
ooRexxUnit: A JUnit Compliant Testing
Framework for ooRexx Programs

Rony G. Flatscher (Rony.Flatscher@wu-wien.ac.at), Wirtschaftsuniversität Wien

“The 2006 International Rexx Symposium”, Austin, Texas, U.S.A.

April 9th – April 13th 2006.

Abstract: ooRexxUnit is an Open Object Rexx implementation of the JUnit testing
framework (cf. [W3JU3]) It allows for creating and running ooRexx test cases,
which assert whether application specifications are met. One usually creates such
test cases according to the specification parallel to the development of the
application and employs them every time the application is developed further or
changed because of maintenance purposes, e.g. because bugs need to get fixed.

This article will introduce the ooRexxUnit framework, give examples of how to
employ and implement systematically such unit tests. One aim will be to show and
demonstrate, how easy it is with such a testing framework in place to test Rexx and
ooRexx programs.

 1 Introduction

In software engineering it has become a state-of-the-art standard to define test

cases at the same time specifications for algorithms and applications as a whole are

developed. This helps to ensure that the implementation of specifications is really

carried out correctly. In addition, whenever existing code needs to be changed or

enhanced such defined test cases can be used for regression testing which should

assert that after alterations of code have been carried out, the specifications are still

met.

The more algorithms and the more complex applications as a whole get developed,

the more test cases need to be created and maintained. Having dozens – in some

cases even hundreds or thousands – of test cases can pose a serious handling

problem for application developers or testers. Therefore, the maintaining and

running of such test cases should be automatable.

In the Java world there is one testing framework which has become a standard for

defining and running such test cases and is called “JUnit” (cf. [W3JU3]). In this

framework there are interfaces defined which then are used to invoke and control

the execution by so called “test runner” programs. Each test case carries out

assertions and a test case is said to have run successfully if all of its assertions hold.

Test cases are usually organized into collections named “test suites”. Support for

defining and running test suites is defined as well.

This article introduces the “ooRexxUnit” framework which has been modelled closely

to JUnit version 3.8 in order to allow application developers who are acquainted

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 1 "ooRexxUnit: A JUnit Compliant Testing …"

with JUnit tests to apply their working knowledge right away. On the other hand,

people who have never worked with a JUnit-like testing frameworks would gain the

ability to research and read the wealth of articles, tutorials, and discussions that

have been conducted for many years (cf. [W3JU3Cook], [W3G06]).

The JUnit framework is defined with object-oriented concepts, i.e., using classes.

 2 “ooRexxUnit” (“OOREXXUNIT.CLS”)

This chapter first introduces the four core classes Assert, TestCase, TestSuite and

TestResult, defining their abilities in form of the implemented methods adhering to

the JUnit framework. Therefore additional information can be always gathered by

researching the JUnit documentation, articles, and tutorials.

Firstly, the four public classes and the public routines stored in the file

“OOREXXUNIT.CLS” are introduced, which can be accessed, once a Rexx program has

called or required1 it. At the end of this chapter a few examples, from simple to

more comprehensive, demonstrate how to put the ooRexxUnit framework to work.

 2.1 The ooRexxUnit Framework Classes

Figure 1 depicts the four classes Assert, TestCase, TestSuite and TestResult and the

existing specialization relationships. It follows from that class overview that TestCase

is a specialization of Assert, and that TestSuite specializes TestCase directly and

Assert indirectly.

From the inheritance feature of object-oriented systems it follows that all methods

1 The requires directive is carried out by the ooRexx interpreter before the program gets started by carrying
out the very first statement (in the first line) of the program, by calling the required Rexx program.
Whatever public classes and public routines are encountered will be available upon return in the program.
This way the public classes of the “OOREXXUNIT.CLS” program can be made available for subclassing
them in the program, in addition to gaining access to its public routines.

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 2 "ooRexxUnit: A JUnit Compliant Testing …"

Figure 1: The ooRexxUnit Classes.

Assert

TestCase

TestSuite

TestResult

of the class Assert are available to instances of the class TestCase, and all methods of

the TestCase class are also available to the TestSuite class. Therefore it is possible to

invoke the Assert methods by merely sending the appropriate assert messages to

TestCase and TestSuite objects.2

 2.1.1 The “Assert” Class

The Assert class defines all the assertion methods that test cases may need to use

for testing assertions.

Figure 2 documents all available methods. The argument failMsg in the assert

methods is optional and used only if an assertion fails to record the author's

message with the failure.

Method Signature Description

assertCount Returns the number of successful assertions so far (ooRexxUnit
only).

assertEquals(val1, val2)
assertEquals(failMsg, val1, val2)

Compares val1 and val2 for equality using the = operator
semantics. If they are not equal the method fail will be invoked.3

assertFalse(val)
assertFalse(failMsg, val)

Expects the Boolean value .false (the string “0”) as the result of
some operation. If val does not have the .false value the method
fail will be invoked.

assertNotEquals(val1, val2)
assertNotEquals(failMsg, val1, val2)

Compares val1 and val2 for not being equal (using the = operator
semantics). If they are equal the method fail will be invoked.4

assertNotNull(val)
assertNotNull(failMsg, val)

Expects any value, but the .nil object. If val does refer to the .nil
object the method fail will be invoked.

assertNotSame(val1, val2)
assertNotSame(failMsg, val1, val2)

Compares val1 and val2 for not being identical (using the ==
operator and comparing its result with .false). If they are identical
the method fail will be invoked.

assertNull(val)
assertNull(failMsg, val)

Expects the .nil object as the result of some operation. If val does
not refer to the .nil object the method fail will be invoked.

assertSame(val1, val2)
assertSame(failMsg, val1, val2)

Compares val1 and val2 for identity using the == operator. If they
are not identical the method fail will be invoked.

assertTrue(val)
assertTrue(failMsg, val)

Expects the Boolean value .true (the string “1”) as the result of
some operation. If val does not have the .true value the method
fail will be invoked.

expectCondition(conditionName) Expect a condition with the given conditionName. If the expected
condition is not raised in the test case method, the method fail
will be invoked.

expectSyntax(errorCode) Expect a syntax condition with the given errorCode. If the expected
syntax condition is not raised in the test case method, the method
fail will be invoked.

2 In ooRexx only objects can conceptually invoke methods. Programmers can invoke methods of an object
only indirectly, by sending the object a message with the name of the method the object should invoke on
behalf of the programmer.

3 The compared values can be ordered or unordered collections as well. Ordered collections are regarded to
be equal, if their MAKEARRAY method yields the same objects in the same order. Unordered collections are
regarded to be equal, if their renderings to a relation object yields two collections that are subsets of each
other.

4 This method is ooRexxUnit specific and is able to test collections as described in footnote 3 above.

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 3 "ooRexxUnit: A JUnit Compliant Testing …"

Method Signature Description

fail()
fail(failMsg)

Invoking this method causes the test case to fail, i.e., no more
statements from the test case method will be executed. If the
optional error message failMsg is supplied this message will be
recorded with this failure.

Figure 2: Methods of the Assert Class .5

 2.1.2 The “TestCase” Class

Test cases are created by defining a class (“test class”) that is a subclass of

TestCase, having specific test methods6 implemented that each represent an

individual test case.

The class TestCase defines what a test case is able to do:

● optional methods to set up (setUp) and tear down (tearDown) a testing

environment, e.g., creating the testfiles a test case may need to use and

removing them upon termination of the test case,

● a method that starts the test case (run),

● methods to get (getName) and to set the name (setName) of the test case,

● a method (createResult) that creates a test result object (an instance of the

class TestResult) which is used to protocol (store) the results of running the

test case. createResult is used only, if the run method does not receive a test

result object as an argument.

As the class TestCase is subclassing the class Assertion, all of the methods of the

Assertion class are available due to inheritance.

Figure 3 lists all methods defined for the TestCase class with a brief description of

their purpose.

Method Signature Description

testCaseInfo Class attribute: a directory object which allows storing information about
all test cases (ooRexxUnit only).

defaultTestResultClass Class attribute: allows storing the class object the instance method
createResult uses (ooRexxUnit only) for creating a TestResult object.
Defaults to the TestResult class object.

testCaseInfo A convenience instance attribute (a directory object) which allows storing
information about a particular test case (ooRexxUnit only).

countTestCases Returns the number of test cases (used e.g. in the TestSuite subclass).

createResult Returns a TestResult object (an instance of the class object stored in the
class attribute defaultTestResultClass).

countTestCases Returns the number of available test cases (could be more than 1 in the
case of a test suite).

5 The methods expectCondition and expectSyntax allow to test for expected ooRexx conditions to be raised
while a test method runs and were created and supplied by Rick McGuire at the 2006 International Rexx
Symposium.

6 Each test method of the “test class” will test and assert a specific aspect of an application or routine.

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 4 "ooRexxUnit: A JUnit Compliant Testing …"

Method Signature Description

getName Returns the name of the test case method that gets run.

init(nameOfTestCaseMethod) nameOfTestCaseMethod determines the name of the test method that should
run for this test case.

run
run(aTestResult)

Runs the test case and returns the TestResult object that was used to log
the results of running the test case. If no TestResult object is supplied as
an argument a new one is created from the class stored in the class
attribute defaultTestResultClass (defaults to the TestResult class).

setName(nameOfTestCaseMethod) Allows to set the test case object to name a different test method to run.

setUp NOP7 method: gets invoked, but does nothing. If a test case needs to set up
a specific environment before its tests are run, then the test class needs to
override it by implementing itself a method named setUp.

string Creates a human-readable representation of the test case object, indicating
the name of the test case and the name of the test class (ooRexxUnit only).

tearDown NOP method: gets invoked, but does nothing. If a test case needs to tear
down a specifically set up environment or clean up after a test case ran,
then the test class needs to override it by implementing itself a method
named tearDown.

Figure 3: Methods of the TestCase Class.

 2.1.3 The “TestSuite” Class

The TestSuite class allows to define a set, a “suite” of test cases all of which should

be run. As this class specializes TestCase all of its methods are inherited. For that

reason it is possible to override e.g. startUp and tearDown in the case that a suite of

test cases need the same environment set up before and torn down after running

the test cases.

Figure 4 lists all methods of the TestSuite class with a brief description of their

purpose.

Method Signature Description

getTestMethods(testClass) Class method that returns a “stem array”8 which contains all test methods of
the testClass in ascending order, i.e., all methods which names start with
the string “TEST”.

addTest(aTestCase) Adds the given test case object to the test suite.

countTestCases Returns the number of test cases in the test suite.

init([aTestClass]) If the optional argument aTestClass is given, then all methods of that test
class that start with the string “test” are regarded to be test case methods.
Hence, for each such method a test case instance gets created from the class
and added to the test suite.

run
run(aTestResult)

Runs all the test cases in the test suite and returns the TestResult object
that was used to log the results of running the test cases. If no TestResult
object is supplied a new one is created from the class stored in the class
attribute DefaultTestResultClass (defaults to the TestResult class).

Figure 4: Methods of the TestSuite Class.

7 “NOP” is the acronym for “Null operation”.
8 A “stem array” is a stem that uses integer number as indices. The stem index “0” returns the number “n” of

elements stored with the stem, starting with the index “1” through “n”.

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 5 "ooRexxUnit: A JUnit Compliant Testing …"

 2.1.4 The “TestResult” Class

The result of running test cases9 are logged with an instance of the TestResult class

which serves as a log container of the run test cases. A test case may run

successfully (all the assertions hold), it may fail (an assertion does not hold) or there

may be an unexpected execution error (any condition the ooRexx interpreter raises,

e.g. if there is a syntax error, etc.).

A test result object is used in the run method of the TestCase and the TestSuite class

for logging the assertions, failures and errors, as well as learning whether carrying

out test cases should be stopped prematurely. A test runner application uses a test

result object to control the execution of running test cases, which it can stop

prematurely by sending the test result object the stop message. In addition a test

runner application can use the logged results to analyze and report about the test

run(s).

Figure 5 lists all methods of the TestResult class with a brief description of their

purpose.

Method Signature Description

logQueue Returns a queue containing directory objects created by the run method. For
each test case a new directory object is queued for running the methods
startTest and endTest, as well as in the case of a failure and error, which
will cause the running of its addFailure and addErorr. The directory object
will store the date, the time, the name of the test case method, and the name
of the file in which the test case got defined. The index name for retrieving
this information encoded as a string from the directory object is
“OOREXXUNIT.CONDITION“. Figure 6 defines the encoding of that string.
In the case of a failure or error the directory object in addition contains all
ooRexx information supplied with its condition object as received by using
the ooRexx built-in function (BIF) condition(“Object”).

testCaseTable Returns a table, whose indices are the individual test case objects and whose
associated item is a queue object. For each invocation of the methods
startTest, endTest, addFailure and addError an encoded string is queued.

addError(aTestCase, aDir) Queues the directory (condition) object to the logQueue, the errors queue
and adds an appropriate encoded string to the testCaseTable queue.

addFailure(aTestCase, aDir) Queues the directory (condition) object to the logQueue, the failures queue
and adds an appropriate encoded string to the testCaseTable queue.

assertCount Returns the number of successful assertions.

endTest(aTestCase) Encodes the date and time into a string and queues it as part of a directory
object to the logQueue and as a string to the appropriate testCaseTable
queue.

errorCount Returns the number of errors.

errors Returns the queue that contains the error related directory objects.

failures Returns the queue that contains the failure related directory objects.

failureCount Returns the number of failures.

run(aTestCase) Runs the given test case and returns the itself (a test result object).

runCount Returns the number of run test cases.

shouldStop Returns a Boolean value indicating whether running test cases should stop.

9 TestResult objects are used to log the running of a test case in the run method of the TestCase and the
TestSuite class.

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 6 "ooRexxUnit: A JUnit Compliant Testing …"

Method Signature Description

.true should stop any outstanding test cases from running.

stop Sets shouldStop to return .true, i.e., stop running any outstanding test
cases.

wasSuccessful Returns .true, if no failures or errors were encountered while running all of
the test cases, .false otherwise.

Figure 5: Methods of the TestResult Class.

Figure 6 depicts the string encodings the ooRexxUnit methods use to log the sorted

date, the long time, the test case (method) name, the class (object) in which the test

case got implemented, the failure and/or the error message.

Method Encoding with Sample Data

startTest [20151105 17:51:52.150000]:V[startTest]VtestCase:V[testMethod1]V(a RgfTest@A440F21F)

addError [20151105 17:51:52.161000]:V[error]VtestCase:V[testMethod1]V(a RgfTest@A440F21F)V--->VerrMsg

Where “errMsg” is one of the following strings:

condition [X] raised unexpectedly.Y

condition [SYNTAX a.b] raised unexpectedly.Z

Where “X” is replaced by the Rexx symbol(s) denoting the condition's name10, “Y” represents the TAB (”09”x)

character. The second form is used for syntax conditions where the string “a.b” is replaced by the actual syntax

error number and “Z” represents the TAB (”09”x) character immediately followed by the full error message.

addFailure [20151105 17:51:52.162000]:V[failure]VtestCase:V[testMethod1]V(a RgfTest@A440F21F)V--->VfailMsg

Where “failMsg” is one of the following strings:

@assertFailure assertEquals: expected=[E], hashValue="he"x], actual=[[A], hashValue="ha"x].Z

@assertFailure assertFalse: expected=[0], actual=[A].Z

@assertFailure assertNotEquals: expected=[\= [E], hashValue="he"x], actual=[[A], hashValue="ha"x].Z

@assertFailure assertNotNull: expected=[\= [.nil]], actual=[.nil].Z

@assertFailure assertNotSame: expected=[\== [E], hashValue="he"x], actual=[[A], hashValue="ha"x].Z

@assertFailure assertNull: expected=[.nil], actual=[A].Z

@assertFailure assertSame: expected=[[E], hashValue="he"x], actual=[[A], hashValue="ha"x].Z

@assertFailure assertTrue: expected=[1], actual=[A].Z

@assertFailure check4ConditionFailure: expected condition [E] was not raised.Z

Where “E” is replaced by the expected value, “he” is the hash value of the expected value, encoded as a hexadecimal

string. “A” is replaced by the actual value, “ha” is the hash value of the actual value, encoded as a hexadecimal string. “Z”

represents the TAB (”09”x) character, which can be immediately followed by a failure message, which the programmer

supplied as the first argument to the appropriate assert method.

endTest [20151105 17:51:52.170000]:V[endTest]VtestCase:V[testMethod1]V(a RgfTest@A440F21F)

Figure 6: The String Encoding of Logged Test Case Run Information.

10 In the case of a syntax condition the string “SYNTAX” will indicate the condition, immediatley followed by a
blank, immediately followed by the the syntax error number, e.g. “SYNTAX 42.3” (the syntax error message
in this example would be: “Arithmetic overflow; division must not be zero.”).

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 7 "ooRexxUnit: A JUnit Compliant Testing …"

 2.1.5 Overview of the Classes and their Methods

Figure 7 depicts graphically the structure and methods of the ooRexxUnit classes.

 2.2 The ooRexxUnit Framework Routines

Figure 8 depicts the available public routines, provided for the convenience of the

framework users, the most important being simpleDumpTestResults(…) which dumps

statistical information from the supplied test result object.

Routine Signature Description

iif(test, valTrue, valFalse) Returns the supplied valTrue, if test has the value
.true, the supplied valFalse else.

makeDirTestInfo(aTestCaseClass, arrLines) Processes an array of text in the form of “keyword:
value”, stores keyword in the class attribute
testCaseInfo directory and creates a queue for it
which receives the following text(s) until a new
keyword is encountered.

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 8 "ooRexxUnit: A JUnit Compliant Testing …"

Figure 7: Overview of the ooRexxUnit Classes and their Methods.

file:///E:/rony/Vortraege/2006/200604_RexxSymposium_Austin/orx17_ooRexxUnit/article/ooRexxUnitFigures.png

Routine Signature Description

makeTestSuiteFromFileList(fileList [,aTestSuite]) Returns a test suite object built from the files in the
string fileList. If the second argument is supplied
this test suite object gets used to add the test cases
from the files and will be returned as the result of the
routine.11

pp(val) Returns the string value of val enclosed in square
brackets.

ppp(val) Returns the string value of val enclosed in square
brackets. Non-printable characters are escaped as a
hexadecimal Rexx literal.

simpleDumpTestResults(aTestResult [,title]) Analyzes the supplied test result object aTestResult
and outputs brief statistics to standard output using
the optional title string as the header (“title”). In
the case of an error or failure all the given error or
failure messages are output as well.

Figure 8: The Public Routines of the ooRexxUnit Framework.

 2.3 Putting the ooRexxUnit Framework to Work

This section introduces sample programs that take advantage of the ooRexxUnit

framework, starting out with very simple usages, concluding with a fairly

comprehensive example.

The results of the test runs are always displayed with the public routine

simpleDumpTestResults(…) which gives a brief overview of the test result object's

information. It is possible that one writes an own “test runner” application which

gives much more thorough information about the run test cases, those that ran

successfully and those that did not.12

 2.3.1 An Elementary Test Case “sample01.rex”

Figure “Code 1” below depicts a minimal program ”sample01.rex” that puts the

ooRexxUnit framework to work. It defines ”MyTestClass” (a specialization of the

ooRexxUnit framework's class TestCase) with the method named “testMethod”, in

which the result of the arithmetic addition “1+2” is asserted13 to be equal to “3”.

Only if the result is not equal to “3” would the test fail.

The program starts out by creating an instance (object) of MyTestClass and supplying

the name of its test method “testMethod” as an argument determining that that

method's code should be run as the test case. Sending the object the message run

11 If there are mandatory tests defined in the test unit files, then test cases are only created for these. Cf.
section entitled “Structure of '.testUnit' Programs” below.

12 As a matter of fact, such a test runner application, if it is able to store the test results in a standardized way
could even compare the results of different test runs, indicating improvements and deterioration in the
quality of the code that gets tested.

13 The class TestClass specializes the ooRexxUnit framework's class TestCase, which itself specializes the
framework's class Assert. Therefore all methods of the superclasses of TestClass are available. Sending the
message assertEquals to self, causes the inheritance tree to be looked up, eventually getting to the Assert
class where a method by the same name is found.

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 9 "ooRexxUnit: A JUnit Compliant Testing …"

will cause the method's code to run. The TestCase's run method will first create an

instance of the class TestResult for logging the results and then runs the test case

method “testMethod”, returning the test result object upon completion.

Finally, using the ooRexxUnit framework's routine simpleDumpTestResults(…) and

supplying the returned test result object will create the output that is shown in

figure “Output 1”.

o=.MyTestClass~new("testMethod") /* create an instance and use the code of
 the method "testMethod" as the test case */
aTestResult=o~run /* runs the test case and returns a test result object */

call simpleDumpTestResults aTestResult /* dump brief results */

::requires ooRexxUnit.cls /* get access to the ooRexxUnit framework */

::class MyTestClass subclass TestCase /* a specialization of TestCase */
::method testMethod /* this method's code is the test case */
 a= 1+2
 self~assertEquals(3, a) /* using the Assert class via inheritance */
 self~assertEquals("test: 3=(1+2)", 3, 1+2) /* supply a failure message */

Code 1: The Rexx Program “sample01.rex”.

nr of test runs: 1
nr of successful assertions: 2
nr of failures: 0
nr of errors: 0

Output 1: Output of Running “rexx sample01.rex”.

 2.3.2 Another Elementary Test Case “sample02.rex”

Usually, there will be a need to define more than one test case, most likely at least

one for each feature that needs testing. In such a case multiple methods will be

defined, each one representing a specific test case. For each such test method one

will need to instantiate the test class and supply as the sole argument the respective

test method's name, finally executing that test method's code by sending the

returned instance the run message. In order to gather the results from all these test

cases one should use the same TestResult object as the argument for all the run

messages.

Figure “Code 2” depicts a program that contains two test methods, one named

“anton”, and one named “berta”, both belonging to the test class named

“MyTestClass”. Figure “Output 2” shows the statistics from the logged content stored

in the TestResult object.

aTR=.TestResult~new -- this TestResult object will be used to log all runs
o=.MyTestClass~new("anton")-- create an instance, denote test method to run
aTR=o~run(aTR) -- run the test code, supply a TestResult object

 -- create an instance (denoting the name of the test method to run) and run it,

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 10 "ooRexxUnit: A JUnit Compliant Testing …"

 -- supplying the same TestResult object as previously
.MyTestClass~new("berta")~run(aTR)

call simpleDumpTestResults aTR -- show brief statistics

::requires ooRexxUnit.cls -- get access to the ooRexxUnit framework

::class MyTestClass subclass TestCase -- a specialization of TestCase

::method anton -- this method's code is the test case
 self~assertFalse(.false) -- assert that ".false" is false
 a=.false -- set variable to .false
 self~assertFalse(a) -- assert that "0" is false
 self~assertFalse(0) -- assert that "0" is false
 self~assertFalse(2) -- ASSERTION WILL FAIL! -- assert that "2" is false
 self~assertFalse('"0" is false in Rexx!', 0) -- supply optional failure text
 self~assertFalse('is "2" false in Rexx?', 2) -- assert that "2" is false

::method berta -- this method's code is the test case
 self~assertTrue(.true) -- assert that ".true" is true
 a=.true -- set variable to .true
 self~assertTrue(a) -- assert that ".true" is true
 self~assertTrue(1) -- assert that "1" is true
 self~assertTrue('"1" is true in Rexx!', 1) -- supply optional failure text
 self~assertTrue('is "2" true in Rexx?', 2) -- WILL FAIL! -- assert that "2" is true

Code 2: The Rexx Program “sample02.rex”.

nr of test runs: 2
nr of successful assertions: 7
nr of failures: 2
 [20150530 18:17:12.958000]: [failure] testCase: [anton] (a TESTCLASS@3CC5F21F) --->
@assertFailure assertFalse: expected=[0], actual=[2].○
 [20150530 18:17:12.958000]: [failure] testCase: [berta] (a TESTCLASS@6AD2F21F) --->
@assertFailure assertTrue: expected=[1], actual=[2].○is "2" true in Rexx?
nr of errors: 0

Output 2: Output of Running “rexx sample02.rex”.14

A few remarks:

● The test method “anton” carries out six assertions, the test method “berta”

five, giving a total of eleven assertions.

● There were two test cases run in which a total of seven assertions did hold,

but two did fail (and two were not tested in the method “anton”).

● Once an assertion fails, the test case ends prematurely, such that the

remaining assertions are not tested. Therefore the last two assertions in the

test method “anton” were not tested in the above run and hence are not

reflected in the above brief statistics.

● If an assertion fails and no failure text was supplied, then the date and time,

the name of the test method and the ooRexx default name for the test case

object is given. If a failure text is given as the first argument to any of the

assertion messages, it will be shown in the case of a failure as a trailing text

with the failure information. In figure “Output 2” the failure message stored

with the failure information is depicted in italics.

14 Lines depicted in italics were broken up by the word processor due to their length. They should go with the
previous line. The character “○” represents the TAB (”09”x) character.

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 11 "ooRexxUnit: A JUnit Compliant Testing …"

 2.3.3 TestCases for Conditions

In this section two nutshell examples are introduced that demonstrate how to define

test cases that assert that conditions arise while executing the code.

There are two groups of conditions, the syntax conditions defining an error number

that identifies the syntax error, and all other conditions expressed by a Rexx symbol

(in the case of user defined exceptions, two symbols are used, the first being the

Rexx symbol USER).

If an expected condition has not been raised during the execution of the test case,

then a failure is raised to document this fact.

 2.3.3.1 Testing for Syntax Error Condition “sample03.rex”

An uncaught syntax error will always stop the execution of a test case. Therefore

the code to lead to such an expected syntax error condition should be either the only

code in the test case method or given at the end of it.

The run method will then check whether that particular syntax error was expected.

If it was expected, then the number of successful assertions is increased by one,

otherwise a failure is logged with the test result object.

Figure “Code 3” depicts a program that contains a test class named “MyTestClass”

consisting of a test method named “alpha” with an expected syntax error, a test

method “bravo” that does not raise an expected syntax error and a method “caesar”

that just causes a non expected syntax error to be raised. Figure “Output 3” shows

the statistics from the logged content stored in the TestResult object.

/* the following TestResult object will be used to log all test case runs */
aTR=.TestResult~new

 /* create three test case objects from the same test class but using
 different methods as test cases */
do methName over .list~of("Alpha", "BravO", "caesar")
 .MyTestClass~new(methName)~run(aTR) /* create and run the test cases */
end

call simpleDumpTestResults aTR /* dump brief results */

::requires ooRexxUnit.cls /* get access to ooRexxUnit */

::class MyTestClass subclass TestCase
::method alpha /* the expected syntax error gets raised */
 errorCode=42.3 -- syntax error "Arithmetic overflow; divisor must not be zero"
 self~expectSyntax(errorCode) -- expect syntax error # 42.3
 a=1/0 -- create divide by 0 syntax error

::method bravo /* an expected syntax error is not raised */
 errorCode=42.3 -- syntax error "Arithmetic overflow; divisor must not be zero"
 self~expectSyntax(errorCode) -- expect syntax error # 42.3

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 12 "ooRexxUnit: A JUnit Compliant Testing …"

::method caesar /* an unexpected syntax error gets raised */
 a=1/0 -- create divide by 0 syntax error

Code 3: The Rexx Program “sample03.rex”

nr of test runs: 3
nr of successful assertions: 1
nr of failures: 1
 [20150530 18:25:50.292000]: [failure] testCase: [BravO] (a MYTESTCLASS@30CDF21F) --->
@assertFailure check4ConditionFailure: expected condition [SYNTAX 42.3] was not raised.○
nr of errors: 1
 [20150530 18:25:50.292000]: [error] testCase: [caesar] (a MYTESTCLASS@A6D9F21F) --->
condition [SYNTAX 42.3] raised unexpectedly.○Arithmetic overflow; divisor must not be zero

Output 3: Output of Running “rexx sample03.rex”.15

 2.3.3.2 Testing for Other ooRexx Conditions “sample04.rex”

Testing for ooRexx conditions should be carried out condition by condition,

separately coded in its own test case method, or at the very end of it.

The test case's run method will then check whether a particular condition was to be

expected. If that particular expected condition was raised, then the number of

successful assertions is increased by one, otherwise a failure is indicated that gets

logged with the test result object.

Figure “Code 4” depicts a program that contains a test class named “MyTestClass”

consisting of a test method “testCase01” with an expected user defined condition, a

test method “testCase02” that does not raise an expected novalue condition and a

method “testCase03” that just causes a non expected lostdigits condition to be

raised. Figure “Output 4” shows the statistics from the logged content stored in the

TestResult object.

/* the following TestResult object will be used to log all test case runs */
aTR=.TestResult~new

 /* create three test case objects from the same test class but using
 different methods as test cases */
do methName over .list~of("TESTCASE01", "testCase02", "testcase03")
 .MyTestClass~new(methName)~run(aTR) /* create and run the test cases */
end

call simpleDumpTestResults aTR /* dump brief results */

::requires ooRexxUnit.cls /* get access to ooRexxUnit */

::class "MyTestClass" subclass TestCase
::method testCase01 -- raise the expected condition
 self~expectCondition("USER RGF") -- expect a USER condition
 RAISE USER RGF -- raise user defined condition

::method testCase02 -- do not raise the expected condition
 self~expectCondition("NOVALUE") -- expect a NOVALUE condition

15 Lines depicted in italics were broken up by the word processor due to their length. They should go with the
previous line. The character “○” represents the TAB (”09”x) character.

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 13 "ooRexxUnit: A JUnit Compliant Testing …"

::method testCase03 -- raise an unexpected condition
 signal on novalue
 a=b+1
 return

novalue:
 raise propagate

Code 4: The Rexx Program “sample04.rex”.

nr of test runs: 3
nr of successful assertions: 1
nr of failures: 1
 [20061230 18:33:21.451000]: [failure] testCase: [testCase02] (a MyTestClass@B2CCF21F) --->
@assertFailure check4ConditionFailure: expected condition [NOVALUE] was not raised.○
nr of errors: 1
 [20061230 18:33:21.451000]: [error] testCase: [testcase03] (a MyTestClass@24D9F21F) --->
condition [NOVALUE] raised unexpectedly.○

Output 4: Output of Running “rexx sample04.rex”.16

 2.3.4 Additional ooRexxUnit Framework Conventions

It is conceivable that over time test classes gain a lot of test methods, such that it

becomes desirable to automate the creation and running of test cases. In JUnit 3.8

[W3JU3] there is a convention by which all methods of a test class serve as test

cases, whose names start with the string “test”. This is achieved by using Java's

reflection mechanism which allows to determine at runtime all the methods that a

class defines.

ooRexx, being an interpreted object-oriented language, possesses all the necessary

means to use reflection at runtime to determine the methods that are defined for a

class. This is realized by sending the class object the message “METHODS” which

returns a supplier object that one can use to iterate over the defined (instance)

methods. The TestSuite's class method getTestMethods returns an ascendingly sorted

array object containing the names of all test methods, i.e., methods whose names

start with the string “test”. If one creates an instance of the TestSuite class by

supplying the class object of a test class, then the TestSuite's constructor will use

the aforementioned class method getTestMethods to create test case objects for each

test method and will add them to the test suite.

In order to help automate the creation and running of test case objects in a

systematical way one can lay out conventions. This section will introduce such

conventions and a short (“test runner”) program which takes advantage of the

conventions to become able to run all adhering test programs.

 2.3.4.1 Structure of “.testUnit” Programs

A “test unit” program contains one or more test classes, each of which may have

16 Lines depicted in italics were broken up by the word processor due to their length. They should go with the
previous line. The character “○” represents the TAB (”09”x) character.

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 14 "ooRexxUnit: A JUnit Compliant Testing …"

test methods defined that represent individual test cases. Figure “Code 5” depicts

the overall structure of such a test unit program, that gets stored with a file

extension of “.testUnit” and contains annotations at the right margin (led in by “/*

ANN”).

/* list of array objects (pairs of test class object and its test methods
*/
mandatoryTestMethods=.list~new /* list of mandatory tests */ /* ANN 1 */

testUnitList=.list~of(.array~of(.testClass_01, mandatoryTestMethods)) /* ANN 2 */

--
arrLines=.array~new /* read top comment of this file */ /* ANN 3 */

do i=1 to 150 until arrLines[i]="*/"
 arrLines[i]=sourceline(i)
end

aTestUnitClass=testUnitList~at(testUnitList~first)[1] /* get first testClass */ /* ANN 4 */

 /* will parse the array lines and store result in class object's directory */ /* ANN 5 */

call makeDirTestInfo aTestUnitClass, arrLines
tmpDir=aTestUnitClass~TestCaseInfo /* get directory containing parsed infos */
parse source s /* op_sys invocationType fullPathToThisFile */
tmpDir~setentry("test_Case-source", s)

do arr over testUnitList /* add this directory to the other testCase classes*/ /* ANN 6 */

 if arr[1]=aTestUnitClass then iterate /* already handled */
 arr[1]~TestCaseInfo=tmpDir /* save info with class object */
end

if .local~hasentry("bRunTestsLocally")=.false then /* entry not in .local ? */ /* ANN 7 */

 .local~bRunTestsLocally=.true /* define entry, let all tests run */

if .bRunTestsLocally=.true then /* run ALL tests in this test unit */ /* ANN 8 */

do
 ts=.testSuite~new /* create a testSuite */
 do arr over testUnitList /* iterate over testUnits */
 ts~addTest(.testSuite~new(arr[1])) /* create testSuite */
 end
 testResult=ts~run /* now run all the tests */

 call simpleDumpTestResults testResult /* show brief results */
end

return testUnitList /* return list of array objects containing the testUnits */ /* ANN 9 */

::requires ooRexxUnit.cls /* load the ooRexxUnit classes */ /* ANN 10 */

::class "testClass_01" subclass TestCase public /* test class */ /* ANN 11 */

::method "test_01" /* first test method */ /* ANN 12 */

 self~assertEquals("subTest_01", "1", 0+2-1)

::method "hi" /* some other test method */ /* ANN 13 */

 self~assertEquals("subTest_01", "1", 0+1)

Code 5: The Rexx Program “generic.testUnit”.

The following explanations refer to the annotations embedded at the right margin in

“Code 5” above:

● “/* ANN 1 */”: This list may contain the names of those test methods which

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 15 "ooRexxUnit: A JUnit Compliant Testing …"

are regarded to be mandatory. If the list is left empty, all test methods (those

that start with the string “test”) of a test class are regarded to be

mandatory.17

● “/* ANN 2 */”: This list contains array objects, where each array stores the

test class object at index 1, and its list of mandatory test methods at index 2.

● “/* ANN 3 */”: This code block reads the top comment from the testUnit file

and stores each line in an array.18

● “/* ANN 4 */”: The very first test class object is retrieved from the list.

● “/* ANN 5 */”: Using the public routine makeDirTestInfo the supplied test class

object will get a directory object stored with it, that gets created from the

supplied array containing the top comment of the testUnit file. That directory

object is then retrieved and the information about the name of the testUnit

file is stored in that directory object as well.

● “/* ANN 6 */”: All remaining test class objects, if any at all, will get that

directory object stored with them as well. This way it is possible to retrieve

the test unit comments from all of the class objects that are defined in that

test unit program.

● “/* ANN 7 */”: The environment .local is searched for an entry named

bRunTestsLocally. If this entry is not available, then one is created with a

value of .true and as a result of this can then be retrieved via its environment

symbol “.bRunTestsLocally”!19 Usually this entry is set by test runner

programs, and if set to .false, then the next block would not be executed.

● “/* ANN 8 */”: This block will be executed only, if .bRunTestsLocally is set to

.true. It will create a test suite to contain one test suite per test class, which

itself will contain one test case per test method.20 The constructor of the

testSuite class will by default pick only those test methods from the supplied

test class object whose names start with the string “test” to create test cases

from them.

● “/* ANN 9 */”: A test suite program will always return a list of array objects,

where each array object will store the test case class at index 1 and the list of

17 If the list is not empty, one could specify any method, i.e., the method's name does not need to start with
the string “test”.

18 Please note, that the end of the comment is assumed if the block comment end character sequence (*/) is
found alone on a line.

19 In ooRexx entries in environment directory objects like .local or .environment can be retrieved by turning
the index name into an “environment symbol”, which is a symbol that starts with a dot, immediately
followed by the index name.

20 The code in block “/* ANN 8 */” creates a total of three test cases (two test suites, and one test case for a
test method). Running the first (“main”) test suite will therefore cause all of its contained test suites to be
run (one per test class), which in turn will run all the test cases that were created from test methods.

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 16 "ooRexxUnit: A JUnit Compliant Testing …"

mandatory test methods at index 2. This way test runner programs are able

to retrieve all the test cases and their test methods by merely calling test unit

programs.21

● “/* ANN 10 */”: This directive causes the interpreter to call the ooRexxUnit

framework program, which will make all its public classes and routines

available to the test unit program.

● “/* ANN 11 */”: This defines a test class. By convention there is one test class

per test unit program, but if desired, one can define as many as one sees fit.

● “/* ANN 12 */”: This is a test method which qualifies as a test method, that

the ooRexxUnit framework would pick via reflection, as it starts with the

string “test”.

● “/* ANN 13 */”: This is a test method which does not qualify as a test method,

as it does not start with the string “test”. Such a test method could still be

used as a test case by including its name in the list of mandatory test

methods.

Figure Output 5 depicts the output of running the test unit “generic.testUnit” as

listed in figure Code 5 above.

nr of test runs: 3
nr of successful assertions: 1
nr of failures: 0
nr of errors: 0

Output 5: Output of Running “rexx generic.testUnit”.20

ooRexx programmers who wish to adhere to the conventions layed out in this

section, need to edit the code sections in figure Code 5 annotated with

“/* ANN 1 */”, “/* ANN 2 */” and “/* ANN 11 */” following. Everything else should

be left as is. The next section introduces a simple test runner program which takes

advantage of these conventions.

 2.3.4.2 A Simple Test Runner Program

Figure Code 6 depicts a simple test runner program. It accepts two optional

arguments, the switch “-r” for indicating recursive operation, and the name of a

directory on which to operate. It will use the ooRexx SysFileTree() RexxUtil function

to find all files matching the search pattern “*.testUnit”. All found test unit files are

then used to create a test suite which contains one test suite per testUnit file, which

in turn contains all the repsective (mandatory) test cases. After running all test

21 Such test runner applications will probably set the entry bRunTestsLocally in .local to .false which will
inhibit the test unit programs to run their test cases locally.

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 17 "ooRexxUnit: A JUnit Compliant Testing …"

cases, the brief results that got recorded in the test result obejct are shown with a

heading.

/* usage: runTestUnits [-r[ecursive]] [directory] */
parse arg switch +2 /* parse optional switch */

hint="Processed" /* used in title for brief results below */
switches="FO" /* SysFileTree()-switches */
if switch~translate="-R" then /* the "-R"[ecursive] switch in hand? */
do
 switches=switches || "S" /* add "S" switch for SysFileTree() */
 parse arg . directory /* parse optional directory */
 hint=hint pp(switch) /* used in title for brief results below */
end
else
 parse arg directory /* parse optional directory */

 /* if running on Windows or OS2, then "\", "/" else */
dirSlash=iif(pos(left(sysVersion(),1)~translate, "WO")>0, "\", "/")

if directory="" then directory="." /* default to current directory */
else if right(directory,1)=dirSlash then /* remove possible trailing slash */
 directory=directory~left(length(directory)-1)

searchFile=directory || dirSlash || "*.testUnit" /* find all testUnit files */
call sysFileTree searchFile, "tests.", switches /* search files */
hint2="found" pp(tests.0) "file(s)" /* hint at the number of found files */

list=.list~new /* create list of filenames */
do i=1 to tests.0 /* loop over found files */
 list~insert(tests.i)
end

ts=makeTestSuiteFromFileList(list) /* create testSuite object from file list */
testResult=ts~run /* run all the tests in the testSuite */

 /* show test results as brief results */
call simpleDumpTestResults testResult, hint pp(searchFile)"," hint2

::requires ooRexxUnit.cls

Code 6: The Test Runner Rexx Program “runTestUnits.rex”.

The program in figure Code 6 is relatively short, because it takes advantage of the

public routines makeTestSuiteFromFileList() and simpleDumpTestResults() that are

defined in the ooRexxUnit framework.

Figure Output 6 displays the results of invoking the ooRexx program in figure

Code 6 in a command line window containing the file “generic.testUnit” (figure

Code 5 above) only, with the following command: “rexx runTestUnits.rex”.
Processed [.*.testUnit], found [1] file(s)

nr of test runs: 3
nr of successful assertions: 1
nr of failures: 0
nr of errors: 0

Output 6: Output of Running “rexx runTestUnits.rex .”.

More advanced test runner applications could analyze and format all information

about running the test cases as logged in the test result object.

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 18 "ooRexxUnit: A JUnit Compliant Testing …"

 2.3.4.3 A Concluding “.testUnit”-Program

Figure Code 7 depicts the concluding example (“finalExample.testUnit”) of a test

unit program, with some annotation markers on the right hand side margin. It

defines the two test classes, “testClass_01” (cf. “/* ANN 7 */”) and “testClass_02”

(cf. “/* ANN 12 */”). For the first test class all methods starting with the string

“test” should be used for creating test cases, hence the list for mandatory methods

(cf. “/* ANN 1 */”) is left empty. For the second test class only the method named

“hi” (cf. “/* ANN 15 */”) is regarded to be a mandatory test method, even though its

name does not start with the string “test”. Therefore the list of mandatory test

methods is used to specify the name of this mandatory method (cf. “/* ANN 4 */”).

/* list of array objects (pairs of testUnit class object and its test methods
*/
mandatoryTestMethods=.list~new /* list of mandatory tests */ /* ANN 1 */

testUnitList=.list~of(.array~of(.testClass_01, mandatoryTestMethods)) /* ANN 2 */

 /* now supply the second test class that got defined in this file */
mandatoryTestMethods=.list~of("hi") /* define sole mandatory test */ /* ANN 3 */

testUnitList~insert(.array~of(.testClass_02, mandatoryTestMethods)) /* ANN 4 */

--
arrLines=.array~new /* read top comment of this file */
do i=1 to 150 until arrLines[i]="*/"
 arrLines[i]=sourceline(i)
end

aTestUnitClass=testUnitList~at(testUnitList~first)[1] /* get first testClass */

 /* will parse the array lines and store result in class object's directory */
call makeDirTestInfo aTestUnitClass, arrLines
tmpDir=aTestUnitClass~TestCaseInfo /* get directory containing parsed infos */
parse source s /* op_sys invocationType fullPathToThisFile */
tmpDir~setentry("test_Case-source", s)

do arr over testUnitList /* add this directory to the other testCase classes*/
 if arr[1]=aTestUnitClass then iterate /* already handled */
 arr[1]~TestCaseInfo=tmpDir /* save info with class object */
end

if .local~hasentry("bRunTestsLocally")=.false then /* entry not in .local ? */
 .local~bRunTestsLocally=.true /* define entry, let all tests run */

if .bRunTestsLocally=.true then /* run ALL tests in this test unit */
do
 ts=.testSuite~new /* create a testSuite */ /* ANN 5 */

 do arr over testUnitList /* iterate over testUnits */
 ts~addTest(.testSuite~new(arr[1])) /* create testSuite */ /* ANN 6 */

 end
 testResult=ts~run /* now run all the tests */

 call simpleDumpTestResults testResult /* show brief results */
end

return testUnitList /* return list of array objects containing the testUnits */

::requires ooRexxUnit.cls /* load the ooRexxUnit classes */

::class "testClass_01" subclass TestCase public /* test class */ /* ANN 7 */

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 19 "ooRexxUnit: A JUnit Compliant Testing …"

::method "test_01" /* first test method */ /* ANN 8 */

 say "-->" pp(self~class~string)", method:" pp("test_01") /* ANN 9 */

 self~assertEquals("subTest_01", "1", 0+2-1)

::method "hi" /* some other test method */ /* ANN 10 */

 say "-->" pp(self~class~string)", method:" pp("hi") /* ANN 11 */

 self~assertEquals("subTest_01", "1", 0+1)

::class "testClass_02" subclass TestCase public /* test class */ /* ANN 12 */

::method "test_01" /* first test method */ /* ANN 13 */

 say "-->" pp(self~class~string)", method:" pp("test_01") /* ANN 14 */

 self~assertEquals("subTest_01", "ABC", "A"||"B"||"C")

::method "hi" /* some other test method */ /* ANN 15 */

 say "-->" pp(self~class~string)", method:" pp("hi") /* ANN 16 */

 str=a||b||c
 self~assertEquals("subTest_01", "ABC", str) /* comparing with "=" */
 self~assertSame("subTest_02", "ABC", str) /* comparing with "==" */

Code 7: The Rexx Program “finalExample.testUnit”.

All the test methods possess a statement that outputs the information about the test

case class they got defined in as well as their names (cf. “/* ANN 9, 11, 14, 16 */”).

This way it becomes possible to study the effects of defining mandatory methods.

Running this test unit program locally, i.e., invoking it directly with the Rexx

interpreter (issuing the command “rexx finalExample.testUnit” from a command line

window) will yield the output shown in figure Output 7a below. As can be seen, the

information about mandatory test methods gets ignored, rather the default behavior

takes place which honors only test methods that start with the string “test”.22

Therefore test cases were created and run for the test methods defined at the lines

annotated with “/* ANN 8 */” and “/* ANN 13 */”, the other test methods (cf.

“/* ANN 10, 15 */”) are ignored. Add to this the test suite in “/* ANN 5 */” and the

two test suites that get created in “/* ANN 6 */” (one for each test class) which all

run, adding up to a total of five (test) runs.

--> [The testClass_01 class], method: [test_01]
--> [The testClass_02 class], method: [test_01]
nr of test runs: 5
nr of successful assertions: 2
nr of failures: 0
nr of errors: 0

Output 7a: Output of Running “rexx finalExample.testUnit”.

Using the Rexx program “runTestUnits.rex” from figure Code 7 (issuing the

command “rexx runTestUnits.rex .” from a command line window) will produce the

output as shown in figure Output 7b below. As can be seen from there, for the first

test class (“testClass_01”) all standard test methods are used to create the test

cases (i.e., “/* ANN 8 */”), whereas for the second test class (“testClass_02”) the

22 This behavior follows from the TestSuite constructor, in which the test methods which start with the string
“test” are chosen to be used as test cases. As in this example each method carries out one assertion, there
is a total of two successful assertions.

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 20 "ooRexxUnit: A JUnit Compliant Testing …"

mandatory test method “hi” (cf. “/* ANN 15 */”) is used for creating a test case, all

other test methods of that test class are ignored!23 The public routine

“makeTestSuiteFromFileList(…)” will create a test suite object to which test suites

created for each test class will be added. Altogether there are three test suites and

two test cases that run, adding up to five (test) runs.

--> [The testClass_01 class], method: [test_01]
--> [The testClass_02 class], method: [hi]
Processed [.*.testUnit], found [1] file(s)

nr of test runs: 5
nr of successful assertions: 3
nr of failures: 0
nr of errors: 0

Output 7b: Output of Running “rexx runTestUnits.rex .”.

The differences in the output between Output 7a and Output 7b above are marked

with a bold font and highlighted with a bright yellow colour.

 3 Summary and Outlook

This paper introduced and briefly described the new ooRexx based framework

“ooRexxUnit” which allows for creating ooRexx test cases with those concepts that

are described for the Java test unit framework “JUnit” [W3JU3]. The ooRexx classes

Assert, TestCase, TestSuite and TestResult have been introduced, explained and

demonstrated with short, “nutshell”-like ooRexx programs.

In addition there were ooRexxUnit conventions introduced that should enable the

creation of more comprehensive test runner applications, which would help

automate running the test units. Such test runners could possess a graphical user

interface (GUI), or could store the results of running test units and allow to compare

them, and the like.

There are a few test units that have been created for testing the ooRexx interpreter

and can be located at [W3OU3]. It is hoped that the Rexx community will help out

creating test units that cover all aspects of ooRexx in the years to come. To this end, this

article is hoped to enable Rexx and ooRexx programmers to understand the ooRexxUnit

framework in detail. The acquired knowledge could also be applied for creating test units

for ooRexx applications, be they opensource, free or commercial.

A last word ad the “JUnit” framework. With the introduction of Java version 5 the

programming language Java gained the ability to annotate Java types (classes, interfaces,

enumerations), fields, methods, parameters, constructors, local variables and catch

23 This behavior follows from “runTestUnits.rex” employing the ooRexxUnit framework's public routine named
“makeTestSuiteFromFileList(…)”, which honors the list of mandatory test methods.

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 21 "ooRexxUnit: A JUnit Compliant Testing …"

clauses, annotations and package definitions. The JUnit version 4 framework (cf.

[W3JU4], [W3JU4Doc], [W3G06]) takes advantage of Java annotations and, among other

things, forgoes the need to force test method names to start with the string “test” in

order to pick those methods that should serve as test cases via the Java reflection

mechanism. Rather, Java annotations are used instead to inform the JUnit framework

about what roles what methods play, e.g. the @Test annotation precedes those methods,

that should be used as test cases.24 As ooRexx does not allow for annotations, the

ooRexxUnit framework cannot exploit them. It can be expected though, that once ooRexx

gains annotations, the ooRexxUnit framework gets adapted accordingly.

Acknowledgements

The author wishes to thank Walter Pachl for his valuable comments, suggestions and for

proof reading the article.

 4 References

[Cow90] Cowlishaw, M.F.: "The REXX Language", Prentice-Hall (Second edition),

1990.

 [Fos05] Fosdick H.: "Rexx Programmer’s Reference", John Wiley & Sons, ISBN: 0-

7645-7996-7, URL (as of 2006-04-01):

http://www.wrox.com/WileyCDA/WroxTitle/productCd-0764579967.html

[cetRexx] URL (as of 2006-04-01): http://www.cetus-links.org/oo_rexx.html

[ooRexx] URL (as of 2006-04-01): http://www.ooRexx.org

[Rexx] URL (as of 2006-04-01): http://www.Rexx.org

[RexxInfo]URL (as of 2006-04-01): http://www.RexxInfo.org/

[RexxLA] URL (as of 2006-04-01): http://www.RexxLA.org

[VeTrUr] Veneskey G.L., Trosky W., Urbaniak J.J.: "Object Rexx by Example", Aviar. URL

(as of 2006-04-01): http://www.oops-web.com/orxbyex/

[W3G06] Goncalves A.: “Get Acquainted with the New Advanced Features of JUnit 4”,

devx.com, July 24th 2006, URL (as of 2006-04-01):

http://www.devx.com/Java/Article/31983/1954?pf=true

[W3JU3] Homepage of JUnit 3. URL (as of 2006-04-01):

http://junit.sourceforge.net/junit3.8.1/

24 The @Test annotation allows for two arguments, one that indicates whether an exception is expected, and
one which allows to determine how much time a test case has available to complete. There are also
annotations for indicating which methods serve the role of “startUp” and “tearDown”, which ones should
be explitily ignored for the time being, and the like.

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 22 "ooRexxUnit: A JUnit Compliant Testing …"

http://www.ooRexx.org/
http://www.RexxLA.org/
http://www.ooRexx.org/

[W3JU3Cook] N.N.: “JUnit A Cook's Tour”. URL (as of 2006-04-01):

http://junit.sourceforge.net/doc/cookstour/cookstour.htm

[W3JU3Doc] Javadocs for JUnit 3.x. URL (as of 2006-04-01):

http://www.junit.org/junit/javadoc/

[W3JU4] Homepage of JUnit 4. URL (as of 2006-04-01): http://junit.sourceforge.net/

[W3JU4Doc] Homepage of JUnit 4. URL (as of 2006-04-01):

http://junit.sourceforge.net/javadoc_40/

[W3OU3] Code repositories for ooRexx and ooRexxUnit (as of 2006-04-01):

http://oorexx.cvs.sourceforge.net/oorexx/ or

http://oorexx.svn.sourceforge.net/viewvc/oorexx/

Rony G. Flatscher (Version as of: 2006-12-30 18:41) 23 "ooRexxUnit: A JUnit Compliant Testing …"

	 1 Introduction
	 2 “ooRexxUnit” (“OOREXXUNIT.CLS”)
	 2.1 The ooRexxUnit Framework Classes
	 2.1.1 The “Assert” Class
	 2.1.2 The “TestCase” Class
	 2.1.3 The “TestSuite” Class
	 2.1.4 The “TestResult” Class
	 2.1.5 Overview of the Classes and their Methods

	 2.2 The ooRexxUnit Framework Routines
	 2.3 Putting the ooRexxUnit Framework to Work
	 2.3.1 An Elementary Test Case “sample01.rex”
	 2.3.2 Another Elementary Test Case “sample02.rex”
	 2.3.3 TestCases for Conditions
	 2.3.3.1 Testing for Syntax Error Condition “sample03.rex”
	 2.3.3.2 Testing for Other ooRexx Conditions “sample04.rex”

	 2.3.4 Additional ooRexxUnit Framework Conventions
	 2.3.4.1 Structure of “.testUnit” Programs
	 2.3.4.2 A Simple Test Runner Program
	 2.3.4.3 A Concluding “.testUnit”-Program

	 3 Summary and Outlook
	Acknowledgements
	 4 References

