, page 8-16 (final)

The routine constitutes its own scope („routine scope“) working to the T-Rexx rules,

i.e. it may have „global“ variables and labels which may serve as targets for CALL- or

SIGNAL-statements. Like in a normal program it is possible to use the keywords

PROCEDURE and EXPOSE with labels within a routine definition.

Figure 2 demonstrates the effect of ::REQUIRES -directives intermixed with

CALL-statements. MAIN.CMD requires PROC1.CMD, which defines a local routine named

‘Hi ’ and requires PROC2.CMD in turn, which defines a public routine by the same name ‘Hi ’.

PROC3.CMD and PROC4.CMD both contain a public routine ‘Hi ’ and will get called by

MAIN.CMD once the initialisation phase has terminated.

Figure 3 shows the generated output from which it becomes clear how the program

scope for MAIN.CMD with respect to the routines named ‘Hi ’ is setup in the different stages

of execution. The Rexx code before the first directive in all programs starting with „PROC“

serves in effect as initialisation code for the appropriate programs. This effect can be seen

if looking for the routine ‘Hi ’ of PROC4: the very first time the code before the first directive

is run; the second time that routine is called only the ‘Hi ’ routine in PROC4 will be

executed.

As long as PROC3 and PROC4 are not called the routine ‘Hi ’ of PROC2 will be used.

PROC1’s ‘Hi ’ routine is private to PROC1 hence not visible to MAIN. PROC3 then replaces

the ‘Hi ’ routine of PROC2 in MAIN’s program scope and in turn gets replaced by PROC4’s

routine ‘Hi ’.

::METHOD Directive

The ::METHOD directive defines a method consisting of Rexx statements, which

implement a particular „behavior“ of a class. The method constitutes its own scope

(„method scope“) working to the T-Rexx rules, i.e. it may have „global“ variables and

labels which may serve as targets for CALL- or SIGNAL-statements. Like in a normal

program it is possible to use the keywords PROCEDURE and EXPOSE for labels within a

method definition.

Local Environment and Scopes in Object Rexx, page 9-16 (rgf)

In addition it is possible for a method to gain access to the object variables of the

class it belongs to by using the EXPOSE keyword immediately after the ::METHOD

directive, denoting the names of the object variables the method needs access to.

As methods merely define the blueprint for the behavior of all objects of a particular

class, the scope determining which methods may access which object variables at

object-runtime is called „object scope“. It is this scope which the online help of Object

Rexx is referring to.

It is interesting to note that methods may be defined outside of a class' context, i.e.

before a class directive is encountered. In this case the Object Rexx interpreter gathers all

„floating“ methods into a directory and makes it available to the program via the

environment symbol „.METHODS“ (which gets stored in the unnamed „source“ directory,

see above). Therefore every Rexx program defining floating methods has its own, specific

directory of floating methods which may be retrieved via the environment symbol

„.METHODS“. If floating methods are used e.g. to enhance a class’ object instance with

additional instance methods, they define their own scope, with the pseudo variable

„super “ pointing to the original class methods and object variables.

Figure 4 shows a little program which has floating methods defined. The enhanced

object receives these floating methods as instance methods, which in turn form a unique

object scope, totally isolated from the object scope of the instance methods at the level of

the .Test1 -class. This is to say, if a particular object is executing within a floating method

it has access to a different object scope (different object variables) than when executing

within the methods defined for the .Test1 -class, which has its own unique set of object

variables.

Local Environment and Scopes in Object Rexx, page 10-16 (final)

/* meth.cmd */

anObject = .test1 ~ new
anObject ~ one
anObject ~ two
anObject ~ showVar1
SAY COPIES("-", 50)

anObject = .test1 ~ ENHANCED(.methods)
anObject ~ one
anObject ~ two
anObject ~ showVar1

:: ROUTINE pp
 RETURN "[" || ARG(1) || "]"

/* ----------------- floating methods ------------------- */
:: METHOD one

 EXPOSE var1

 IF \ VAR("VAR1") THEN var1 = "---"
 SAY "floating.ONE - var1:" pp(var1)
 var1 = "floating.1"
 SAY "floating.ONE - var1-method:" pp(self ~ var1)
 self ~ one:super

:: METHOD two

 EXPOSE var1

 SAY "floating.TWO - var1:" pp(var1)
 var1 = "floating.2"
 SAY "floating.TWO - var1-method:" pp(self ~ var1)
 self ~ two:super

:: METHOD var1 ATTRIBUTE

/* ----------------- class with methods ----------------- */
:: CLASS test1

:: METHOD one

 EXPOSE var1

 IF \ VAR("VAR1") THEN var1 = "???"
 SAY "Test1.ONE - var1:" pp(var1)
 var1 = "Test1.1"
 SAY "Test1.ONE - var1-new:" pp(var1)
 SAY

:: METHOD two
 EXPOSE var1

 SAY "Test1.TWO - var1:" pp(var1)
 var1 = "Test1.2"
 SAY "Test1.TWO - var1-new:" pp(var1)
 SAY

Local Environment and Scopes in Object Rexx, page 11-16 (rgf)

:: METHOD ShowVar1
 EXPOSE var1

 SAY "Test1.Show - var1:" pp(var1)

:: METHOD var1 ATTRIBUTE

Figure 4: Floating methods, a class with methods and enhancing an object instance
with floating methods

Test1.ONE - var1: [???]
Test1.ONE - var1-new: [Test1.1]

Test1.TWO - var1: [Test1.1]
Test1.TWO - var1-new: [Test1.2]

Test1.Show - var1: [Test1.2]
--
floating.ONE - var1: [---]
floating.ONE - var1-method: [floating.1]
Test1.ONE - var1: [???]
Test1.ONE - var1-new: [Test1.1]

floating.TWO - var1: [floating.1]
floating.TWO - var1-method: [floating.2]
Test1.TWO - var1: [Test1.1]
Test1.TWO - var1-new: [Test1.2]

Test1.Show - var1: [Test1.2]

Figure 5: The object scope for floating methods is different to the object scope of the
class .Test1 (output)

There is an attribute method defined for the floating methods and one for the class

.Test1 . Both of these object variables exist at different object scopes, hence they may

store different values. The output is given in figure 5.

 ::CLASS Directive

A ::CLASS -directive merely defines the properties of a class and serves as the „glue

point“ for all immediately following ::Method -directives, which implement the behavior of

the methods themselves. All the methods at the instance level with their instance object

variables define a separate object scope, as well as all the methods at the class level with

their class object variables.

Local Environment and Scopes in Object Rexx, page 12-16 (final)

Looking at the class hierarchy, as a matter of fact, each single class forms its own

object scope, defining the methods and object variables level by level. So if an instance of

a class gets asynchronous messages - e.g. by using the START-method of .Object - it

becomes possible that different messages at different object scopes (e.g. different class

levels) execute concurrently without problems on the same object.

If a second method should get invoked at an object scope in which another method is

already running on the same object, the second method will have to wait by default until

the first method finishes. This way Object Rexx by default prevents methods from

changing object variables of the same object concurrently, which usually is undesired and

sometimes dangerous. If the programmer wishes, that some methods execute

concurrently at the same object scope for the same object, he or she can do so by either

using the UNGUARDED attribute for the appropriate method directive or use the keyword

instruction GUARD ON/OFF.

Another side effect of object scopes is the ability for programmers to define names

for object variables which may already have been used someplace up in the hierarchy tree

without interfering with them.

Local Environment and Scopes in Object Rexx, page 13-16 (rgf)

/* test_scope.cmd */

anObject = .Test2 ~ new("one", "two")
msg = anObject ~ start("work1") /* object scope of .Test2 */
msg = anObject ~ start("work0") /* object scope of .Test1 */
CALL SysSleep 1 /* sleep a bit */
anObject ~ work2 /* object scope of .Test2 */
SAY "program ended."
EXIT

/* ----------------- class with methods ----------------- */
:: CLASS Test1

:: METHOD work0
 SAY "in Test1::work0 (object scope of class .Test1)"
 var1 = "in work2"
 SAY "in Test1::work0, leaving."

:: CLASS Test2 SUBCLASS Test1

:: METHOD init
 EXPOSE var1 var2 /* define instance object variables */
 USE ARG var1, var2 /* assign arguments as values */

:: METHOD work1 /* UNGUARDED */
 EXPOSE var1

 var1 = "in work1"
 SAY "in Test2::work1 (object scope of class .Test2)"
 DO 5
 SAY "in Test2::work1, sleeping a second ..."
 CALL SysSleep 1 /* wait 1 second */
 END
 SAY "in Test2::work1, slept 5 times, just woke up !"

:: METHOD work2

 SAY "in Test2::work2 (object scope of class .Test2)"
 SAY "in Test2::work2, leaving."

Figure 6: Object Scope and Concurrency

Figure 7 demonstrates the output of the Object Rexx program in figure 6 executing

concurrently methods of different object scopes for the same object. While method

„work1 “, defined at the object scope of class .Test2 , is asynchroneously executing for

object „anObject “, method „work0 “ defined in the superclass .Test1 is able to run

Local Environment and Scopes in Object Rexx, page 14-16 (final)

concurrently. Method „work2 “ defined at the object scope of class .Test2 is blocked until

method „work1 “ executing in the same object scope finishes.

in Test2::work1 (object scope of class .Test2)
in Test2::work1, sleeping a second ...
in Test1::work0 (object scope of class .Test1)
in Test1::work0, leaving.
in Test2::work1, sleeping a second ...
in Test2::work1, sleeping a second ...
in Test2::work1, sleeping a second ...
in Test2::work1, sleeping a second ...
in Test2::work1, slept 5 times, just woke up !
in Test2::work2 (object scope of class .Test2)
in Test2::work2, leaving.
program ended.

Figure 7: Object Scope and Concurrency (output)

3 SUMMARY

This paper discussed various ascpects of scopes as present in Object Rexx. As

many of these scopes do not have names so far, the author attempted to coin some:

- Standard scope: scope rules as established in T-Rexx which determine the visibility

of variables and labels in a plain Rexx program, i.e. in a program not containing any

directives.

- Procedure scope: determines the visibility of variables within called labels, which use

the PROCEDURE keyword.

- Program scope: determines which routines and classes are visible to a particular

Rexx program.

- Routine scope: determines the visibility of variables and labels within a routine

directive. It follows the T-Rexx scope rules.

- Method scope: determines the visibility of variables and labels within a method

directive. It follows the T-Rexx scope rules. In addition methods gain access to object

variables according to the object scope the method is running in.

Local Environment and Scopes in Object Rexx, page 15-16 (rgf)

- Object scope: determines which methods may directly access the same object

variables, where object variables may be defined for instance, class and floating

methods. Every class constitutes its own object scope. All methods of the same

object scope are by default prevented from executing concurrently for the same

object, unless the programmer specifies otherwise.

The environment symbols allow for retrieving objects stored in different Object Rexx

supplied directories, the two most important being .LOCAL and .ENVIRONMENT. .LOCAL is

meant for storing or exchanging objects (data) among Object Rexx programs executing

within the same session and thus defining the „local environment“. .ENVIRONMENT is

meant for retrieving class objects and exchanging objects (data) across session (process)

boundaries, i.e. on a global basis.

4 ACKNOWLEDGEMENTS

The author wishes to thank Rick McGuire, one of the former lead developers for

Object Rexx, for his great hints and explanations given on the Internet-newsgroup

„comp.lang.rexx “ thru the past years.

5 REFERENCES

Online documentations of various beta versions of Object Rexx (the version used for

this paper stems from February 16th, 1996).

Various postings on the internet newsgroup „comp.lang.rexx “, 1995-1996.

Cowlishaw, M.F.: „The REXX Language“, Prentice-Hall (Second edition), 1990..

Local Environment and Scopes in Object Rexx, page 16-16 (final)

Date of Article: 1996-05-30.

Published in: Proceedings of the "7th International REXX Symposium", Texas/Austin,

May 12th-15th, 1996, The Rexx Language Association, Raleigh N.C. 1996.

Presented at: "7th International REXX Symposium", Texas/Austin, May 12th-15th,

1996, The Rexx Language Association.

Local Environment and Scopes in Object Rexx, page 17-16 (rgf)

