
EXTENDING THE WORKPLACE SHELL WITH

OBJECT REXX

Rony G. Flatscher

Department of Management Information Systems and Software Engineering at the

University of Essen (Germany)

(On leave from: Department of Management Information Systems at the

Vienna University of Economics and Business Administration (Austria))

„11th International Rexx Symposium“, Phoenix, Arizona, USA, May 24-26, 2000.

ABSTRACT

IBM’s “Workplace Shell” (WPS) is an object-oriented (OO) user interface (UI)

framework developed for and deployed in its PC operating system OS/2. The

infrastructure used for building the Workplace Shell is IBM’s “System Object Model”

(SOM), which allows for interfacing programs and functions of different programming

languages like C, C++, COBOL, PL/I, Smalltalk and Object Rexx using a runtime

component. The architecture and features of SOM were introduced into the shaping

of the ”Object Management Group” (OMG) standard “Common Object Request

Broker Architecture” (CORBA).

This paper introduces the concepts of these technologies and discusses the abilities

introduced to a scripting language like Object Rexx by it. Short examples should

demonstrate the appliccability of these technologies and may serve as

demonstrations what scripting languages are capable of achieving, if a well layed out

object-oriented architecture is available. The same principles and application

possibilities are available to many scripting languages being employed for driving

SOM, DSOM (“distributed SOM”) and CORBA applications in general. With the

advent of wrapping up the Windows user interface with object-oriented interfaces via

Extending the Workplace Shell with Object Rexx, page 1-24

Microsoft’s D/COM and “Windows Scripting Host” (WSH), the same features should

become available for scripting languages under the Windows UI in the future.

1 INTRODUCTION

IBM’s “Workplace Shell” (WPS) was introduced for the first time with its operating

system “operating system/2” (OS/2) for personal computers (PC) in 1992. It has

been devised and implemented with IBM’s “System Object Model” (SOM)

technology, which itself was part of OS/2 2.0 in 1992. IBM’s SOM served as a

testbed for implementing industrial strength object-oriented infrastructure technology

which was also used as IBM’s input in helping shape the “Object Management

Group” (OMG) “common object request broker architecture” (CORBA). As a matter

of fact SOM 2.0 introduced CORBA 1.1 compliance and the last incarnation of IBM’s

SOM (version 3.0) complied to the CORBA 2.0 specifications and was made

available for AIX, Windows and OS/2.

In 1996, meeting demands from IBM’s largest international user group, SHARE, IBM

had developed and introduced an object-oriented (OO) version of IBM’s stratetic

“system application architecture” (SAA) procedures language (“scripting language”)

REXX. This backwardly compatible language is called “Object Rexx” and has been

made available to OS/2, Windows 95, Windows 98 and Windows NT, as well as for

IBM’s AIX and the open source operating system Linux on the Intel platforms.

The object-oriented version of the Rexx interpreter included direct support for SOM

and “distributed SOM” (DSOM). Therefore it became possible to interact with this

scripting language with all programs employing SOM, effectively allowing Object

Rexx to be used for scripting any SOM respectively DSOM class! One of the

premiere OO frameworks available in IBM operating systems was OS/2’s

Workplace-Shell, so the Object Rexx developers supplied small scripts which

demonstrated how to interact with it via this new OO scripting language.

2 SYSTEM OBJECT MODEL (SOM)

At the end of the 80ies IBM invested heavily in developing state of the art technology

to be used in their products. One very important set of technologies was the “System

Extending the Workplace Shell with Object Rexx, page 2-24

Object Model” (SOM) with the intention to ultimately allowing for coupling programs

written in different computer programming languages with each other. The basic

concept was to create a set of interface specifications for programming languages

and a runtime environment serving as the mediator between them. Without a

mediator, programs written in any of two programming languages need to establish

bilateraly interfacing rules in order to be able to invoke functions on either side and

to be able to marshall and unmarshall the values of arguments depending on the

conventions used by the other language. Figure 1 depicts this classic problem which

yields the necessity to create n*(n-1) interface and communication infrastructures.

One way to ease this problem is to define a set of neutral (ie. Language

independent) interface rules and invocation conventions which need to be defined

and implemented for the appropriate programming languages. Now, if any two

programs written in different programming languages need to invoke functions at the

other side, they follow the same invocation rules (ie. communication protocol) and

use the same conventions for encoding (“marhsalling”) and decoding

(“unmarshalling”) of arguments and return values. In the 80’ies a well known set of

rules was established, known as “remote procedure call” (RPC) [OrHaEd96]. With

the advent of broader acceptance of object oriented technology the need arose for

creating a set of invocation rules which followed the object oriented paradigm. The

Extending the Workplace Shell with Object Rexx, page 3-24

Figure1: Total of n*(n-1) interfaces.

COBOL
C++

PL/I
Smalltalk

“Object Management Group” (OMG) was established for creating object oriented

standards and one of its main purposes has been to define the “Common Object

Request Broker Architecture” (CORBA), which targeted exactly this problem of

enabling interaction of programs (even written in different programming languages)

using an object oriented model. Right from the beginning, one of the big contributors

to the definition of the CORBA standard was IBM which created a technology called

“System Object Model” (SOM).

SOM defined a set of object oriented invocation rules and - what had been unique

by then - a runtime system being available at all times to offer relay services among

all programs communicating with each other via SOM. The problem of enabling the

communication between programs written in different programming languages was

effectively reduced to creating the interfacing and communication support from one

programming language to SOM only. Every invocation of any routine in some other

program looked like it was implemented in the SOM runtime, hence it became

unnecessary to know anything else but the SOM interface. Figure 2 depicts this

situation and it becomes clear that the problem was reduced to create just n

interface and communication infrastructures for n programming languages.

As SOM follows the object oriented paradigm, it defines a class hierarchy and

employs metaclasses for runtime management of metadata. In order for the runtime

to know about those classes, methods and their signatures, developers need to

Extending the Workplace Shell with Object Rexx, page 4-24

COBOL
C++

PL/I
Smalltalk

SOM

Figure2: Total of n interfaces.

declare them, usually in the form of an “Interface Defintion Language” (IDL) which

then gets used to build the “Interface Repository” (IR) which the SOM runtime can

the SOM class hierarchy in which the root is named “SOMObject” and the metaclass

of SOM is called “SOMClass”, a subclass of “SOMObject”. In addition three object

oriented frameworks were defined for the SOM runtime system: “Interface

Repository”, “Metaclass Management” and “Event Management”, which

programmers could take advantage of too.

1992 SOM 1.0 was introduced into the market via IBM’s personal computer (PC)

operating system OS/2, version 2.0, which was the first incarnation of the 32-Bit

version of that operating system.1) The initial implementation took advantage of the

thread concept available in OS/2 by having the SOM runtime and all SOM classes

run within the same process space, dispatching the SOM objects on their own

threads. Although this helped with performance problems, when run on slow

hardware, the execution of SOM objects was not insulated from the others, thereby

opening the risk, that an ill-behaved implementation would hinder or lock-up other

SOM objects or the SOM runtime itself. The “workplace shell” (WPS) introduced with

the same version of OS/2 was built using the SOM technology.

In 1994 version 2.0 of SOM was introduced with OS/2 3.0 which allowed for

executing SOM objects in their own process space, separated from the SOM

runtime itself. Because of this new ability, it also became possible to interact with

SOM objects in process spaces on physically different machines, even run under

different operating systems. IBM produced a separate product called “distributed

SOM” (DSOM) to allow for this particular feature. SOM and DSOM were made

available to AIX, OS/2 and Windows, and were compliant with OMB CORBA 1.1. It

is interesting to note, that the workplace shell which was built on SOM 1.0 could be -

according to IBM presentations at that time - switched to use 2.0 without big

Extending the Workplace Shell with Object Rexx, page 5-24

1) The portable 32-Bit version of OS/2 to be created by Microsoft was later on renamed to “Windows

NT”, after IBM and Microsoft departed from each other.

Figure3: SOM class hierarchy.

SOMClassMgr

SOMClass

SOMObject

problems, as most of the interface definitions and communication rules remained

backwardly compatible.

Finally, at the end of 1996 IBM released SOM 3.0, which has made SOM fully OMG

CORBA 2.0 compliant, allowing SOM to interact with “Object Request Brokers”

(ORB) from other vendors. This version has been made available by IBM via Internet

to users of AIX, OS/2 and Windows, but concludes IBM development efforts in this

technology, although it still has been maintained for its customers up to date.

3 WORKPLACE SHELL (WPS)

With OS/2 2.0 a totally new graphical user interface (GUI) was created by IBM;

called “Workplace Shell” (WPS). This user interface was fully created with the object

oriented paradigm, defining its own class hierarchy. The WPS is built using SOM

and therefore every WPS class is in effect a SOM class. This means that any

programming language capable of utilizing SOM, e.g. by sending SOM messages to

SOM classes or SOM objects, is able to directly use all of the WPS classes in the

same manner.

This new GUI introduced the object oriented paradigm to the user which in the

development stage led to an updated set of IBM’s “Common User Access” (CUA),

introducing the object oriented notion into the GUI by 1992.

Figure 4 depicts the WPS class hierarchy, having the class “WPObject” as its root. It

is very interesting to note how the class hierarchy classifies the objects interesting

for a GUI:

1) Class “WPFileSystem”: objects of this class and its subclasses are reflected in

the file system, i.e. their realizations are represented as physical individual files

in the file system.

2) Class “WPAbstract”: objects of this class and its subclasses are not reflected in

the file system, i.e. they are not represented as files on their own in the file

system. Instead, instance data is stored in special system files, called

“INI”-files.

Extending the Workplace Shell with Object Rexx, page 6-24

3) Class “WPTransient”: objects of this class and its subclasses are not reflected

in the file system. They exist only while the workplace shell is running and are

lost without a trace, after the WPS is shut down.

Studying the WPS class hierarchy allows one to fully understand the individual

classes and the behaviour they expose. If it was possible to subclass WPS classes,

Extending the Workplace Shell with Object Rexx, page 7-24

Figure 4: The WPS Class Hierarchy (fragment).

bject

SOMClass

SOMClassMgr

WPClassManager

WPObject

WPAbstract

WPClock

WPCountry

WPDisk

WPLaunchPad

WPKeyboard

WPMouse

WPPalette

WPColorPalette

WPFontPalette

WPSchemePalette

WPPower

WPPrinter

WPRPrinter

WPProgram

WPShadow

WPFileSystem

WPDataFile

WPHtml

WPIcon

WPBitmap

WPProgramFile

WPCommandFile

WPUrl

WPFolder

WPDesktop

WPDrives

WPHost

...

WPTransient

WPJob

WPDevice

WPDevAudio

...

WPPort

WPPdr

WPQdr

then one could in effect influence/change the pre-defined behaviour by maximum

re-usage of what has been devised and implemented by the creators. In addition this

maximum re-usage of (tested) code which the OO paradigm allows for guarantees

from there on, that future enhancements and bug-fixes in the pre-fabricated classes

will get re-used right away by the subclasses!

4 OBJECT REXX (ORX)

The programming language Rexx has been created for easying batch programming

in IBM’s mainframe world and was made available as a product on 20th March 1979

by IBM. Later on it became IBM’s“System Application Architecture” (SAA) procedural

language and was ported therefore to all IBM operating systems. Outside of IBM the

language attracted quite a few open source and commercial developers who

produced Rexx interpreters [W3RexxLA]. The language became an ANSI standard

(“X3.274”) in 1996 [W3Rexx] and serves as a reference for the actual discussions in

creating an international standard in decimal arithmetics for Java and the Web

[W3DecAri].

The development of Object Rexx began in the beginning of the 90’ies when

important IBM customers via the largest IBM customer association, SHARE,

requested an object oriented version of Rexx which should be fully backward

compatible. In response to these customer requests IBM developed “Object Rexx”

(ORX) which was introduced for the first time in 1996 with the new version of OS/2

4.0 (a.k.a. “Warp”). Object Rexx is an interpreted programming language which in

principle follows the object model of Smalltalk [GolRob83], enhanced with the ability

of multiple inheritance.2) Since then Object Rexx has been made available for AIX,

Linux, OS/2, Windows 95, Windows 98 and Windows NT.

4.1 The Built-in Object Rexx SOM Support

The OS/2 implementation of Object Rexx allows direct interaction with SOM and

DSOM in a very easy to use manner: D/SOM classes and D/SOM objects look as if

they are plain Object Rexx objects. As a matter of fact the entire implementation of

Extending the Workplace Shell with Object Rexx, page 8-24

2) Unlike Smalltalk there is no default GUI development environment going with it.

the D/SOM support in Object Rexx makes it transparent for the programmer that he

may be addressing D/SOM classes and D/SOM objects!

In the case that some signatures contain INOUT and OUT arguments,3) it becomes

necessary to supply an interface to the basic standardized (SOM/CORBA) data

types.

4.1.1 Interacting with the SOM Runtime System

In order to use Object Rexx directly for interacting with the D/SOM runtime system it

is necessary as a pre-requisite, that one learns about D/SOM and its frameworks

(and using the gained knowledge to apply it directly to CORBA!). Figure 5 4) 5) depicts

an Object Rexx program, which queries the D/SOM interface repository (IR):

Extending the Workplace Shell with Object Rexx, page 9-24

Figure 5: Querying the SOM Interface Repository with Object Rexx.

5) Identifiers led in by a point “.” are so-called “environment symbols” which the interpreter looks up by

4) The Object Rexx message operator is the tilde “~”, hence identifiers right of a tilde denominate the

name of a message, optionally followed by arguments enclosed in paranthesis.

3) INOUT and OUT parameters could get changed in their values by the invoked method with

datatype representations which are not compatible with Object Rexx’ internal handling of it.

Therefore it is necessary to use the specialized Object Rexx classes defined in “\os2\dlfclass.cmd”

in place for the native Object Rexx data types. The supported INOUT and OUT datatypes are:

‘Environment’, ‘Object’, ‘Number’, ‘Boolean’, ‘Char’, ‘Octet’, ‘Short’, ‘UShort’, ‘Long’, ‘ULong’, ‘Float’,

‘Double’ and ‘String’. Sequences and arrays are exchanged using the Object Rexx class Array.

/* querying the SOM interface repository with Object REXX */

aRepository =.somClassMgrObject~_get_somInterfaceRepository

SAY "repository:" pp(aRepository) "of class:" pp(aRepository~class)

SAY

aContainer = aRepository~contents("InterFaceDef", .true)

SAY "aContainer:" pp(aContainer) "items" pp(aContainer~items)

length = LENGTH(aContainer~items)

i = 0

DO anItem OVER aContainer

i = i + 1

SAY RIGHT(i,length) "id:" LEFT(pp(anItem~_get_id),35) "name:" pp(anItem~_get_name)

anItem~somFree

END

aRepository~somFree

exit 0

::ROUTINE pp

RETURN "[" || arg(1)|| "]"

/* class to get access to SOM */

::CLASS Test PUBLIC EXTERNAL ’SOM SOMObject’

w In order for Object Rexx to load the SOM support at least one class, even if it is

not used, needs to be defined as an external SOM class, which is depicted in

figure 5 at the very bottom at the class directive6).

w The program starts by retrieving a handle to the present SOM repository object.

w Sending the SOM repository object the message contents() with an argument

of “InterFaceDef” yields a container of SOM classes available at that particular

system at the time the message got sent. The Object Rexx DO...OVER loop

iterates over the single SOM objects representing SOM classes and issues the

given names.

Extending the Workplace Shell with Object Rexx, page 10-24

6) Directives are led in by two consecutive colons (“::”) and are carried out by the interpreter before

the first line of that program gets executed. Hence, directive definitions are always available at the

start of the program.

name in the environment directory available to all Object Rexx programs in a process.

Figure 6: Output (fragment) of Object Rexx Program of Figure 5.

repository: [a Repository] of class: [The SOMProxy class]

aContainer: [an Array] items [423]

1 id: [::SOMObject] name: [SOMObject]

2 id: [::Sockets] name: [Sockets]

3 id: [::AnyNetSockets] name: [AnyNetSockets]

4 id: [::Contained] name: [Contained]

5 id: [::AttributeDef] name: [AttributeDef]

6 id: [::BOA] name: [BOA]

7 id: [::SOMEEvent] name: [SOMEEvent]

8 id: [::SOMEClientEvent] name: [SOMEClientEvent]

9 id: [::Context] name: [Context]

10 id: [::ConstantDef] name: [ConstantDef]

11 id: [::Container] name: [Container]

12 id: [::SOMPEncoderDecoderAbstract] name: [SOMPEncoderDecoderAbstract]

13 id: [::SOMPAttrEncoderDecoder] name: [SOMPAttrEncoderDecoder]

... cut

122 id: [::TypeDef] name: [TypeDef]

123 id: [::SOMEWorkProcEvent] name: [SOMEWorkProcEvent]

124 id: [::WPObject] name: [WPObject]

125 id: [::M_WPObject] name: [M_WPObject]

126 id: [::WPFileSystem] name: [WPFileSystem]

127 id: [::M_WPFileSystem] name: [M_WPFileSystem]

128 id: [::WPFolder] name: [WPFolder]

129 id: [::M_WPFolder] name: [M_WPFolder]

130 id: [::WPDataFile] name: [WPDataFile]

131 id: [::M_WPDataFile] name: [M_WPDataFile]

132 id: [::WPAbstract] name: [WPAbstract]

133 id: [::M_WPAbstract] name: [M_WPAbstract]

... cut

423 id: [::M_OverrideFlWorkerEx] name: [M_OverrideFlWorkerEx]

w Every access which retrieves a SOM object needs to be followed by an explicit

invocation of the somFree() method in order for the SOM runtime to know that

it is safe to reclaim the appropriate resources.

Figure 6 depicts part of the output of the program in figure 5 on a PC running OS/2

version 4.

4.1.2 Interacting with SOM Applications

With Object Rexx there are some tutorial programs enclosed emphasizing different

aspects of the programming language. One set of examples deals with the very

Extending the Workplace Shell with Object Rexx, page 11-24

Overrides method: talk()BigDog

Defines attributes: breed, color
Overrides methods: _get_genus(), _get_species(), display()

Dog

Defines attributes: name, sound, genus, species
Defines methods: talk(), display()

Animal

Defines attributes and methods, available to all subclassesSOMObject

Figure 7: Class hierarchy of the Animal Example.

/* derived from IBM’s animal.cmd example */

spot =.dog~new

Say "spot’s default name:" spot

say "spot’s ClassName: " spot~somGetClassName

say "display"; spot~display

say "now talk, spot:"; spot~talk

say

sadie =.bigDog~new /* Create new Big Dog Object */

sadie~setup(’Sadie’, ’German Shepard’, ’black and tan’, ’Steve’)

say "sadie’s default name:" sadie

say "sadie’s ClassName: " sadie~somGetClassName

say "display:"; sadie~display

say "now talk, sadie:"; sadie~talk

/* import some SOM Classes to use from Object Rexx*/

::Class Dog Public EXTERNAL ’SOM Dog’

::Class BigDog Public EXTERNAL ’SOM BigDog’

::method setup /* setup object */

expose owner

use arg name, breed, color, owner /* Owner assign on use Arg.... */

self~_set_name(name) /* Set the SOM attribute */

self~_set_breed(breed)

self~_set_color(color)

self~objectName = name /* set up the object’s name to be the name as well */

::method display /* display attribute values */

expose owner

say ’The Big <’self~_get_color’> Dog <’self~_get_name’> is owned by <’owner’>’

Figure 8: Object Rexx Programm Using the SOM Classes “Dog” and “BigDog”.

ability of Object Rexx to transparently interact with SOM classes written in any

supported programming language.

This section introduces the supplied SOM example with an Object Rexx program of

the author, which itself got derived from IBM’s sample set.

Extending the Workplace Shell with Object Rexx, page 12-24

spot’s default name: a Dog

spot’s ClassName: Dog

display

The animal named (Genus: Canis, Species: Familiaris) says:

<Unknown>

It’s breed is and its color is .

now talk, spot:

<Unknown>

sadie’s default name: Sadie

sadie’s ClassName: BigDog

display:

The Big <black and tan> Dog <Sadie> is owned by <Steve>

now talk, sadie:

WOOF WOOF

WOOF WOOF

WOOF WOOF

WOOF WOOF

Figure 9: Output of Object Rexx Programm of Figure 8.

#include "animal.idl"

interface Dog : Animal

{

attribute string breed;

// The breed of this Dog.

attribute string color;

// The color of this Dog.

#ifdef __SOMIDL__

implementation {

releaseorder: _get_breed, _set_breed, _get_color, _set_color;

//# Class Modifiers

functionprefix = dog_;

callstyle = oidl;

dllname = "animals.dll";

//# Attribute Modifiers

breed: noset;

color: noset;

//# Method Modifiers

_get_genus: override;

_get_species: override;

display: override;

somInit: override;

somUninit: override;

somDumpSelfInt: override;

};

#endif /* __SOMIDL__ */};

Figure 10: SOM IDL File for Class “Dog”, a Subclass of “Animal”.

Figure 7 shows a class hierarchy of SOM classes built with some language with

SOM support (the concrete examples are built using C). The class “BigDog”

specializes the class “Dog”, which itself got implemented in C. Figure 8 shows the

Object Rexx program “animal.cmd” which contains a class definition for “BigDog”

and overrides some of the “BigDog” methods from within Object Rexx. In addition it

accesses to SOM class “Dog” too, which behaviour does not get changed. The

output of the Object Rexx program of figure 8 is shown in figure 9.

Extending the Workplace Shell with Object Rexx, page 13-24

Figure 12: The Implementation of Class “BigDog” in C.

#include "dog.idl"

interface BigDog : Dog

{

#ifdef __SOMIDL__

implementation {

//# Class Modifiers

functionprefix = bigdog_;

callstyle = oidl;

dllname = "animals.dll";

//# Method Modifiers

talk: override;

};

#endif /* __SOMIDL__ */};

/*

* This file was generated by the SOM Compiler and Emitter Framework.

* Generated using:

* SOM Emitter emitctm: 2.7

*/

#define BigDog_Class_Source

#include <bdog.ih>

SOM_Scope void SOMLINK bigdog_talk(BigDog *somSelf)

{

/* BigDogData *somThis = BigDogGetData(somSelf); */

string sound;

BigDogMethodDebug("BigDog","bigdog_talk");

somPrintf(" WOOF WOOF ");

somPrintf(" WOOF WOOF ");

somPrintf(" WOOF WOOF ");

somPrintf(" WOOF WOOF ");

if \(sound = Animal__get_sound(somSelf\))

somPrintf("(and sometimes: %s) " , sound);

}

Figure 11: The SOM IDL for Class “BigDog”, a Subclass of “Dog”.

For the SOM runtime to be able to resolve these interactions it is necessary to get

information about the involved parties. In the case of the prefabricated and installed

C programs realizing the Animal, Dog and BigDog classes, IDL definitions have to

be supplied and compiled for the SOM interface repository. Example IDLs are

shown in figures 10 (Dog) and 11 (BigDog), an implementation in C for BigDog is

depicted in figure 12, showing that the implmentation merely overrides method talk()

by issuing big capital letter “WOOF”s. This is the method for instances of the SOM

class BigDog which gets invoked in return of receiving the message talk, as is the

case in the Object Rexx program with the instance called “sadie”.

There are two more noteworthy points to be made with respect to the the Object

Rexx program in figure 8 with its output as shown in figure 9:

w the default implementation of the method “display” as used by instances of

class Dog use “<unknown>” for method talk,

w the Object Rexx implementation overrides the method “display” for instances of

class BigDog and therefore gives totally different information. In addition it

invokes the talk method of the BigDog class which has an implementation in C,

giving capitalized “WOOF”s.

The Object Rexx support for SOM and DSOM allows therefore to easily interact with

any D/SOM classes. This way it becomes possible to solve recurrent actions by

automating them with Object Rexx, in addition it is possible to use any D/SOM class

for scripting purposes using the easy to learn language Object Rexx.7)

Extending the Workplace Shell with Object Rexx, page 14-24

7) In principle, the same functionality can be employed with the Windows version of Object Rexx and

IBM’s support for OLE/ActiveX-Automation as made available via [...??? ORX-homepage]. If IBM

manages to make Object Rexx available to the “Windows Scripting Host” (WSH) [...???...]

comparable functionality to D/COM is made available to Object Rexx under the Windows set of

operating systems. In effect, it may then be possible to control/script every aspect of Windows and

Windows applications with the easy to learn and easy to use Object Rexx, even allowing interactive

interpretations at runtime (e.g. for exploring/debugging the D/COM environment).

4.2 The Built-in Object Rexx WPS Support

As the Workplace Shell is implemented using the SOM technology, it is possible for

Object Rexx to address and interact with it using the built in D/SOM support. As the

WPS is of such an utmost importance to the OS/2 operating system, a

comprehensive support has been implemented in addition, making it easier for

Object Rexx programs to interact with the WPS. The specific Object Rexx support

consists of:

w a mandatory Object Rexx WPS-SOM DLL which needs to get installed via

invoking “\os2\wpsinst.cmd +”, and

w optional WPS related definitions put into the Object Rexx environment, by

invoking the programs: “\os2\wpconst.cmd” and “\os2\wpsysobj.cmd”.

In addition “\os2\wpfind.cmd” allows to search for files recursively thru all available

Workplace Shell folders. Figure 13 depicts the Object Rexx program carrying out the

search, demonstrating the usage of the native WPS class methods, which by

convention all start with the lowercase letters “wp”. This subroutine uses the title of

the file object to look for and the starting WPS folder, which together with its WPS

subfolders will get analyzed recursively until the file object is found, in which case

the WPS object representing it gets returned or finally the value .nil, to indicate that

the sought for file object was not found.

In order to use the WPS programming support it is necessary to understand the

Workplace Shell and to study its architecture, the classes, their behaviour and how

they are employed in the GUI. Therefore all examples available with WPS

programming are helpful for exploring this architecture.

Due to the technology in place with OS/2, namely SOM, WPS and Object Rexx, it

becomes possible to even extend the workplace shell itself with classes written in

Object Rexx. In order for such classes to be available to the SOM it is important to

load them at the time the WPS starts up initially. It is at this time that the Object

Rexx supplied WPS-SOM-DLL gets invoked which in turn looks for an Object Rexx

program by the name “\wpuser.cmd”, which can be used to load all WPS class

extensions created with Object Rexx which then get registered with SOM.

Extending the Workplace Shell with Object Rexx, page 15-24

The following two sub-chapters explain how one could extend the workplace shell by

defining Object Rexx classes which are derived from WPS classes.8)

Extending the Workplace Shell with Object Rexx, page 16-24

8) The “locked workplace shell folder” example used in this article goes back to an example posted in

“news:comp.lang.rexx” by the then chief developer, Rick McGuire, and has been adapted a little bit.

Figure 13: Find procedure of “\os2\wpfind.cmd”.

Find: procedure /* edited extract from "\os2\wpfind.cmd" */

use arg title, folder

say ’Searching’ folder~wpQueryTitle ’for "’title’"’

/* populate the folder with all objects, not just folders. */

folder~wpPopulate(0, folder~wpQueryTitle, .false)

if \result then do /* error calling wpPopulate? */

say ’Populate error for’ folder~wpQueryTitle /* yes, report error. */

return .nil

end

/* Get the 1st item in this folder */

first = folder~wpQueryContent(folder,0 /*QC_FIRST*/)

/* and the last item in the folder */

last = folder~wpQueryContent(folder,2 /*QC_LAST*/)

this = first /* we start with the 1st object */

do while this \= .nil

if this~wpQueryTitle = title then return this /* found! return it */

else

do

prev = this /* keep reference to prev object */

if this = last then /* nope, are we at end of list? */

this = .nil /* indicate at end. */

else /* otherwise, get next item in folder. */

this = folder~wpQueryContent(this, 1 /*QC_NEXT*/)

prev~wpUnLockObject /* unlock previous object. */

End

end

return .nil /* object not found. return nil */

4.2.1 Password Protected WPS Folder: Requirements

If one wishes to extend the Workplace Shell with a password protected folder, one

needs to first analyze the requirements, study the present implementation of the

WPFolder class and then think about possibilities on how to devise a new class

which would behave accordingly.

These are the requirements, which should get implemented:

w A password protected folder must only be usable if a user was authenticated

as being allowed to access its content,

w if using a password scheme it should be possible to change the password at

any time,

w all features and behaviour of the present implementation of a folder with the

class WPFolder should be fully available with the password protected folder.

Analyzing the implementation of the WPS class WPFolder it becomes clear, that

there is a message sent every time a user wishes to open a folder, either by using

the popup menu option or by double-clicking the icon representing the folder object.

If one is able to intercept that particular message wpOpen, then it would be possible

to ask the user at that moment for a password and if it is not correct, merely

suppressing the forwarding of that particular message to the superclass WPFolder.

Extending the Workplace Shell with Object Rexx, page 17-24

/* source: Rick McGuire (appr. 1996/1997), adapted: 2000-03-04;

---rgf, wuw; (using VREXX.ZIP and changing from WPDLF to DLF-data type classes)

using VREXX.ZIP, ews from Steve Lamb (IBM)

*/

call RxFuncAdd 'VInit', 'VREXX', 'VINIT'

if Vinit() = "ERROR" then /* error loading VRexx-functions */

do

call VExit /* clean-up */

raise syntax 40.1 array ("VREXX.Vinit()") /* abort program */

end

.local~lock_icon = STREAM("REXX.ICO", "C", "QUERY EXISTS")

.environment~WPLockFolder = .WPLockFolder /* make class available */

::REQUIRES DLFClass /* needs the support for INOUT/OUT datatypes */

Figure 14: Loading the Rexx Function Package “VREXX”.

This would be a simple but effective behaviour for a new password protected folder

Extending the Workplace Shell with Object Rexx, page 18-24

::CLASS WPLockFolder SUBCLASS WPFolder INHERIT VXPWPrompts

::METHOD wpclsQueryTitle CLASS

return 'LockFolder'

::METHOD init

expose password

self~init:super /* let superclass initialize 1t */

/* Create object to allow PW Change */

.smpPwChange~new('Change Password', 'ICONFILE=' || .lock_icon || ';', self, 1)

if \var('PASSWORD') Then /* PW initialized via SetupString? */

password = '' /* Nope, give default '' */

::METHOD wpOpen

expose password

use arg handleContainer, view, params

if password == '' then /* no password set? */

return self~wpOpen:super(handleContainer, view, params) /* go ahead and open this*/

/* Ask user for password. */

enterpw = self~ask4Password('Locked Folder Password', 'Enter Password')

if password = enterPw then Do /* Was correct password entered */

/*Yup, forward to WPFolder top Open */

return self~wpOpen:super(handleContainer, view, params)

End

else Do /* Incorrect pw entered. */

reply .false /* Return failure, and return to WPS */

guard off /* Now display error to user. */

self~displayError('LockFolder Error! [should be: "' || password || "]")

End

::METHOD wpSetup

use arg setupString

maxLength = 64

strLength = .DLFULong~new(maxLength) /* Will allow for up to 64 char PW */

/* Get INOUT String parm */

str = .DLFString~new~~_set_maxSize(maxLength)

/* see if setup string has PW */

if self~wpScanSetupString(setupString, 'PASSWORD', str, strLength) then

self~password = str~asString /* Yup, set password. */

return self~wpSetup:super(setupString) /* Superclass does remainder. */

::METHOD scrollTitle unguarded /* unguarded, want to run concurrently*/

title = self~wpQueryTitle /* Get current title */

do 2 /* Will scroll twice. */

do i = 1 to title~length /* For length of title. */

self~wpSetTitle(right(left(title, i), title~length)) /* display 1st 1 titlechars*/

end

end

Figure 16: Class “WPLockFolder” with the Methods “init” and “wpOpen”.

Figure 17: Methods “wpSetup” and “scrollTitle”.

class, if this new class would specialize the pre-fabricated WPS class WPFolder! In

addition, if using specialization one could fully re-use all of the behaviour

implemented (and tested) in all superclasses, which means, that one needs not to

implement any of the behaviour of WPFolder, but rather re-uses it. Should future

enhancements be implemented in the WPS, then these enhancements would be

available to the subclass as well, without the need to adjust anything in the new

password protected folder.

4.2.2 Password Protected WPS Folder: Implementation in Object Rexx

The implementation of a password protected WPS folder class in Object Rexx

should be feasible, as all the needed infrastructural access is available to that

programming language. Figures 14 through 19 constitute the entire Object Rexx

program and their contents would reside in the same program.

Extending the Workplace Shell with Object Rexx, page 19-24

::CLASS VXPWPrompts mixinclass object

::METHOD ask4Password /* ask for a password */

use arg title, prompt

buttons = 3 /* use "OK"- and "CANCEL"-buttons */

prompt.0 = 1; /* prompt */

if arg(2, "E") then prompt.1 = prompt

else prompt.1 = 'Password'

width.0 = 1; width.1 = 64 /* widths in character units */

hide.0 = 1; hide.1 = .true /* don't echo PW */

answer.0 = 1; answer.1 = '' /* default value: empty string */

call VDialogPos 50, 50 /* center message box on screen */

button = VMultBox(title, "prompt", "width", "hide", "answer", buttons)

if button = 'OK' then return answer.1 /* return entered password */

return .nil /* "CANCEL" pressed; indicate no PW entered */

::METHOD displayError

use arg msg

do i=1 to 10 while msg <> ""

pos = length(msg)

if pos > 80 then /* VRexx allows 80 chars per msg-line only */

do

pos = lastpos(" ", msg, 80) /* try to break at a blank */

if pos = 0 then pos = 80 /* no blank in first 80 chars, force break */

end

msg.i = substr(msg, 1, pos) /* assign chunk to msg-stem */

msg = substr(msg, pos+1)

end

msg.0 = i /* assign message */

call VDialogPos 50, 50 /* center message box on screen */

return VMsgBox('Important error message!', "msg", 1) /* show OK-button only */

Figure 15: The Class for Prompting the Password.

The implementation will do the following:

w It will use a freeware package “VREXX” for prompting a password from the

user with the help of a popup-window. This package was created by the IBM

employee Steve Lamb and has been published with IBM’s “employee written

software” (EWS) program for OS/2 (cf. figure 14 which shows the loading of

this Rexx function package).

w For prompting for a password the Object Rexx class “VXPWPrompts” is

created. It controls and executes the popup-window for inputing the password

(cf. figure 15).

w There will be one Object Rexx class “WPLockFolder” which subclasses the

WPS class “WPFolder” inheriting all the features and behaviour of regular

WPS folders (cf. figure 16). This class intentionally demonstrates the ability to

employ multiple inheritance by declaring this class to have in addition

“VXPWPrompts” as its other superclass. Therefore messages sent to an

instance of “WPLockFolder” could be ultimately addressed to the methods

available in “VXPWPrompts”. In addition, a method wpOpen is supplied which

overrides the “wpOpen” message. At this point the user is prompted for a

password. If it is correct, then the message is forwarded to the WPS class

Extending the Workplace Shell with Object Rexx, page 20-24

::METHOD password ATTRIBUTE

::METHOD wpSaveState /* Save the password data */

self~wpSaveString(self~ somGetClassName, 1, self~password)

return self~wpSaveState:super /* Let parent save any state. */

::METHOD wpRestoreState

self~initButtons /* make sure OREXX side initialized. */

size = .DLFULong~new /* Get DLFUlong for size query. */

/* Retrieve size of string for restore */

self~wpRestoreString(self~ somGetClassName, 1, .nil, size)

/* Create DLFString large enough to contain the string, plus NULL */

str = .DLFString~new~~_set_maxSize(size~_get_value + 1)

/* Now get saved password */

self~wpRestoreString(self~ somGetClassName, 1, str, size)

self~password = str~asString /* Save password state value. */

/* let parent restore state. */

return self~wpRestoreState:super(arg(1))

Figure 18: Methods “password”, “wpSaveState” and “wpRestoreState”.

“WPFolder” and that folder gets opened, otherwise this forwarding is inhibited

and an error poup-window is concurrently displayed, which in this particular

example would (intentionally) unveil the correct password.

w The password is stored as part of the instance data of this class, using the

setup-string functionality, which by default is implemented in the WPObject

method wpSetup (cf. figures 17 and 18, methods wpSetup, wpSaveState,

wpRestoreState).9) For the first time the user is prompted for a password at the

creation of an instance of the “WPLockFolder” class and later on whenever this

folder should get opened.

w In order for the user to change a password an abstract object will be placed

into the password protected folder and by double-clicking it the appropriate

popup-window displays prompting for a new password for that particular folder.

That object is defined as an Object Rexx implemented WPS class, named

“SMPPWChange” and depicted in figure 19.

As one can infer from these examples, it is rather easy to create a password

protected folder in Object Rexx, given that all relevant information is put together.

Extending the Workplace Shell with Object Rexx, page 21-24

9) The class “DLFSTring” is defined in “\os2\dlfclass.cmd” as mentioned eralier, and allows to use

INOUT and OUT parameters in SOM. In these cases the called methods set the content of such

arguments, which after the call can get retrieved by Object Rexx programs.

::CLASS SMPPWChange SUBCLASS WPAbstract

::METHOD wpOpen

use arg handleContainer, view, params

if view \= 2 & view \= 3 then Do /* Opening Default view? Dbl-click */

lockf = self~wpQueryFolder /* Get our containing lock folder */

/* Ask for new password */

newpw = lockf~ask4Password('New LockFolder Password', 'Enter New Password')

if newpw \= .nil Then Do /* Get a new password? */

lockf~password = newpw /* Yup, set new pw. */

lockF~wpSaveImmediate /* Save object state (PW) */

End

return 0

End

/* Forward wpOpen to super class to handle. */

forward class (super)

Figure 19: Class “SMPPWChange” for Changing Existing Password.

5 SUMMARY AND OUTLOOK

This article introduced the reader to the IBM developed technologies SOM, DSOM,

WPS and Object Rexx, which all have been available as products for years.

Especially (corporate) users of OS/2 have employed these state of the art products.

This article researched and attempted to put together all dispersed information

necessary to employ the SAA scripting language Object Rexx to solve interesting

problems in a manner, which is simply not possible (yet) with other platforms and

technologies. Although IBM has been maintaining D/SOM and WPS for their

customers, no new features have been added to them in years, rather much of its

investments w.r.t. software development technologies has been directed towards

Java.10)

The state of Object Rexx is different: since its inception 1996 with OS/2 4.0 it has

been made available to AIX, Linux, Windows 95, Windows 98 and Windows NT.

The Windows version got an addition with a so-called “developer edition” allowing

Object Rexx to natively use the Windows graphical user interface to create user

interface windows. As the Windows user interface has not been fully implemented in

an object oriented style like the WPS, it is still not possible to extend the Windows UI

with Object Rexx defined classes. With Object Rexx Windows-based feature

enhancements like the OLE/ActiveX automation support one can conclude, that

eventually one will be able to achieve these tasks with the Windows environment

sometimes in the future. This goal would be even more likely, if IBM planned to

enhance the Object Rexx platform support on Windows operating systems with

Microsofts “Windows Scripting Host” (WSH) facility, which would allow for using the

scripting language Object Rexx as a native Windows scripting (batch) language as

well as a fully supported macro language for most Windows applications.

Extending the Workplace Shell with Object Rexx, page 22-24

10) Interestingly, it has become almost impossible to research the Internet about information and

books dealing with D/SOM and WPS, neither on IBM websites nor outside. This indicates that the

world wide web is not feasible to be used as an archive of documents which originally were posted

via it. This has also been a motivation to create this article, because in this form researched

knowledge remains available to the interested researcher.

6 REFERENCES

[BiDiSh97] Bitterer A., Dijkstra V., Shingarow B.: “VisualAge for Smalltalk

Handbook - Volume 2: Features”, Redbook SG24-2219-00, IBM 1997.

Available online, URL (2000-05-19): http://www.redbooks.ibm.com

[Ende97] Ender T.: "Object-Oriented Programming with REXX", John Wiley &

Sons, New York et.al. 1997.

[Flat96a] Flatscher R.G.: "Local Environment and Scopes in Object REXX", in:

Proceedings of the "7th International REXX Symposium, May 12-15,

Texas/Austin 1996", The Rexx Language Association, Raleigh N.C.

1996.

[Flat96b] Flatscher R.G.: "Object Classes, Meta Classes and Method Resolution

in Object REXX", in: Proceedings of the "7th International REXX

Symposium, May 12-15, Texas/Austin 1996", The Rexx Language

Association, Raleigh N.C. 1996.

[Flat96c] Flatscher R.G.: "ORX_ANALYZE.CMD - a Program for Analyzing

Directives and Signatures of Object REXX Programs", in: Proceedings

of the "7th International REXX Symposium, May 12-15, Texas/Austin

1996", The Rexx Language Association, Raleigh N.C. 1996.

[Flat97] Flatscher R.G.: "Utility Routines and Utility Classes for Object Rexx",

in: Proceedings of the "8th International Rexx Symposium, April

22nd-24th, Heidelberg/Germany 1997", The Rexx Language Association,

Raleigh N.C. 1997.

[GolRob83] Goldberg A., Robson D.: “Smalltalk-80 - The Language and Its

Implementation”, Addison-Wesley, Reading 1983.

[OrHaEd96] Orfali R., Harkey D., Edwards J.: “The Essential Distributed Objects

Survival Guide”, John Wiley & Sons, New York 1996.

[TurWah97] Turton T., Wahli U.: "Object Rexx for OS/2 Warp", Prentice-Hall,

London 1997.

[VeTrUr96] Veneskey G., Trosky W., Urbaniak J.: "Object Rexx by Example",

Aviar, Pittsburgh 1996.

[WahHolTur97] Wahli U., Holder I., Turton T.: "Object REXX for Windows 95/NT,

With OODialog", Prentice Hall, London 1997.

Extending the Workplace Shell with Object Rexx, page 23-24

[W3DecAri] Homepage of the decimal arithmetic initiative, URL (2000-05-19):

http://www2.hursley.ibm.com/decimal/decimal.html

[W3Hobbes] WWW-Repository for useful Rexx programs originally developed under

OS/2, URL (2000-05-19): http://hobbes.nmsu.edu/

[W3MS_WSH] Microsoft Windows Scripting Host information, URL

(2000-05-19):
http://msdn.microsoft.com/scripting/windowshost/default.htm

[W3ObjRexx]Object Rexx homepage of IBM, URL (2000-05-19):
http://www.ibm.com/software/ad/obj-rexx/

[W3Rexx] Rexx homepage of the creator of the language, the IBM fellow Mike

Cowlishaw, URL (2000-05-19): http://www2.hursley.ibm.com/rexx/

[W3RexxLA] Rexx homepage of the “Rexx Language Association”, URL

(2000-05-19): http://www.RexxLA.org

Extending the Workplace Shell with Object Rexx, page 24-24

