
“OVERVIEW OF THE DOCUMENT OBJECT MODEL
(DOM), A.K.A. DHTML UNDER WINDOWS”

Rony G. Flatscher

Department of Management Information Systems/Business Informatics at the

Vienna University of Economics and Business Administration (Austria)

ABSTRACT

With the ubiquitity of the World Wide Web (WWW), its document format "Hypertext

Markup Language" (HTML) and its planned successor „xhtml“ definded with the

"Extensible Markup Language" (XML) have become so important that interacting

with applications processing such text became a necessity. In the past years the

World Wide Web consortium has created a set of application programming

interfaces which allow programmers to manipulate the structure and content of

HTML and/or XML files. In the case of WWW browsers, this allows for creating

programmatically dynamic interfaces which can get changed on the fly while the

user sits in front of the browser displaying those files and/or interfacing with the

browser via the keyboard and mouse: the "Document Object Model" (DOM), dubbed

"dynamic HTML" (DHTML) by Microsoft.

This paper gives a conceptual overview of the architectural principles of HTML/XML

and the role of "Cascading Style Sheets" (CSS) in this context. Building on this

foundation, the DOM is introduced and Object Rexx examples under Microsoft's

Internet Explorer (a Windows Scripting Host application) are demonstrated to stress

some of the most important features of DOM, like generating text on the fly or

creating programs which react upon user events like mouse clicks.

Document Object Model (DOM), a.k.a. DHTML under Windows, page 1-22

1 MARKUP LANGUAGES

The World Wide Web (WWW) has made a tagging language ubiquituos which is

called „Hypertext Markup Language“ (HTML, cf. [W3HTML]). The principles and

rules of this markup („tagging“) language have been defined with the means of an

ANSI and international ISO/IETC standard, the Standardized Markup Language

(SGML).

1.1 Tags and Elements

Markup languages allow to enclose portions of text in tags. This process is called

„marking up text“. For each opening tag there must be a matching closing tag:

An „opening tag“ is represented by an opening angle bracket, a (tag) name,

optional attributes and a closing angle bracket, e.g. <some_tag_name>, and

A „closing tag“ is represented by an opening angle bracket, a slash, a

matching (tag) name and a closing angle bracket, e.g. </some_tag_name>.

An „element“ in this context is the sequence „opening tag“, content (usually text) and

„closing tag“, i.e. the tags themselves are part of an element. Tags must not overlap,

but may contain additional tags within, which makes up a hierarchy. Therefore one

can always determine the root (the very first element) of marked up text, and starting

out from the root one may process each subsequent (child) node, effectively walking

the entire tree. It is rather easy to devise programs which are able to parse text

according to the markup and create a resulting (parse) tree, in which there exists a

node for each element.

Opening tags may carry additional information, if attributes in the form of

„attributeName“ equal sign and the value enclosed in double quotes exist.1)

Every element may possess an attribute value to uniquely identify an element within

a document, if the attribute’s name is called ‘id’2). If there are elements which the

Document Object Model (DOM), a.k.a. DHTML under Windows, page 2-22

2) The precursor of the ‘ID’ attribute was called ‘NAME’ and is used in the context of the ‘A’-element.

1) In XML the enclosing of attribute values with quotes is mandatory and the quote delimiters can be

single quotes in addition to double quotes.

author thinks belong together for one reason or another, then the attribute value for

an attribute named ‘class’ should include a string denominating that class name.

1.2 The Document Type Definition (DTD)

Document Type Definitions (DTD) define markup languages: they allow for denoting

exaclty the names of available tags, whether tags may carry additional information in

the form of attributes within the opening tag, in which case the allowable attributes

and their types must be defined. In addition, DTD define a „content model“, which is

a set of rules determining how many times and in which sequence tags may be

applied to text.

Document Type Definitions (DTD) are usually defined in the Standard General

Markup Language (SGML) language or with the Extensible Markup Language (XML,

cf. [W3XML]), which can be regarded as (rather large) subset of SGML.

1.3 „Instance“ of a DTD

A document containing marked up text is called an „instance“ of some Document

Type Definition (DTD), if one used the rules of that DTD to markup the text. There

are parsers which are able to read the content of DTDs and check the instance,

whether the mark ups occur according to the rules, which are laid out in the DTD. If

such a check asserts that all DTD mark up rules were applied correctly, then one

can state that the instance is „valid“, i.e. it represents a „valid document“.

1.4 The Hypertext Markup Language (HTML)

The Hypertext Markup Language (HTML) was devised together with the World Wide

Web (WWW) to easily allow plain text to be marked up with information, such as

simple links to other documents, text which should serve as headers, or paragraphs

and the like. The World Wide Web Consortium (W3C) has standardized and frozen

HTML at level 4.01. The DTD for HTML is expressed in original SGML, which

among other things allows for the following (in this context) most-notable features:

Document Object Model (DOM), a.k.a. DHTML under Windows, page 3-22

tag- and attribute names can be given case-indepently, some end-tags may be

omitted in places where a program can infer the missing end tags by itself (e.g. a

new paragraph ends implicitly a previous one).

Figure 1 depicts text, which has been marked up with HTML, figure 2 shows a

possible rendering (formatting) by an HTML browser.

1.5 The Extensible Markup Language (XML)

The Extensible Markup Language (XML) was created by the World Wide Web

Consortium (W3C) as slightly simplified version of SGML, making it easier to create

Document Object Model (DOM), a.k.a. DHTML under Windows, page 4-22

Figure 2: A possible rendering of the HTML text of figure 1.

Figure 1: Text with HTML markup.

<html>
 <head>
 <title>This is my HTML file</title>
 </head>
 <body>
 <h1>Important Heading</h1>
 <p>This is the
 first paragraph.
 <h1>Another Important Heading</h1>
 <p id="xyz1">Another paragraph.
 <p id="9876">This is it.
 </body>
</html>

tools which can implement all of ist features. The most notable features (in this

context) are: tag and attribute names are case sensitive, end tags must not be

omitted, rather end tags must be always supplied, in addition to double quotes

attribute values can also be enclosed in single q<uotes (apostrophes). In

comparison to SGML there is a short tag form to represent an empty tag: opening

angle bracket, tag name, optional attributes, slash and closing angle bracket, e.g.

<some_tag_name/>.

As the tagging rules are more rigid than with SGML it becomes possible for creating

XML instances (documents containing marked up tags), which do not possess a

matching DTD, because it is always possible for an application to create a matching

DTD after the XML instance was analyzed.

1.6 Cascading Style Sheets (CSS)

The World Wide Web Consortium (W3C, cf. [W3C]) has devised a standard which

allows to define formatting rules for markup languages: "Cascading Style Sheets"

(CSS, cf. [W3CSS]). This way the marking up of text adds structural information,

which can be exploited by applications, one being the formatting application of

WWW browsers.

The formatting rules are expressed in the form of text, which usually gets stored in

its own files. One is able to define the formatting of certain tags, a specialized

Document Object Model (DOM), a.k.a. DHTML under Windows, page 5-22

Figure 3: HTML marked up text with a link to a cascading style sheet file (cf. figure 5).

<html>
 <head>
 <title>This is my HTML file</title>
 <link rel="stylesheet" type="text/css" href="example2.css">
 </head>
 <body>
 <h1>Important Heading</h1>
 <p>This is the
 first paragraph.
 <h1>Another Important Heading</h1>
 <p id="xyz1">Another paragraph.
 <p id="9876">This is it.
 </body>
</html>

f

ormatting depending on a certain sequence of tags (elements), as well as making the

formatting dependent on pre-defined values in attributes, most notably the attributes

„class“ and „id“.3)

Figure 3 depicts HTML text which adds an empty link element to figure 1, which

contains attributes that identify a cascading stylesheet file to be used for formatting.

Figure 4 shows a possible rendering and figure 5 displays the content of the

cascading style sheet file named „example2.css“.

By comparing figures 2 and 4 one can experience a dramatic difference in

appearence which is caused by the usage of a cascading style sheet for formatting

the HTML text of figure 3, yielding the rendering of figure 4. A CSS-rule consists of

plain text, first giving a match expression followed by formatting definitions to

applied to all matching elements, enclosed within curly brackets:

a) „Rule # 1“: The first rule relates to HTML tags named „h1“, which are commonly

referred to as „header level 1“ tags. The formatting rule mandates that the text of

Document Object Model (DOM), a.k.a. DHTML under Windows, page 6-22

Figure 4: A possible rendering of the HTML text of figure 3.

3) The value of the „class“ attribute may be one or more strings delimited by spaces, the value of the

attribute „id“ needs to be a string which is unique within the document where it is defined and

therefore serves as a unique identifier.

such elements has to be formatted with a blue text color, the text has to be

centered, the size of the font should be doubled, and if possible the font named

„Arial“ should be used and in the case that it is not available, just any other font

without serifs, like „Helvetica“ or the like.

b) „Rule # 2“: This rule determines that the „body“ element4) has a yellow

background, the font size must be small and that the font family „Times“ and if

not available „Avantgarde“ should be used.

c) „Rule # 3“: The third rule mandates, that elements with an attribute named

„class“ possessing a value of „verb“ should be formatted with a red bold font

(„font-weight: 900“) on a white background. If a name is preceded by a dot,

then it is assumed to be the explicit value in a „class“ attribute.

Document Object Model (DOM), a.k.a. DHTML under Windows, page 7-22

 /* rule # 1: match all tags ‘h1’ */
h1 { color: blue;
 text-align: center;
 font-family: Arial,sans-serif;
 font-size: 200%; }

 /* rule # 2: match all tags ‘body’ (there is only one) */
body { background-color: yellow;
 font-family: Times, Avantgarde;
 font-size: small; }

 /* rule # 3: match all elements possessing the string ‘verb’
 in the value of an attribute named ‘class’ */
.verb { background-color: white;
 color: red;
 font-weight: 900; }

 /* rule # 4: match exactly the element, having exactly the
 value ‘xyz1’ in an attribute named ‘id’ */
#xyz1 { font-variant: small-caps;
 text-align: right; }

 /* rule # 5: match exactly the element, having exactly the
 value ‘9876’ in an attribute named ‘id’ */
#9876 { font-size: large; }

Figure 5: The cascading style sheet named „example2.css“.

4) This element represents the entire document rendered in the browser’s document window.

Therefore ist style determines the „default“ style for the document.

d) „Rule # 4“ and „Rule # 5“: These rules define formatting rules for two different

elements, which are identified by their „id“ attribute set to „xyz1“ and „9876“

respectively. If a name is preceded by the pound sign (#), then it is assumed to

be a (unique) value of an „id“ attribute.

CSS definitions can also be given in the„head“ element, enclosed within a tag

named „style“. In addition one can express CSS formatting rules individually for

elements, contained in the value of an element attribute named „style“.

Document Object Model (DOM), a.k.a. DHTML under Windows, page 8-22

2 THE DOCUMENT OBJECT MODEL (DOM)

The „Document Object Model“ (DOM, cf. [W3DOM]) is a standard defined by the

World Wide Web consortium for allowing the interaction with and manipulation of

HTML- and XML-documents, which have been successfully parsed. The result of

this process is organized in a so called „parse tree“ which mirrors the hierarchy of

HTML- and XML-documents by representing each element as a node. Figure 65)

depicts the HTML tagged file of figure 3 in the form of a parse tree.

WWW-browsers like Microsoft Internet Explorer (MSIE) or AOL Netscape parse

HTML- and XML-documents and thereafter apply the formatting rules specified with

CSS to the parse tree and usually present the results via the CRT. At this point it

becomes possible for users to interact with the rendered documents with the help of

a mouse or keyboard. An example of this interaction is the navigation of hyperlinks

by choosing them with a mouse click. Upon return from such a chosen hyperlink it is

Document Object Model (DOM), a.k.a. DHTML under Windows, page 9-22

html

head

title link

body

h1 p

span

h1 p p

span

Figure 6: The parse tree of the HTML marked up text of figure 3.

5) Attributes and plain text are not shown as nodes for brevity.

often the case that the visited hyperlink changes its visual representation to indicate

to the user, that a particular link has been followed („visited“) already.

The DOM standard defines the set of (language independent) application

programming interfaces, which among other things allows the programmer

a) to manipulate the parse tree (e.g. by querying, changing, inserting, deleting

elements with its attributes and text) and

b) to react upon events, such as button-presses, mouse- or keyboard-events as well

as application related events like "document loaded".

Although DOM has been defined with no specific programming language in mind, it

is interesting to note, that for all practical reasons JavaScript (a.k.a. ECMA-Script)

has been employed for DOM programming almost exclusively.

2.1 Embedding Programs

Embedding programs is rather straight forward by using the "script" tag and

determining the name of the programming language with an attribute "language"6).

The text of this script element should be defined as a "CDATA"-section by enclosing

it within the strings "<![CDATA[" and "]]>". Such a "character data" section will

cause the HTML parser to not interpret the otherwise special characters < (less than

character7)), > (greater than character) and & (ampersand character). Alternatively,

script code can be stored in its own file and can be referred to with an attribute

named "src" and a value which is a URL8).

Any number of script elements can be embedded in the head and body element of

the HTML document and will get loaded when the browser loads the document.

Document Object Model (DOM), a.k.a. DHTML under Windows, page 10-22

8) It is possible to only give the name of the file in which the code of the script is stored. In this case

the usual processing takes place to find the file, comparable to the seeking rules for images and

the like.

7) In HTML- or XML-based mark up this character is represented as the entity "<".

6) For the programming language JavaScript/ECMA Script the value should be accorgingly

"JavaScript". The Microsoft version of this language is called "JScript".

Whenever a script element is found its code is presented to the language processor

which is registered with the browser for further processing, i.e. for its execution. The

sequence in which the script elements are processed is the so called "document

order", therefore the sequence in which these elements are found in the HTML

document.

2.2 Associating Events with Programs

The HTML standards defines a set of attributes which represent events and usually

start with the characters "on", like "onclick", "onmouseover" or "onload" and the like.

These attributes allow for defining program code as their value and in such a case

need an additional attribute "language" with a value that indicates the programming

language used.

Document Object Model (DOM), a.k.a. DHTML under Windows, page 11-22

3 THE MICROSOFT INTERNET EXPLORER (MSIE)

Microsoft has been developing its own WWW browser, named "Microsoft Internet

Explorer" (MSIE). This browser got enhanced with the Windows Script Host (WSH)

capability, allowing for easy scripting in that environment. The WSH architecture

builds on OLE/ActiveX automation and allows among other things an application to

pre-register OLE/ActiveX objects before any scripting engine gets invoked with

program code extracted from script elements or the value of event attributes.

This has the following two important implications:

a) Programs can be written such that they already refer to and address OLE/ActiveX

objects brought in via the host application. E.g. MSIE pre-registers objects like

"window" (for user interaction), "document" (the root object of the parsed,

rendered and displayed HTML document)9) and all elements carrying an "id"

attribute10).

b) MSIE can employ any Windows Script Engine (WSE) adhering to the interfaces

the WSH architecture defines. Among other things this means that IBM's Object

Rexx language can be used as a scripting language for HTML in all places where

JavaScript can be employed!

Microsoft's version of DOM is dubbed "Dynamic HTML" (DHTML) and is

documented extensively via its Microsoft Developer Network (cf. [W3DHTML1,

W3DHTML2]), which can be accessed via the Internet/WWW. It documents all

Document Object Model (DOM), a.k.a. DHTML under Windows, page 12-22

10) Such OLE objects are named exactly like their attribute value by Internet Explorer: e.g. a HTML

paragraph markup like '<p id="myElement">' allows that particular p-element to be

immediately referred to as an OLE object by the name "myElement".

9) Among many other things one can use the "document" object for using its collection properties -

OLE/ActiveX objects themselves - to analyze and query all or specific elements. E.g. the property

"all" contains all HTML elements represented as OLE/ActiveX objects in document order. In

addition this particular collection serves as a directory which returns the appropriate OLE/ActiveX

object, if using the value of the 'id' attribute of that particular element.

One interesting application of the "document" object is the ability to use its methods "write" and

"writeln" to insert text into the HTML document.

available properties together with all its functionality and gives numerous examples

on how to put them to work. In addition there are numerous tutorials and documents

explaining the concepts and overall functionality made available via DHTML/DOM.

MSIE accepts script elements with program code not enclosed in a CDATA-section!

Obviously, MSIE uses the end tag "</script>" as a marker and does not parse the

text before it as HTML text.11)

3.1 Creating Text with Object Rexx

Figure 7 depicts text marked up with HTML with a script element in the head

element and one in the body element. The resulting rendering of that text by MSIE is

shown in figure 8.

As can be seen the OLE/ActiveX object named "document" is available right away

to Object Rexx, as MSIE has pre-registered that object before the code of the script

element gets presented to Object Rexx for execution. The text - including the

markup - for the title element as well as for the content of the entire body element is

created by the Object Rexx code of the script elements.

Referring to the pre-registered object "document" is straight forward as Object Rexx

will use the pre-registered OLE/ActiveX object set via the WSH interface by MSIE.

Interaction with these objects occurs as if they were native Object Rexx object, as

Document Object Model (DOM), a.k.a. DHTML under Windows, page 13-22

11) With other words: the characters bearing a special meaning to HTML parsers ("<", ">" and "&") are

ignored within the text, enclosed by the "script" tag.

Figure 7: HTML text with Object Rexx program code.

<html>
 <head>
 <script language="Object Rexx">
 document~writeln("<title>Produced by Rexx # 1</title>")
 </script>
 </head>
 <body>
 <script language="Object Rexx">
 document~writeln("It is:" date("s") time()", isn't it?")
 </script>
 </body>
</html>

Object Rexx uses the proxy class OLEObject12) to create the Object Rexx

representations for those OLE/ActiveX objects. Hence, it is possible to send those

proxy objects Object Rexx messages which get transformed to the appropriate

OLE/ActiveX invocations on the Windows side.

3.2 Interacting with the Parse Tree

Figure 9 depicts text marked up with HTML with a script element in the head

element and one in the body element. In addition to the code in figure 7 there is also

a public Object Rexx routine defined, which gets called if a click event occurs in the

displayed document. The resulting rendering of that text by MSIE is shown in figure

10.

The body element contains an attribute named "onclick" and defines as its value

that the public Object Rexx routine "info" is to be called with the WSH pre-set

OLE/ActiveX object named "this" as an argument, which is set to represent exactly

the element for which the event was intercepted.13)

The public routine "info" in turn first queries the received object for its tagname

(the method "tagname" gets this particular information from the OLE object) and

Document Object Model (DOM), a.k.a. DHTML under Windows, page 14-22

Figure 8: Possible rendering of the HTML text in figure 7, if run on 2005-03-10 12:50:59.2

13) As no embedded element re-defines the "onclick" attribute eventually the body element will

receive this event and "fire", i.e. react upon receipt of that particular event as defined by calling

the public Object Rexx routine "info".

12) Instances of this proxy class are called "proxy objects", representing with the means of Object

Rexx in effect OLE/ActiveX objects.

then for the text it represents (method "innertext"), which is the result of carrying out

whatever was defined in the HTML markup and shown in figure 10. The next

information queried from it relates to the HTML marked up text containing the script

element which was used to produce the displayed text (method "innerhtml"). Finally,

the object is queried to return the HTML form of the entire element including its own

tags.

Then, the routine will iterate over the OLE objects contained in the collection named

"all", representing all HTML elements as OLE objects in document order. Hence,

the loop will create a list of the HTML tags as they appear in the source document.

Document Object Model (DOM), a.k.a. DHTML under Windows, page 15-22

<html>
 <head>
 <script language="Object Rexx">

 document~writeln("<title>Produced by Rexx # 2</title>")

 ::routine info public -- to be called later on
 use arg o

 output_area~innertext=""
 tmp1="this=["o~tagName"] innerText=["o~innerText"]" "0d0a0d0a"x || ,
 "this=["o~tagName"] innerHtml=["o~innerHtml"]" "0d0a0d0a"x || ,
 "this=["o~tagName"] outerHtml=["o~outerHtml"]" "0d0a0d0a"x

 tmpStr=""
 do item over document~all -- iterate over all elements
 tmpStr=tmpStr item~tagName
 end
 tmp1=tmp1 || "elements:" tmpStr
 output_area~innertext=tmp1

 </script>
 </head>

 <body onclick="call info this" language="Object Rexx">

 <script language="Object Rexx">
 document~writeln("It is:" date("s") time()", isn't it?")
 </script>

 <p id="output_area">
 </body>
</html>

Figure 9: HTML text containing a public Object Rexx routine "test", which gets invoked, whenever an

"onclick" event occurs.

Lastly the created string stored with the Object Rexx variable named "tmp1" is used

to set the text for the element with the "id" attribute of "output_area", which

initially is empty14). This in effect replaces whatever text that particular node displays

with the string contained in the Rexx variable. This change of a node is reflected

right away by the Internet Explorer, changing the content of the WWW browser

window right away. Its result can be seen in figure 12 shows the three values

shown.

Document Object Model (DOM), a.k.a. DHTML under Windows, page 16-22

14) As can be seen from figure 10, Internet Explorer may add an ending tag for the paragraph tag "P"

enclosing the entity named " " which is defined to be a "non-breaking space", hence

displaying a (non-visible) space.

Figure 10: Possible rendering of the HTML text in figure 9, if run on 2005-03-10 12:51:55, after

clicking with the mouse anywhere in the browser window.

3.3 Using the Browser as a Graphical User Interface to

Communicate with the user

Combining the abilities made available by DOM (and hence DHTML) one can use

events for reacting upon user actions, like pressing of a key or button, clicking of a

mouse button and the like. As a reaction to user events one can use DOM to

change the content of a node or the overall structure of the parse tree of the

displayed HTML document.

Figure 11 depicts a HTML page in which HTML "input" elements are defined for

allowing a user a) to enter text into a textfield (this HTML input element has the

attribute "id" set to the value "inputElement") and b) to press a push button (this

HTML input element has the attribute "id" set to the value "outputArea").

Pressing the push button causes the "onclick" event to be intercepted with that

element carrying out the associated Object Rexx statement (calling the public Object

Rexx routine named "doTheWork"). This routine will read the present value of the

text area HTML input element ("inputElement"), reverse with the appropriate

Document Object Model (DOM), a.k.a. DHTML under Windows, page 17-22

Figure 11: HTML text containing Object Rexx code for interacting with the user.

<head>
 <title>Object Rexx: Processing User Input</title>

 <script language="Object Rexx">
 -- queries value of user input, reverses the text and displays it
 ::routine doTheWork public
 outputArea~innerhtml=reverse(inputElement~value)
 </script>

</head>

<body>
 Please enter some text:<p>

 <input id="inputElement" type="textarea" size="80">
 <p> <!-- new paragraph (larger line break) -->

 <input type="BUTTON"
 onclick="call doTheWork" language="Object Rexx"
 value="Please press me!">
 <p> <!-- new paragraph (larger line break) -->

 <p id="outputArea">
</body>

Rexx built-in function the string and put the result into the paragraph of the HTML

element ("outputArea").

Figure 12 displays that HTML file and shows the result of the user entering the text

"Hi, there, this is cool text to be reversed, isn't it ???".

Pressing the push button will then yield the rendering of figure 13, displaying the

reversed text: "??? ti t'nsi ,desrever eb ot txet looc si siht

,ereht ,iH".

Document Object Model (DOM), a.k.a. DHTML under Windows, page 18-22

Figure 12: Rendering of the HTML text in figure 11 and text entered by the user.

Figure 13: Rendering of figure 12, after pressing the push button.

3.4 Some Security Considerations and "HTML-Applications"

HTML (and XML) files are usually loaded from the public Internet. Therefore it is

very important that programs embedded in such documents cannot harm the

computer on which they run. For this reason MSIE possesses the ability to define

security zones which determine the rights of such HTML/XML embedded programs

to access the resources of the host computer.

The Object Rexx implementation uses its built-in Security Manager for implementing

the security policy for Object Rexx programs according to the settings of MSIE.

For applications using the MSIE as a GUI platform and printing processor it may be

desirable to allow unrestricted access to local resources. Such a need may arise for

in-house developed applications, where the authors are known and trusted.

Microsoft supplies with the Internet Explorer a component which allows to treat such

"HTML applications" as regular applications. One merely needs to rename such

HTML-files to the extension ".hta", the acronym for "HTML application".

It is possible to define some additional characteristics for HTA-files, like an

identification string or whether such an application can be invoked just once (just

one copy allowed to run) and some more. This information needs to be supplied by

additional mark-up documented in the Microsoft developer network.

Document Object Model (DOM), a.k.a. DHTML under Windows, page 19-22

4 SUMMARY AND OUTLOOK

This article attempted to give an introduction to the basic concepts of DOM and the

Microsoft implementation of it: DHTML. In order to understand the principles of

DOM, it is important to know the basic rules of markup languages like HTML and

also accompanying technologies like "Cascading Style Sheets" (CSS) adding

enormous formatting power.

After learning about the hierarchical structure of HTML (and XML markup as well)

examples of HTML files employing Object Rexx scripts are introduced and

explained. These Object Rexx programs work with Microsoft's Internet Explorer

(MSIE) only, because they take advantage of the Microsoft Script technology of

which MSIE is a Windows script host application and the Windows version of Object

Rexx is a Windows script engine.

They demonstrate the principles of employing the Microsoft implementation of DOM,

called DHTML (dynamic HTML) and add from example to example more key

features. The last example even demonstrates the possibility to use HTML pages to

define graphical user interfaces (GUI) and add programming logic implemented with

Object Rexx to it.

One very important conclusion of this article is the following: given some knowledge

of HTML, CSS and DHTML, it becomes feasible for any Object Rexx programmer to

take advantage of this technology in two distinct benefitiary manner: a) using the

Internet Explorer as an easy to use GUI interface technology for Object Rexx

programmed frontends and b) using the Internet Explorer as a printing engine,

capable of printing the most demanding formats to any of the Windows supplied

printers15).

Document Object Model (DOM), a.k.a. DHTML under Windows, page 20-22

15) The author is confident that programmers having created programs that interface directly with

complex printers will more than appreciate this aspect!

5 REFERENCES

[W3C] Homepage of the World Wide Web Consortium, URL (2002-06-15):

http://www.w3.org/

[W3CSS] Homepage of the World Wide Web Consortium project "Cascading Style

Sheets (CSS)", URL (2002-06-15): http://www.w3.org/CSS

[W3DOM] Homepage of the World Wide Web Consortium project "Document Object

Model (DOM)", URL (2002-06-15): http://www.w3.org/DOM

[W3HTML] Homepage of the World Wide Web Consortium project "Hypertext

Markup Language (HTML)", URL (2002-06-15): http://www.w3.org/Markup

[W3DHTML1] Homepage of the Microsoft Developer Network for "Dynamic

Hypertext Markup Language (DHTML)", URL (2002-06-15):

http://msdn.microsoft.com/workshop/author/dhtml/dhtml_node_entry.asp

[W3DHTML2] Homepage of the Microsoft Developer Network for "DHTML

Reference", URL (2002-06-15):

http://msdn.microsoft.com/workshop/author/dhtml/reference/dhtml_reference_entry.asp

[W3ORX] Object Rexx homepage of IBM, URL (2002-06-15):
http://www.ibm.com/software/ad/obj-rexx/

[W3WSH] Microsoft’s scripting homepage, URL (2002-06-15):

http://msdn.microsoft.com/scripting

[W3XML] Homepage of the World Wide Web Consortium project "Extensible

Markup Language (XML)", URL (2002-06-15): http://www.w3.org/XML

Document Object Model (DOM), a.k.a. DHTML under Windows, page 21-22

Date of Article: 2002-06-15.

Published in: Proceedings of the „2002 International Rexx Symposium“, April

29th - May 1th, Raleigh, NC, USA 2002.

Presented at: „The 2002 International Rexx Symposium“, April 29th - May 1th,

Raleigh, NC, USA 2002.

Document Object Model (DOM), a.k.a. DHTML under Windows, page 22-22

