
“APPLYING THE OBJECT REXX WINDOWS SCRIPT
ENGINE WITH THE WINDOWS SCRIPT HOST”

Rony G. Flatscher

Department of Management Information Systems/Business Informatics at the

Vienna University of Economics and Business Administration (Austria)

ABSTRACT

The Windows Script Host (WSH) has been part of the Microsoft Windows operating

systems since Windows 98 (16 Bit version) and Windows 2000 (32 Bit version). For

all other Windows operating systems (and updates as well) the WSH is installed

with Microsoft Internet Explorer, which depends on that technology. Extending the

abilities of OLE/ActiveX automation WSH allows for automating/remote controlling

Windows itself as well as applications serving as Windows script hosts like

Microsoft's Internet Explorer.

By default WSH comes with the programming languages JScript (Microsoft's

JavaScript/ECMAScript implementation) and Visual Basic Script edition (VBScript).

In addition, any programming language which adheres to the WSH specifications

may be used to interact with automatable applications, hence the very same

functionality can be achieved e.g. by IBM's Object Rexx for Windows.

This paper introduces the WSH architecture from a conceptual point of view,

discusses its applications and implications for companies using Windows, and in

this context stresses the most important security issues which adhere to WSH.

Windows Scripting Host (WSH), page 1

1 INTRODUCTION

The term “script” denotes a mechanism by which the commands of human beings

are collected and structured by the means of an electronic file, which then serves as

the input to the operating and/or application system. The first scripts were created

many decades ago for mainframe class computers, where recurrent commands

entered by the operators were instead stored in a file as a “batch of commands”1) to

be carried out in exactly the given sequence. Usually an operating system program

carried out the content of such a batch file.

In the meantime this principle has been applied to application systems as well, such

as Corel Draw, Lotus Smartsuite, Microsoft Office and the like, but are usually called

“macros” instead of “scripts”. Even endusers in business departments are able to

create such scripts2) and have them executed with the built in macro facilities.

In addition to merely storing a set of recurring commands for sequential execution,

simple programming languages were created, which could react upon certain

conditions as a result of carrying out single commands out of a file, such that

programmatically one could decide which commands should be carried out under

which given circumstances. Such programming languages are called “batch”,

“command”, “script” or “macro” languages, industrial strength examples for such

scripting languages include (but are not restricted to): JavaScript, Perl, REXX, TcL,

VBScript.

Windows Scripting Host (WSH), page 2

2) “Scripts” or “macros” in this context are usually created by having the macro facility remember all

key-strokes the user enters. After ending the recording of key-strokes, representing commands

and input data, the end-user is able to “replay” all the stored key-strokes at their will at any time.

1) That is the reason why under DOS such files have been called “batch files” and have received the

file type “.BAT”. On the Windows platform these type of files have been renamed to “command

files” indicated by the file type “.CMD”.

2 SCRIPTING UNDER WINDOWS

In the Windows environment Microsoft introduced at the end of the 80ies the

technology “Object Linking and Embedding” (OLE), which later was extended and

renamed to “ActiveX”. At the core of this technology the definition of “components”

became possible which possess a minimal interface which can be used by other

programs to explore and inspect additional, application supplied (i.e. non

standardized) interfaces to it. The Microsoft “component object model” (COM)

defines a minimal set of these interfaces allowing for this exploration and invoking

found programming interfaces3). With this building stone it has become possible to

interact with Windows-based components from different processes within the same

physical Windows machine and has been since extended to be applicable over

networks, such that disparate Windows machines could use each other’s

functionality via Microsoft’s “distributed COM” (DCOM) technology.

In the course of the last decade Microsoft defined interfaces for COM-based

applications, with the explicit intent for those COM programs to become scriptable,

i.e. to allow for sending commands to them in a standardized way which makes this

technology4) feasible to be even used from (even fairly simple) scripting languages.

Figure 1 depicts a little (self-explaining) Object Rexx script, which remote controls

the Microsoft Internet Explorer (MSIE). This is possible, because a) MSIE supports

the scripting interface and b) there exists a Object Rexx interpreter which takes

advantage of these interfaces5). The result of this program is shown in figure 2.

Windows Scripting Host (WSH), page 3

5) In this paper IBM’s Object Rexx, cf. [W3ORX], is employed to demonstrate that it is indeed

possible to use non-Microsoft programming languages for the purpose of scripting. Microsoft

supplies “JScript” (JS) and “Visual Basic Script Edition” (VBScript, VBS) with some of its Windows

operating systems as part of WSH, and also with the Microsoft Internet Explorer (MSIE) browser.

4) Applications need to implement the Microsoft defined “automation” COM interfaces to allow for

this functionality. Scriptability in this context is also meant, if using the term “OLE automation” or

“ActiveX automation” or "Active scripting".

3) In effect, the invocation of functions (later dubbed "methods") in programs running in other

process sapces (and even on other machines in a network) is carried out with a well established

technique, the "remote procedure call" (RPC).

-- remote control MS Internet Explorer from Object Rexx
myIE=.OLEObject~new("InternetExplorer.Application") -- create an MSIE instance
myIE~visible=.true -- make the window visible
myIE~navigate("http://www.wu-wien.ac.at") -- navigate to the given URL

Figure 1: Remote Controlling (Scripting, Automating) the Microsoft Internet Explorer to Load and

Display the Homepage of the Vienna University of Economics and Business Administration

(Wirtschafsuniversität Wien, WU) with Object Rexx.

Practically all of Microsoft’s software allows for scriptability in such a manner, e.g.

ADSI (Active Directory Service Interface) for maintaining important directory

information, or WMI (Windows Management Instrumentation) for managing

hardware and software resources in a network.

Windows Scripting Host (WSH), page 4

Figure 1a: Result of the Object Rexx Program of Figure 1.

2.1 Windows Script Host and Windows Script Engine

At the end of the 90’ies Microsoft enhanced these sets of scripting interfaces by

allowing applications and scripting languages to interact even closer with each

other, by defining a set of interface rules, which became known under the name

“ActiveX Scripting” and lately as “Windows Scripting”.

Firstly, any programming language which supports these interfaces6) in form of an

OLE COM object can be used to script any scriptable application and is called

“Windows Script Engine” (WSE). Secondly, an application knowing about these

interfaces can setup an environment for the WSE scripts to work with. If such an

additional work is undertaken by scriptable applications, they are called “Windows

Script Hosts” (WSH). In order for the market to adapt to these technologies in an

easier way, Microsoft supplies pre-fabricated COM objects which makes the

implementing of these interfaces rather simple.7)

One specific enhancement of WSH is the ability for WSHapplications to make its

objects up-front (implicitly) available to the scripts. This way the programmers of

scripts do not need to explicitly get access to the objects of applications they need

to remote control, thereby saving quite some coding efforts. This specific feature is

of utmost importance in the realm of the Microsoft application "Internet Explorer",

which makes it possible to refer to the HTML document and to its nodes right away.8)

Microsoft supplies the following three Windows Script Host (WSH) applications for

Windows:

“Microsoft Internet Explorer” (MSIE),

“Internet authoring tools” in the context of the "Internet Information Server" (IIS:

enabling the full scriptability for its "Active Server Pages", ASP),

Windows Scripting Host (WSH), page 5

8) This specific feature is of utmost importance in the realm of the Microsoft application "Internet

Explorer", which makes it possible to refer to the HTML document and to its nodes right away.

7) Eg. [W3Delphi] uses the “Microsoft Script Control” COM object to make a Delphi application

scriptable in a few lines of code.

6) Cf. [W3WSH], Microsoft Windows Script 5.6 Documentation, section “Microsoft Windows Script

Interfaces / Introduction”, interfaces “IActiveScript”, “IActiveScriptParse” and “IPersist”.

“Shell”9).

2.1.1 The MSIE Windows Script Host

The MSIE Windows Script Host allows Windows script engines to directly use the

Microsoft implementation of DOM, which the company has been marketing with the

acronym“ DHTML”,10) thereby allowing scripts to interact programmitcally with the

HTML- and XML-documents MSIE processes and renders.

Figure 2 depicts an Object Rexx script which creates HTML text using the

DOM/DHTML interfaces supplied by MSIE, which prepares the Object Rexx

environment such that it becomes possible for Object Rexx scripts to directly interact

with MSIE’s own objects. Figure 2a shows the rendering results of loading the HTML

text of figure 2 with the Microsoft Internet Explorer.

This way it becomes possible for any WSE to create, alter or delete parts or all of a

HTML document while the HTML document gets loaded and/or while it is presented

to the end user! As such Visual Basic Script Edition (cf. figure 3, rendering in figure

3a) as well as Jscript (cf. figure 4, rendering in figure 4a) can be readily used for the

very same purpose.

Windows Scripting Host (WSH), page 6

<head>
<title>Demonstrating the Object Rexx Windows Script Engine (WSE)...</title>
</head>

<body>
 <script language="Object Rexx">
 document~writeln("Greetings from Object Rexx!")
 </script>
</body>

Figure 2: An Object Rexx Program ("orexx.html") Creating the Content of a HTML Document.

10) “DOM” (“document object model”) is a standard of the World Wide Web consortium, cf. [W3C],

for defining the application programming interfaces for programs whishing to manipulate HTML

(XML) documents. “DHTML” (“dynamic HTML”) is used as a synonym for “DOM” and sometimes

only denotes Microsoft’s implementation of DOM.

9) “Shell” has been dubbed “Windows Scripting Host” (WSH) lately, because it serves as a Windows’

scripting host that allows any scripting language to be used for creating and executing classic

maintenance scripts for the management of Windows systems themselves, like installing

applications, maintaining the registry, defining users and creating logon scripts for them and the

like. Of course, this has turned “WSH” into a very confusing homonyme!

Windows Scripting Host (WSH), page 7

Figure 2a: Rendering of the HTML Text Containing a Script of Figure 2.

Figure 3a: Rendering of the HTML Text Containing a Script of Figure 3.

<head>
<title>Demonstrating the JScript Windows Script Engine (WSE)...</title>
</head>

<body>
 <script language="JScript">
 document.writeln("Greetings from JScript!")
 </script>
</body>

Figure 4: A JScript ("js.html") Program Creating the Content of a HTML Document.

Figure 4a: Rendering of the HTML Text Containing a Script of Figure 4.

<head>
<title>Demonstrating the VBScript Windows Script Engine (WSE)...</title>
</head>

<body>
 <script language="VBScript">
 document.writeln "Greetings from VBScript!"
 </script>
</body>

Figure 3: A Visual Basic Script ("vbs.html") Program Creating the Content of a HTML Document.

2.1.2 The “Shell” Windows Script Host

The Windows operating systems Windows 98, Windows ME, Windows 2000 and

Windows XP are delivered with the aforementioned “Shell”11) for allowing the

scripting of these operating systems. For that purpose Microsoft’s Windows scripting

engines Visual Basic Script Edition (VBScript, VBS) as well as its JScript (JS) are

installed on such Windows operating systems.12)

For helping to maintain Windows operating system installations, “Shell” supplies

scriptable COM objects for making it easier to create Windows scripts, the most

important one being “Wscript” which itself makes other scriptable objects available,

e.g. “WshArguments” (to get and parse supplied named and unnamed arguments to

the script itself), “WshController” (to invoke and control scripts, even on other

Windows computers), “WshNetwork” (to maintain network resources like network

Windows Scripting Host (WSH), page 8

Figure 5: An Object Rexx WSE Script ("query.rxs"1)) Querying and Displaying the Computer’s

Name, the Logged on User’s Windows Name and the Windows Domain the User Belongs To.

-- Object Rexx using the "Shell" WSH
wsn = .OLEObject~new("WScript.Network")
wscript~echo("ComputerName:" wsn~ComputerName)
wscript~echo("UserName: " wsn~UserName)
wscript~echo("UserDomain: " wsn~UserDomain)

Figure 5a: A Possible output of running the program in figure 5 from the command line ("cscript

query.rxs").

12) The “Shell” Windows scripting host can be downloaded and installed on to computers running the

Windows 95 and Windows NT operating systems as well, cf. [W3WSH]. The Windows scripting

host with its engines “Visual Basic Script Edition” (VBScript, VBS) and “JScript” (JS) are installed

also with the MSIE Windows scripting host on Windows 95 and Windows NT systems. Updates of

WSH occur usually implicitly with updates to MSIE as well on all Windows operating systems.

11) Please be advised, that many sources (including Microsoft) are using the generic term “Windows

scripting host” (WSH) to also denote the “Shell” Windows scripting host itself.

shares and network printers) and “WshShell” (to maintain registry entries and or

Windows shortcuts, to work with the Windows “Special Folders” etc.).

Figure 5 shows an Object Rexx script which displays the name of the computer, the

name of the logged on user and the domain name of the user, who runs that

particular script. Figure 5a depicts a possible output, if run from a command line

window.

In addition there are scriptable COM “utility” objects available, like

a COM directory object (“Scripting.Directory”) which allows to store, retrieve

and delete information (objects) with a specific, program supplied key value,

a COM object (“Scripting.FileSystemObject”, FSO) for creating, maintaining,

copying, deleting any type of streams organized as files.

2.2 Windows Script Components (WSC)

Due to the proliferation of the scripting of Windows applications, it has become

interesting to create scripting components which one could use from other program-

ming languages and scripts. In the context of defining the Windows scripting

architecture, Microsoft devised the ability to define COM compliant interface

definitions, where the implementation of the announced functions (methods) and

attributes can be done in any Windows scripting engine (WSE)!

The devised framework is called “Windows Script Component” (WSC), where the

interface descriptions13) and the implementation of the COM component are layed

out in a plain XML file. The burden of creating at runtime instances of such Windows

script components is taken away from the implementors, making the creation and

usage of such a component as a result very simple. WSCs are true COM compliant

components and it is even possible to distribute the functionality of such WSC over

networks, by making them available via DCOM.

Windows Scripting Host (WSH), page 9

13) Technically, one can define the COM interfaces for attributes, functions (methods) and events

which may get triggered from the componente.

Figure 6 depicts an Object Rexx WSC14), which demonstrates the easiness of creating

a Windows script component by defining a read-only attribute15) “counter” and a

function “increment_counter” which adds 1 to the existing value of the “counter”

attribute.

Figure 7 depicts a VBScript program, figure 8 shows a JScript program and figure 9

shows an Object Rexx program, which use the Object Rexx Windows script

component of figure 6 for counting purposes. Figure 10 shows how these three Shell

scripts can be started and what output they will yield.

Windows Scripting Host (WSH), page 10

Figure 6: A Windows Script Component (WSC, "Counter.wsc") Implemented with Object Rexx,

Realizing a Simple Counter.

<?xml version="1.0"?>
<component>

<?component error="true" debug="true"?>

<registration
 description="Counter"
 progid="Rexx.Counter"
 version="1.00"
 classid="{cfe63bb0-391f-11d6-a3d7-006094eb4d95}"
/>

<public>
 <property name="counter">
 <get/>
 </property>
 <method name="increment" />
</public>

<script language="Object Rexx">
<![CDATA[

 .local~counter=100 /* initialize counter to "100" */

 ::routine increment public /* increment counter */
 .local~counter=.counter+1 /* increment counter */
 return .counter /* return value */

 ::routine get_counter public /* accessor for property */
 return .counter /* return value */

]]>
</script>

</component>

15) Attributes can be defined to be read-only, read-/writable, write-only.

14) This text file needs to be registered with Windows. One way to accomplish this is using the

Windows Explorer, displaying the file, right-clicking upon it and choosing the menu option

"register". After registering, this very COM class (realized with Object Rexx!) can be used from

any programming language.

' VBScript
dim MyVar
Set MyVar = createObject("Rexx.Counter")

wscript.echo "Counter: " & MyVar.counter
wscript.echo "Counter: " & MyVar.increment

Figure 7: A VBScript (VBS) Program Using the Windows Script Component of Figure 6..

// JScript
var MyVar
MyVar = new ActiveXObject("Rexx.Counter")

WScript.echo("Counter: " + MyVar.counter)
WScript.echo("Counter: " + MyVar.increment())

Figure 8: A JScript (JS) Program Using the Windows Script Component of Figure 6..

-- Object Rexx
MyVar = .OLEObject~new("Rexx.Counter")

wscript~echo("Counter:" MyVar~counter)
wscript~echo("Counter:" MyVar~increment)

Figure 9: An Object Rexx Program Using the Windows Script Component of Figure 6..

Windows Scripting Host (WSH), page 11

Figure 10: Invoking and Output of the Shell Scripts of Figures 7, 8 and 9.

2.3 Security Considerations

In principle, scripts execute in the context of the application process on behalf of the

user. Therefeore a script has all the same rights as the application for it is running,

and the rights as a machine administrator on Windows 95, 98 and ME.

This may impose important security threats as because of this it becomes possible,

even for end users to use scripts e.g. for

spying around a machine, even an entire network, if shares are available,

changing the content of a machine (in a network), i.e. settings, but also data in

files and databases, or

creating viruses16).

Although this huge security problem has been known for a long time, Microsoft only

started to actively pursue a more secured execution of Windows scripts by

introducing a signature mechanism which - like with ActiveX controls - allows to

determine with a public key mechanism, whether a script was tampered with, since it

got signed. The idea behind this scheme is, that an administrator defines trustworthy

signers (e.g. inhouse programmers) of scripts whose programs are to be trusted and

therefore can be run.17)

On Windows 2000 or XP machines one needs to employ the “local security policy”

mechanism to define which files with what signatures may be executed and which

may not.

On all other systems, a registry key can be set such, that only three conditions are

expressable: run all scripts (trust all scripts), in the case of an untrusted script

prompt the user what to do or just run trusted scripts only.

Windows Scripting Host (WSH), page 12

17) This does not inhibit the discussed security threats per se, as trusted people and trusted

companies may be malign in effect

16) In effect, the famous “Love Letter Virus” and all of its descendants are nothing else but viruses

written as Windows scripts (using VBScript as the programming language!), which remote control

Outlook and use the user’s address book to re-send it to all found adressees in the entire world.

For that reason anti virus software like Norton’s AntiVirus, cf. [W3NAV], offer shelter by blocking

Windows scripts received either via HTML documents or Outlook and the like, including the ability

to check the outgoing e-Mail for virus in its attachments.

In order to determine whether a script is trustable, that script needs to be signed

with a private key. With the corresponding public key it becomes possible to

determine whether a script was tampered since it got signed. Only with version 5.6

of the Windows scripting host distribution has it become possible to sign scripts

themselves in the fall of 2001, which is a pre-requisite for employing the

trust-concept.18)

Comparing the security measurements available to Windows script with those

available to Java, the concept of an authorative security manager19) is missing,

which would be able to note and intercept actions from programs, which the policy of

a company does not want to allow. One application of the elaborate Java security

manager can be seen with the “sandbox policy” for Java applets, which as a result

are not able to access the resources of their host machines, no matter how

acquainted programmers are with Java.

In the context of Windows scripting one could employ this very same concept of

security managers, if the scripting languages themselves support one, which is not

the case with the Microsoft supplied scripting languages VBScript or JScript. In the

context of this paper the Object Rexx WSE20) possesses a security manager, which

would allow for creating a sandbox-equivalent environment, at least for executing

Object Rexx scripts.

Windows Scripting Host (WSH), page 13

20) To be precise: IBM’s Object Rexx possesses a built-in security manager. Using it one can easily

create a Java-like sandbox environment with it, making it even possible to execute untrusted code

withouth risking harm to systems or the environment under which such programs execute.

19) A security manager is part of the runtime environment and closely controls the execution of code.

Using these features it becomes possible to determine which actions are allowed under which

conditions and to implement security measurements, which effectively prohibit the execution of

untrusted segments of code.

18) Although now scripts can be trusted, this does not insulate Windows users of malicious scripts by

any means There have been incidents reported where trustworthy ActiveX components were still

created with a malicious intent. The same can be thought of within companies where trustworthy

programmers create scripts, whith malicious intents (e.g. because they got disciplined or are

angry with their employer for one or another reason).

3 SUMMARY AND OUTLOOK

This article introduced the reader to the architecture of the Microsoft "Windows

Script Host" architecture which allows any programming language to be employed

as a scripting language. Starting out with OLE automation, Windows application

have become automatable, i.e. scriptable. The latest developments have been

covered with this article, stressing the possibilities of this technology.

As scripting languages in the Windows environment usually possess a simple

syntax, it becomes possible even for end-users to employ them. This way recurrent

tasks can be automated and any Windows application which supports it, can be

remote controlled. Complex, but complete automation solutions can be re-deployed

by turning them into Windows script components (WSC) addressable from any COM

aware program, including other WSE scripts.

Although the security of applying scripts needs to be tackled in a more professional

way, businesses and organiziations can devise and employ organizational

measurements to make it safer to use scripts. For this purpose the abiltiy to sign

scripts, as introduced in the fall of 2001 with WSH 5.6, allows to define and

determine at least the measure of "trust". For more secure applications one needs to

refer to script programming languages which implement a bullet proof security

manager like Object Rexx, which in turn can be used to create a sandboxed, i.e.

secure execution environment.

Windows Scripting Host (WSH), page 14

4 REFERENCES

[W3C] Homepage of the World Wide Web Consortium, URL (2002-06-15):

http://www.w3.org/

[W3Delphi] Groves M.: “Scripting your Delphi Applications”, URL (2002-06-15):

http://www.madrigal.com.au/papers/scripting/scripting.htm

[W3NAV] Norton’s AntiVirus (Symantec) Virus Information Database, URL

(2002-06-15):

http://securityresponse.symantec.com/avcenter/vinfodb.html/

[W3ORX] Object Rexx homepage of IBM, URL (2002-06-15):
http://www.ibm.com/software/ad/obj-rexx/

[W3WSH] Microsoft’s scripting homepage, URL (2002-06-15):

http://msdn.microsoft.com/scripting

Windows Scripting Host (WSH), page 15

Date of Article: 2002-06-15.

Published in: Proceedings of the „2002 International Rexx Symposium“, April

29th - May 1th, Raleigh, NC, USA 2002.

Presented at: „The 2002 International Rexx Symposium“, April 29th - May 1th,

Raleigh, NC, USA 2002.

Windows Scripting Host (WSH), page 16

