
Encodings - Unicode - I18N
Généralités..3
Locales..6

Locale..6
Character encoding...6
Code pages..6
Codepage Identifiers...7
GetCPInfo...9
setlocale...10
Preprocessor directive...12
Language strings recognized by setlocale...12
Country/Region strings recognized by setlocale...13
_setmbcp...14
Code Pages in Outlook 2002...14
Charsets in Microsoft Internet Explorer 5...15

How to Encode XML Data...19
Cross-Platform Data Formats..19

A Lesson in Character Encoding..19
Unicode...19
Content-Type Header..20
Content-Type Metatags...20
Character Entities..20

XML and Character Encoding..20
Character Sets and the MSXML DOM...21
Creating New XML Documents with MSXML...21
Conclusion..22
For More Information...22

Unicode Programming Sumary...23
Unicode Enabling..23

Entry point in DLL and EXE..25
Linker option...25

Using Generic-Text Mappings..26
String Manipulation..27
_bstr_t..29

Construction..29
Remarks..29

Assign..29
Remarks..29
Example..29
Output..30

Files and Streams..31
Text and Binary Streams...31
Byte and Wide Streams...32
Controlling Streams..32
Stream States...32
Unicode™ Stream I/O in Text and Binary Modes..33
Quick reference...33

Windows & Unicode...35
Généralités..35
RegisterClass...35
IsWindowUnicode..35
CallWindowProc...35
DefWindowProc..35
Subclassing and Automatic Message Translation...35

I18N API...37
National Language Support NLSAPI functions..37

Multilingual API functions...37
Font Technology...38

Selection by the User..38
Special Font Selection Considerations..38

Bidirectionality..39
Bidirectional layout...39

Vertical Writing..39
Changing Input Language...40
Text Output...40

Text-Formatting Attributes...40
Character Widths...41
String Widths and Heights..41

Drawing Text..41
Complex Scripts..42

Context-sensitive characters...42
Window Layout...44

Window Layout and Mirroring...44
Mirroring Dialog Boxes and Message Boxes...45
Mirroring Device Contexts Not Associated with a Window..46

Uniscribe...47
About Complex Scripts...47
Processing Complex Scripts..47

Text Functions...47
Edit Controls...48
Rich Edit Controls...48
Uniscribe...48

Généralités
ACS : Abstract Character Set : Before assigning each character a number

CCS : Coded Character Set : After assigning each character a number. Mapping from integer numbers to character
representations.

SBCS : The most common encodings (character encoding schemes) use a single byte per character, and they are
often called single-byte character sets. They are all limited to 256 characters.

ASCII is a character set using 7-bit units, with a trivial encoding designed for 7-bit bytes

ISO-8859-1 : It is an 8-bit superset of ASCII and provides most of the characters necessary for Western Europe.

ISO-8859-15 : Modernized version of ISO-8859-1, with the euro symbol and some more French and Finnish letters.

DBCS : The Double-byte character sets were developed to provide enough space for the thousands of ideographic
characters in East Asian writing systems. Here, the encoding is still byte-based, but each two bytes together
represent a single character.
It's not possible to combine two languages, for example Japanese and Chinese, in the same data stream because the
same double-byte code points represent different characters depending on the code page.

MBCS : Multi-byte character sets use a variable number of bytes per character, which distinguishes them from the
DBCS encodings. MBCSs are often compatible with ASCII; that is, the Latin letters are represented in such
encodings with the same bytes that ASCII uses. Some less often used characters may be encoded using three or even
four bytes.

Unicode : The Unicode standard specifies a character set and several encodings.
The standard assigns numbers from 0 to 0x10FFFF, which is more than a million possible numbers for characters.
The highest value, 0x10FFFF, takes up only 21 bits. 11 bits are always unused in a 32-bit word storing a Unicode
code point.

Unicode provides a single character set that covers the languages of the world, and a small number of machine-
friendly encoding forms and schemes to fit the needs of existing applications and protocols. It is designed for best
interoperability with both ASCII and ISO-8859-1, the most widely used character sets, to make it easier for Unicode
to be used in applications and protocols.

UCD : Unicode Character Database

Surrogate : Pair of Unicode value.

Glyph : A glyph is a particular image that represents a character or part of a character

Grapheme : What an end-user thinks of as a character.

Code point : What a character encoding standard encodes.

Code unit : A memory storage unit in a character encoding : 8, 16 or 32 bits.

Each UTF-n represents a code point as a sequence of one or more code units, where each code unit occupies n bits.
There are three common ways to store Unicode strings:
- UTF-32, with 32-bit code units, each storing a single code point. It is very similar to the ISO 10646 format UCS-4,
except that it is constrained to valid Unicode values for interoperability.
- UTF-16, with one or two 16-bit code units for each code point (this is the default encoding for Unicode)
- UTF-8, with one to four 8-bit code units (bytes) for each code point

For 16- and 32-bit code units it is important to know whether the most or least significant byte is written first. Thus,
for byte streams, both UTF-16 and UTF-32 need to be specified as big-endian (most significant byte first) or little-
endian (least significant byte first). Big-endian is the preferred network byte order as defined in Internet protocols.
Microsoft uses little-endian...

SCSU : Standard Compression Scheme for Unicode

Character Encoding Forms : Internal encodings, with the byte ordering determined by the machine architecture.

CES : Character Encoding Schemes : External encodings for byte streams.
In UNIX the most-used CES is UTF-8. It allows for full support of the entire Unicode, all pages and planes, and will
still read standard ASCII correctly. The alternatives to UTF-8 are: UCS-4, UTF-16, UTF-7,5, UTF-7, SCSU,
HTML, and JAVA.

The Unicode CCS 3.1 is officially known as the ISO 10646-1 Universal Multiple Octet Coded Character Set (UCS).

The Unicode CCS utilizes a four-dimensional coding space of 128 three-dimensional groups.
Each group has 256 two-dimensional planes.
Each plane consists of 256 one-dimensional rows and each row has 256 cells.
A cell codes a character at this coding space or the cell is declared unused.
This coding concept is called UCS-4; four octets of bits are used to represent each character specifying the group,
plane, row and cell.
128 groups * 256 planes * 256 rows * 256 cells

BMP : The first plane (plane 00 of the group 00) is the Basic Multilingual Plane (BMP).
The BMP defines characters in general use in alphabetic, syllabic and ideographic scripts as well as various symbols
and digits. Subsequent planes are used for additional characters or other coded entities not yet invented. This full
range is needed to cope with all of the world's languages; specifically, some East Asian languages that have almost
64,000 characters.

The BMP is used as a two-octet coded character set identified as the UCS-2 form of ISO 10646. ISO 10646 USC-2
is commonly referred to as (and is identical to) Unicode. This BMP, like all UCS planes, contains 256 rows each of
256 cells, and a character is coded at a cell by just the row and cell octets in the BMP. This allows 16-bit coding
characters to be used for writing most commercially important languages. USC-2 requires no code page switching,
code extensions or code states. USC-2 is a simple method to incorporate Unicode into software, but it is limited in
only supporting the Unicode BMP.

[Microsoft] UCS-2
UCS-2 is the main Unicode encoding used by Microsoft Windows NT® 4.0, Microsoft® SQL Server™ version 7.0,
and Microsoft SQL Server 2000. UCS-2 allows for encoding of 65,536 different code points. All information that is
stored in Unicode in SQL Server 2000 is stored in this encoding, which uses two bytes for every character,
regardless of the character being used.

[Microsoft] UTF-16
UTF-16 is the primary Unicode encoding used by Microsoft Windows 2000. Even before Unicode 2.0 was released,
it became clear that the goal of Unicode (to support a single code point for every character in every language) could
not be achieved using only 65,536 characters. Some languages, such as Chinese, require that many characters to
encode just the rarely used characters. Thus, support was added for a surrogate range to handle an additional
1,048,576 characters. UTF-16 is the encoding that fully supports this extension to the original standard.
In UTF-16, the same standard of 2 bytes per code point is followed; however, with UTF-16 certain code points use
another code point right after them to define the character.
Like UCS-2, UTF-16 is stored in a Little Endian manner, as is everything on Windows, by default.

[Microsoft] UTF-8
Many ASCII and other byte-oriented systems that require 8-bit encodings (such as mail servers) must span a vast
array of computers that use different encodings, different byte orders, and different languages. UTF-8 is an encoding
scheme that is designed to treat Unicode data in a way that is independent of the byte ordering on the computer.
Although SQL Server 2000 does not store data in UTF-8 format, it supports UTF-8 in at least one crucial scenario:
its support of the Extensible Markup Language (XML).
In the Windows environment, UTF-8 storage has these disadvantages:
- The Component Object Model (COM) supports only UTF-16/UCS-2 in its APIs and interfaces, which would
require constant conversion if data were stored in UTF-8 format (this issue only applies when COM is used; SQL
Server database engine does not typically call COM interfaces).
- The Windows NT and Windows 2000 kernels are both Unicode and use UCS-2 and UTF-16, respectively. Once
again, a UTF-8 storage format would require many extra conversions (as with the previous note on COM, this would

not result in a conversion hit in the SQL Server database engine, but would potentially affect many client-side
operations).
- UTF-8 can be slower for many string operations. Sorting, comparing, and virtually any string operation can be
slowed because characters do not have a fixed width.
- UTF-8 will often need more than 2 bytes, and the increased size can make for a larger footprint on disk and in
memory.
Because XML is, among other things, a very important standard for communication over the Internet (which has a
strong byte-oriented bias), its default to UTF-8 is something that can make a lot of sense.

Locales
The language determines the text and data formatting conventions, while the Country/Region determines the
national conventions. Every language has a unique mapping, represented by "code pages," which includes characters
other than those in the alphabet (such as punctuation marks and numbers). A code page is a character set and is
related to the language. As such, a locale is a unique combination of language, Country/Region, and code page.

The locale and code page setting can be changed at run time by calling the setlocale function.

Locale
A locale is a set of user preference information related to the user's language and sublanguage. An example of a
language is "French," where the sublanguage could be French as spoken in Canada, France, or Switzerland. Locale
information includes currency symbol; date, time, and number formatting information; localized days of the week
and months of the year; the standard abbreviation for the name of the country/region; and character encoding
information. (For a more complete list see the NLSAPI specification.) Each Windows NT system has a default
system locale and one user locale per user, which may be different from the default system locale. Both can be
changed through the control panel.
Applications can specify a locale on a per-thread basis when calling APIs.

Character encoding
A character encoding (also called a code page) is a set of numeric values, or code points, that represents a group of
alphanumeric characters, punctuation, and symbols. Single-byte character encodings use 8 bits to encode 256
different characters. On Windows, the first 128 characters of all code pages consist of the standard ASCII set of
characters. The characters from code point 128 to 255 represent additional characters and vary depending on the set
of scripts represented by the character encoding (for a complete listing of character sets tables see Developing
International Software for Windows 95 and Windows NT, published by Microsoft Press). Double-byte character
encodings on Windows, used for Asian languages, use 8 to 16 bits to encode each character. Computers exchange
information encoded in character encodings and render it on screens using fonts.

Windows NT supports OEM character encodings (those originally designed for MS-DOS®), ANSI character
encodings (those introduced with Windows® 3.1) and Unicode. Unicode is a 16-bit character encoding that
encompasses most of the scripts in wide computer use today (for more information on Unicode see The Unicode
Standard published by the Unicode Consortium or visit http://www.unicode.org/). Windows 2000 uses Unicode as
its base character encoding, meaning that all strings passed around internally in the system, including strings in
Windows resource (.res) files, are encoded in Unicode. Windows NT also supports ANSI character encodings. Each
API that takes a string as a parameter has two entry points—an "A" or ANSI entry point and a "W" or wide-
character (Unicode) entry point.
Windows NT supports additional code pages for translating data to and from Unicode, including Macintosh,
EBCDIC, and ISO encodings. It also contains translation tables for the UTF-7 and UTF-8 standards, which are
commonly used to send Unicode-based data across networks, in particular across the Internet.

Code pages
A code page is a character set, which can include numbers, punctuation marks, and other glyphs. Different
languages and locales may use different code pages. For example, ANSI code page 1252 is used for English and
most European languages; OEM code page 932 is used for Japanese Kanji.
A code page can be represented in a table as a mapping of characters to single-byte values or multibyte values.
Many code pages share the ASCII character set for characters in the range 0x00 – 0x7F.
The Microsoft run-time library uses the following types of code pages:

• System-default ANSI code page. By default, at startup the run-time system automatically sets the multibyte
code page to the system-default ANSI code page, which is obtained from the operating system. The call:
setlocale (LC_ALL, "");
also sets the locale to the system-default ANSI code page.

• Locale code page. The behavior of a number of run-time routines is dependent on the current locale setting,
which includes the locale code page. (For more information, see Locale-Dependent Routines.) By default,
all locale-dependent routines in the Microsoft run-time library use the code page that corresponds to the
"C" locale. At run-time you can change or query the locale code page in use with a call to setlocale.

• Multibyte code page. The behavior of most of the multibyte-character routines in the run-time library
depends on the current multibyte code page setting. By default, these routines use the system-default ANSI

file:///doc/Software I18n/Microsoft/_crt_setlocale.2c_._wsetlocale.htm
file:///doc/Software I18n/Microsoft/_crt_locale.htm#_crt_locale.2d.dependent_routines

code page. At run-time you can query and change the multibyte code page with _getmbcp and _setmbcp,
respectively.

• The "C" locale is defined by ANSI to correspond to the locale in which C programs have traditionally
executed. The code page for the "C" locale ("C" code page) corresponds to the ASCII character set. For
example, in the "C" locale, islower returns true for the values 0x61 – 0x7A only. In another locale, islower
may return true for these as well as other values, as defined by that locale.

Codepage Identifiers
Identifier Name

037 IBM EBCDIC - U.S./Canada
437 OEM - United States
500 IBM EBCDIC - International
708 Arabic - ASMO 708
709 Arabic - ASMO 449+, BCON V4
710 Arabic - Transparent Arabic
720 Arabic - Transparent ASMO
737 OEM - Greek (formerly 437G)
775 OEM - Baltic
850 OEM - Multilingual Latin I
852 OEM - Latin II
855 OEM - Cyrillic (primarily Russian)
857 OEM - Turkish
858 OEM - Multlingual Latin I + Euro symbol
860 OEM - Portuguese
861 OEM - Icelandic
862 OEM - Hebrew
863 OEM - Canadian-French
864 OEM - Arabic
865 OEM - Nordic
866 OEM - Russian
869 OEM - Modern Greek
870 IBM EBCDIC - Multilingual/ROECE (Latin-2)
874 ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875 IBM EBCDIC - Modern Greek
932 ANSI/OEM - Japanese, Shift-JIS
936 ANSI/OEM - Simplified Chinese (PRC, Singapore)
949 ANSI/OEM - Korean (Unified Hangeul Code)
950 ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026 IBM EBCDIC - Turkish (Latin-5)
1047 IBM EBCDIC - Latin 1/Open System
1140 IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141 IBM EBCDIC - Germany (20273 + Euro symbol)
1142 IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143 IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144 IBM EBCDIC - Italy (20280 + Euro symbol)
1145 IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146 IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147 IBM EBCDIC - France (20297 + Euro symbol)
1148 IBM EBCDIC - International (500 + Euro symbol)
1149 IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200 Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201 Unicode UCS-2 Big-Endian
1250 ANSI - Central European
1251 ANSI - Cyrillic
1252 ANSI - Latin I
1253 ANSI - Greek
1254 ANSI - Turkish
1255 ANSI - Hebrew
1256 ANSI - Arabic
1257 ANSI - Baltic
1258 ANSI/OEM - Vietnamese

file:///doc/Software I18n/Microsoft/_crt__setmbcp.htm
file:///doc/Software I18n/Microsoft/_crt__getmbcp.htm

1361 Korean (Johab)
10000 MAC - Roman
10001 MAC - Japanese
10002 MAC - Traditional Chinese (Big5)
10003 MAC - Korean
10004 MAC - Arabic
10005 MAC - Hebrew
10006 MAC - Greek I
10007 MAC - Cyrillic
10008 MAC - Simplified Chinese (GB 2312)
10010 MAC - Romania
10017 MAC - Ukraine
10021 MAC - Thai
10029 MAC - Latin II
10079 MAC - Icelandic
10081 MAC - Turkish
10082 MAC - Croatia
12000 Unicode UCS-4 Little-Endian
12001 Unicode UCS-4 Big-Endian
20000 CNS - Taiwan
20001 TCA - Taiwan
20002 Eten - Taiwan
20003 IBM5550 - Taiwan
20004 TeleText - Taiwan
20005 Wang - Taiwan
20105 IA5 IRV International Alphabet No. 5 (7-bit)
20106 IA5 German (7-bit)
20107 IA5 Swedish (7-bit)
20108 IA5 Norwegian (7-bit)
20127 US-ASCII (7-bit)
20261 T.61
20269 ISO 6937 Non-Spacing Accent
20273 IBM EBCDIC - Germany
20277 IBM EBCDIC - Denmark/Norway
20278 IBM EBCDIC - Finland/Sweden
20280 IBM EBCDIC - Italy
20284 IBM EBCDIC - Latin America/Spain
20285 IBM EBCDIC - United Kingdom
20290 IBM EBCDIC - Japanese Katakana Extended
20297 IBM EBCDIC - France
20420 IBM EBCDIC - Arabic
20423 IBM EBCDIC - Greek
20424 IBM EBCDIC - Hebrew
20833 IBM EBCDIC - Korean Extended
20838 IBM EBCDIC - Thai
20866 Russian - KOI8-R
20871 IBM EBCDIC - Icelandic
20880 IBM EBCDIC - Cyrillic (Russian)
20905 IBM EBCDIC - Turkish
20924 IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932 JIS X 0208-1990 & 0121-1990
20936 Simplified Chinese (GB2312)
21025 IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027 Extended Alpha Lowercase
21866 Ukrainian (KOI8-U)
28591 ISO 8859-1 Latin I
28592 ISO 8859-2 Central Europe
28593 ISO 8859-3 Latin 3
28594 ISO 8859-4 Baltic
28595 ISO 8859-5 Cyrillic
28596 ISO 8859-6 Arabic

28597 ISO 8859-7 Greek
28598 ISO 8859-8 Hebrew
28599 ISO 8859-9 Latin 5
28605 ISO 8859-15 Latin 9
29001 Europa 3
38598 ISO 8859-8 Hebrew
50220 ISO 2022 Japanese with no halfwidth Katakana
50221 ISO 2022 Japanese with halfwidth Katakana
50222 ISO 2022 Japanese JIS X 0201-1989
50225 ISO 2022 Korean
50227 ISO 2022 Simplified Chinese
50229 ISO 2022 Traditional Chinese
50930 Japanese (Katakana) Extended
50931 US/Canada and Japanese
50933 Korean Extended and Korean
50935 Simplified Chinese Extended and Simplified Chinese
50936 Simplified Chinese
50937 US/Canada and Traditional Chinese
50939 Japanese (Latin) Extended and Japanese
51932 EUC - Japanese
51936 EUC - Simplified Chinese
51949 EUC - Korean
51950 EUC - Traditional Chinese
52936 HZ-GB2312 Simplified Chinese
54936 Windows XP: GB18030 Simplified Chinese (4 Byte)
57002 ISCII Devanagari
57003 ISCII Bengali
57004 ISCII Tamil
57005 ISCII Telugu
57006 ISCII Assamese
57007 ISCII Oriya
57008 ISCII Kannada
57009 ISCII Malayalam
57010 ISCII Gujarati
57011 ISCII Punjabi
65000 Unicode UTF-7
65001 Unicode UTF-8

GetCPInfo
The GetCPInfo function retrieves information about any valid installed or available code page.
To obtain additional information about valid installed or available code pages, use the GetCPInfoEx function.
BOOL GetCPInfo(
 UINT CodePage, // code page identifier
 LPCPINFO lpCPInfo // information buffer
);
Parameters

CodePage

[in] Specifies the code page about which information is to be retrieved. You can specify the code page identifier
for any installed or available code page, or you can specify one of the following predefined values.

Value Meaning
CP_ACP Use the system default–ANSI code page.
CP_MACCP Windows NT/2000/XP: Use the system default–Macintosh code page.
CP_OEMCP Use the system default–OEM code page.
CP_THREAD_ACP Windows 2000/XP: Use the current thread's ANSI code page.

See Code Page Identifiers for a list of ANSI and other code pages.

Windows 95/98/Me: The GetCPInfo version supported by the Microsoft Layer for Unicode also supports
CP_UTF7 and CP_UTF8.

file:///doc/Software I18n/Microsoft/unicode_81rn.htm
file:///doc/Software I18n/Microsoft/nls_9hyw.htm

lpCPInfo

[out] Pointer to a CPINFO structure that receives information about the code page.

Return Values
If the function succeeds, the return value is 1.
If the function fails, the return value is zero. To get extended error information, call GetLastError.
If the specified code page is not installed or not available, GetCPInfo sets the last-error value to
ERROR_INVALID_PARAMETER.

setlocale
Define the locale.

char *setlocale(
 int category,
 const char *locale
);
wchar_t *_wsetlocale(
 int category,
 const wchar_t *locale
);

Return Value
If a valid locale and category are given, returns a pointer to the string associated with the specified locale and
category. If the locale or category is invalid, returns a null pointer and the current locale settings of the program are
not changed.
For example, the call
setlocale(LC_ALL, "English");
sets all categories, returning only the string English_USA.1252. If all categories are not explicitly set by a call to
setlocale, the function returns a string indicating the current setting of each of the categories, separated by
semicolons. If the locale argument is a null pointer, setlocale returns a pointer to the string associated with the
category of the program's locale; the program's current locale setting is not changed.

The null pointer is a special directive that tells setlocale to query rather than set the international environment. For
example, the sequence of calls
// Set all categories and return "English_USA.1252"
setlocale(LC_ALL, "English");
// Set only the LC_MONETARY category and return "French_France.1252"
setlocale(LC_MONETARY, "French");
setlocale(LC_ALL, NULL);
returns
LC_COLLATE=English_USA.1252;
LC_CTYPE=English_USA.1252;
LC_MONETARY=French_France.1252;
LC_NUMERIC=English_USA.1252;
LC_TIME=English_USA.1252
which is the string associated with the LC_ALL category.
You can use the string pointer returned by setlocale in subsequent calls to restore that part of the program's locale
information, assuming that your program does not alter the pointer or the string. Later calls to setlocale overwrite
the string; you can use _strdup to save a specific locale string.
Remarks
Use the setlocale function to set, change, or query some or all of the current program locale information specified by
locale and category. locale refers to the locality (country/region and language) for which you can customize certain
aspects of your program. Some locale-dependent categories include the formatting of dates and the display format
for monetary values. If you set locale to the default string for a language with multiple forms supported on your
computer, you should check the setlocale return code to see which language is in effect. For example, using
"chinese" could result in a return value of chinese-simplified or chinese-traditional.

The category argument specifies the parts of a program's locale information that are affected. The macros used for
category and the parts of the program they affect are as follows:

LC_ALL

file:///doc/Software I18n/Microsoft/_crt__strdup.2c_._wcsdup.2c_._mbsdup.htm
file:///doc/Software I18n/Microsoft/nls_5hpu.htm

All categories, as listed below.

LC_COLLATE

The strcoll, _stricoll, wcscoll, _wcsicoll, strxfrm, _strncoll, _strnicoll, _wcsncoll, _wcsnicoll, and wcsxfrm
functions.

LC_CTYPE

The character-handling functions (except isdigit, isxdigit, mbstowcs, and mbtowc, which are unaffected).

LC_MONETARY

Monetary-formatting information returned by the localeconv function.

LC_NUMERIC

Decimal-point character for the formatted output routines (such as printf), for the data-conversion routines, and
for the nonmonetary-formatting information returned by localeconv. In addition to the decimal-point character,
LC_NUMERIC also sets the thousands separator and the grouping control string returned by localeconv.

LC_TIME

The strftime and wcsftime functions.

The locale argument is a pointer to a string that specifies the name of the locale. If locale points to an empty string,
the locale is the implementation-defined native environment. A value of C specifies the minimal ANSI conforming
environment for C translation. The C locale assumes that all char data types are 1 byte and that their value is always
less than 256. The C locale is the only locale supported in Microsoft Visual C++ version 1.0 and earlier versions of
Microsoft C/C++. At program startup, the equivalent of the following statement is executed:
setlocale(LC_ALL, "C");

The locale argument takes the following form:
locale :: "lang[_country_region[.code_page]]"
 | ".code_page"
 | ""
 | NULL

If locale is a null pointer, setlocale queries, rather than sets, the international environment, and returns a pointer to
the string associated with the specified category. The program's current locale setting is not changed. For example,
setlocale(LC_ALL, NULL);
returns the string associated with category.
The following examples pertain to the LC_ALL category. Either of the strings ".OCP" and ".ACP" can be used in
place of a code page number to specify use of the user-default OEM code page and user-default ANSI code page,
respectively.

setlocale(LC_ALL, "");

Sets the locale to the default, which is the user-default ANSI code page obtained from the operating system.

setlocale(LC_ALL, ".OCP");

Explicitly sets the locale to the current OEM code page obtained from the operating system.

setlocale(LC_ALL, ".ACP");

Sets the locale to the ANSI code page obtained from the operating system.

setlocale(LC_ALL, "[lang_ctry]");

Sets the locale to the language and country/region indicated, using the default code page obtained from the host
operating system.

setlocale(LC_ALL, "[lang_ctry.cp]");

file:///doc/Software I18n/Microsoft/_crt_localeconv.htm

Sets the locale to the language, country/region, and code page indicated in the [lang_ctry.cp] string. You can
use various combinations of language, country/region, and code page. For example:
setlocale(LC_ALL, "French_Canada.1252");
// Set code page to French Canada ANSI default
setlocale(LC_ALL, "French_Canada.ACP");
// Set code page to French Canada OEM default
setlocale(LC_ALL, "French_Canada.OCP");

setlocale(LC_ALL, "[lang]");

Sets the locale to the country/region indicated, using the default country/region for the language specified, and
the user-default ANSI code page for that country/region as obtained from the host operating system. For
example, the following two calls to setlocale are functionally equivalent:
setlocale(LC_ALL, "English");
setlocale(LC_ALL, "English_United States.1252");

setlocale(LC_ALL, "[.code_page]");

Sets the code page to the value indicated, using the default country/region and language (as defined by the host
operating system) for the specified code page.

The category must be either LC_ALL or LC_CTYPE to effect a change of code page. For example, if the default
country/region and language of the host operating system are "United States" and "English," the following two calls
to setlocale are functionally equivalent:
setlocale(LC_ALL, ".1252");
setlocale(LC_ALL, "English_United States.1252");

Preprocessor directive
#pragma setlocale("[locale-string]")
Defines the locale (Country/Region and language) to be used when translating wide-character constants and string
literals. Since the algorithm for converting multibyte characters to wide characters may vary by locale or the
compilation may take place in a different locale from where an executable file will be run, this pragma provides a
way to specify the target locale at compile time. This guarantees that the wide-character strings will be stored in the
correct format.
The default locale-string is "".
The "C" locale maps each character in the string to its value as a wchar_t (unsigned short). Other values that are
valid for setlocale are those entries that are found in the Language Strings list. For example, you could issue:
#pragma setlocale("dutch")
The ability to issue a language string depends on the code page and language ID support on your computer.

Language strings recognized by setlocale
The following language strings are recognized by setlocale. Any language not supported by the operating system is
not accepted by setlocale. The three-letter language-string codes are only valid in Windows 98, Windows Me,
Windows NT, Windows 2000, and Windows XP.

Primary
language Sublanguage Language string

Chinese Chinese "chinese"
Chinese Chinese (simplified) "chinese-simplified" or "chs"
Chinese Chinese (traditional) "chinese-traditional" or "cht"
Czech Czech "csy" or "czech"
Danish Danish "dan" or "danish"
Dutch Dutch (default) "dutch" or "nld"
Dutch Dutch (Belgian) "belgian", "dutch-belgian", or "nlb"
English English (default) "english"
English English (Australian) "australian", "ena", or "english-aus"
English English (Canadian) "canadian", "enc", or "english-can"
English English (New Zealand) "english-nz" or "enz"
English English (United Kingdom) "eng", "english-uk", or "uk"

English English (United States)
"american", "american english", "american-english",
"english-american", "english-us", "english-usa",
"enu", "us", or "usa"

Finnish Finnish "fin" or "finnish"
French French (default) "fra" or "french"
French French (Belgian) "frb" or "french-belgian"
French French (Canadian) "frc" or "french-canadian"
French French (Swiss) "french-swiss" or "frs"
German German (default) "deu" or "german"
German German (Austrian) "dea" or "german-austrian"
German German (Swiss) "des", "german-swiss", or "swiss"
Greek Greek "ell" or "greek"
Hungarian Hungarian "hun" or "hungarian"
Icelandic Icelandic "icelandic" or "isl"
Italian Italian (default) "ita" or "italian"
Italian Italian (Swiss) "italian-swiss" or "its"
Japanese Japanese "japanese" or "jpn"
Korean Korean "kor" or "korean"
Norwegian Norwegian (default) "norwegian"
Norwegian Norwegian (Bokmal) "nor" or "norwegian-bokmal"
Norwegian Norwegian (Nynorsk) "non" or "norwegian-nynorsk"
Polish Polish "plk" or "polish"
Portuguese Portuguese (default) "portuguese" or "ptg"
Portuguese Portuguese (Brazilian) "portuguese-brazil" or "ptb"
Russian Russian (default) "rus" or "russian"
Slovak Slovak "sky" or "slovak"
Spanish Spanish (default) "esp" or "spanish"
Spanish Spanish (Mexican) "esm" or "spanish-mexican"
Spanish Spanish (Modern) "esn" or "spanish-modern"
Swedish Swedish "sve" or "swedish"
Turkish Turkish "trk" or "turkish"

Country/Region strings recognized by setlocale
The following is a list of Country/Region strings recognized by setlocale. Strings for countries/regions that are not
supported by the operating system are not accepted by setlocale. Three-letter Country/Region-name codes are from
the International Organization for Standardization and International Electrotechnical Commission (ISO/IEC)
specification 3166.

Country/Region Country/Region string
Australia "aus" or "australia"
Austria "aut" or "austria"
Belgium "bel" or "belgium"
Brazil "bra" or "brazil"
Canada "can" or "canada"
China "china", "chn", "pr china", or "pr-china"
Czech Republic "cze" or "czech"
Denmark "dnk" or "denmark"
Finland "fin" or "finland"
France "fra" or "france"
Germany "deu" or "germany"
Greece "grc" or "greece"
Hong Kong SAR "hkg", "hong kong", or "hong-kong"
Hungary "hun" or "hungary"
Iceland "iceland" or "isl"
Ireland "irl" or "ireland"
Italy "ita" or "italy"
Japan "jpn" or "japan"
Korea "kor" or "korea"
Mexico "mex" or "mexico"
The Netherlands "nld", "holland", or "netherlands"
New Zealand "nzl", "new zealand", "new-zealand", or "nz"
Norway "nor" or "norway"
Poland "pol" or "poland"
Portugal "prt" or "portugal"
Russia "rus" or "russia"

Singapore "sgp" or "singapore"
Slovakia "svk" or "slovak"
Spain "esp" or "spain"
Sweden "swe" or "sweden"
Switzerland "che" or "switzerland"
Taiwan "twn" or "taiwan"
Turkey "tur" or "turkey"

United Kingdom "gbr", "britain", "england", "great britain", "uk", "united kingdom", or "united-
kingdom"

United States "usa", "america", "united states", "united-states", or "us"

_setmbcp
Sets a new multibyte code page.
int _setmbcp(
 int codepage
);

Return Value
Returns 0 if the code page is set successfully. If an invalid code page value is supplied for codepage, returns –1 and
the code page setting is unchanged.

Remarks
The _setmbcp function specifies a new multibyte code page. By default, the run-time system automatically sets the
multibyte code page to the system-default ANSI code page. The multibyte code page setting affects all multibyte
routines that are not locale dependent. However, it is possible to instruct _setmbcp to use the code page defined for
the current locale (see the following list of manifest constants and associated behavior results). The multibyte code
page also affects multibyte-character processing by the following run-time library routines:
_exec functions _mktemp _stat
_fullpath _spawn functions _tempnam
_makepath _splitpath tmpnam
In addition, all run-time library routines that receive multibyte-character argv or envp program arguments as
parameters (such as the _exec and _spawn families) process these strings according to the multibyte code page.
Hence, these routines are also affected by a call to _setmbcp that changes the multibyte code page.
The codepage argument can be set to any of the following values:

• _MB_CP_ANSI Use ANSI code page obtained from operating system at program startup.
• _MB_CP_LOCALE Use the current locale's code page obtained from a previous call to setlocale.
• _MB_CP_OEM Use OEM code page obtained from operating system at program startup. OEM code page

is used by MS-DOS applications.
• _MB_CP_SBCS Use single-byte code page. When the code page is set to _MB_CP_SBCS, a routine such

as _ismbblead always returns false. .
• Any other valid code page value, regardless of whether the value is an ANSI, OEM, or other operating-

system-supported code page.

List of the multibyte routines that are dependent on the locale code page rather than the multibyte code page :
Routine Use

mblen Validate and return number of bytes in multibyte character
_mbstrlen For multibyte-character strings: validate each character in string; return string length
mbstowcs Convert sequence of multibyte characters to corresponding sequence of wide characters
mbtowc Convert multibyte character to corresponding wide character
wcstombs Convert sequence of wide characters to corresponding sequence of multibyte characters
wctomb Convert wide character to corresponding multibyte character

Code Pages in Outlook 2002
The following table lists the values that are supported by the InternetCodePage property of Outlook 2002.

Name Character Set Code Page

Arabic (ISO) iso-8859-6 28596
Arabic (Windows) windows-1256 1256
Baltic (ISO) iso-8859-4 28594
Baltic (Windows) windows-1257 1257
Central European (ISO) iso-8859-2 28592

file:///doc/Software I18n/Microsoft/_crt_wctomb.htm
file:///doc/Software I18n/Microsoft/_crt_wcstombs.htm
file:///doc/Software I18n/Microsoft/_crt_mbtowc.htm
file:///doc/Software I18n/Microsoft/_crt_mbstowcs.htm
file:///doc/Software I18n/Microsoft/_crt_strlen.2c_.wcslen.2c_._mbslen.2c_._mbstrlen.htm
file:///doc/Software I18n/Microsoft/_crt__mbclen.2c_.mblen.htm
file:///doc/Software I18n/Microsoft/_crt__ismbblead.htm
file:///doc/Software I18n/Microsoft/_crt_setlocale.2c_._wsetlocale.htm
file:///doc/Software I18n/Microsoft/_crt__tempnam.2c_._wtempnam.2c_.tmpnam.2c_._wtmpnam.htm
file:///doc/Software I18n/Microsoft/_crt__splitpath.2c_._wsplitpath.htm
file:///doc/Software I18n/Microsoft/_crt__makepath.2c_._wmakepath.htm
file:///doc/Software I18n/Microsoft/_crt__tempnam.2c_._wtempnam.2c_.tmpnam.2c_._wtmpnam.htm
file:///doc/Software I18n/Microsoft/_crt__spawn.2c_._wspawn_functions.htm
file:///doc/Software I18n/Microsoft/_crt__fullpath.2c_._wfullpath.htm
file:///doc/Software I18n/Microsoft/_crt__stat.2c_._wstat.2c_._stati64.2c_._wstati64.htm
file:///doc/Software I18n/Microsoft/_crt__mktemp.2c_._wmktemp.htm
file:///doc/Software I18n/Microsoft/_crt__exec.2c_._wexec_functions.htm

Central European (Windows) windows-1250 1250
Chinese Simplified (GB2312) gb2312 936
Chinese Simplified (HZ) hz-gb-2312 52936
Chinese Traditional (Big5) big5 950
Cyrillic (ISO) iso-8859-5 28595
Cyrillic (KOI8-R) koi8-r 20866
Cyrillic (KOI8-U) koi8-u 21866
Cyrillic (Windows) windows-1251 1251
Greek (ISO) iso-8859-7 28597
Greek (Windows) windows-1253 1253
Hebrew (ISO-Logical) iso-8859-8-i 38598
Hebrew (Windows) windows-1255 1255
Japanese (EUC) euc-jp 51932
Japanese (JIS) iso-2022-jp 50220
Japanese (JIS-Allow 1 byte Kana) csISO2022JP 50221
Japanese (Shift-JIS) iso-2022-jp 932
Korean ks_c_5601-1987 949
Korean (EUC) euc-kr 51949
Latin 3 (ISO) iso-8859-3 28593
Latin 9 (ISO) iso-8859-15 28605
Thai (Windows) windows-874 874
Turkish (ISO) iso-8859-9 28599
Turkish (Windows) windows-1254 1254
Unicode (UTF-7) utf-7 65000
Unicode (UTF-8) utf-8 65001
US-ASCII us-ascii 20127
Vietnamese (Windows) windows-1258 1258
Western European (ISO) iso-8859-1 28591
Western European (Windows) Windows-1252 1252

The following table lists the code pages Microsoft recommends that you use for the best compatibility with older
mail systems.

Name Character Set Code Page
--
US-ASCII us-ascii 20127
Western European (ISO) iso-8859-1 28591
Central European (ISO) iso-8859-2 28592
Cyrillic (KOI8-R) koi8-r 20866
Cyrillic (Windows) windows-1251 1251
Turkish (ISO) iso-8859-9 28599
Greek (ISO) iso-8859-7 28597
Baltic (ISO) iso-8859-4 28594
Hebrew (Windows) windows-1255 1255
Arabic (Windows) windows-1256 1256
Thai (Windows) windows-874 874
Vietnamese (Windows) windows-1258 1258
Japanese (JIS) iso-2022-jp 50220
Chinese Simplified (GB2312) gb2312 936
Korean ks_c_5601-1987 949
Chinese Traditional (Big5) big5 950
Unicode (UTF-8) utf-8 65001

Charsets in Microsoft Internet Explorer 5
The following table contains information about the character sets supported by Internet Explorer 5, and it includes
the following information.

• Charset Friendly Name—Name used to refer to the character set.
• Preferred Charset Label— Most common identifier used to set character sets in Internet Explorer. For

example, in the previous code sample the Charset Label is windows-1251. These identifiers are used for
outbound data.

• Aliases— Other identifiers that can be used to set character sets. These identifiers are used for inbound
data.

• IE Ver— Versions of Internet Explorer that support the listed character sets.
• Min OS— Minimum operating system that supports the listed character sets.
• Code Page— Code page that supports the listed character sets.
• Family Code Page— Indicates a Microsoft Windows® code page that is used to represent all or most of

the characters in a charset.

Charset Friendly
Name

Preferred Charset
Label Aliases IE Ver Min OS Code

Page

Family
Code
Page

Arabic (ASMO 708) ASMO-708 IE5 Win95 708 1256
Arabic (DOS) DOS-720 IE5 Win95 720 1256

Arabic (ISO) iso-8859-6 arabic, csISOLatinArabic, ECMA-114, ISO_8859-6,
ISO_8859-6:1987, iso-ir-127 IE5, IE4 Win95 28596 1256

Arabic (Mac) x-mac-arabic IE5 Win2000 10004 1256
Arabic (Windows) windows-1256 cp1256 IE5 Win95 1256 1256
Baltic (DOS) ibm775 CP500 IE5 Win2000 775 1257

Baltic (ISO) iso-8859-4 csISOLatin4, ISO_8859-4, ISO_8859-4:1988, iso-ir-
110, l4, latin4 IE5 Win95 28594 1257

Baltic (Windows) windows-1257 IE5 Win95 1257 1257
Central European
(DOS) ibm852 cp852 IE5, IE4 Win95 852 1250

Central European
(ISO) iso-8859-2 csISOLatin2, iso_8859-2, iso_8859-2:1987,

iso8859-2, iso-ir-101, l2, latin2 IE5, IE4 Win95 28592 1250

Central European
(Mac) x-mac-ce IE5 Win2000 10029 1250

Central European
(Windows) windows-1250 x-cp1250 IE5 Win95 1250 1250

Chinese Simplified
(EUC) EUC-CN x-euc-cn IE5 Win2000 51936 936

Chinese Simplified
(GB2312) gb2312

chinese, CN-GB, csGB2312, csGB231280,
csISO58GB231280, GB_2312-80, GB231280,
GB2312-80, GBK, iso-ir-58

IE5, IE4 Win95 936 936

Chinese Simplified
(HZ) hz-gb-2312 IE5, IE4 Win95 52936 936

Chinese Simplified
(Mac) x-mac-chinesesimp IE5 Win2000 10008 936

Chinese Traditional
(Big5) big5 cn-big5, csbig5, x-x-big5 IE5, IE4 Win95 950 950

Chinese Traditional
(CNS) x-Chinese-CNS IE5 Win2000 20000 950

Chinese Traditional
(Eten) x-Chinese-Eten IE5 Win2000 20002 950

Chinese Traditional
(Mac) x-mac-chinesetrad IE5 Win2000 10002 950

Cyrillic (DOS) cp866 ibm866 IE5, IE4 Win95 866 1251

Cyrillic (ISO) iso-8859-5 csISOLatin5, csISOLatinCyrillic, cyrillic,
ISO_8859-5, ISO_8859-5:1988, iso-ir-144, l5 IE5, IE4 Win95 28595 1251

Cyrillic (KOI8-R) koi8-r csKOI8R, koi, koi8, koi8r IE5, IE4 Win95 20866 1251
Cyrillic (KOI8-U) koi8-u koi8-ru IE5 Win95 21866 1251
Cyrillic (Mac) x-mac-cyrillic IE5 Win2000 10007 1251
Cyrillic (Windows) windows-1251 x-cp1251 IE5 Win95 1251 1251
Europa x-Europa IE5 n.a. 29001 1252
German (IA5) x-IA5-German IE5 Win2000 20106 1252
Greek (DOS) ibm737 IE5 Win2000 737 1253

Greek (ISO) iso-8859-7 csISOLatinGreek, ECMA-118, ELOT_928, greek,
greek8, ISO_8859-7, ISO_8859-7:1987, iso-ir-126 IE5, IE4 Win95 28597 1253

Greek (Mac) x-mac-greek IE5 Win2000 10006 1253
Greek (Windows) windows-1253 IE5 Win95 1253 1253
Greek, Modern
(DOS) ibm869 IE5 Win2000 869 1253

Hebrew (DOS) DOS-862 IE5 Win95 862 1255
Hebrew (ISO-
Logical) iso-8859-8-i logical IE5, IE4 Win95 38598 1255

Hebrew (ISO-Visual) iso-8859-8 csISOLatinHebrew, hebrew, ISO_8859-8,
ISO_8859-8:1988, ISO-8859-8, iso-ir-138, visual IE5, IE4 Win95 28598 1255

Hebrew (Mac) x-mac-hebrew IE5 Win2000 10005 1255
Hebrew (Windows) windows-1255 ISO_8859-8-I, ISO-8859-8, visual IE5 Win95 1255 1255
IBM EBCDIC
(Arabic) x-EBCDIC-Arabic IE5 Win2000 20420 1256

IBM EBCDIC
(Cyrillic Russian)

x-EBCDIC-
CyrillicRussian IE5 Win2000 20880 1251

IBM EBCDIC
(Cyrillic Serbian-
Bulgarian)

x-EBCDIC-
CyrillicSerbianBulgaria
n

IE5 Win2000 21025 1251

IBM EBCDIC
(Denmark-Norway)

x-EBCDIC-
DenmarkNorway IE5 Win2000 20277 1252

IBM EBCDIC
(Denmark-Norway-
Euro)

x-ebcdic-
denmarknorway-euro IE5 Win2000 1142 1252

IBM EBCDIC
(Finland-Sweden)

x-EBCDIC-
FinlandSweden IE5 Win2000 20278 1252

IBM EBCDIC x-ebcdic- IE5 Win2000 1143 1252

Charset Friendly
Name

Preferred Charset
Label Aliases IE Ver Min OS Code

Page

Family
Code
Page

(Finland-Sweden-
Euro) finlandsweden-euro

IBM EBCDIC
(Finland-Sweden-
Euro)

x-ebcdic-
finlandsweden-euro X-EBCDIC-France IE5 Win2000 1143 1252

IBM EBCDIC
(France-Euro) x-ebcdic-france-euro IE5 Win2000 1147 1252

IBM EBCDIC
(Germany) x-EBCDIC-Germany IE5 Win2000 20273 1252

IBM EBCDIC
(Germany-Euro) x-ebcdic-germany-euro IE5 Win2000 1141 1252

IBM EBCDIC (Greek
Modern)

x-EBCDIC-
GreekModern IE5 Win2000 875 1253

IBM EBCDIC
(Greek) x-EBCDIC-Greek IE5 Win2000 20423 1253

IBM EBCDIC
(Hebrew) x-EBCDIC-Hebrew IE5 Win2000 20424 1255

IBM EBCDIC
(Icelandic) x-EBCDIC-Icelandic IE5 Win2000 20871 1252

IBM EBCDIC
(Icelandic-Euro) x-ebcdic-icelandic-euro IE5 Win2000 1149 1252

IBM EBCDIC
(International-Euro)

x-ebcdic-international-
euro IE5 Win2000 1148 1252

IBM EBCDIC (Italy) x-EBCDIC-Italy IE5 Win2000 20280 1252
IBM EBCDIC (Italy-
Euro) x-ebcdic-italy-euro IE5 Win2000 1144 1252

IBM EBCDIC
(Japanese and
Japanese Katakana)

x-EBCDIC-
JapaneseAndKana IE5 Win2000 50930 932

IBM EBCDIC
(Japanese and
Japanese-Latin)

x-EBCDIC-
JapaneseAndJapaneseL
atin

IE5 Win2000 50939 932

IBM EBCDIC
(Japanese and US-
Canada)

x-EBCDIC-
JapaneseAndUSCanada IE5 Win2000 50931 932

IBM EBCDIC
(Japanese katakana)

x-EBCDIC-
JapaneseKatakana IE5 Win2000 20290 932

IBM EBCDIC
(Korean and Korean
Extended)

x-EBCDIC-
KoreanAndKoreanExte
nded

IE5 Win2000 50933 949

IBM EBCDIC
(Korean Extended)

x-EBCDIC-
KoreanExtended IE5 Win2000 20833 949

IBM EBCDIC
(Multilingual Latin-
2)

CP870 IE5 Win2000 870 1250

IBM EBCDIC
(Simplified Chinese)

x-EBCDIC-
SimplifiedChinese IE5 Win2000 50935 936

IBM EBCDIC
(Spain) X-EBCDIC-Spain IE5 Win2000 20284 1252

IBM EBCDIC
(Spain-Euro) x-ebcdic-spain-euro IE5 Win2000 1145 1252

IBM EBCDIC (Thai) x-EBCDIC-Thai IE5 Win2000 20838 874
IBM EBCDIC
(Traditional Chinese)

x-EBCDIC-
TraditionalChinese IE5 Win2000 50937 950

IBM EBCDIC
(Turkish Latin-5) CP1026 IE5 Win2000 1026 1254

IBM EBCDIC
(Turkish) x-EBCDIC-Turkish IE5 Win2000 20905 1254

IBM EBCDIC (UK) x-EBCDIC-UK IE5 Win2000 20285 1252
IBM EBCDIC (UK-
Euro) x-ebcdic-uk-euro IE5 Win2000 1146 1252

IBM EBCDIC (US-
Canada) ebcdic-cp-us IE5 Win2000 37 1252

IBM EBCDIC (US-
Canada-Euro) x-ebcdic-cp-us-euro IE5 Win2000 1140 1252

Icelandic (DOS) ibm861 IE5 Win2000 861 1252
Icelandic (Mac) x-mac-icelandic IE5 Win2000 10079 1252
ISCII Assamese x-iscii-as IE5 Win2000 57006 57006
ISCII Bengali x-iscii-be IE5 Win2000 57003 57003
ISCII Devanagari x-iscii-de IE5 Win2000 57002 57002
ISCII Gujarathi x-iscii-gu IE5 Win2000 57010 57010
ISCII Kannada x-iscii-ka IE5 Win2000 57008 57008
ISCII Malayalam x-iscii-ma IE5 Win2000 57009 57009
ISCII Oriya x-iscii-or IE5 Win2000 57007 57007

Charset Friendly
Name

Preferred Charset
Label Aliases IE Ver Min OS Code

Page

Family
Code
Page

ISCII Panjabi x-iscii-pa IE5 Win2000 57011 57011
ISCII Tamil x-iscii-ta IE5 Win2000 57004 57004
ISCII Telugu x-iscii-te IE5 Win2000 57005 57005

Japanese (EUC) euc-jp
csEUCPkdFmtJapanese,
Extended_UNIX_Code_Packed_Format_for_Japane
se, x-euc, x-euc-jp

IE5, IE4 Win95 51932 932

Japanese (JIS) iso-2022-jp IE5, IE4 Win95 50220 932
Japanese (JIS-Allow
1 byte Kana - SO/SI) iso-2022-jp _iso-2022-jp$SIO IE5 Win95 50222 932

Japanese (JIS-Allow
1 byte Kana) csISO2022JP _iso-2022-jp IE5 Win95 50221 932

Japanese (Mac) x-mac-japanese IE5 Win2000 10001 932

Japanese (Shift-JIS) shift_jis csShiftJIS, csWindows31J, ms_Kanji, shift-jis, x-
ms-cp932, x-sjis IE5, IE4 Win95 932 932

Korean ks_c_5601-1987
csKSC56011987, euc-kr, iso-ir-149, korean,
ks_c_5601, ks_c_5601_1987, ks_c_5601-1989,
KSC_5601, KSC5601

IE5 Win95 949 949

Korean (EUC) euc-kr csEUCKR IE5 Win95 51949 949
Korean (ISO) iso-2022-kr csISO2022KR IE5 Win95 50225 949
Korean (Johab) Johab IE5 Win2000 1361 1361
Korean (Mac) x-mac-korean IE5 Win2000 10003 949

Latin 3 (ISO) iso-8859-3 csISO, Latin3, ISO_8859-3, ISO_8859-3:1988, iso-
ir-109, l3, latin3 IE5, IE4 Win95 28593 1254

Latin 9 (ISO) iso-8859-15 csISO, Latin9, ISO_8859-15, l9, latin9 IE5 Win95 28605 1252
Norwegian (IA5) x-IA5-Norwegian IE5 Win2000 20108 1252
OEM United States IBM437 437, cp437, csPC8, CodePage437 IE5 Win2000 437 1252
Swedish (IA5) x-IA5-Swedish IE5 Win2000 20107 1252
Thai (Windows) windows-874 DOS-874, iso-8859-11, TIS-620 IE5, IE4 Win95 874 874
Turkish (DOS) ibm857 IE5 Win2000 857 1254

Turkish (ISO) iso-8859-9 csISO, Latin5, ISO_8859-9, ISO_8859-9:1989, iso-
ir-148, l5, latin5 IE5 Win95 28599 1254

Turkish (Mac) x-mac-turkish IE5 Win2000 10081 1254

Turkish (Windows) windows-1254 ISO_8859-9, ISO_8859-9:1989, iso-8859-9, iso-ir-
148, latin5 IE5 Win95 1254 1254

Unicode unicode utf-16 IE5, IE4 Win95 1200 1200
Unicode (Big-
Endian) unicodeFFFE IE5, IE4 Win95 1201 1200

Unicode (UTF-7) utf-7 csUnicode11UTF7, unicode-1-1-utf-7, x-unicode-2-
0-utf-7 IE5, IE4 Win95 65000 1200

Unicode (UTF-8) utf-8 unicode-1-1-utf-8, unicode-2-0-utf-8, x-unicode-2-0-
utf-8 IE5, IE4 Win95 65001 1200

US-ASCII us-ascii
ANSI_X3.4-1968, ANSI_X3.4-1986, ascii, cp367,
csASCII, IBM367, ISO_646.irv:1991, ISO646-US,
iso-ir-6us

IE5 Win95 20127 1252

Vietnamese
(Windows) windows-1258 IE5, IE4 Win95 1258 1258

Western European
(DOS) ibm850 IE5 Win2000 850 1252

Western European
(IA5) x-IA5 IE5 Win2000 20105 1252

Western European
(ISO) iso-8859-1 cp819, csISO, Latin1, ibm819, iso_8859-1,

iso_8859-1:1987, iso8859-1, iso-ir-100, l1, latin1 IE5 Win95 28591 1252

Western European
(Mac) macintosh IE5 Win2000 10000 1252

Western European
(Windows) Windows-1252

ANSI_X3.4-1968, ANSI_X3.4-1986, ascii, cp367,
cp819, csASCII, IBM367, ibm819,
ISO_646.irv:1991, iso_8859-1, iso_8859-1:1987,
ISO646-US, iso8859-1, iso-8859-1, iso-ir-100, iso-
ir-6, latin1, us, us-ascii, x-ansi

IE5 Win95 1252 1252

How to Encode XML Data
By Chris Lovett
Microsoft Corporation
March 2000
Summary: This article explains how character encoding works and specifically how it works in XML and the
MSXML DOM.

A lot of people have been asking me questions lately about how to make their XML files transfer data properly
between different platforms. They create an XML document, type in data, stick a few tags around it, make the tags
well-formed, and even put the <?xml version="1.0"?> declaration in for good measure. Then they try and load it up
but get an unexpected error message from the Microsoft® XML Parser (MSXML) saying that there's something
wrong with their data. This can be frustrating to the new XML author. Shouldn't it just work?
Well, not quite. It's likely that when you receive the unexpected error message from MSXML, the platform that is
receiving your data stores it differently than the platform from which you sent it, resulting in character encoding
problems.

Cross-Platform Data Formats
Creating cross-platform technologies and allowing different platforms to share data is an area that computer
software and hardware industries have struggled with ever since they managed to connect two computers together.
Since the early days, things have only become more and more complex with the explosion in the number of different
types of computers, different ways of connecting them, and different kinds of data that you might want to share
between them.
After decades of research into cross-platform programming technologies, the only real cross-platform solution today
(and probably for a long time to come) is that which is achieved by simple standard data formats. The success of the
Web was built on exactly these formats. The main thing that passes between Web servers and Web browsers today
is HTTP headers and HTML pages, both of which are standard text formats.
In the next few sections, I'll discuss character encoding and standard character sets, Unicode, the HTML Content-
Type header, the HTML Content-Type metatags, and character entities. If you are familiar with these concepts, you
can skip ahead to the tips and tricks of encoding XML data for the XML Document Object Model (DOM)
programmer. For details, see XML and Character Encoding.

A Lesson in Character Encoding
Standard text formats are built on standard character sets. Remember that all computers store text as numbers.
However, different systems can also store the same text using different numbers. The following table shows how a
range of bytes is stored, first on a typical computer running Microsoft Windows® using the default code page 1252,
and second on a typical Apple® Macintosh® computer using the Macintosh Roman code page.

Byte Windows Macintosh
140 Œ å
229 å Â
231 ç Á
232 è Ë
233 é È
For example, when your grandma places an order for a new book from http://www.barnesandnoble.com/, she is
unaware that her Macintosh computer stores its characters differently than the new Windows 2000 Web server
running www.barnesandnoble.com. As she enters your Swedish home address in the ship-to field of the Internet
order form, she believes the Internet will correctly deliver the character å (byte value 140 on her Macintosh),
unaware that her message will be received and processed by computers that translate byte value 140 as the letter Œ.

Unicode
The Unicode Consortium decided it would be a good idea to define one universal code page (using 2 bytes instead
of one per character) that covers all the languages of the world so that this mapping problem between different code
pages would be gone forever.
So if Unicode solves cross-platform character encoding issues, why hasn't it become the only standard? The first
problem is that switching to Unicode sometimes means doubling the size of all your files-which in a network-bound
world is not ideal. Some people therefore still prefer to use the older, single-byte character sets such as ISO-8859-1
to ISO-8859-15, Shift-JIS, EUC-KR, and so forth.
The second problem is that there are still many systems out there that are not Unicode-based at all, which means that
on a network, some of the byte values that make up the Unicode characters can cause major problems for those older

http://www.unicode.org/
http://www.barnesandnoble.com/

systems. So Unicode Transformation Formats (UTF) have been defined; they use bit-shifting techniques to encode
Unicode characters as byte values that will be "transparent" (or flow through safely) on those older systems.
The most popular of these character encodings is UTF-8. UTF-8 takes the first 127 characters of the Unicode
standard (which happen to be the basic Latin characters, A-Z, a-z, and 0-9, and a few punctuation characters) and
maps those directly to single byte values. It then applies a bit-shifting technique using the high bit of the bytes to
encode the rest of the Unicode characters. The result of all this is that the little Swedish character å (0xE5) becomes
the following 2-byte gibberish Ã¥ (0xC3 0xA5). So unless you can do bit shifting in your head, data encoded in
UTF-8 is not human readable.

Content-Type Header
Because the older single-byte character sets are still in use, the problem of transferring data is not solved until we
also specify what actual character set the data is in. Recognizing this, the Internet e-mail and HTTP protocols groups
defined a standard way to specify the character set in the message header Content-Type property. The property
specifies a character set from the list of the registered character set names defined by the Internet Assigned Numbers
Authority (IANA). A typical HTTP header might contain the following text:
HTTP/1.1 200 OK
Content-Length: 15327
Content-Type: text/html; charset:ISO-8859-1;
Server: Microsoft-IIS/5.0
Content-Location: http://www.microsoft.com/Default.htm
Date: Wed, 08 Dec 1999 00:55:26 GMT
Last-Modified: Mon, 06 Dec 1999 22:56:30 GMT
This header indicates to the application that what follows after the header is in the ISO-8859-1 character set.

Content-Type Metatags
The Content-Type property is optional, and in some applications, the HTTP header information is stripped off and
just the HTML itself is passed along. To remedy this, the HTML standards group defined an optional metatag as a
way to specify the character set in the HTML document itself, making the HTML document character set self-
describing.
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=ISO-8859-1">
In this case, the character set ISO-8859-1 declares that in this particular HTML page, the byte value of 229 means å.
This page is now completely unambiguous on any system, and data is not misinterpreted. Unfortunately, because
this metatag is optional, it leaves room for error.

Character Entities
Not every system supports every registered character set. For example, I don't think many platforms actually support
the IBM mainframe character set called EBCDIC. Windows NT does, but probably not many others-which is most
likely why the http://www.ibm.com home page is generating ASCII.
As a backup plan, HTML allows the encoding of individual characters in the page by specifying their exact Unicode
character value. These character entities are then parsed independently of the character set, and their Unicode values
can be determined unambiguously. The syntax for this is "å" or "å".

XML and Character Encoding
XML borrowed these ideas from HTML and took them even further, defining a completely unambiguous algorithm
to determine the character set encoding used. In XML, an optional encoding attribute on the XML declaration
defines the character encoding. The following algorithm determines the default encodings:
If the file starts with a Unicode byte-order mark [0xFF 0xFE] or [0xFE 0xFF], the document is considered to be in
UTF-16 encoding. Otherwise, it is in UTF-8.
The following are all correct and equivalent XML documents:

Character set or encoding HTTP header XML document

ISO-8859-1 Content-Type: text/xml;
charset:ISO-8859-1; <test>å</test>

UTF-8 Content-Type: text/xml; <test>Ã¥</test>

ISO-8859-1 Content-Type: text/xml;
<?xml version="1.0" encoding="ISO-8859-
1"?>
<test>å</test>

UTF-8 (using character entities) Content-Type: text/xml; <test>å</test>
UTF-16 (Unicode with byte-
order mark)

Content-Type: text/xml; ff fe 3c 00 74 00 65 00 73 00 74 00 3e 00 e5
00 ..<.t.e.s.t.>...
3c 00 2f 00 74 00 65 00 73 00 74 00 3e 00 0d

http://www.ibm.com/
http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

00 <./.t.e.s.t.>...
0a 00

Character Sets and the MSXML DOM
Now that we've discussed various ways to encode characters, let's look at how to load XML documents in the
MSXML DOM and the types of error messages you might get when encountering ambiguously-encoded characters.
The two main methods of loading XML DOM documents are the LoadXML method and the Load method.
The LoadXML method always takes a Unicode BSTR that is encoded in UCS-2 or UTF-16 only. If you pass in
anything other than a valid Unicode BSTR to LoadXML, it will fail to load.
The Load method can take the following as a VARIANT:

Value Description
URL If the VARIANT is a BSTR, it is interpreted as a URL.
VT_ARRAY | VT_UI1 The VARIANT can also be a SAFEARRAY containing the raw encoded bytes.

IUnknown If the VARIANT is an IUnknown interface, the DOM document calls
QueryInterface for IStream, IPersistStream, and IPersistStreamInit.

The Load method implements the following algorithm for determining the character encoding or character set of the
XML document:

• If the Content-Type HTTP header defines a character set, this character set overrides anything in the XML
document itself. This obviously doesn't apply to SAFEARRAY and IStream mechanisms because there is
no HTTP header.

• If there is a 2-byte Unicode byte-order mark, it assumes the encoding is UTF-16. It can handle both big
endian and little endian.

• If there is a 4-byte Unicode byte order mark (0xFF 0xFE 0xFF 0xFE), it assumes the encoding is UTF-32.
It can handle both big endian and lttle endian.

• Otherwise, it assumes the encoding is UTF-8 unless it finds an XML declaration with an encoding attribute
that specifies some other character set (such as ISO-8859-1, Windows-1252, Shift-JIS, and so on).

There are two errors you will see returned from the XML DOM that indicate encoding problems. The first usually
indicates that a character in the document does not match the encoding of the XML document:
An invalid character was found in text content.
The ParseError object will tell you exactly where on a particular line this rogue character occurs so that you can fix
the problem.
The second error indicates that you started off with a Unicode byte-order mark (or you called the LoadXML
method), and then an encoding attribute specified something other than a 2-byte encoding (such as UTF-8 or
Windows-1250):
Switch from current encoding to specified encoding not supported.
Alternatively, you could have called the Load method and started off with a single-byte encoding (no byte-order
mark), but then it found an encoding attribute that specified a 2- or 4-byte encoding (such as UTF-16 or UCS-4).
The bottom line is that you cannot switch between a multibyte character set like UTF-8, Shift-JIS, or Windows-1250
and Unicode character encodings such as UTF-16, UCS-2, or UCS-4 using the encoding attribute on an XML
declaration, because the declaration itself has to use the same number of bytes per character as the rest of the
document.
Lastly, the IXMLHttpRequest interface provides the following ways of accessing downloaded data:

Methods Description

ResponseXML Represents the response entity body as parsed by the MSXML DOM parser,
using the same rules as the Load method.

ResponseText
Represents the response entity body as a string. This method blindly decodes
the received message body from UTF-8. This is a known problem that should
be fixed in the upcoming MSXML Web Release.

ResponseBody Represents the response entity body as an array of unsigned bytes.
ResponseStream Represents the response entity body as an IStream interface.

Creating New XML Documents with MSXML
Once the XML document is loaded, you can manipulate that XML document using the DOM without concern for
any encoding issues because the document is stored in memory as Unicode. All the XML DOM interfaces are based
on COM BSTRs, which are 2-byte Unicode strings. This means you can build an MSXML DOM document from
scratch in memory that contains all sorts of Unicode characters and all components will be able to share this DOM
in memory without any confusion over the meaning of the Unicode character values. When you save this, however,
MSXML will encode all data in UTF-8 by default. For example, suppose you do the following:

var xmldoc = new ActiveXObject("Microsoft.XMLDOM")
var e = xmldoc.createElement("test");
e.text = "å";
xmldoc.appendChild(e);
xmldoc.save("foo.xml");
The following UTF-8 encoded file will result:
<test>Ã¥</test>

Note The preceding example will only work if you run the code outside the browser environment. Calling
the Save method while inside the browser will not produce the same results because of security restrictions.

Even though this looks weird, it is correct. The following test loads up the UTF-8 encoded file and tests whether the
UTF-8 is decoded back to the Unicode character value 229. It is:
var xmldoc = new ActiveXObject("Microsoft.XMLDOM")
xmldoc.load("foo.xml");
if (xmldoc.documentElement.text.charCodeAt(0) == 229)
{
 WScript.echo("Yippee - it worked !!");
}
To change the encoding that the XML DOM Save method uses, you need to create an XML declaration with an
encoding attribute at the top of your document as follows:
var pi = xmldoc.createProcessingInstruction("xml",
 " version='1.0' encoding='ISO-8859-1'");
xmldoc.appendChild(pi);
When you call the save method, you will then get an ISO-8859-1 encoded file as follows:
<?xml version="1.0" encoding="ISO-8859-1"?>
<test>å</test>
Now, be careful you don't let the XML property confuse you. The XML property returns a Unicode string. If you
call the XML property on the DOMDocument object after creating the ISO-8859-1 encoding declaration, you will
get the following Unicode string back:
<?xml version="1.0"?>
<test>å</test>
Notice that the ISO-8859-1 encoding declaration is gone. This is normal. The reason it did this is so that you can
turn around and call LoadXML with this string and it will work. If it does not do this, LoadXML will fail with the
error message: "Switch from current encoding to specified encoding not supported."

Conclusion
Hopefully this article has helped explain how character encoding works and specifically how it works in XML and
the MSXML DOM. Character set encoding is pretty simple once you understand it, and XML is great because it
leaves no room for ambiguity in this respect. The MSXML DOM has a few quirks to watch out for, but it remains a
powerful tool that allows you to both read and write any XML encoding.

For More Information
• Microsoft MSDN Online Library: XML DOM Reference
• Character Encoding Model by Ken Whistler and Mark Davis
• IANA Character Sets
• Internet Engineering Task Force (IETF) at http://www.ietf.org for a list of RFCs
• Microsoft Global Software Development: Compatibility Issues with Mixed Environments

file:///isapi/gomscom.asp?target=/globaldev/dis_v1/disv1.asp?DID=dis42d&File=S24b2_d.asp
http://www.ietf.org/
http://www.iana.org/assignments/character-sets
http://www.unicode.org/unicode/reports/tr17/
file:///library/en-us/xmlsdk30/htm/xmmscxmlreference.asp

Unicode Programming Summary
To take advantage of the MFC and C run-time support for Unicode, you need to:

• Define _UNICODE.
Define the symbol _UNICODE before you build your program.
Il faut définir UNICODE pour indiquer qu'on est client des fonctions wide et _UNICODE pour indiquer
qu'on compile des fonctions wide.

• Specify entry point.
In the Output page of the Linker folder in the project's Property Pages dialog box, set the Entry Point
symbol to wWinMainCRTStartup.
Si la fonction wMain ou wWinMain est définie, alors pas besoin de spécifier le point d'entrée.

• Use "portable" run-time functions and types.
Use the proper C run-time functions for Unicode string handling. You can use the wcs family of functions,
but you may prefer the fully "portable" (internationally enabled) _TCHAR macros. These macros are all
prefixed with _tcs; they substitute, one for one, for the str family of functions. These functions are
described in detail in the Internationalization section of the Run-Time Library Reference. For more
information, see Generic-Text Mappings in TCHAR.H.
Use _TCHAR and the related portable data types described in Support for Unicode.

• Handle literal strings properly.
The Visual C++ compiler interprets a literal string coded as
L"this is a literal string"
to mean a string of Unicode characters. You can use the same prefix for literal characters. Use the _T
macro to code literal strings generically, so they compile as Unicode strings under Unicode or as ANSI
strings (including MBCS) without Unicode. For example, instead of:
pWnd->SetWindowText("Hello");
use:
pWnd->SetWindowText(_T("Hello"));
With _UNICODE defined, _T translates the literal string to the L-prefixed form; otherwise, _T translates
the string without the L prefix.

Tip The _T macro is identical to the _TEXT macro.

• Be careful passing string lengths to functions.
Some functions want the number of characters in a string; others want the number of bytes. For example, if
_UNICODE is defined, the following call to a CArchive object will not work (str is a CString):
archive.Write(str, str.GetLength()); // invalid
In a Unicode application, the length gives you the number of characters but not the correct number of bytes,
since each character is two bytes wide. Instead, you must use:
archive.Write(str, str.GetLength() * sizeof(_TCHAR)); // valid
which specifies the correct number of bytes to write.
However, MFC member functions that are character-oriented, rather than byte-oriented, work without this
extra coding:
pDC->TextOut(str, str.GetLength());
CDC::TextOut takes a number of characters, not a number of bytes.

To summarize, MFC and the run-time library provide the following support for Unicode programming under
Windows 2000:

• Except for database class member functions, all MFC functions are Unicode-enabled, including CString.
CString also provides Unicode/ANSI conversion functions.

• The run-time library supplies Unicode versions of all string-handling functions. (The run-time library also
supplies "portable" versions suitable for Unicode or for MBCS. These are the _tcs macros.)

• TCHAR.H supplies portable data types and the _T macro for translating literal strings and characters. See
Generic-Text Mappings in TCHAR.H.

• The run-time library provides a wide-character version of main. Use wmain to make your application
"Unicode-aware."

Unicode Enabling

To write Unicode-enabled software
1 Use:

• generic data types TCHAR, LPTSTR for text

file:///doc/Software I18n/Microsoft/_core_generic.2d.text_mappings_in_tchar..h.htm
file:///doc/Software I18n/Microsoft/_core_support_for_unicode.htm
file:///doc/Software I18n/Microsoft/_core_generic.2d.text_mappings_in_tchar..h.htm
file:///doc/Software I18n/Microsoft/vcurfprojectpropertypages.htm

• LPVOID for pointers of indeterminate type
• explicit types LPBYTE for byte pointers
• the TEXT macro
• generic function prototypes

2 Avoid:
• algorithms that assume small character sets
• translation to and from code pages
• assuming a character size

Entry point in DLL and EXE
When you link your image, you either explicitly or implicitly specify an entry point that the operating system will
call into after loading the image. For a DLL, the default entry point is DllMainCRTStartup. For an EXE, it is
WinMainCRTStartup.

Linker option
The /ENTRY option specifies a function as the starting address for an .exe file or DLL.

The function must be defined with the __stdcall calling convention. The parameters and return value must be
defined as documented in the Win32 API for WinMain (for an .exe file) or DllEntryPoint (for a DLL). It is
recommended that you let the linker set the entry point so that the C run-time library is initialized correctly, and C++
constructors for static objects are executed.
By default, the starting address is a function name from the C run-time library. The linker selects it according to the
attributes of the program, as shown in the following table.

Function name Default for
mainCRTStartup (or
wmainCRTStartup) An application using /SUBSYSTEM:CONSOLE; calls main (or wmain)

WinMainCRTStartup (or
wWinMainCRTStartup)

An application using /SUBSYSTEM:WINDOWS; calls WinMain (or
wWinMain), which must be defined with __stdcall

_DllMainCRTStartup A DLL; calls DllMain, which must be defined with __stdcall, if it exists

If the /DLL or /SUBSYSTEM option is not specified, the linker selects a subsystem and entry point depending on
whether main or WinMain is defined.
The functions main, WinMain, and DllMain are the three forms of the user-defined entry point.

file:///doc/Software I18n/Microsoft/_core_.2f.subsystem.htm
file:///doc/Software I18n/Microsoft/_core_.2f.dll.htm

Using Generic-Text Mappings
Microsoft Specific
To simplify code development for various international markets, the Microsoft run-time library provides Microsoft-
specific "generic-text" mappings for many data types, routines, and other objects. These mappings are defined in
TCHAR.H. You can use these name mappings to write generic code that can be compiled for any of the three kinds
of character sets: ASCII (SBCS), MBCS, or Unicode, depending on a manifest constant you define using a #define
statement. Generic-text mappings are Microsoft extensions that are not ANSI compatible.

Preprocessor Directives for Generic-Text Mappings
#define Compiled version Example

_UNICODE Unicode (wide-character) _tcsrev maps to _wcsrev
_MBCS Multibyte-character _tcsrev maps to _mbsrev
None (the default: neither
_UNICODE nor _MBCS
defined)

SBCS (ASCII) _tcsrev maps to strrev

For example, the generic-text function _tcsrev, defined in TCHAR.H, maps to mbsrev if MBCS has been defined
in your program, or to _wcsrev if _UNICODE has been defined. Otherwise _tcsrev maps to strrev.
The generic-text data type _TCHAR, also defined in TCHAR.H, maps to type char if _MBCS is defined, to type
wchar_t if _UNICODE is defined, and to type char if neither constant is defined. Other data type mappings are
provided in TCHAR.H for programming convenience, but _TCHAR is the type that is most useful.

Generic-Text Data Type Mappings
Generic-text data type

name
SBCS (_UNICODE, _MBCS not

defined) _MBCS defined _UNICODE defined
_TCHAR char char wchar_t
_TINT int int wint_t
_TSCHAR signed char signed char wchar_t
_TUCHAR unsigned char unsigned char wchar_t
_TXCHAR char unsigned char wchar_t

_T or _TEXT No effect (removed by
preprocessor)

No effect (removed by
preprocessor)

L (converts following
character or string to its
Unicode counterpart)

For a complete list of generic-text mappings of routines, variables, and other objects, see Generic-Text Mappings.
The following code fragments illustrate the use of _TCHAR and _tcsrev for mapping to the MBCS, Unicode, and
SBCS models.
_TCHAR *RetVal, *szString;
RetVal = _tcsrev(szString);
If MBCS has been defined, the preprocessor maps the preceding fragment to the following code:
char *RetVal, *szString;
RetVal = _mbsrev(szString);
If _UNICODE has been defined, the preprocessor maps the same fragment to the following code:
wchar_t *RetVal, *szString;
RetVal = _wcsrev(szString);
If neither _MBCS nor _UNICODE has been defined, the preprocessor maps the fragment to single-byte ASCII
code, as follows:
char *RetVal, *szString;
RetVal = strrev(szString);
Thus you can write, maintain, and compile a single source code file to run with routines that are specific to any of
the three kinds of character sets.
END Microsoft Specific

file:///doc/Software I18n/Microsoft/_crt_generic.2d.text_mappings.htm

String Manipulation
These routines operate on null-terminated single-byte character, wide-character, and multibyte-character strings. Use
the buffer-manipulation routines, described in Buffer Manipulation, to work with character arrays that do not end
with a null character.
String-Manipulation Routines

Routine Use
_mbscoll, _mbsicoll, _mbsncoll,
_mbsnicoll

Compare two multibyte-character strings using multibyte code page information
(_mbsicoll and _mbsnicoll are case-insensitive)

_mbsdec, _strdec, _wcsdec Move string pointer back one character
_mbsinc, _strinc, _wcsinc Advance string pointer by one character

_mbslen Get number of multibyte characters in multibyte-character string; dependent upon
OEM code page

_mbsnbcat Append, at most, first n bytes of one multibyte-character string to another
_mbsnbcmp Compare first n bytes of two multibyte-character strings
_mbsnbcnt Return number of multibyte-character bytes within supplied character count
_mbsnbcpy Copy n bytes of string
_mbsnbicmp Compare n bytes of two multibyte-character strings, ignoring case
_mbsnbset Set first n bytes of multibyte-character string to specified character
_mbsnccnt Return number of multibyte characters within supplied byte count
_mbsnextc, _strnextc,
_wcsnextc Find next character in string

_mbsninc. _strninc, _wcsninc Advance string pointer by n characters
_mbsspnp, _strspnp, _wcsspnp Return pointer to first character in given string that is not in another given string
_mbstrlen Get number of multibyte characters in multibyte-character string; locale-dependent
_scprintf, _scwprintf Return the number of characters in a formatted string
_snscanf, _snwscanf Read formatted data of a specified length from the standard input stream.
sprintf, _stprintf Write formatted data to a string
strcat, wcscat, _mbscat Append one string to another
strchr, wcschr, _mbschr Find first occurrence of specified character in string
strcmp, wcscmp, _mbscmp Compare two strings
strcoll, wcscoll, _stricoll,
_wcsicoll, _strncoll, _wcsncoll,
_strnicoll, _wcsnicoll

Compare two strings using current locale code page information (_stricoll,
_wcsicoll, _strnicoll, and _wcsnicoll are case-insensitive)

strcpy, wcscpy, _mbscpy Copy one string to another
strcspn, wcscspn, _mbscspn, Find first occurrence of character from specified character set in string
_strdup, _wcsdup, _mbsdup Duplicate string
strerror, _wcserror Map error number to message string
_strerror, __wcserror Map user-defined error message to string
strftime, wcsftime Format date-and-time string
_stricmp, _wcsicmp, _mbsicmp Compare two strings without regard to case
strlen, wcslen, _mbslen,
_mbstrlen Find length of string

_strlwr, _wcslwr, _mbslwr Convert string to lowercase
strncat, wcsncat, _mbsncat Append characters of string
strncmp, wcsncmp, _mbsncmp Compare characters of two strings
strncpy, wcsncpy, _mbsncpy Copy characters of one string to another
_strnicmp, _wcsnicmp,
_mbsnicmp Compare characters of two strings without regard to case

_strnset, _wcsnset, _mbsnset Set first n characters of string to specified character
strpbrk, wcspbrk, _mbspbrk Find first occurrence of character from one string in another string
strrchr, wcsrchr,_mbsrchr Find last occurrence of given character in string
_strrev, _wcsrev,_mbsrev Reverse string
_strset, _wcsset, _mbsset Set all characters of string to specified character
strspn, wcsspn, _mbsspn Find first substring from one string in another string
strstr, wcsstr, _mbsstr Find first occurrence of specified string in another string
strtok, wcstok, _mbstok Find next token in string
_strupr, _wcsupr, _mbsupr Convert string to uppercase
strxfrm, wcsxfrm Transform string into collated form based on locale-specific information
vsprintf, _vstprint Write formatted output using a pointer to a list of arguments

file:///doc/Software I18n/Microsoft/_crt_vsprintf.2c_.vswprintf.htm
file:///doc/Software I18n/Microsoft/_crt_strxfrm.2c_.wcsxfrm.htm
file:///doc/Software I18n/Microsoft/_crt__strupr.2c_._wcsupr.2c_._mbsupr.htm
file:///doc/Software I18n/Microsoft/_crt_strtok.2c_.wcstok.2c_._mbstok.htm
file:///doc/Software I18n/Microsoft/_crt_strstr.2c_.wcsstr.2c_._mbsstr.htm
file:///doc/Software I18n/Microsoft/_crt_strspn.2c_.wcsspn.2c_._mbsspn.htm
file:///doc/Software I18n/Microsoft/_crt__strset.2c_._wcsset.2c_._mbsset.htm
file:///doc/Software I18n/Microsoft/_crt__strrev.2c_._wcsrev.2c_._mbsrev.htm
file:///doc/Software I18n/Microsoft/_crt_strrchr.2c_.wcsrchr.2c_._mbsrchr.htm
file:///doc/Software I18n/Microsoft/_crt_strpbrk.2c_.wcspbrk.2c_._mbspbrk.htm
file:///doc/Software I18n/Microsoft/_crt__strnset.2c_._wcsnset.2c_._mbsnset.htm
file:///doc/Software I18n/Microsoft/_crt__strnicmp.2c_._wcsnicmp.2c_._mbsnicmp.htm
file:///doc/Software I18n/Microsoft/_crt__strnicmp.2c_._wcsnicmp.2c_._mbsnicmp.htm
file:///doc/Software I18n/Microsoft/_crt_strncpy.2c_.wcsncpy.2c_._mbsncpy.htm
file:///doc/Software I18n/Microsoft/_crt_strncmp.2c_.wcsncmp.2c_._mbsncmp.htm
file:///doc/Software I18n/Microsoft/_crt_strncat.2c_.wcsncat.2c_._mbsncat.htm
file:///doc/Software I18n/Microsoft/_crt__strlwr.2c_._wcslwr.2c_._mbslwr.htm
file:///doc/Software I18n/Microsoft/_crt_strlen.2c_.wcslen.2c_._mbslen.2c_._mbstrlen.htm
file:///doc/Software I18n/Microsoft/_crt_strlen.2c_.wcslen.2c_._mbslen.2c_._mbstrlen.htm
file:///doc/Software I18n/Microsoft/_crt__stricmp.2c_._wcsicmp.2c_._mbsicmp.htm
file:///doc/Software I18n/Microsoft/_crt_strftime.2c_.wcsftime.htm
file:///doc/Software I18n/Microsoft/vclrfstrerror_strerror_wcserror__wcserror.htm
file:///doc/Software I18n/Microsoft/vclrfstrerror_strerror_wcserror__wcserror.htm
file:///doc/Software I18n/Microsoft/_crt__strdup.2c_._wcsdup.2c_._mbsdup.htm
file:///doc/Software I18n/Microsoft/_crt_strcspn.2c_.wcscspn.2c_._mbscspn.htm
file:///doc/Software I18n/Microsoft/_crt_strcpy.2c_.wcscpy.2c_._mbscpy.htm
file:///doc/Software I18n/Microsoft/_crt__strnicoll.2c_._wcsnicoll.2c_._mbsnicoll.htm
file:///doc/Software I18n/Microsoft/_crt__strncoll.2c_._wcsncoll.2c_._mbsncoll.htm
file:///doc/Software I18n/Microsoft/_crt__stricoll.2c_._wcsicoll.2c_._mbsicoll.htm
file:///doc/Software I18n/Microsoft/_crt__stricoll.2c_._wcsicoll.2c_._mbsicoll.htm
file:///doc/Software I18n/Microsoft/_crt_strcoll.2c_.wcscoll.2c_._mbscoll.htm
file:///doc/Software I18n/Microsoft/_crt_strcmp.2c_.wcscmp.2c_._mbscmp.htm
file:///doc/Software I18n/Microsoft/_crt_strchr.2c_.wcschr.2c_._mbschr.htm
file:///doc/Software I18n/Microsoft/_crt_strcat.2c_.wcscat.2c_._mbscat.htm
file:///doc/Software I18n/Microsoft/_crt_sprintf.2c_.swprintf.htm
file:///doc/Software I18n/Microsoft/vclrfsnscanfsnwscanf.htm
file:///doc/Software I18n/Microsoft/vclrf_scprintf_scwprintf.htm
file:///doc/Software I18n/Microsoft/_crt_strlen.2c_.wcslen.2c_._mbslen.2c_._mbstrlen.htm
file:///doc/Software I18n/Microsoft/_crt__mbsspnp.2c_._strspnp.2c_._wcsspnp.htm
file:///doc/Software I18n/Microsoft/_crt__mbsninc.2c_._strninc.2c_._wcsninc.htm
file:///doc/Software I18n/Microsoft/_crt__mbsnextc.2c_._strnextc.2c_._wcsnextc.htm
file:///doc/Software I18n/Microsoft/_crt__mbsnextc.2c_._strnextc.2c_._wcsnextc.htm
file:///doc/Software I18n/Microsoft/_crt__mbsnbcnt.2c_._mbsnccnt.2c_._strncnt.2c_._wcsncnt.htm
file:///doc/Software I18n/Microsoft/_crt__mbsnbset.htm
file:///doc/Software I18n/Microsoft/_crt__mbsnbicmp.htm
file:///doc/Software I18n/Microsoft/_crt__mbsnbcpy.htm
file:///doc/Software I18n/Microsoft/_crt__mbsnbcnt.2c_._mbsnccnt.2c_._strncnt.2c_._wcsncnt.htm
file:///doc/Software I18n/Microsoft/_crt__mbsnbcmp.htm
file:///doc/Software I18n/Microsoft/_crt__mbsnbcat.htm
file:///doc/Software I18n/Microsoft/_crt_strlen.2c_.wcslen.2c_._mbslen.2c_._mbstrlen.htm
file:///doc/Software I18n/Microsoft/_crt__mbsinc.2c_._strinc.2c_._wcsinc.htm
file:///doc/Software I18n/Microsoft/_crt__mbsdec.2c_._strdec.2c_._wcsdec.htm
file:///doc/Software I18n/Microsoft/_crt__strnicoll.2c_._wcsnicoll.2c_._mbsnicoll.htm
file:///doc/Software I18n/Microsoft/_crt__strncoll.2c_._wcsncoll.2c_._mbsncoll.htm
file:///doc/Software I18n/Microsoft/_crt__stricoll.2c_._wcsicoll.2c_._mbsicoll.htm
file:///doc/Software I18n/Microsoft/_crt_strcoll.2c_.wcscoll.2c_._mbscoll.htm
file:///doc/Software I18n/Microsoft/_crt_buffer_manipulation.htm

_bstr_t
A _bstr_t object encapsulates the BSTR data type. The class manages resource allocation and deallocation through
function calls to SysAllocString and SysFreeString and other BSTR APIs when appropriate. The _bstr_t class
uses reference counting to avoid excessive overhead.

Construction
_bstr_t() throw();
_bstr_t(
 const _bstr_t& s1
) throw();
_bstr_t(
 const char* s2
) throw(_com_error);
_bstr_t(
 const wchar_t* s3
) throw(_com_error);
_bstr_t(
 const _variant_t& var
) throw (_com_error);
_bstr_t(
 BSTR bstr,
 bool fCopy
) throw (_com_error);

Remarks
• _bstr_t() Constructs a default _bstr_t object that encapsulates a NULL BSTR object.
• _bstr_t(_bstr_t& s1) Constructs a _bstr_t object as a copy of another. This is a "shallow" copy, which

increments the reference count of the encapsulated BSTR object instead of creating a new one.
• _bstr_t(char* s2) Constructs a _bstr_t object by calling SysAllocString to create a new BSTR object

and encapsulate it. This constructor first performs a multibyte to Unicode conversion.
If s2 is too large, you may generate a stack overflow error. In such a situation, convert your char* to a
wchar_t with MultiByteToWideChar and then call the wchar_t * constructor.

• _bstr_t(wchar_t* s3) Constructs a _bstr_t object by calling SysAllocString to create a new BSTR object
and encapsulates it.

• _bstr_t(_variant_t& var) Constructs a _bstr_t object from a _variant_t object by first retrieving a BSTR
object from the encapsulated VARIANT object.

• _bstr_t(BSTR bstr | bool fCopy) Constructs a _bstr_t object from an existing BSTR (as opposed to a
wchar_t* string). If fCopy is false, the supplied BSTR is attached to the new object without making a new
copy with SysAllocString. This is the method used by the wrapper functions in the type library headers to
encapsulate and take ownership of a BSTR, returned by an interface method, in a _bstr_t object.

Assign
Copies a BSTR into the BSTR wrapped by a _bstr_t.
void Assign(
 BSTR s
) throw(_com_error);

Remarks
Assign does a binary copy, which means the entire length of the BSTR is copied, regardless of content.

Example
// _bstr_t_Assign.cpp
#include <comdef.h>
#include <stdio.h>
int main()
{
 _bstr_t bstrWrapper; // creates a _bstr_t wrapper
 bstrWrapper = "some text"; // creates BSTR and attaches to it
 wprintf(L"bstrWrapper = %s\n", static_cast<wchar_t*>(bstrWrapper));

file:///doc/Software I18n/Microsoft/_pluslang__variant_t.htm

 BSTR bstr = bstrWrapper.Detach(); // bstrWrapper releases its BSTR
 wprintf(L"bstrWrapper = %s\n", static_cast<wchar_t*>(bstrWrapper));
 wprintf(L"bstr = %s\n", bstr); // "some text"

 bstrWrapper.Attach(SysAllocString(OLESTR("SysAllocedString")));
 wprintf(L"bstrWrapper = %s\n", static_cast<wchar_t*>(bstrWrapper));

 bstrWrapper.Assign(bstr); // assign a BSTR to our _bstr_t
 wprintf(L"bstrWrapper = %s\n", static_cast<wchar_t*>(bstrWrapper));

 SysFreeString(bstr); // done with BSTR, do manual cleanup

 bstr= SysAllocString(OLESTR("Yet another string")); // resuse bstr
 _bstr_t bstrWrapper2 = bstrWrapper; // two wrappers, one BSTR

 *bstrWrapper.GetAddress() = bstr;
 bstr = 0; // bstrWrapper and bstrWrapper2 do still point to BSTR
 wprintf(L"bstrWrapper = %s\n", static_cast<wchar_t*>(bstrWrapper));
 wprintf(L"bstrWrapper2 = %s\n", static_cast<wchar_t*>(bstrWrapper2));

 _snwprintf(bstrWrapper.GetBSTR(), bstrWrapper.length(), L"changing BSTR"); // new
value into BSTR
 wprintf(L"bstrWrapper = %s\n", static_cast<wchar_t*>(bstrWrapper));
 wprintf(L"bstrWrapper2 = %s\n", static_cast<wchar_t*>(bstrWrapper2));
}

Output
bstrWrapper = some text
bstrWrapper = (null)
bstr = some text
bstrWrapper = SysAllocedString
bstrWrapper = some text
bstrWrapper = Yet another string
bstrWrapper2 = some text
bstrWrapper = changing BSTR
bstrWrapper2 = some text

Files and Streams
You can open a file by calling the library function fopen with two arguments. The first argument is a filename. The
second argument is a C string that specifies:

• Whether you intend to read data from the file or write data to it or both.
• Whether you intend to generate new contents for the file (or create a file if it did not previously exist) or

leave the existing contents in place.
• Whether writes to a file can alter existing contents or should only append bytes at the end of the file.
• Whether you want to manipulate a text stream or a binary stream.

Once the file is successfully opened, you can then determine whether the stream is byte oriented (a byte stream) or
wide oriented (a wide stream). A stream is initially unbound. Calling certain functions to operate on the stream
makes it byte oriented, while certain other functions make it wide oriented. Once established, a stream maintains its
orientation until it is closed by a call to fclose or freopen.

Byte stream
A byte stream treats a file as a
sequence of bytes. Within the program,
the stream looks like the same
sequence of bytes, except for the
possible alterations described for
text/binary stream.
Byte mode activated by 1st use of :
fgetc, fgets, fread, fscanf, getc, getchar,
gets, scanf, ungetc
fprintf, fputc, fputs, fwrite, printf, putc,
putchar, puts, vfprintf, vprintf

Wide stream
Within the program, the stream looks like the corresponding sequence
of wide characters, except for the possible alterations described for
text/binary stream.
Wide mode activated by 1st use of :
fgetwc, fgetws, fwscanf, getwc, getwchar, ungetwc, wscanf,
fwprintf, fputwc, fputws, putwc, putwchar, vfwprintf, vwprintf, wprintf

Text stream
To match differing
conventions among target
environments for
representing text in files, the
library functions can alter the
number and representations
of characters transmitted
between the program and a
text stream

A wide stream treats a text stream as a sequence of generalized
multibyte characters, which can have a broad range of encoding rules.
Two kinds of character conversions take place:
Unicode-to-MBCS or MBCS-to-Unicode conversion. When a
Unicode stream-I/O function operates in text mode, the source or
destination stream is assumed to be a sequence of multibyte characters.
Therefore, the Unicode stream-input functions convert multibyte
characters to wide characters (as if by a call to the mbtowc function).
For the same reason, the Unicode stream-output functions convert wide
characters to multibyte characters (as if by a call to the wctomb
function). Conversions between the two representations occur within
the Standard C Library. The conversion rules can, in principle, be
altered by a call to setlocale that alters the category LC_CTYPE. Each
wide stream determines its conversion rules at the time it becomes wide
oriented, and retains these rules even if the category LC_CTYPE
subsequently changes.
Carriage return – linefeed (CR-LF) translation. This translation
occurs before the MBCS – Unicode conversion (for Unicode stream
input functions) and after the Unicode – MBCS conversion (for
Unicode stream output functions). During input, each carriage return –
linefeed combination is translated into a single linefeed character.
During output, each linefeed character is translated into a carriage
return – linefeed combination.

Binary stream
The library functions do not
alter the bytes you transmit
between the program and a
binary stream. They can,
however, append an arbitrary
number of null bytes to the
file that you write with a
binary stream.

The file is assumed to be Unicode, and no CR-LF translation or
character conversion occurs during input or output.

Text and Binary Streams
A text stream consists of one or more lines of text that can be written to a text-oriented display so that they can be
read. When reading from a text stream, the program reads an NL (newline) at the end of each line. When writing to a
text stream, the program writes an NL to signal the end of a line. To match differing conventions among target
environments for representing text in files, the library functions can alter the number and representations of
characters transmitted between the program and a text stream.
Thus, positioning within a text stream is limited. You can obtain the current file-position indicator by calling fgetpos
or ftell. You can position a text stream at a position obtained this way, or at the beginning or end of the stream, by
calling fsetpos or fseek. Any other change of position might well be not supported.

file:///doc/Software I18n/Microsoft/_crt_fseek.htm
file:///doc/Software I18n/Microsoft/_crt_fsetpos.htm
file:///doc/Software I18n/Microsoft/_crt_ftell.htm
file:///doc/Software I18n/Microsoft/_crt_fgetpos.htm
file:///doc/Software I18n/Microsoft/_crt_setlocale.2c_._wsetlocale.htm
file:///doc/Software I18n/Microsoft/_crt_freopen.2c_._wfreopen.htm
file:///doc/Software I18n/Microsoft/_crt_fclose.2c_._fcloseall.htm
file:///doc/Software I18n/Microsoft/_crt_fopen.2c_._wfopen.htm

For maximum portability, the program should not write:
• Empty files.
• Space characters at the end of a line.
• Partial lines (by omitting the NL at the end of a file).
• characters other than the printable characters, NL, and HT (horizontal tab).

If you follow these rules, the sequence of characters you read from a text stream (either as byte or multibyte
characters) will match the sequence of characters you wrote to the text stream when you created the file. Otherwise,
the library functions can remove a file you create if the file is empty when you close it. Or they can alter or delete
characters you write to the file.

A binary stream consists of one or more bytes of arbitrary information. You can write the value stored in an
arbitrary object to a (byte-oriented) binary stream and read exactly what was stored in the object when you wrote it.
The library functions do not alter the bytes you transmit between the program and a binary stream. They can,
however, append an arbitrary number of null bytes to the file that you write with a binary stream. The program must
deal with these additional null bytes at the end of any binary stream.
Thus, positioning within a binary stream is well defined, except for positioning relative to the end of the stream. You
can obtain and alter the current file-position indicator the same as for a text stream. Moreover, the offsets used by
ftell and fseek count bytes from the beginning of the stream (which is byte zero), so integer arithmetic on these
offsets yields predictable results.

Byte and Wide Streams
A byte stream treats a file as a sequence of bytes. Within the program, the stream looks like the same sequence of
bytes, except for the possible alterations described above.
By contrast, a wide stream treats a file as a sequence of generalized multibyte characters, which can have a broad
range of encoding rules. (Text and binary files are still read and written as previously described.) Within the
program, the stream looks like the corresponding sequence of wide characters. Conversions between the two
representations occur within the Standard C Library. The conversion rules can, in principle, be altered by a call to
setlocale that alters the category LC_CTYPE. Each wide stream determines its conversion rules at the time it
becomes wide oriented, and retains these rules even if the category LC_CTYPE subsequently changes.
Positioning within a wide stream suffers the same limitations as for text steams. Moreover, the file-position indicator
may well have to deal with a state-dependent encoding. Typically, it includes both a byte offset within the stream
and an object of type mbstate_t. Thus, the only reliable way to obtain a file position within a wide stream is by
calling fgetpos, and the only reliable way to restore a position obtained this way is by calling fsetpos.

Controlling Streams
fopen returns the address of an object of type FILE. You use this address as the stream argument to several library
functions to perform various operations on an open file. For a byte stream, all input takes place as if each character
is read by calling fgetc, and all output takes place as if each character is written by calling fputc. For a wide stream,
all input takes place as if each character is read by calling fgetwc, and all output takes place as if each character is
written by calling fputwc.
You can close a file by calling fclose, after which the address of the FILE object is invalid.
A FILE object stores the state of a stream, including:

• An error indicator set nonzero by a function that encounters a read or write error.
• An end-of-file indicator set nonzero by a function that encounters the end of the file while reading.
• A file-position indicator specifies the next byte in the stream to read or write, if the file can support

positioning requests.
• A stream state specifies whether the stream will accept reads and/or writes and, with Amendment 1,

whether the stream is unbound, byte oriented, or wide oriented.
• A conversion state remembers the state of any partly assembled or generated generalized multibyte

character, as well as any shift state for the sequence of bytes in the file).
• A file buffer specifies the address and size of an array object that library functions can use to improve the

performance of read and write operations to the stream.
Do not alter any value stored in a FILE object or in a file buffer that you specify for use with that object. You cannot
copy a FILE object and portably use the address of the copy as a stream argument to a library function.

Stream States
The valid states, and state transitions, for a stream are shown in the following figure.

file:///doc/Software I18n/Microsoft/vclrf_crtfs_streamstates.htm
file:///doc/Software I18n/Microsoft/_crt_fclose.2c_._fcloseall.htm
file:///doc/Software I18n/Microsoft/_crt_fputc.2c_.fputwc.2c_._fputchar.2c_._fputwchar.htm
file:///doc/Software I18n/Microsoft/_crt_fgetc.2c_.fgetwc.2c_._fgetchar.2c_._fgetwchar.htm
file:///doc/Software I18n/Microsoft/_crt_fputc.2c_.fputwc.2c_._fputchar.2c_._fputwchar.htm
file:///doc/Software I18n/Microsoft/_crt_fgetc.2c_.fgetwc.2c_._fgetchar.2c_._fgetwchar.htm
file:///doc/Software I18n/Microsoft/_crt_fopen.2c_._wfopen.htm
file:///doc/Software I18n/Microsoft/_crt_fsetpos.htm
file:///doc/Software I18n/Microsoft/_crt_fgetpos.htm
file:///doc/Software I18n/Microsoft/_crt_setlocale.2c_._wsetlocale.htm
file:///doc/Software I18n/Microsoft/_crt_fseek.htm
file:///doc/Software I18n/Microsoft/_crt_ftell.htm

Each of the circles denotes a stable state. Each of the lines denotes a transition that can occur as the result of a
function call that operates on the stream. Five groups of functions can cause state transitions.
Functions in the first three groups are declared in <stdio.h>:

• The byte read functions — fgetc, fgets, fread, fscanf, getc, getchar, gets, scanf, and ungetc
• The byte write functions — fprintf, fputc, fputs, fwrite, printf, putc, putchar, puts, vfprintf, and vprintf
• The position functions — fflush, fseek, fsetpos, and rewind

Functions in the remaining two groups are declared in <wchar.h>:
• The wide read functions — fgetwc, fgetws, fwscanf, getwc, getwchar, ungetwc, and wscanf,
• The wide write functions — fwprintf, fputwc, fputws, putwc, putwchar, vfwprintf, vwprintf, and wprintf,

The state diagram shows that you must call one of the position functions between most write and read operations:
• You cannot call a read function if the last operation on the stream was a write.
• You cannot call a write function if the last operation on the stream was a read, unless that read operation set

the end-of-file indicator.
Finally, the state diagram shows that a position operation never decreases the number of valid function calls that can
follow.

Unicode™ Stream I/O in Text and Binary Modes
When a Unicode stream I/O routine (such as fwprintf, fwscanf, fgetwc, fputwc, fgetws, or fputws) operates on a
file that is open in text mode (the default), two kinds of character conversions take place:

• Unicode-to-MBCS or MBCS-to-Unicode conversion. When a Unicode stream-I/O function operates in text
mode, the source or destination stream is assumed to be a sequence of multibyte characters. Therefore, the
Unicode stream-input functions convert multibyte characters to wide characters (as if by a call to the mbtowc
function). For the same reason, the Unicode stream-output functions convert wide characters to multibyte
characters (as if by a call to the wctomb function).
• Carriage return – linefeed (CR-LF) translation. This translation occurs before the MBCS – Unicode
conversion (for Unicode stream input functions) and after the Unicode – MBCS conversion (for Unicode stream
output functions). During input, each carriage return – linefeed combination is translated into a single linefeed
character. During output, each linefeed character is translated into a carriage return – linefeed combination.

However, when a Unicode stream-I/O function operates in binary mode, the file is assumed to be Unicode, and no
CR-LF translation or character conversion occurs during input or output. Use the _setmode(_fileno(stdin),
_O_BINARY); instruction in order to correctly use wcin on a UNICODE text file.

Quick reference
int mbtowc(wchar_t *wchar, const char *mbchar, size_t count);

• If mbchar is not NULL and if the object that mbchar points to forms a valid multibyte
character, mbtowc returns the length in bytes of the multibyte character.

• If mbchar is NULL or the object that it points to is a wide-character null character
(L'\0'), the function returns 0.

file:///doc/Software I18n/Microsoft/_crt_printf.2c_.wprintf.htm
file:///doc/Software I18n/Microsoft/_crt_vprintf.2c_.vwprintf.htm
file:///doc/Software I18n/Microsoft/_crt_vfprintf.2c_.vfwprintf.htm
file:///doc/Software I18n/Microsoft/_crt_fputc.2c_.fputwc.2c_._fputchar.2c_._fputwchar.htm
file:///doc/Software I18n/Microsoft/_crt_putc.2c_.putwc.2c_.putchar.2c_.putwchar.htm
file:///doc/Software I18n/Microsoft/_crt_fputs.2c_.fputws.htm
file:///doc/Software I18n/Microsoft/_crt_fputc.2c_.fputwc.2c_._fputchar.2c_._fputwchar.htm
file:///doc/Software I18n/Microsoft/_crt_fprintf.2c_.fwprintf.htm
file:///doc/Software I18n/Microsoft/_crt_scanf.2c_.wscanf.htm
file:///doc/Software I18n/Microsoft/_crt_ungetc.2c_.ungetwc.htm
file:///doc/Software I18n/Microsoft/_crt_getc.2c_.getwc.2c_.getchar.2c_.getwchar.htm
file:///doc/Software I18n/Microsoft/_crt_getc.2c_.getwc.2c_.getchar.2c_.getwchar.htm
file:///doc/Software I18n/Microsoft/_crt_fscanf.2c_.fwscanf.htm
file:///doc/Software I18n/Microsoft/_crt_fgets.2c_.fgetws.htm
file:///doc/Software I18n/Microsoft/_crt_fgetc.2c_.fgetwc.2c_._fgetchar.2c_._fgetwchar.htm
file:///doc/Software I18n/Microsoft/_crt_rewind.htm
file:///doc/Software I18n/Microsoft/_crt_fsetpos.htm
file:///doc/Software I18n/Microsoft/_crt_fseek.htm
file:///doc/Software I18n/Microsoft/_crt_fflush.htm
file:///doc/Software I18n/Microsoft/_crt_vprintf.2c_.vwprintf.htm
file:///doc/Software I18n/Microsoft/_crt_vfprintf.2c_.vfwprintf.htm
file:///doc/Software I18n/Microsoft/_crt_puts.2c_._putws.htm
file:///doc/Software I18n/Microsoft/_crt_putc.2c_.putwc.2c_.putchar.2c_.putwchar.htm
file:///doc/Software I18n/Microsoft/_crt_putc.2c_.putwc.2c_.putchar.2c_.putwchar.htm
file:///doc/Software I18n/Microsoft/_crt_printf.2c_.wprintf.htm
file:///doc/Software I18n/Microsoft/_crt_fwrite.htm
file:///doc/Software I18n/Microsoft/_crt_fputs.2c_.fputws.htm
file:///doc/Software I18n/Microsoft/_crt_fputc.2c_.fputwc.2c_._fputchar.2c_._fputwchar.htm
file:///doc/Software I18n/Microsoft/_crt_fprintf.2c_.fwprintf.htm
file:///doc/Software I18n/Microsoft/_crt_ungetc.2c_.ungetwc.htm
file:///doc/Software I18n/Microsoft/_crt_scanf.2c_.wscanf.htm
file:///doc/Software I18n/Microsoft/_crt_gets.2c_.getws.htm
file:///doc/Software I18n/Microsoft/_crt_getc.2c_.getwc.2c_.getchar.2c_.getwchar.htm
file:///doc/Software I18n/Microsoft/_crt_getc.2c_.getwc.2c_.getchar.2c_.getwchar.htm
file:///doc/Software I18n/Microsoft/_crt_fscanf.2c_.fwscanf.htm
file:///doc/Software I18n/Microsoft/_crt_fread.htm
file:///doc/Software I18n/Microsoft/_crt_fgets.2c_.fgetws.htm
file:///doc/Software I18n/Microsoft/_crt_fgetc.2c_.fgetwc.2c_._fgetchar.2c_._fgetwchar.htm

• If the object that mbchar points to does not form a valid multibyte character within the
first count characters, it returns -1.

• The mbtowc function converts count or fewer bytes pointed to by mbchar, if mbchar is not
NULL, to a corresponding wide character.

• mbtowc stores the resulting wide character at wchar, if wchar is not NULL.
• mbtowc does not examine more than MB_CUR_MAX bytes (_CRTIMP extern int __mb_cur_max;).

int wctomb(char *mbchar, wchar_t wchar);
• If wctomb converts the wide character to a multibyte character, it returns the number of

bytes (which is never greater than MB_CUR_MAX) in the wide character.
• If wchar is the wide-character null character (L'\0'), wctomb returns 1.
• If the conversion is not possible in the current locale, wctomb returns -1.

wint_t integer in wchar.h
• Type of data object that can hold any wide character or wide end-of-file value.

int fgetc(FILE *stream);
• Equivalent to getc, but implemented only as a function, rather than as a function and a

macro.

int getc(FILE *stream);
• Same as fgetc, but implemented as a function and as a macro.

wint_t fgetwc(FILE *stream);
• Wide-character version of fgetc.
• Reads c as a multibyte character or a wide character according to whether stream is opened

in text mode or binary mode.

wint_t getwc(FILE *stream);
• Wide-character version of getc.
• Reads a multibyte character or a wide character according to whether stream is opened in

text mode or binary mode.

int _fgetchar(void);
• Equivalent to fgetc(stdin).
• Also equivalent to getchar, but implemented only as a function, rather than as a function

and a macro.
• Microsoft-specific; not ANSI-compatible.

int getchar(void);
• Same as _fgetchar, but implemented as a function and as a macro.

wint_t _fgetwchar(void);
• Wide-character version of _fgetchar.
• Reads c as a multibyte character or a wide character according to whether stream is opened

in text mode or binary mode.
• Microsoft-specific; not ANSI-compatible.

wint_t getwchar(void);
• Wide-character version of getchar.
• Reads a multibyte character or a wide character according to whether stream is opened in

text mode or binary mode.

Return Value
• Returns the character read.
• To indicate a read error or end-of-file condition :

• getc and getchar return EOF,
• fgetc and _fgetchar return EOF,
• getwc and getwchar return WEOF.
• fgetwc and _fgetwchar return WEOF.

• Use ferror or feof to check for an error or for end of file.
• For fgetc and fgetwc, if a read error occurs, the error indicator for the stream is set.

Windows & Unicode

Généralités
If a window class was registered with the Unicode version of RegisterClass, the window receives only Unicode
messages. To determine whether a window uses the Unicode character set or not, call IsWindowUnicode.

RegisterClass
If you register the window class by using RegisterClassA, the application tells the system that the windows of the
created class expect messages with text or character parameters to use the ANSI character set; if you register it by
using RegisterClassW, the application requests that the system pass text parameters of messages as Unicode. The
IsWindowUnicode function enables applications to query the nature of each window. For more information on
ANSI and Unicode functions, see Conventions for Function Prototypes.

IsWindowUnicode
The IsWindowUnicode function determines whether the specified window is a native Unicode window.

The character set of a window is determined by the use of the RegisterClass function. If the window class was
registered with the ANSI version of RegisterClass (RegisterClassA), the character set of the window is ANSI. If
the window class was registered with the Unicode version of RegisterClass (RegisterClassW), the character set of
the window is Unicode.
The system does automatic two-way translation (Unicode to ANSI) for window messages. For example, if an ANSI
window message is sent to a window that uses the Unicode character set, the system translates that message into a
Unicode message before calling the window procedure. The system calls IsWindowUnicode to determine whether
to translate the message.

CallWindowProc
Windows NT/2000/XP: The CallWindowProc function handles Unicode-to-ANSI conversion. You cannot take
advantage of this conversion if you call the window procedure directly.
Windows 95/98/Me: CallWindowProcW is supported by the Microsoft® Layer for Unicode (MSLU). Also, the
ANSI version is supported, to provide more consistent behavior across all Microsoft Windows® operating systems.
To use this, you must add certain files to your application, as outlined in Microsoft Layer for Unicode on Windows
95/98/Me Systems.
Unicode : Implemented as Unicode and ANSI versions on Windows NT, Windows 2000, Windows XP

DefWindowProc
Windows 95/98/Me: DefWindowProcW is supported by the Microsoft® Layer for Unicode (MSLU). To use this,
you must add certain files to your application, as outlined in Microsoft Layer for Unicode on Windows 95/98/Me
Systems.
Unicode : Implemented as Unicode and ANSI versions on Windows NT, Windows 2000, Windows XP

Subclassing and Automatic Message Translation
Subclassing is a technique that allows an application to intercept and process messages sent or posted to a particular
window before the window has a chance to process them. The system automatically translates messages into ANSI
or Unicode form, depending on the form of the function that subclassed the window procedure.

The following call to the SetWindowLongA function subclasses the current window procedure associated with the
window identified by the hwnd parameter. The new window procedure, NewWndProc, will receive messages with
text in ANSI format.
OldWndProc = (WNDPROC) SetWindowLongA(hwnd,
 GWL_WNDPROC, (LONG)NewWndProc);

When NewWndProc has finished processing a message, it uses the CallWindowProc function as follows to pass
the message to OldWndProc.
CallWindowProc(OldWndProc, hwnd, uMessage, wParam, lParam);

If OldWndProc was created with a class style of UNICODE, messages will be translated from the ANSI form
received by NewWndProc into Unicode.

Similarly, a call to the SetWindowLongW function would subclass the current window procedure with a window
procedure that expects Unicode text messages. Message translation, if necessary, is performed during the processing
of the CallWindowProc function.

I18N API

National Language Support NLSAPI functions
National Language Support in Windows NT consists of a set of system tables that applications can access through
the NLSAPI. The NLSAPI retrieves the following types of information:

• Locale information, such as date, time, number, or currency format, or localized names of
countries/regions, languages, or days of the month and week.

• Character mapping tables that map local character encodings (ANSI or OEM) to Unicode or the reverse.
• Keyboard layout information, which, on Windows keyboard layouts, is software-driven. The same

keyboard hardware can be used to generate a variety of different language scripts.
• Character typing information. Does a specific Unicode code point represent a letter, a number, a spacing

character, or a punctuation symbol? Is a character uppercase or lowercase? For a particular locale, what is
the character's uppercase or lowercase equivalent?

• Sorting information—for example, different locales follow different sorting rules for accented characters or
may support more than one sorting algorithm.

• Font information. The system stores information about which fonts support which character encoding(s) or
which range(s) of Unicode. APIs exist to map which languages the font will support.

APIs to retrieve locale information APIs to analyze and
manipulate strings

APIs to analyze and manipulate system
character encoding tables

GetSystemDefaultLangID
GetUserDefaultLangID
GetSystemDefaultLCID
GetUserDefaultLCID
SetThreadLocale
GetThreadLocale IsValidLocale
ConvertDefaultLocale
EnumSystemLocales
GetLocaleInfo
SetLocaleInfo
GetTimeFormat
GetDateFormat
EnumDateFormats(Ex)
EnumTimeFormats
EnumCalendarInfo(Ex)
GetNumberFormat
GetCurrencyFormat

CompareString
LCMapString
MultiByteToWideChar
WideCharToMultiByte
FoldString
IsDBCSLeadByte
IsDBCSLeadByteEx
GetStringTypeEx
GetStringType[A|W]

IsValidCodePage
EnumSystemCodePages
GetConsoleCP
GetConsoleOutputCP
SetConsoleCP
SetConsoleOutputCP
GetACP
GetOEMCP
GetCPInfo
GetCPInfoEx

Multilingual API functions

APIs to control keyboard layouts APIs to handle font information APIs to handle text layout and data
ActivateKeyboardLayout
GetKeyboardLayout
GetKeyboardLayoutList
GetKeyboardLayoutName
LoadKeyboardLayout
MapVirtualKeyEx
ToAsciiEx
ToUnicodeEx
VkKeyScanEx
SystemParametersInfo

ChooseFont
CreateFontIndirectEx
EnumFontFamilies
EnumFontFamiliesEx
EnumFontFamExProc
GetFontLanguageInfo
GetTextCharsetInfo
GetTextFace
TranslateCharsetInfo

DrawTextEx
ExtTextOut
GetCharacterPlacement
GetTextAlign
SetTextAlign
GetClipboardData
SetClipboardData
GetTextExtent

Font Technology

To select the appropriate font and output text in local script
1 Use:

• EnumFontFamilies or ChooseFont to select fonts
• GetTextCharSetInfo to generate the font signature
• GetLocaleInfo to generate the locale signature

2 Record the charset in your document files
3 Avoid:

• using OEM_CHARSET
• using ANSI_CHARSET by default
• assuming a given font facename exists

The Font common dialog box simplifies the process of creating and selecting fonts. By initializing the
CHOOSEFONT structure and calling the ChooseFont function, an application can support the same font-selection
interface that previously required many lines of custom code. (For more information about the Font common dialog
box, see Common Dialog Box Library.)

Selection by the User
Most font creation and selection operations involve the user. For example, word processing applications let the user
select unique fonts for headings, footnotes, and body text. After the user selects a font by using the Font dialog box
and presses the OK button, the ChooseFont function initializes the members of a LOGFONT structure with the
attributes of the requested font. To use this font for text-output operations, an application must first create a logical
font and then select that font into its device context. A logical font is an application-supplied description of an ideal
font. A developer can create a logical font by calling the CreateFont or the CreateFontIndirect functions. In this
case, the application would call CreateFontIndirect and supply a pointer to the LOGFONT structure initialized by
ChooseFont. In general, it is more efficient to call CreateFontIndirect because CreateFont requires several
parameters while CreateFontIndirect requires only one—a pointer to LOGFONT.
Before an application can actually begin drawing text with a logical font, it must find the closest match from the
fonts stored internally on the device and the fonts whose resources have been loaded into the operating system. The
fonts stored on the device or in the operating system are called physical fonts. The process of finding the physical
font that most closely matches a specified logical font is called font mapping. This process occurs when an
application calls the SelectObject function and supplies a handle identifying a logical font. Font mapping is
performed by using an internal algorithm that compares the attributes of the requested logical font against the
attributes of available physical fonts. When the font mapper algorithm completes its search and determines the
closest possible match, the SelectObject function returns and the application can begin drawing text with the new
font.
The SetMapperFlags function specifies whether or not the font mapper algorithm searches only for physical fonts
with aspect ratios that match the physical device. The aspect ratio for a device is the ratio formed by the width and
the height of a pixel on that device.
The system font (also known as the shell or default font) is the font used for text in the title bars, menus, and dialog
boxes. On Windows 95/98/Me and Windows NT, it is MS Sans Serif. On Windows 2000/XP, it is Tahoma.

Special Font Selection Considerations
Although most font selection operations involve the user, there are some instances where this is not true. For
example, a developer may want to use a unique font in an application to draw text in a control window. To select an
appropriate font, the application must be able to determine what fonts are available, create a logical font that
describes one of these available fonts, and then select that font into the appropriate device context.
An application can enumerate the available fonts by using the EnumFonts or EnumFontFamilies functions.
EnumFontFamilies is recommended because it enumerates all the styles associated with a family name. This can be
useful for fonts with many or unusual styles and for fonts that cross international borders.
Once an application has enumerated the available fonts and located an appropriate match, it should use the values
returned by the font enumeration function to initialize the members of a LOGFONT structure. Then it can call the
CreateFontIndirect function, passing to it a pointer to the initialized LOGFONT structure. If the
CreateFontIndirect function is successful, the application can then select the logical font by calling the
SelectObject function. When initializing the members of the LOGFONT structure, be sure to specify a specific
character set in the lfCharSet member. This member is important in the font mapping process and the results will be
inconsistent if this member is not initialized correctly. If you specify a typeface name in the lfFaceName member of
the LOGFONT structure, make sure that the lfCharSet value matches the character set of the typeface specified in

file:///doc/Software I18n/Microsoft/devcons_9v3o.htm
file:///doc/Software I18n/Microsoft/fontext_4rw4.htm
file:///doc/Software I18n/Microsoft/fontext_1wmq.htm
file:///doc/Software I18n/Microsoft/fontext_2z03.htm
file:///doc/Software I18n/Microsoft/fontext_2ynn.htm
file:///doc/Software I18n/Microsoft/fontext_3e43.htm
file:///doc/Software I18n/Microsoft/devcons_9v3o.htm
file:///doc/Software I18n/Microsoft/fontext_4rw4.htm
file:///doc/Software I18n/Microsoft/fontext_8fp0.htm
file:///doc/Software I18n/Microsoft/fontext_1wmq.htm

lfFaceName. For example, if you want to select a font such as MS Mincho, lfCharSet must be set to the predefined
value SHIFTJIS_CHARSET.
The fonts for many East Asian languages have two typeface names: an English name and a localized name.
CreateFont, CreateFontIndirect, and CreateFontIndirectEx take the localized typeface name for a system locale
that matches the language, but they take the English typeface name for all other system locales. The best method is
to try one name and, on failure, try the other. Note that EnumFonts, EnumFontFamilies, and
EnumFontFamiliesEx return the English typeface name if the system locale does not match the language of the
font. Starting with Windows 2000, this is no longer a problem because the font mapper for CreateFont,
CreateFontIndirect, and CreateFontIndirectEx recognizes either typeface name, regardless of locale.

Bidirectionality

To support bidirectionality in your software
1 Use GetFontLanguageInfo and GetCharacterPlacement to reorder text:
2 Use ExtTextOut

Bidirectional layout
Another assumption is that a character always displays to the right of the characters that precede it in the text. Notice
in the example above, we moved the x position to the right after each character was input, using these lines:
 // Get the next character position.
 GetCharWidth (hDc, (UINT) wParam, (UINT) wParam, &cCharWidths) ;
 // BAD! Don't do this!
 g_xStartChar += cCharWidths ;
Correctly determining the position of the next character in the stream would require implementing the Unicode
algorithm for layout of bidirectional text (BiDi algorithm), which is a major undertaking indeed. Instead, use
ExtTextOut on the whole buffer, as shown above, and let the system implementation of the BiDi algorithm handle
layout.
However, there may be other cases where your application assumes left to right (LTR) layout, such as the x position
passed in the call to ExtTextOut. You can make this selectable by the user, and set the proper x value as follows:
Static UINT uiAlign = TA_LEFT ;
int nxStartBuffer ;

case WM_PAINT :

 hDc = BeginPaint (hWnd, &ps) ;

 SelectObject (hDc, hTextFont) ;

 // Set the x position for right or left aligned text.
 if (uiAlign & TA_RIGHT) { // Start at right edge.
 nxStartBuffer = rcRectLine.right ;
 } else { // Start at left edge.
 nxStartBuffer = XSTART ;
 }

 SetTextAlign (hDc, uiAlign) ;

 // Same as above.
 ExtTextOut (hDc, nxStartBuffer, nyStartBuffer, ETO_OPAQUE,
 &rcRectLine, szOutputBuffer, nChars, NULL) ;

Vertical Writing

To implement vertical writing in your software
1 Use fonts with @ in front of facename
2 Set escapement and orientation to 270°
3 Check your algorithms for:

• coordinates calculation
• caret positioning
• caret orientation

file:///doc/Software I18n/Microsoft/fontext_4mk8.htm
file:///doc/Software I18n/Microsoft/fontext_7mm0.htm
file:///doc/Software I18n/Microsoft/fontext_4rw4.htm
file:///doc/Software I18n/Microsoft/fontext_8fp0.htm

• virtual key handling

Changing Input Language

To handle changing the input language properly
1 Add code to manage WM_INPUTLANGCHANGEREQUEST and WM_INPUTLANGCHANGE

2 Use GetLocaleInfo and either TranslateCharsetInfo or GetTextCharsetInfo to determine if language is
supported by available fonts

3 Use ActivateKeyboardLayout to activate a specific layout

Text Output

Text-Formatting Attributes
An application can use six functions to set the text-formatting attributes for a device context: SetBkColor,
SetBkMode, SetTextAlign, SetTextCharacterExtra, SetTextColor, and SetTextJustification. These functions
affect the text alignment, the intercharacter spacing, the text justification, and text and background colors. In
addition, six other functions can be used to retrieve the current text formatting attributes for any device context:
GetBkColor, GetBkMode, GetTextAlign, GetTextCharacterExtra, GetTextColor, and GetTextExtentPoint32.

Text Alignment
Applications can use the SetTextAlign function to specify how the system should position the characters in a string
of text when they call one of the drawing functions. This function can be used to position headings, page numbers,
callouts, and so on. The system positions a string of text by aligning a reference point on an imaginary rectangle that
surrounds the string, with the current cursor position or with a point passed as an argument to one of the text
drawing functions. The SetTextAlign function lets the application specify the location of this reference point. The
following is a list of the possible reference point locations.

Location Description
left/bottom The reference point is located at the bottom-left corner of the rectangle.

left/base line The reference point is located at the intersection of the character-cell base line and the
left edge of the rectangle.

left/top The reference point is located at the top-left corner of the rectangle.
center/bottom The reference point is located at the center of the bottom of the rectangle.

center/base line The reference point is located at the intersection of the character-cell base line and the
center of the rectangle.

center/top The reference point is located at the center of the top of the rectangle.
right/bottom The reference point is located at the bottom-right corner of the rectangle.

right/base line The reference point is located at the intersection of the character-cell base line and the
right edge of the rectangle.

right/top The reference point is located at the top-right corner of the rectangle.
The default text alignment for a device context is the upper-left corner of the imaginary rectangle that surrounds the
text. An application can retrieve the current text-alignment setting for any device context by calling the
GetTextAlign function.

Intercharacter Spacing
Applications can use the SetTextCharacterExtra function to alter the intercharacter spacing for all text output
operations in a specified device context.
The default intercharacter spacing value for any device context is zero. An application can retrieve the current
intercharacter spacing value for a device context by calling the GetTextCharacterExtra function.

Text Justification
Applications can use the GetTextExtentPoint32 and SetTextJustification functions to justify a line of text. Text
justification is a common operation in any desktop publishing and in most word processing applications. The
GetTextExtentPoint32 function computes the width and height of a string of text. After the width is computed, the
application can call the SetTextJustification function to distribute extra spacing between each of the words in a line
of text.

file:///doc/Software I18n/Microsoft/fontext_9lm6.htm
file:///doc/Software I18n/Microsoft/fontext_8smq.htm
file:///doc/Software I18n/Microsoft/fontext_9r6p.htm
file:///doc/Software I18n/Microsoft/fontext_7h41.htm
file:///doc/Software I18n/Microsoft/fontext_1mem.htm
file:///doc/Software I18n/Microsoft/fontext_20by.htm
file:///doc/Software I18n/Microsoft/fontext_8smq.htm
file:///doc/Software I18n/Microsoft/fontext_7xv6.htm
file:///doc/Software I18n/Microsoft/fontext_9r6p.htm
file:///doc/Software I18n/Microsoft/fontext_1mem.htm
file:///doc/Software I18n/Microsoft/pantdraw_0xk5.htm
file:///doc/Software I18n/Microsoft/pantdraw_4fua.htm
file:///doc/Software I18n/Microsoft/fontext_9lm6.htm
file:///doc/Software I18n/Microsoft/fontext_8bsi.htm
file:///doc/Software I18n/Microsoft/fontext_7h41.htm
file:///doc/Software I18n/Microsoft/fontext_20by.htm
file:///doc/Software I18n/Microsoft/pantdraw_47hh.htm
file:///doc/Software I18n/Microsoft/pantdraw_433m.htm

Text and Background Color
Applications can use the SetTextColor function to set the color of text drawn in the client-area of their windows, as
well as the color of text drawn on a color printer. An application can use the SetBkColor function to set the color
that appears behind each character and the SetBkMode function to specify how the system should blend the selected
background color with the current color or colors on the video display.
The default text color for a display device context is black; the default background color is white; and the default
background mode is OPAQUE. An application can retrieve the current text color for a device context by calling the
GetTextColor function. An application can retrieve the current background color for a device context by calling the
GetBkColor function and the current background mode by calling the GetBkMode function.

Character Widths
Applications need to retrieve character-width data when they perform such tasks as fitting strings of text to page or
column widths. There are four functions that an application can use to retrieve character-width data. Two of these
functions retrieve the character-advance width and two of these functions retrieve actual character-width data.
An application can use the GetCharWidth32 and GetCharWidthFloat functions to retrieve the advance width for
individual characters or symbols in a string of text. The advance width is the distance that the cursor on a video
display or the print-head on a printer must advance before printing the next character in a string of text. The
GetCharWidth32 function returns the advance width as an integer value. If greater precision is required, an
application can use the GetCharWidthFloat function to retrieve fractional advance-width values.
An application can retrieve actual character-width data by using the GetCharABCWidths and
GetCharABCWidthsFloat functions. The GetCharABCWidthsFloat function works with all fonts. The
GetCharABCWidths function only works with TrueType and OpenType fonts. For more information about
TrueType and OpenType fonts, see Raster, Vector, TrueType, and OpenType Fonts.

String Widths and Heights
In addition to retrieving character-width data for individual characters, applications also need to compute the width
and height of entire strings. Two functions retrieve string-width and height measurements: GetTextExtentPoint32,
and GetTabbedTextExtent. If the string does not contain tab characters, an application can use the
GetTextExtentPoint32 function to retrieve the width and height of a specified string. If the string contains tab
characters, an application should call the GetTabbedTextExtent function.
Applications ca use the GetTextExtentExPoint function for word-wrapping operations. This function returns the
number of characters from a specified string that fit within a specified space.

Font Ascenders and Descenders
Some applications determine the line spacing between text lines of different sizes by using a font's maximum
ascender and descender. An application can retrieve these values by calling the GetTextMetrics function and then
checking the tmAscent and tmDescent members of the TEXTMETRIC.
The maximum ascent and descent are different from the typographic ascent and descent. In TrueType and OpenType
fonts, the typographic ascent and descent are typically the top of the f glyph and bottom of the g glyph. An
application can retrieve the typographic ascender and descender for a TrueType or OpenType font by calling the
GetOutlineTextMetrics function and checking the values in the otmMacAscent and otmMacDescent members of
the OUTLINETEXTMETRIC structure.

Font Dimensions
An application can retrieve the physical dimensions of a TrueType or OpenType font by calling the
GetOutlineTextMetrics function. An application can retrieve the physical dimensions of any other font by calling
the GetTextMetrics function. To determine the dimensions of an output device, an application can call the
GetDeviceCaps function. GetDeviceCaps returns both physical and logical dimensions.
A logical inch is a measure the system uses to present legible fonts on the screen and is approximately 30 to 40
percent larger than a physical inch. The use of logical inches precludes an exact match between the output of the
screen and printer. Developers should be aware that the text on a screen is not simply a scaled version of the text
that will appear on the page, particularly if graphics are incorporated into the text.

Drawing Text
After an application selects the appropriate font, sets the required text-formatting options, and computes the
necessary character width and height values for a string of text, it can begin drawing characters and symbols by
calling any of the text-output functions:

• DrawText

file:///doc/Software I18n/Microsoft/fontext_0odw.htm
file:///doc/Software I18n/Microsoft/devcons_88s3.htm
file:///doc/Software I18n/Microsoft/fontext_6rlf.htm
file:///doc/Software I18n/Microsoft/fontext_6lyr.htm
file:///doc/Software I18n/Microsoft/fontext_569e.htm
file:///doc/Software I18n/Microsoft/fontext_6lyr.htm
file:///doc/Software I18n/Microsoft/fontext_7ss2.htm
file:///doc/Software I18n/Microsoft/fontext_6rlf.htm
file:///doc/Software I18n/Microsoft/fontext_15kk.htm
file:///doc/Software I18n/Microsoft/fontext_4rn8.htm
file:///doc/Software I18n/Microsoft/fontext_8smq.htm
file:///doc/Software I18n/Microsoft/fontext_6l4j.htm
file:///doc/Software I18n/Microsoft/fontext_3ook.htm
file:///doc/Software I18n/Microsoft/fontext_8icz.htm
file:///doc/Software I18n/Microsoft/fontext_9ltg.htm
file:///doc/Software I18n/Microsoft/fontext_5cz6.htm
file:///doc/Software I18n/Microsoft/pantdraw_0xk5.htm
file:///doc/Software I18n/Microsoft/pantdraw_4fua.htm
file:///doc/Software I18n/Microsoft/fontext_7xv6.htm
file:///doc/Software I18n/Microsoft/pantdraw_47hh.htm
file:///doc/Software I18n/Microsoft/pantdraw_433m.htm
file:///doc/Software I18n/Microsoft/fontext_8bsi.htm

• DrawTextEx
• ExtTextOut
• PolyTextOut
• TabbedTextOut
• TextOut

When an application calls one of these functions, the operating system passes the call to the graphics engine, which
in turn passes the call to the appropriate device driver. At the device driver level, all of these calls are supported by
one or more calls to the driver's own ExtTextOut or TextOut function. An application will achieve the fastest
execution by calling ExtTextOut, which is quickly converted into an ExtTextOut call for the device. However,
there are instances when an application should call one of the other three functions; for example, to draw multiple
lines of text within the borders of a specified rectangular region, it is more efficient to call DrawText. To create a
multicolumn table with justified columns of text, it is more efficient to call TabbedTextOut

Complex Scripts
While the functions discussed in the preceding work well for many languages, they may not deal with the needs of
complex scripts. Complex scripts are languages whose printed form is not rendered in a simple way. For example, a
complex script may allow bidirectional rendering, contextual shaping of glyphs, or combining characters. Due to
these special requirements, the control of text output must be very flexible.
Windows 2000/XP: Functions that display text—TextOut, ExtTextOut, TabbedTextOut, DrawText, and
GetTextExtentExPoint—have been extended to support complex scripts. In general, this support is transparent to
the application. However, applications should save characters in a buffer and display a whole line of text at one
time, so that the complex script shaping modules can use context to reorder and generate glyphs correctly. In
addition, because the width of a glyph can vary by context, applications should use GetTextExtentExPoint to
determine line length rather than using cached character widths.
In addition, complex script-aware applications should consider adding support for right-to-left reading order and
right alignment to their applications. You can toggle the reading order or alignment between left and right with the
following code:
// Save lAlign (this example uses static variables)
static LONG lAlign = TA_LEFT;

// When user toggles alignment (assuming TA_CENTER is not supported).

lAlign = TA_RIGHT;

// When the user toggles reading order.

lAlign = TA_RTLREADING;

// Before calling ExtTextOut, for example, when processing WM_PAINT

SetTextAlign (hDc, lAlign);
To toggle both attributes at once, execute the following statement and then call SetTextAlign and ExtTextOut, as
shown previously:
lAlign = TA_RIGHT^TA_RTLREADING;
You can also process complex scripts with Uniscribe. Uniscribe is a set of functions that allow a fine degree of
control for complex scripts. For more information, see Uniscribe and Processing Complex Scripts.

Context-sensitive characters
The second assumption you need to discard is that a given character in a given font always looks the same, and has
the same properties. Characters in languages such as Arabic change shape depending on the surrounding characters.
Specifically, Arabic characters take one of four forms—initial, medial, final, and stand-alone—depending on where
they occur in the text stream. Moreover, adjacent Arabic characters often ligate, meaning they combine together in a
single glyph called a ligature.
This means you cannot use the old trick of putting out characters one by one, as you get them in the wParam
parameter from the WM_CHAR message. If you do, then the system cannot do the contextual shaping for you,
because when it comes time to render a character, the system does not know what characters precede or follow. It
also means that you should not cache character widths and compute line lengths yourself, since the width of the
character depends on the context. For example, this code will produce incorrect results when displaying most
complex scripts:

case WM_CHAR:

file:///doc/Software I18n/Microsoft/fontext_2ks4.htm
file:///doc/Software I18n/Microsoft/fontext_20by.htm
file:///doc/Software I18n/Microsoft/fontext_15kk.htm
file:///doc/Software I18n/Microsoft/fontext_0odw.htm
file:///doc/Software I18n/Microsoft/fontext_001g.htm
file:///doc/Software I18n/Microsoft/fontext_2ks4.htm
file:///doc/Software I18n/Microsoft/fontext_5yd0.htm
file:///doc/Software I18n/Microsoft/fontext_5yd0.htm
file:///doc/Software I18n/Microsoft/fontext_2ks4.htm
file:///doc/Software I18n/Microsoft/fontext_5yd0.htm
file:///doc/Software I18n/Microsoft/fontext_001g.htm
file:///doc/Software I18n/Microsoft/fontext_8jsk.htm
file:///doc/Software I18n/Microsoft/fontext_2ks4.htm
file:///doc/Software I18n/Microsoft/fontext_4pbs.htm

 // NOTE: This is an example of what *not* to do, because
 // characters that should join or otherwise interact
 // typographically will show as separate, stand-alone characters.
 hDc = GetDC (hWnd) ; // BTW, this is also bad for other reasons!
 SelectObject (hDc, hTextFont) ;
 SetBkMode (hDc, TRANSPARENT) ;
 ExtTextOut (hDc, g_xStartOneChar, YSTART, 0,
 NULL, (LPCTSTR) &wParam, 1, NULL) ;

 // Get the next character position.
 GetCharWidth (hDc, (UINT) wParam, (UINT) wParam, &cCharWidths) ;
 // This assumes left to right scripts, so it will break on
 // Arabic and Hebrew!
 g_xStartChar += cCharWidths ;

 ReleaseDC (hWnd, hDc) ;
 Return 0 ;

Instead, you should save characters in a buffer, and put out the entire buffer each time a new character is typed, as
follows:

RECT rcRectLine ;

case WM_CHAR:

szOutputBuffer[nChars] = (TCHAR) wParam ;
 if (nChars < BUFFER_SIZE-1) { // Limited by the buffer size.
 nChars++ ;
 }
 // This will generate a WM_PAINT message, where all of
 // the text buffer is displayed at once. This is the
 // recommended approach.
 InvalidateRect (hWnd, &rcRectLine, TRUE) ;
 Return 0 ;

case WM_PAINT :

 hDc = BeginPaint (hWnd, &ps) ;

 SelectObject (hDc, hTextFont) ;

 // Write the whole text buffer in the line buffer rectangle.
 // This happens every time the user enters a character.
 ExtTextOut (hDc, nxStartBuffer, nyStartBuffer, ETO_OPAQUE,
 &rcRectLine, szOutputBuffer, nChars, NULL) ;

 EndPaint (hWnd, &ps) ;

 return 0 ;

Window Layout

Window Layout and Mirroring
The window layout defines how text and Microsoft® Windows® Graphics Device Interface (GDI) objects are laid
out in a window or device context (DC). Some languages, such as English, French, and German, require a left-to-
right (LTR) layout. Other languages, such as Arabic and Hebrew, require right-to-left (RTL) layout. The window
layout applies to text but also affects the other GDI elements of the window, including bitmaps, icons, the location
of the origin, buttons, cascading tree controls, and whether the horizontal coordinate increases as you go left or right.
For example, after an application has set RTL layout, the origin is positioned at the right edge of the window or
device, and the number representing the horizontal coordinate increases as you move left. However, not all objects
are affected by the layout of a window. For example, the layout for dialog boxes, message boxes, and device
contexts that are not associated with a window, such as metafile and printer DCs, must be handled separately.
Specifics for these are mentioned later in this topic.
The window functions allow you to specify or change the window layout in Arabic and Hebrew versions of
Windows 98 and Windows Millennium Edition (Windows Me), and in all versions of Windows 2000 or later. Note
that changing to a RTL layout (also known as mirroring) is not supported for windows that have the style
CS_OWNDC or for a DC with the GM_ADVANCED graphic mode.
By default, the window layout is left-to-right (LTR). To set the RTL window layout, call CreateWindowEx with
the style WS_EX_LAYOUTRTL. Also by default, a child window (that is, one created with the WS_CHILD style
and with a valid parent hWnd parameter in the call to CreateWindow or CreateWindowEx) has the same layout as
its parent. To disable inheritance of mirroring to all child windows, specify WS_EX_NOINHERITLAYOUT in the
call to CreateWindowEx. Note, mirroring is not inherited by owned windows (those created without the
WS_CHILD style) or those created with the parent hWnd parameter in CreateWindowEx set to NULL. To disable
inheritance of mirroring for an individual window, process the WM_NCCREATE message with GetWindowLong
and SetWindowLong to turn off the WS_EX_LAYOUTRTL flag. This processing is in addition to whatever other
processing is needed. The following code fragment shows how this is done.
SetWindowLong (hWnd,
 GWL_EXSTYLE,
 GetWindowLong(hWnd,GWL_EXSTYLE) & ~WS_EX_LAYOUTRTL))
You can set the default layout to RTL by calling SetProcessDefaultLayout(LAYOUT_RTL). All windows created
after the call will be mirrored, but existing windows are not affected. To turn off default mirroring, call
SetProcessDefaultLayout(0).
Note, SetProcessDefaultLayout mirrors the DCs only of mirrored windows. To mirror any DC, call SetLayout(hdc,
LAYOUT_RTL). For more information, see the discussion on mirroring device contexts not associated with
windows, which comes later in this topic.
Bitmaps and icons in a mirrored window are also mirrored by default. However, not all of these should be mirrored.
For example, those with text, a business logo, or an analog clock should not be mirrored. To disable mirroring of
bitmaps, call SetLayout with the LAYOUT_BITMAPORIENTATIONPRESERVED bit set in dwLayout. To
disable mirroring in a DC, call SetLayout(hdc, 0).
To query the current default layout, call GetProcessDefaultLayout. Upon a successful return, pdwDefaultLayout
contains LAYOUT_RTL or 0. To query the layout settings of the device context, call GetLayout. Upon a successful
return, GetLayout returns a DWORD that indicates the layout settings by the settings of the LAYOUT_RTL and
the LAYOUT_BITMAPORIENTATIONPRESERVED bits.
After a window has been created, you change the layout using the SetWindowLong function. For example, this is
necessary when the user changes the user interface language of an existing window from Arabic or Hebrew to
German. However, when changing the layout of an existing window, you must invalidate and update the window to
ensure that the contents of the window are all drawn on the same layout. The following snippet is from sample code
that changes the window layout as needed:
Show Example
// Using ANSI versions of GetWindowLong and SetWindowLong because Unicode
// is not needed for these calls

lExStyles = GetWindowLongA(hWnd, GWL_EXSTYLE);

// Check whether new layout is opposite the current layout
if (!!(pLState -> IsRTLLayout) != !!(lExStyles & WS_EX_LAYOUTRTL))
{
 // the following lines will update the window layout

 lExStyles ^= WS_EX_LAYOUTRTL; // toggle layout

 SetWindowLongA(hWnd, GWL_EXSTYLE, lExStyles);
 InvalidateRect(hWnd, NULL, TRUE); // to update layout in the client area
}
In mirroring, you should think in terms of "near" and "far" instead of "left" and "right". Failure to do so can cause
problems. One common coding practice that causes problems in a mirrored window occurs when mapping between
screen coordinates and client coordinates. For example, applications often use code similar to the following to
position a control in a window:
// DO NOT USE THIS IF APPLICATION MIRRORS THE WINDOW

// get coordinates of the window in screen coordinates
GetWindowRect(hControl, (LPRECT) &rControlRect);

// map screen coordinates to client coordinates in dialog
ScreenToClient(hDialog, (LPPOINT) &rControlRect.left);
ScreenToClient(hDialog, (LPPOINT) &rControlRect.right);
This causes problems in mirroring because the left edge of the rectangle becomes the right edge in a mirrored
window, and vice versa. To avoid this problem, replace the ScreenToClient calls with a call to MapWindowPoints
as follows:
// USE THIS FOR MIRRORING

GetWindowRect(hControl, (LPRECT) &rControlRect);
MapWindowPoints(NULL, hDialog, (LPPOINT) &rControlRect, 2)
This code works because, on platforms that support mirroring, MapWindowPoints is modified to swap the left and
right point coordinates when the client window is mirrored. For more information, see the Remarks section of
MapWindowPoints.
Another common practice that can cause problems in mirrored windows is positioning objects in a client window
using offsets in screen coordinates instead of client coordinates. For example, the following code uses the difference
in screen coordinates as the x position in client coordinates to position a control in a dialog box.
Show Example
// OK if LTR layout and mapping mode of client is MM_TEXT,
// but WRONG for a mirrored dialog

RECT rdDialog;
RECT rcControl;

HWND hControl = GetDlgItem(hDlg, IDD_CONTROL);
GetWindowRect(hDlg, &rcDialog); // gets rect in screen coordinates
GetWindowRect(hControl, &rcControl);
MoveWindow(hControl,
 rcControl.left - rcDialog.left, // uses x position in client coords
 rcControl.top - rcDialog.top,
 nWidth,
 nHeight,
 FALSE);
This code is fine when the dialog window has left-to-right (LTR) layout and the mapping mode of the client is
MM_TEXT, because the new x position in client coordinates corresponds to the difference in left edges of the
control and the dialog in screen coordinates. However, in a mirrored dialog, left and right are reversed, so instead
you should use MapWindowPoints as follows:
RECT rcDialog;
RECT rcControl;

HWND hControl - GetDlgItem(hDlg, IDD_CONTROL);
GetWindowRect(hControl, &rcControl);

// MapWindowPoints works correctly in both mirrored and non-mirrored windows.
MapWindowPoints(NULL, hDlg, (LPPOINT) &rcControl, 2);

// Now rcControl is in client coordinates.
MoveWindow(hControl, rcControl.left, rcControl.top, nWidth, nHeight, FALSE)

Mirroring Dialog Boxes and Message Boxes
Dialog boxes and message boxes do not inherit layout, so you must set the layout explicitly. To mirror a message
box, call MessageBox or MessageBoxEx with the MB_RTLREADING option. To layout a dialog box right-to-left,
use the extended style WS_EX_LAYOUTRTL in the dialog template structure DLGTEMPLATEEX. Property

sheets are a special case of dialog boxes. Each tab is treated as a separate dialog box, so you need to include the
WS_EX_LAYOUTRTL style in every tab that you want mirrored.

Mirroring Device Contexts Not Associated with a Window
DCs that are not associated with a window, such as metafile or printer DCs, do not inherit layout, so you must set
the layout explicitly. To change the device context layout, use the SetLayout function.
The SetLayout function is rarely used with windows. Typically, windows receive an associated DC only in
processing a WM_PAINT message. Occasionally, a program creates a DC for a window by calling GetDC. Either
way, the initial layout for the DC is set by BeginPaint or GetDC according to the window's WS_EX_LAYOUTRTL
flag.
The values returned by GetWindowOrgEx, GetWindowExtEx, GetViewportOrgEx and GetViewportExtEx are not
affected by calling SetLayout.
When the layout is RTL, GetMapMode will return MM_ISOTROPIC instead of MM_TEXT. Calling SetMapMode
with MM_TEXT will function correctly; only the return value from GetMapMode is affected. Similarly, calling
SetLayout(hdc, LAYOUT_RTL) when the mapping mode is MM_TEXT causes the reported mapping mode to
change to MM_ISOTROPIC.

Uniscribe
Uniscribe is a set of APIs that allow a fine degree of control for processing complex scripts. A complex script
requires special processing to display and edit because the characters, or glyphs, are not laid out in a simple way.
The rules governing the shaping and positioning of glyphs are specified and catalogued in The Unicode Standard:
Worldwide Character Encoding, Version 2.0, Addison-Wesley Publishing Company.

About Complex Scripts
A complex script has at least one of the following attributes:

• Allows bidirectional rendering.
• Has contextual shaping.
• Has combining characters.
• Has specialized word-breaking and justification rules.
• Filters out illegal character combinations.

Bidirectional rendering refers to the script's ability to handle text that reads both left-to-right and right-to-left. For
example, in the bidirectional rendering of Arabic, the default reading direction for text is right-to-left, but for some
numbers, it is left-to-right. Processing a complex script must account for the difference between the logical
(keystroke) order and the visual order of the glyphs. In addition, processing must properly deal with caret movement
and hit testing. The mapping between screen position and a character index for, say, selection of text or caret display
requires knowledge of the layout algorithms.
Contextual shaping occurs when a script's characters change shape depending on the characters that surround them.
This occurs in English cursive writing when a lowercase "l" changes shape depending on the character that precedes
it such as an "a" (connects low to the "l") or an "o" (connects high). Arabic is a script that exhibits contextual
shaping.
Combining characters or ligatures are characters that join into one character when placed together. One example is
the "ae" combination in English; it is sometimes represented by a single character. Arabic is a script that has many
combining characters.
Specialized word break and justification refers to scripts that have complex rules for dividing words between lines
or justifying text on a line. Thai is such a script.
Filtering out illegal character combinations occurs when a language does not allow certain character combinations.
Thai is such a script.

Processing Complex Scripts
The following are options for processing complex scripts:

• Text functions
• Edit controls
• Rich edit controls
• Uniscribe

The options you choose will depend on the following factors:
• The type of text or scripts.
• The choice of implementation model that is used, for example, the text layout and whether the application

handles line breaking.
• Whether the application exists or is created from scratch.

In general, an application that does relatively simple script processing can choose any option. However, for the most
complete control of complex script processing, Uniscribe is recommended.

Text Functions
Applications that work mostly in plain text--that is, text that uses the same typeface, weight, color, and so on--have
traditionally written text and measured line lengths using standard text functions, such as TextOut, ExtTextOut,
TabbedTextOut, DrawText, and GetTextExtentExPoint. Starting with Microsoft® Windows® 2000, these
functions have been extended to support complex scripts. In general, this support is transparent to the application.
However, applications should save characters in a buffer and display the whole line of text at one time rather than,
for example, calling ExtTextOut on each character as it is typed in by the user. This allows the complex script
shaping modules to use context to reorder and generate glyphs correctly. Also, applications should use
GetTextExtentExPoint to determine line length rather than computing line lengths from cached character widths.
This is because the width of a glyph may vary by context. In addition, complex script-aware applications should
consider adding support for right-to-left reading order and right alignment to their applications.
For more information, see Fonts and Text.

Edit Controls
The standard edit controls have been extended to support multilingual text and complex scripts. This includes not
only input and display, but also correct cursor movement over character clusters (in Thai and Devanagari script, for
example).
For more information, see Edit Controls.

Rich Edit Controls
Rich Edit 3.0 is a higher-level collection of interfaces that takes advantage of Uniscribe to further insulate text
layout clients from the complexities of certain scripts. Rich Edit is designed for clients whose primary purpose is not
necessarily text layout, but who nonetheless need to display complex scripts.
Rich Edit provides fast, versatile editing of rich Unicode multilingual text and simple plain text. It includes
extensive message and COM interfaces, text editing, formatting, line breaking, simple table layout, vertical text
layout, bidirectional text layout, Indic and Thai support, an editing UI much like Microsoft Word, and Text Object
Model interfaces. Rich Edit is the simplest way for a client to support features of complex scripts. Clients use its
TextOut function to automatically parse, shape, position, and break lines.
For more information, see Rich Edit Controls.

Uniscribe
Uniscribe enables extremely fine processing of complex scripts. It supports the complex rules found in scripts such
as Arabic, Indian, and Thai. It also handles scripts written from right to left, such as Arabic and Hebrew, and
supports the mixing of scripts.

	Généralités
	Locales
	Locale
	Character encoding
	Code pages
	Codepage Identifiers
	GetCPInfo
	setlocale
	Preprocessor directive
	Language strings recognized by setlocale
	Country/Region strings recognized by setlocale
	_setmbcp
	Code Pages in Outlook 2002
	Charsets in Microsoft Internet Explorer 5

	How to Encode XML Data
	Cross-Platform Data Formats
	A Lesson in Character Encoding
	Unicode
	Content-Type Header
	Content-Type Metatags
	Character Entities

	XML and Character Encoding
	Character Sets and the MSXML DOM
	Creating New XML Documents with MSXML
	Conclusion
	For More Information

	Unicode Programming Summary
	Unicode Enabling

	Entry point in DLL and EXE
	Linker option

	Using Generic-Text Mappings
	String Manipulation
	_bstr_t
	Construction
	Remarks

	Assign
	Remarks
	Example
	Output

	Files and Streams
	Text and Binary Streams
	Byte and Wide Streams
	Controlling Streams
	Stream States
	Unicode™ Stream I/O in Text and Binary Modes
	Quick reference

	Windows & Unicode
	Généralités
	RegisterClass
	IsWindowUnicode
	CallWindowProc
	DefWindowProc
	Subclassing and Automatic Message Translation

	I18N API
	National Language Support NLSAPI functions
	Multilingual API functions
	Font Technology
	Selection by the User
	Special Font Selection Considerations

	Bidirectionality
	Bidirectional layout

	Vertical Writing
	Changing Input Language
	Text Output
	Text-Formatting Attributes
	Text Alignment
	Intercharacter Spacing
	Text Justification
	Text and Background Color

	Character Widths
	String Widths and Heights
	Font Ascenders and Descenders
	Font Dimensions

	Drawing Text
	Complex Scripts
	Context-sensitive characters

	Window Layout
	Window Layout and Mirroring
	Mirroring Dialog Boxes and Message Boxes
	Mirroring Device Contexts Not Associated with a Window

	Uniscribe
	About Complex Scripts
	Processing Complex Scripts
	Text Functions
	Edit Controls
	Rich Edit Controls
	Uniscribe

