oOReXxX
Documentation 5.1.0

Open Object Rexx

Windows Extensions Reference

R

ooRexx Documentation 5.1.0 Open Object Rexx
Windows Extensions Reference
Edition 2025.05.02 (last revised on 2025-05-01 with r12966)

Author W. David Ashley
Author Gil Barmwater
Author Rony G. Flatscher
Author Mark Hessling
Author Rick McGuire
Author Lee Peedin
Author Oliver Sims
Author Erich Steinbdck
Author Jon Wolfers

Copyright © 2005-2025 Rexx Language Association. All rights reserved.
Portions Copyright © 1995, 2004 IBM Corporation and others. All rights reserved.

This documentation and accompanying materials are made available under the terms of the Common
Public License v1.0 which accompanies this distribution. A copy is also available as an appendix to
this document and at the following address: https://www.oorexx.org/license.html.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

Neither the name of Rexx Language Association nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

https://www.oorexx.org/license.html

Preface vii
I B o Tox 0 g 1= o | o] o V7= o1 i o o F- PP vii
1.1. TypographiC CONVENTIONSccouuuiiiiiii et et et eeeaans vii

2 N o) (<SR- U (o YA Vg 11 o TS viii

2. How to Read the Syntax DIagramsSc..iiiiieieiierii e e e e e e e e e e e et e e e e eenas viii
3. Getting Help and Submitting FEeDACKc.uiiiiiiiiiii e X
3.1. The Open Object ReXX SOUICEFOrge Sitecccuuiiiiiiiiiiiiiiii i X

3.2. The Rexx Language Association Mailing LiStccooiiiiiiiiiiiiiiic e Xi

4. Related INfOrMAtioNooiiii e e e e Xi
1. The WindowsProgramManager Class 1
1.1. NeW (Class MELNOM)uiiiiiiii e ettt e e e e e et e et e e e eaeen 1
= To [0 | B T=E] o] o] o] o B TP UP PP PPPPT 1
R R Vo [5] T 1 (G | 2
R Vo [[o 1] o Y 3
ST = o 11 1= o PP 4
1.6. deleteDeSKIOPICONciei ettt e e et et e e e e e 5
o (] =] =T €0 11 | o PR 6
S 0 [T =) =Y (T o PP 6
1.9, SNOWGTOUP ..ttt ettt e ettt et e eeaan s 7
1.10. Symbolic Names for Virtual KEYSiiiiiiiiiiiii e e e e e e e 7
2. The WindowsClipboard Class 11
P2 T oo o) PP 11
2.2, MAKEAITAY ..ottt ettt 11
G T - 11 = 12
Y 01 o] 12
2.5.0SDataAVailable ... 12
A T (o Tox- | = PP 12
3. The WindowsRegistry Class 14
0 I o oV (@4 P T3 1 4T 1 o o | T 15
3.2. classes_root (ALHDULE [OEL]) ...iernieiei e e 15
TR T o [0 1T PPN 15
I T oo | =T ox PP PPN 16
G TR T o £ (P 16
3.6. current_key (ARIDULE [OEL]) .uuiirniiiii e 16
3.7. current_key= (AribULe [SEL]) .oovniiii i 16
3.8. current_user (ALrDULE [OEL]) ...oiern i e 17
e B0 (=1 = (= TP 17
.10, AEIBLEKEY ..ot 17
B 0 B I o 1= 1= (o 7= T 18
.12, FIUSH e e e 18
G 0 o 1= Y- 111 18
0 S 1) PP 19
.15, NISEVAIUEBS ...t ettt e e a e 19
1 70 G (o 7= o TR 20
3.17. local_machine (AUrDULE [OEL]) .oeeruniiiiii e e 20
G 700 I F 0 0T o 20
B 700 S TR o 17T 22
I O T (=T o] - Lo PP 22
A B (=11 (0] ¢ PP 22
I Y-\ PP 22
T T 1= Y = 110 23
I U [o1 o =T PP 23

3.25

. USErS (ALDULE [GET]) eeuniei i e

4. The WindowsEventLog Class

4.1.
4.2.
4.3.
4.4,
4.5.
4.6.
4.7.
4.8.
4.9.

4.10.
4.11.
4.12.
4.13.
4.14.
4.15. i
4.16.
4.17.
4.18.
4.19.

L0 L] o BYA T To [V ES] =T o | { o o
NEeW (Class MEethOd)coueiiii e e e e e
minimumReadMin (ALHDULE) ...
minimumReadMaXx (AWFHDULE)uiiiii e e
minimumReadBuffer (AUHDULE) i
EVENTS (ALLIDULE) L.eieie e e e e

read (dePrecated) ... e et
(L= 10 |2 L=ToT0] {0 £

GEINUMIDET . et et e et e e et et e ettt e e e e e et e e e era e eaees
[0 1T I aTo | N\ =0 0 [T PPN
(0[] =] PP PP
L0 L= T A

5. The WindowsManager Class

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10

AESKIOPWINAOW ...t ettt e et eeebaes
12 PP
1{0] €= | (o 18T To LVAY /T o [0 11y
WINAOWALPOSITION ...ttt et e et et e e et e e e e eeaeaes
[ol0] 01510 Lo 1[PPI
Lod g TSTo1 [I 1[PPI
SENATEXITOWINAOW ...eiiiniiiiiie e et e e e e e e et e et e e e eanes
018 Y 01 =Wk (o] o [K0T/ T4 o 01
ProceSSMENUCOMIMANTiiiitiietiiiie et e et e e e et e e et e e et e e e e et e e e e et e e eeaennas
. broadcastSettingChangedoouiiiiii e

6. The WindowObiject Class

6.1.
6.2.

6.3. i
6.4. ti

6.5.
6.6.
6.7.
6.8.
6.9.

6.10.
6.11.
6.12.
6.13.
6.14.
6.15.
6.16.
6.17.
6.18.
6.19.

Fo ST T oA YA/ T o [0
= 1o |

o PP PP TRRPUPPPRPTIN

0= 6] 1 (=
L1151 (0 1= TSP

(1410 1YL= o TR
(100 (=T o | (o U] o o IR SO UUPTTSUPPTTR
L{0 X103 AV L (= 1

6.20. TOCUSPIEVIOUSITEIM L.oeiiiiitii e et ens 53
ST I (o Yot U 1Y | (=] o PP 53
6.22. fINACRIIA ..o e 53
6.23. CHIIAATPOSILION ...uiiieiiiiiie e e ettt e e e e et e et e et e et e et eaanas 53
LT S 1= P 54
B.25. PIEVIOUSiitieiii et ettt ettt et ettt e e e et et et e e a e et e e e ea s 54
ST T 1 £5) PP PSPPI 54
ST A - T PPN 54
ST T 0 .Y/ o = 54
LS IZAe T (1Y (O o1 o PP 54
6.30. eNUMEIAtECRNIIAIENiviit e e e e e e e e e e eaeees 54
B.31. SENUMESSAGE ...ovuiiiiiiii ettt et et e e e e e e et e e e e e e e aaas 55
(SI0C 2 =Y = o o (@] 1 o1 4 = o [0 PPN 55
6.33. SENAMENUCOMIMANG ...euiiniitiieie e e e e e e e e e e et e et e s et eaaetaeraeanees 56
6.34. SENAMOUSECICKiviiriieiitii et e e e e e e e e eeeneenns 56
LRI SY =T g o 1S3 VYo o] 2 14 = 1o [57
LSRG T o0 £ 1= 01 (o] o T 58
LS A=Y= T o | 1= 58
LOTRC TS T =Y =1 o (o [T- | S PPN 59
6.39. SENAKEYDOWN ...ttt ettt ettt et e ettt e e et et e e et et e e et et e e e e era e aeen 59
B.40. SENAKEYUD .ottt 59
SR N YT (o 1 1= 4 APPSR 59
LT o 4T o T P 59
B.43. SYSTEIMIMIBIIU ...eiiiiiii et e e e e e et e e e e e e e e e e e 59
LR B 1V 1T o T PRI 60
6.45. ProceSSMENUCOMMANTcouuiiiiiiiii ettt e et e et e et eeenea s 60
7. The MenuObiject Class 61
% T 1Y 1= T T PP 61
A 310 | 011, =T o 1 PSPPI 61
0C T (-1 O 4 1= o (Yo PP 61
P R ST o= 1= 1 (o] S TP PP PRSPPI 62
8 TR 1 =Y 2 R 62
K T o [] PSP 62
R (= 4 (O o T 1= 1) U 62
A T (=) (O { (o) TP 62
A8 =10 1 o] 1 =T o T PSP 62
8 O 11970 KT] o 0 1 =T T PP 63
78 1 o 1T o o 63
000 T o o o =TT (T o 63
8. OLE Automation 64
8.1. Overview Of OLE AULOMALIONoouiitiiiiii e e e e e enee 64
8.2, OLE EVENIS .ot e 65
8.3. The OLEODJECE ClASSuuiiiiiiieiiii ettt e e et e e es 69
8.3.1. NeW (Class MethOd)cc.uuiiiiiii i e 69
8.3.2. getObject (Class Method)cooviiiiiii e 70
8.3.3. addEVENIMELNOMoeiiniii s 71
8.3 . ClaSS oniiiii e 71
B.3.5. CLSID it 71
TR N G T olo])Y PPN 72
8.3.7. CONNEBCIEVENLSeiieii e e e et ans 72
8.3.8. AISCONNECIEVENTSuiiiiiitiii it e et e e e e e e aeens 72
8.3.9. diSPALCI ..t 73
8.3.10. GEICONSLANTeeiiet it et ettt e e e e 73

8.3.11. getKNOWNEVENLS ... oottt et et e e e ea e enns 74

8.3.12. getKNOWNMELNOASuiiiiiiiiei e e 75

8.3.13. getOULIPAIAMELEISuuiiiiieiie ettt e e e 77

8.3.14. haSOIEMETNOM ... cuiiitiii e e ans 78

8.3.15. iSCONNECIADIE .. cvviiiii e 78

8.3.16. ISCONNECIEA ...ouiiniiiii e e e e e e e e e e ans 78

SR B0 I o o | 5 L PSP 79

8.3.18. reMOVEEVENTHANIETonieii e 79

8.3.19. remMOVEEVENIMELNOAcoeieiiii e 79

S TG T2 0 TR r- 1 79

8.3.20. SEAMWVIEN e 80

8.3.22. UNKNOWN ..ttt et et et e e e et e et et e e et e e e taanaas 80

8.3.23. TYPE CONVEISION ...ttt ettt e et e e e e e et e e e e e et e e ean e aeanaaeees 81

8.4. The WINdows OLEVAriant ClassSccoviiiiiiiiiiiiie ettt 82
8.4.1. NeW Class METNOUceieiiii e e 84

8.4.2. WARVALUE .. oo 85

8.4.3. ARV ALUE = .ot 86

8.4 4. AR T Y PE oot 86

8.4, 5. AR T Y P = i e 86

8.4.6. IPARAMEILAGS ...t 86

8. 7. IPARAME L A G S o o 86

A. Notices 87
N I - Vo 1= 0 =T PSRN 87

A.2. Source Code FOor ThisS DOCUMENTiiuiiiiiii e e e eaas 88

B. Common Public License Version 1.0 89
0 R B L= i a0 o F PN 89

B.2. Grant Of RIGNTS ...t ettt ettt e e e e e e e 89

2 T I =0 [U= 0 =T £ 20

B.4. Commercial DiStriBULIONccvuiiiiiiiiii e 90

R T N [0 T VAT = U = g 1 N 91

B.6. Disclaimer of Liabilityc..iiiiiii e e e 91

A CT=T o 1= - | N 91

C. Revision History 93
Index 94

Vi

Preface

This book describes extensions to the Open Object Rexx Interpreter that are specific to the Windows
operating system. The extensions are in two main categories.

The first category is a number of classes implemented in a library package, winSystm.cls. These
classes are used to interact with Windows system objects like the event log and the clipboard. The
second category is OLE Automation (Chapter 8, OLE Automation).

These extensions are currently only available on Windows. The Windows Scripting Host and

OLE Automation can only be implemented on Windows. Some of the classes, such as the
WindowsEventLog (Chapter 4, The WindowsEventLog Class) and the WindowsRegistry (Chapter 3,
The WindowsRegistry Class) classes must be, by their nature, Windows specific. Some of the other
classes, such as the MenuObject (Chapter 7, The MenuObject Class) or WindowObject (Chapter 6,
The WindowObject Class) classes could certainly be enhanced to be cross-platform. However, at this
time there are no plans to do so.

This book is intended for people who plan to develop applications using ooRexx and one or more of
the Windows specific classes. In general no special knowledge of Windows programming is needed
to use the Windows extensions. Therefore this book is applicable for users ranging in experience from
the novice ooRexx programmer, to the experienced application developer.

This book is a reference rather than a tutorial. It assumes the reader has some exposure to object-
oriented programming concepts and Rexx programming.

The use and syntax of all the classes and their methods is covered in this book. A brief overview of
OLE Automation and the Windows Scripting Host Engine is given. Many of the descriptions of class
methods also include example code snippets.

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

1.1. Typographic Conventions

Typographic conventions are used to call attention to specific words and phrases. These conventions,
and the circumstances they apply to, are as follows.

Mono-spaced Bold is used to highlight literal strings, class names, or inline code examples. For
example:

The Class class comparison methods return . true or . false, the result of
performing the comparison operation.

This method is exactly equivalent to subwWord(n, 1).

Mono-spaced Normal denotes method names or source code in program listings set off as separate
examples.

This method has no effect on the action of any hasentry, hasIndex, items,
remove, or supplier message sent to the collection.

-- reverse an array
a = .Array~of("one", "two", "three", "four", "five")

Vii

Notes and Warnings

-- five, four, three, two, one
aReverse = .CircularQueue~new(a~size)~appendAll(a)~makeArray("lifo")

Proportional Italic is used for method and function variables and arguments.

A supplier loop specifies one or two control variables, index, and item, which receive a
different value on each repetition of the loop.

Returns a string of length length with string centered in it and with pad characters
added as necessary to make up length.

1.2. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

@e

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

M

Important boxes detail things that are easily missed, like mandatory initialization. Ignoring a box
labeled 'Important’ will not cause data loss but may cause irritation and frustration.

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. How to Read the Syntax Diagrams

Throughout this book, syntax is described using the structure defined below.
» Read the syntax diagrams from left to right, from top to bottom, following the path of the line.
The »— symbol indicates the beginning of a statement.
The —- symbol indicates that the statement syntax is continued on the next line.
The --— symbol indicates that a statement is continued from the previous line.
The —»< symbol indicates the end of a statement.

* Required items appear on the horizontal line (the main path).

»—(STATEMENT)— required_item |->

viii

How to Read the Syntax Diagrams

» Optional items appear below the main path.

STATEMENT

optional_item

« If you can choose from two or more items, they appear vertically, in a stack. If you must choose one
of the items, one item of the stack appears on the main path.

>>—(STATEMENT required_choicel

required_choice2

« If choosing one of the items is optional, the entire stack appears below the main path.

»»—{ STATEMENT } —
J

optional _choicel

optional_choice2

« If one of the items is the default, it is usually the topmost item of the stack of items below the main
path.

)P—' STATEMENT J »<

default_choice

optional_choice

optional_choice

» A path returning to the left above the main line indicates an item that can be repeated.

repeatable_item

PP—(STATEMENT

A repeat path above a stack indicates that you can repeat the items in the stack.

» A pointed rectangle around an item indicates that the item is a fragment, a part of the syntax
diagram that appears in greater detail below the main diagram.

DP—(STATEMENT)—< DETAIL - fragment)—N

» Keywords appear in uppercase (for example, SIGNAL). They must be spelled exactly as shown
but you can type them in upper, lower, or mixed case. Variables appear in all lowercase letters (for
example, index). They represent user-supplied names or values.

« If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

)
>>—(MAX(number

Getting Help and Submitting Feedback

3. Getting Help and Submitting Feedback

The Open Object Rexx Project has a number of methods to obtain help and submit feedback for
ooRexx and the extension packages that are part of ooRexx. These methods, in no particular order of
preference, are listed below.

3.1. The Open Object Rexx SourceForge Site

Open Object Rexx utilizes SourceForge to house its source repositories, mailing lists and other project
features at https://sourceforge.net/projects/oorexx. ooRexx uses the Developer and User mailing lists
at https://sourceforge.net/p/oorexx/mailman for discussions concerning ooRexx. The ooRexx user is
most likely to get timely replies from one of these mailing lists.

Here is a list of some of the most useful facilities provided by SourceForge.

The Developer Mailing List
Subscribe to the oorexx-devel mailing list at https.//sourceforge.net/projects/oorexx/lists/oorexx-
devel to discuss ooRexx project development activities and future interpreter enhancements. You
can find its archive of past messages at https.//sourceforge.net/p/oorexx/mailman/oorexx-devel.

The Users Mailing List
Subscribe to the oorexx-users mailing list at https:/sourceforge.net/projects/oorexx/lists/oorexx-
users to discuss how to use ooRexx. It also supports a historical archive of past messages.

The Announcements Mailing List
Subscribe to the oorexx-announce mailing list at https://sourceforge.net/projects/oorexx/lists/
oorexx-announce to receive announcements of significant ooRexx project events.

The Bug Mailing List
Subscribe to the oorexx-bugs mailing list at https:/sourceforge.net/projects/oorexx/lists/oorexx-
bugs to monitor changes in the ooRexx bug tracking system.

Bug Reports
You can view ooRexx bug reports at https.//sourceforge.net/p/oorexx/bugs. To be able to create
new bug reports, you will need to first register for a SourceForge userid at https://sourceforge.net/
user/registration. When reporting a bug, please try to provide as much information as possible to
help developers determine the cause of the issue. Sample program code that can reproduce your
problem will make it easier to debug reported problems.

Documentation Feedback
You can submit feedback for, or report errors in, the documentation at https:/sourceforge.net/p/
oorexx/documentation. Please try to provide as much information in a documentation report as
possible. In addition to listing the document and section the report concerns, direct quotes of the
text will help the developers locate the text in the source code for the document. (Section nhumbers
are generated when the document is produced and are not available in the source code itself.)
Suggestions as to how to reword or fix the existing text should also be included.

Request For Enhancement

You can suggest new ooRexx features or enhancements at https.//sourceforge.net/p/oorexx/
feature-requests.

Patch Reports
If you create an enhancement patch for ooRexx please post the patch at https://sourceforge.net/
p/oorexx/patches. Please provide as much information in the patch report as possible so that the
developers can evaluate the enhancement as quickly as possible.

https://sourceforge.net/projects/oorexx
https://sourceforge.net/p/oorexx/mailman
https://sourceforge.net/projects/oorexx/lists/oorexx-devel
https://sourceforge.net/projects/oorexx/lists/oorexx-devel
https://sourceforge.net/p/oorexx/mailman/oorexx-devel
https://sourceforge.net/projects/oorexx/lists/oorexx-users
https://sourceforge.net/projects/oorexx/lists/oorexx-users
https://sourceforge.net/projects/oorexx/lists/oorexx-announce
https://sourceforge.net/projects/oorexx/lists/oorexx-announce
https://sourceforge.net/projects/oorexx/lists/oorexx-bugs
https://sourceforge.net/projects/oorexx/lists/oorexx-bugs
https://sourceforge.net/p/oorexx/bugs
https://sourceforge.net/user/registration
https://sourceforge.net/user/registration
https://sourceforge.net/p/oorexx/documentation
https://sourceforge.net/p/oorexx/documentation
https://sourceforge.net/p/oorexx/feature-requests
https://sourceforge.net/p/oorexx/feature-requests
https://sourceforge.net/p/oorexx/patches
https://sourceforge.net/p/oorexx/patches

The Rexx Language Association Mailing List

Please do not post bug fix patches here, instead you should open a bug report at https://
sourceforge.net/p/oorexx/bugs and attach the patch to it.

The ooRexx Forums
The ooRexx project maintains a set of forums that anyone may contribute to or monitor. They are
located at https://sourceforge.net/p/oorexx/discussion. There are currently three forums available:
Help, Developers and Open Discussion. In addition, you can monitor the forums via email.

3.2. The Rexx Language Association Mailing List
The Rexx Language Association maintains a forum at https:/groups.io/g/rexxla-members/topics.

4. Related Information

See also: Open Object Rexx: Reference

Xi

https://sourceforge.net/p/oorexx/bugs
https://sourceforge.net/p/oorexx/bugs
https://sourceforge.net/p/oorexx/discussion
https://groups.io/g/rexxla-members/topics

Chapter 1.

The WindowsProgramManager Class

The WindowsProgramManager class allows the programmer to interact with the Windows Program
Manager. This class can be use to create program groups and shortcuts to access your programs.

The WindowsProgramManager class is defined in the file winSystm. cls To use this class in a
program, place a : :requires statement in the program file:

r:irequires "winSystm.cls"

A sample program desktop . rex is provided in the samples\oodialog\winsystem directory.
Methods of the WindowsProgramManager class are:

Table 1.1. Methods Available to the WindowsProgramManager Class

Method... ...link

new (Class method) init (Section 1.1, “new (Class method)”) (Class
method)

addDeskToplcon addDesktoplcon (Section 1.2, “addDesktoplcon”)

addGroup addGroup (Section 1.4, “addGroup”)

additem addltem (Section 1.5, “addltem”)

addShortCut addShortCut (Section 1.3, “addShortCut”)

deleteDesktoplcon deleteDesktoplcon (Section 1.6,
“deleteDesktoplcon”)

deleteGroup deleteGroup (Section 1.7, “deleteGroup”)

deleteltem deleteltem (Section 1.8, “deleteltem”)

showGroup showGroup (Section 1.9, “showGroup”)

1.1. new (Class method)

Creates an instance of the WindowsProgramManager class.

1.2. addDesktoplcon

addShortCut

>>—(addDesktopIcon()—| name I—O—{ program I—O m O
N

iconr

0 Or—70 0
'l =
E=

-

Adds a shortcut to the Windows desktop. A sample program DESKICON .REX is provided in the
00Rexx\SAMPLES directory.

Arguments:
The arguments are:
name
The name of the shortcut, displayed below the icon.

program
The program file launched by the shortcut.

iconfile
The name of the icon used for the shortcut. If not specified, the icon of program is used.

iconnr
The number of the icon within the iconfile. The default is 0.

workdir
The working directory of the shortcut.

location

Either of the following locations:
"PERSONAL"

The shortcut is personal and displayed only on the desktop of the user.

"COMMON"
The shortcut is common to all users and displayed on the desktop of all users.

args
The arguments passed to the program that the shortcut refers to.

hotkey
The virtual key to be used as a hotkey to open the shortcut. For a list of the key names, see
Section 1.10, “Symbolic Names for Virtual Keys”.

run
Specifies one of the options listed in the syntax diagram. The default is "NORMAL".

1.3. addShortCut

addGroup

bb—(addshortcut()—' name . 5 m m
Tlo /"

))) ;
O'l Py Py Y g [
D

Creates a shortcut within the specified folder.

Arguments:
The arguments are:
name
The full name of the shortcut.

program
The program file launched by the shortcut.

iconfile
The name of the icon used for the shortcut. If not specified, the icon of program is used.

iconnr
The number of the icon within the iconfile. The default is 0.

workdir
The working directory of the shortcut.

args
The arguments passed to the program that the shortcut refers to.

hotkey

The virtual key to be used as a hotkey to open the shortcut. For a list of the key names, see
Section 1.10, “Symbolic Names for Virtual Keys”.

run
Specifies one of the options listed in the syntax diagram. The default is "NORMAL".

Example:

The following example creates a shortcut named "My NotePad" to the Notepad editor within the
directory c:\temp:

Example 1.1. WindowsProgramManager class - addShortCut method

pm = .WindowsProgramManager~new
if pm~InitCode \= 0 then exit
pm~addShortCut ("c:\temp\My Notepad", "%SystemRoot%\system32\notepad.exe")
rirequires "winsystm.cls"

1.4. addGroup

addltem

»—(addGroup()—' group I—@—N

Adds a program group to the Programs group of the desktop. If the group already exists, it is opened.
The group argument specifies the name of the program group to be added. Example:

addGroup("Object Rexx Redbook")

@e

The name that you specify for the group argument must not contain any brackets or parenthesis.
Otherwise, this method fails.

Return value:

0
The method was successful.

The method failed.

1.5. additem

»—(addltem()—| shortcut ' , m @»
2
O

Adds a shortcut to a program group. The shortcut is placed into the last group used with either
AddGroup or ShowGroup.

Example 1.2. WindowsProgramManager class - addltem method

AddItem("OODialog Samples", ,
"rexx oodialog\samples\sample.rex", ,
"oodialog\samples\oodialog.ico")

The name that you specify for the group argument must not contain characters that are not valid,
such as brackets or parenthesis. Otherwise, this method fails. Some characters are changed, for
example / to _.

Return value:

deleteDesktoplcon

The method was successful.

The method failed.

1.6. deleteDesktopicon

bb—(deleteDesktopIcon(H name l PERSONAL '

Deletes a shortcut from the Windows desktop that was previously created with AddDesktoplcon.

The arguments are:

name
The name of the shortcut to be deleted.

location
Either of the following locations:

"PERSONAL"
The shortcut was previously created with AddDesktoplcon and the location option
"PERSONAL". This is the default.

"COMMON"
The shortcut was previously created with AddDesktoplcon and the location option
"COMMON".

Return codes:

0
Shortcut deleted successfully.

Shortcut not found.

Path to shortcut not found.

Access denied or busy.

26
Not a DOS disk.

32
Sharing violation.

36
Sharing buffer exceeded.

87
Does not exist.

deleteGroup

206
Shortcut name exceeds range error.

Return code 2 is also returned when a "PERSONAL" should be deleted that was previously
created with "COMMON" and vice versa.

Example 1.3. WindowsProgramManager class - deleteDesktoplcon method

pm = .WindowsProgramManager~new
if pm~InitCode \= 0 then exit

rc = pm~deleteDesktopIcon("MyNotepadl", ,
"%SystemRoot%\system32\notepad.exe")
if rc \= 0 then do
say "Error deleting shortcut: My Notepad 1"
exit
end

exit

rirequires "winsystm.cls"

1.7. deleteGroup
»—(deleteGroup()—' group I—@—N

Deletes a program group from the desktop. The group argument specifies the name of the program
group to be deleted.

Return value:

0
The method was successful.

The method failed.
1.8. deleteltem

>>—(delete1tem()—| shortcut I—@—N

Deletes a shortcut from a program group.

Return value:

0
The method was successful.

The method failed.

showGroup

1.9. showGroup

bb—(showGroup()—' group I @—N
Opens a program group. The group argument specifies the name of the program group to be opened.
If MIN or MAX is specified, the program group is opened minimized or maximized.

Return value:

0
The method was successful.

The method failed.

1.10. Symbolic Names for Virtual Keys

Table 1.2, “Symbolic Names for Virtual Keys” shows the symbolic names and the keyboard
equivalents for the virtual keys used by Object Rexx.

Table 1.2. Symbolic Names for Virtual Keys

Symbolic Name Mouse or Keyboard Equivalent

LBUTTON Left mouse button
RBUTTON Right mouse button
CANCEL Control-break processing
MBUTTON Middle mouse button (three-button mouse)
BACK BACKSPACE key

TAB TAB key

CLEAR CLEAR key

RETURN ENTER key

SHIFT SHIFT key

CONTROL CTRL key

MENU ALT key

PAUSE PAUSE key

CAPITAL CAPS LOCK key
ESCAPE ESC key

SPACE SPACEBAR

PRIOR PAGE UP key

NEXT PAGE DOWN key

END END key

HOME HOME key

LEFT LEFT ARROW key

Symbolic Names for Virtual Keys

Symbolic Name Mouse or Keyboard Equivalent

UP UP ARROW key
RIGHT RIGHT ARROW key
DOWN DOWN ARROW key
SELECT SELECT key
EXECUTE EXECUTE key
SNAPSHOT PRINT SCREEN key
INSERT INS key

DELETE DEL key

HELP HELP key

0 key

1 key

2 key

3 key

4 key

5 key

6 key

7 key

8 key

9 key

A key

B key

C key

D key

E key

F key

G key

H key

| key

Tl ol mlololwm|>»|o|lo|N|loju|ls|lw|NvkR|oO

J key
K key
L key
M key
N key
O key
Q key
R key
S key
T key

40| VO 0|22 | X«

Symbolic Names for Virtual Keys

Symbolic Name Mouse or Keyboard Equivalent

U U key

Vv V key

W W key

X X key

Y Y key

Z Z key

NUMPADO Numeric keypad 0 key
NUMPAD1 Numeric keypad 1 key
NUMPAD2 Numeric keypad 2 key
NUMPAD3 Numeric keypad 3 key
NUMPAD4 Numeric keypad 4 key
NUMPAD5 Numeric keypad 5 key
NUMPAD6 Numeric keypad 6 key
NUMPAD7 Numeric keypad 7 key
NUMPADS8 Numeric keypad 8 key
NUMPAD9 Numeric keypad 9 key
MULTIPLY Multiply key

ADD Add key
SEPARATOR Separator key
SUBTRACT Subtract key
DECIMAL Decimal key

DIVIDE Divide key

F1 F1 key

F2 F2 key

F3 F3 key

F4 F4 key

F5 F5 key

F6 F6 key

F7 F7 key

F8 F8 key

F9 F9 key

F10 F10 key

Fl11 F11 key

F12 F12 key

F13 F13 key

F14 F14 key

F15 F15 key

F16 F16 key

Symbolic Names for Virtual Keys

Symbolic Name Mouse or Keyboard Equivalent

F17 F17 key

F18 F18 key

F19 F19 key

F20 F20 key

F21 F21 key

F22 F22 key

F23 F23 key

F24 F24 key
NUMLOCK NUM LOCK key
SCROLL SCROLL LOCK key

10

Chapter 2.

The WindowsClipboard Class

The WindowsClipboard class provides methods to interact with a clipboard. Typically a clipboard is
used to transfer data back and forth between different windows in a graphical user interface.

The WindowsClipboard class is not a built-in class. It is defined in the winSystm. c1ls file. This
means, you must use a : : requires statement to use its functionality, as follows:

r:requires "winSystm.cls"

Methods the WindowsClipboard Class Defines

° copy

e makeArray

* paste

s empty

* isDataAvailable

* |ocale

2.1. copy

0 0%
translateflags

Empties the clipboard and copies the specified text to it.

If codepage is omitted or is an empty string, the text (which should be an ANSI string) is converted to
Unicode by the system.

If codepage is "UNICODE", the text (which should be a UTF-16 string) is put as-is in the clipboard.

For any other value of codepage, the text (which should be a string encoded in codepage) is
converted to Unicode using the Rexx utility SysToUnicode. The arguments codepage and
translateflags are passed to SysToUnicode. They are described in the ooRexx reference
documentation.

Example 2.1. WindowsClipboard class - copy method

clipboard = .WindowsClipboard~new

clipboard~copy("Noel") -- ANSI text
clipboard~copy("4EQQ 6FQQ@ EBOO 6C00"x, "UNICODE") -- UTF-16 text (stored as-is)
clipboard~copy("Noé&l", "UTF8") -- SysToUnicode is used

clipboard~copy("Noél", "UTF8", "ERR_INVALID_CHARS") -- SysToUnicode is used

2.2. makeArray

11

paste

If the content of the clipboard is a string with newline characters in it, makeArray can be used to split
up the string into individual lines. An array is returned containing those lines.

@

This method is limited to the default codepage. If you need to specify a codepage then use:

.WindowsClipboard~new~paste("UTF8")~makeArray

2.3. paste

= 0 0)
el N

Retrieves the text data stored on the clipboard.

If codepage is omitted or is an empty string, the clipboard contents is converted from Unicode by the
system and returned as an ANSI string.

If codepage is "UNICODE", the clipboard contents is returned as a UTF-16 string.

For any other value of codepage, the clipboard contents is converted from Unicode using the Rexx
utility SysFromUnicode and returned as a string encoded in codepage. The arguments codepage,
mappingflags and defaultchar are passed to SysFromUnicode. They are described in the coRexx
reference documentation.

Example 2.2. WindowsClipboard class - paste method

clipboard = .WindowsClipboard~new

text = clipboard~paste -- ANSI text

text = clipboard~paste("UNICODE") -- UTF-16 (returned as stored)
text = clipboard~paste("UTF8") -- SysFromUnicode is used

text = clipboard~paste('"CP1252", "DEFAULTCHAR","#") -- SysFromUnicode is used

2.4. empty

Empties the clipboard.

2.5. isDataAvailable

isDataAvailable

Returns 1 if the text data is available on the clipboard. If no data is available, 0 is returned.

2.6. locale

12

locale

Returns the locale name associated with the text in the clipboard.
For example: "de-DE_phoneb" where

« "de" is the primary language

« "DE" is the sublanguage (optional)

» "phoneb" is the sort order (optional)

13

Chapter 3.

The WindowsRegistry Class

The WindowsRegistry class allows the programmer to interface with the operating system APIs
that are used to access the registry. The class can be used to query the registry and modify, add, and
delete entries.

In the Windows operating systems, the registry is a system-defined database in which applications
and system components store and retrieve configuration data. The data stored in the registry varies
according to the version of Microsoft Windows. Applications use the registry APIs to retrieve, modify,
or delete registry data.

You should not edit registry data that does not belong to your application unless it is absolutely
necessary. If there is an error in the registry, your system may not function properly. If this happens,
you can restore the registry to the state it was in when you last started the computer successfully. For
more information, see the help for your operating system.

The registry stores data in a tree format. Each node in the tree is called a key. Each key can contain
both subkeys and data entries called values. Sometimes, the presence of a key is all the data that an
application requires; other times, an application opens a key and uses the values associated with the
key. A key can have any number of values, and the values can be in any form.

Each key has a name consisting of one or more printable characters. Key names are not case
sensitive. Key names cannot include a backslash (1), but any other printable or unprintable character
can be used. The name of each subkey is unique with respect to the key that is immediately above it
in the hierarchy. Key names are not localized into other languages, although values may be.

Note: Windows provides a command line user tool named regedit that displays the registry and its

tree structure on the local machine. The tool can be very helpful in picturing the layout of the registry.

To use it, merely type regedit at the command prompt of a console window, or use the run option of
the Start menu.

Most of the operating system functions that manipulate the registry require the open handle of a parent
key. As a convenience to the programmer, the WindowsRegistry class usually allows this handle

to be omitted as an argument in its methods. The class keeps track of the most recently opened
handle and supplies this handle when the programmer omits the parent handle argument in a method.
This mechanism is implemented through the current_key (Section 3.6, “current_key (Attribute [get])”)
attribute. When a method has a parent handle argument and the programmer omits the argument, the
current key handle is used.

The WindowsRegistry class is not a built-in class; it is defined in the file winSystm.cls.

Use a : :requires statement to use the class in a program.
rirequires "winSystm.cls"

A sample program, registry.rex, is provided in the samples\oodialog\winsystem directory.
Methods the WindowsRegistry Class Defines

* new (Class method)
 classes_root (Attribute [get])
* close

* create

» current_key (Attribute [get])

14

new (Class method)

» current_key= (Attribute [set])
 current_user (Attribute [get])
+ delete

» deleteKey

+ deleteValue

* flush

» getValue

o list

* listValues

* load

 local_machine (Attribute [get])
» open

* Query

* replace

* restore

» save

+ setValue

* unload

 users (Attribute [get])

3.1. new (Class method)

Creates an instance of the WindowsRegistry class. The current key is set to
HKEY_LOCAL_MACHINE.

3.2. classes_root (Attribute [get])

classes_root

Returns the handle of the root key HKEY _CLASSES ROOT. This handle is maintained by the
operating system, it can not be changed.

3.3. close

15

connect

key_handle

Closes a previously opened key specified by its handle. Example:
rg~close(objectrexxkey)

It can take several seconds before all data is written to disk. You can use FLUSH to empty the cache.

If key_handle is omitted, CURRENT_KEY is closed.

3.4. connect

(s} [] Q) Lo])

Opens a key on a remote computer. This is supported only for HKEY_LOCAL_MACHINE and
HKEY_USERS.

3.5. create

=170 E=1e

Adds a new named subkey to the registry and returns its handle. The first argument is the parent key
handle. The second argument is the name of the new subkey.

Example 3.1. WindowsRegistry class - create method

newKey = rg~create(rg~local_machine, "myOwnKey")

3.6. current_key (Attribute [get])

Returns the handle of the current key. The current key is set by the new() (Section 3.1, “new (Class
method)”) method to HKEY_LOCAL_MACHINE. It's value is then updated by every call to create()
(Section 3.5, “create”) and open() (Section 3.18, “open”). Therefore its value is always that of the
handle of the most recently opened key unless the programmer sets (Section 3.7, “current_key=
(Attribute [set])”) it to some other value.

Most registry operations require an open handle to the parent key of the subkey being operated on. In
the WindowsRegistry class most methods that require the parent key allow the programmer to omit
the parent key. When the parent key is omitted, the current_key handle is used.

3.7. current_key= (Attribute [set])

(s} (-]

16

current_user (Attribute [get])

Sets the handle of the current key. The WindowsRegistry class maintains (Section 3.6, “current_key
(Attribute [get])”) this key, but the programmer can set it to any value at any time.

3.8. current_user (Attribute [get])

Returns the handle of the root key HKEY_CURRENT_USER. This handle is maintained by the
operating system and can not be changed.

3.9. delete

o) - =t)
keyHandle

Deletes a subkey and all its descendants. The method will remove the key, all of the key's values, and
all of its subkeys from the registry. To delete a key only if the key does not have subkeys values, use
the deleteKey() (Section 3.10, “deleteKey”) method.

Arguments
The two arguments are:
keyHandle [optional]
A handle to an open registry key. The key must have been opened with the DELETE access
right. If this argument is omitted then the CURRENT_KEY attribute is used.

subkeyName [required]
The name of the subkey to be deleted. The name is case insensitive.

Return
O on success, otherwise the Windows system error code. A generic description of the error can be
obtained by using the Rexx Utility function, SysGetErrorText() .

3.10. deleteKey

(st} G)
keyHandle

Deletes a subkey and its values from the registry. The subkey to be deleted must not have subkeys.
To delete a key and all its subkeys, you need to enumerate the subkeys and delete them individually.
To delete keys recursively, use the delete() (Section 3.9, “delete”) method.

Arguments
The two arguments are:
keyHandle [optional]
A handle to an open registry key. The key must have been opened with the DELETE access
right. If this argument is omitted then the CURRENT_KEY attribute is used.

subkeyName [required]
The name of the subkey to be deleted. The name is case insensitive.

17

deleteValue

Return

O on success, otherwise the Windows system error code. A generic description of the error can be
obtained by using the Rexx Utility function, SysGetErrorText() .

3.11. deleteValue

deleteValue(J @—N
=y

Deletes the named value for a given key. If key_handle is omitted, CURRENT_KEY is used. If value is
blank or omitted, the default value is deleted.

3.12. flush

>>—{;;;;Z) (z)4><
\—| key_handle I—’

Forces the system to write the cache buffer of a given key to disk. If key_handle is omitted,
CURRENT_KEY is flushed.

3.13. getValue

getVaIue() @—N
==y

Retrieves the data and type for a named value of a given key. The result is a compound variable with
suffixes data and type. If key_handle is omitted, CURRENT_KEY is used. If named value is blank or
omitted, the default value is retrieved.

On error O is returned. Errors can occur, for instance, if a non-existent key is queried or if the user
does not have sufficient privileges to query the key.

Example:
Example 3.2. WindowsRegistry class - getValue method

myval. = rg~getvalue(,"filesystem") /* current key */
say "Type is" myval.type

if myval.type = "NORMAL" then say "Value is" myval.data
myval. = rg~getvalue(mykey)

say "my default value is:" myval.data

myval. = rg~getvalue(mykey,"")

say "my default value is:" myval.data

On success, possible types are: NORMAL, EXPAND, MULTI, NUMBER, BINARY, NONE, OTHER.

Since errors are possible, it may be best to test that the return is a stem before assigning the return to
a stem. Something like this:

18

list

Example 3.3. WindowsRegistry class - getValue errors

retval = rg~getvalue(,"filesystem") /* current key */
if retval~isA(.Stem) then do

say "Type is" myval.type

if myval.type = "NORMAL" then say "Value is" myval.data
else do

say "Error getting registry value."
end

3.14. list

aCOn gORC IR0
key_handle

Retrieves the list of subkeys for a given key in a stem variable. The name of the stem variable must
include the period. The keys are returned as stem.1, stem.2, and so on.

Example 3.4. WindowsRegistry class - list method

rg~LIST(objectrexxkey, orexxkeys.)
do i over orexxkeys.

say orexxkeys.i

end

3.15. listValues

(e} G 0
key_handle

Retrieves all value entries of a given key into a compound variable. The name of the variable must
include the period. The suffixes of the compound variable are numbered starting with 1, and for each
number the three values are the name (var.i.name), the data (var.i.data), and the type (var.i.type). The
type is NORMAL for alphabetic values, EXPAND for expandable strings such as a path, NONE for

no specified type, MULTI for multiple strings, NUMBER for a 4-byte value, and BINARY for any data
format.

If key_handle is omitted, the values of CURRENT_KEY are listed.
Example 3.5. WindowsRegistry class - listValues method

gstem. = rg~QUERY(objectrexxkey)
rg~LISTVALUES(objectrexxkey, 1v.)

do i=1 to gstem.values

say "name of value:" lv.i.name "(type="lv.i.type")"
if 1lv.i.type = "NORMAL" then

say "data of value:" lv.i.data

end

19

load

3.16. load

o)+ Oz O |- @
key_handle

Load creates a named subkey under the open key key handle and loads registry data from the
file filename (created by SAVE (Section 3.22, “save”)) and stores the data under the newly created
subkey.

key handle can only be HKEY_USERS or HKEY_LOCAL_MACHINE. Registry information is stored in
the form of a hive - a discrete body of keys, subkeys, and values that is rooted at the top of the registry
hierarchy. A hive is backed by a single file.

If key_handle is omitted, the subkey is created under HKEY_LOCAL_MACHINE.

Use UNLOAD (Section 3.24, “unload”) to delete the subkey and to unlock the registry data file
filename.

3.17. local_machine (Attribute [get])

Returns the handle of the root key HKEY_LOCAL_MACHINE. This handle is maintained by the
operating system, it can not be changed.

3.18. open

»—@ f @—N
\—| parentHandle II LO f

Opens a named subkey with the specified access rights and returns its handle. When the programmer
is done with the handle it should be closed using the close () (Section 3.3, “close”) method.

Note: The default for the access argument is ALL access. As Microsoft has tightened up the security
in it operating systems, it has made access to the registry more restrictive than it was when the
WindowsRegistry class was first introduced. Opening a registry key with more access rights than
the user running the Rexx program has will result in failure. Best practice is to open a key with the
least rights needed for the operation being performed.

For instance, in a Rexx program where the function is to read the values of a single key, the key
should be opened with just the INQUIRE right. This is not only less likely to fail if the program user is
not an Administrator, but is more secure in every case.

Arguments
The two arguments are:
parentHandle [optional]
A handle to the open parent key. If this argument is omitted then the current_key (Section 3.6,
“current_key (Attribute [get])”) attribute is used.

20

open

subkey [optional]
The name of the subkey to be opened. If this argument is omitted or the empty string, a new
handle to the key identified by parentHandle is opened.

subkey [optional]
A string consisting of one or more of the following key words. The keywords are not case
sensitive. The default is the ALL keyword.

ALL
Opens the key with all possible access. Although this is the default, as discussed above
some forethought should be given to using this access.

WRITE
Combines the rights to create subkeys, set key values, and to read a key's access rights.

READ
Combines the rights to query key values, enumerate subkeys, read keys access rights,
and the notify right. Note that READ access and EXECUTE access are exactly the same.

QUERY
Combines the right to query values of a registry key (specified by the INQUIRE keyword
here,) with the right to enumerate subkeys.

INQUIRE
Required to query the values of a registry key.

ENUMERATE
Required to enumerate the subkeys of a registry key.

SET
Required to create, delete, or set a registry value.

DELETE
Exactly equivalent to SET access. The keyword is a convenience to make programs more
readable.

CREATE
Required to create a subkey of a registry key.

NOTIFY
Required to request change notifications for a registry key or for subkeys of a registry key.

EXECUTE
Exactly equivalent to READ access.

LINK
The Microsoft documentation states that this right is reserved for system use. The
keyword is listed here simply because it was documented in previous versions of ooRexx
and Object Rexx. The programmer is advised not to use it.

Return
A handle to the opened key on success, otherwise 0. If the key was opened correctly, the value
of the current_key (Section 3.6, “current_key (Attribute [get])”) attribute is set to this handle. If the
method fails, current_key is left unchanged.

21

query

3.19. query

>>—{?;;;;Z) (z)—><
\—| key_handle I—’

Retrieves information about a given key in a compound variable. The values returned are class
(class name), subkeys (number of subkeys) values (number of value entries), date and time of last
modification. If key_handle is omitted, CURRENT_KEY is queried. Example:

Example 3.6. WindowsRegistry class - query method

myquery. = rg~query(objectrexxkey)
say "class="myquery.class "at" myquery.date
say "subkeys="myquery.subkeys "values="myquery.values

3.20. replace

o () 0 , Q- [z 1 Q
L |

Replaces the backup file of a key or subkey with a new file. Key must be an immediate descendant

of HKEY_LOCAL_MACHINE or HKEY_USERS. If key_handle is omitted, the backup file of

CURRENT _KEY is replaced. The values in the new file become active when the system is restarted. If
subkeyname is omitted, the key and all its subkeys will be replaced.

3.21. restore

bb—' restore(J o H filename I f @—N
\—| key_handle I—/ LO

VOLATILE

Restores a key from a file. If key_handle is omitted, CURRENT_KEY is restored. Example:
rg~restore(objectrexxkey, "\objrexx\orexx")

The VOLATILE keyword creates a new memory-only set of registry information that is valid only until
the system is restarted.

3.22. save

(=0 ~)
key_handle

Saves the entries of a given key into a file. If key_handle is omitted, CURRENT_KEY is saved.
Example:

rg~SAVE (objectrexxkey, "\objrexx\orexx")

On a FAT system, do not use a file extension in filename.

22

setValue

3.23. setValue

setValue(m o value)
=)) I 2

MULTI

BINARY

buge

Sets a named value of a given key. If name is blank or omitted, the default value is set.

Example 3.7. WindowsRegistry class - setValue method

rg~SETVALUE (objectrexxkey, ,"My default", "NORMAL")
rg~SETVALUE (objectrexxkey, "Product_Name", "Object Rexx")
rg~SETVALUE (objectrexxkey, "VERSION", "1.0")

3.24. unload

) ~
key_handle

Removes a hamed subkey (created with LOAD (Section 3.16, “load”)) and its dependents from the
registry, but does not modify the file containing the registry information. If key_handle is omitted, the
subkey under CURRENT_KEY is unloaded. Unload also unlocks the registry information file.

3.25. users (Attribute [get])

Returns the handle of the root key HKEY_USERS. This handle is maintained by the operating system
and can not be changed.

23

Chapter 4.

The WindowsEventLog Class

The WindowsEventLog class provides functionality to interact with the Windows system event log.

The WindowsEventLog class is not a built-in class. It is defined in the file winSystm. cls. To use the
class, place a : :requires statement in the program file:

r:requires "winSystm.cls"

A sample program eventlog. rex is provided in the samples\oodialog\winsystem directory.
Methods:
The WindowsEventLog class implements the class and instance methods listed in the following table.

Table 4.1. WindowsEventLog Methods

Method Category

new (Section 4.2, “new (Class method)”) Class method
events (Section 4.6, “events (Attribute)”) Attribute
minimumReadBuffer (Section 4.5, Attribute
“minimumReadBuffer (Attribute)”)

minimumReadMin (Section 4.3, Attribute
“minimumReadMin (Attribute)”)

minimumReadMax (Section 4.3, Attribute
“minimumReadMin (Attribute)”)

clear (Section 4.12, “clear”) Instance method
close (Section 4.8, “close”) Instance method
getFirst (Section 4.19, “getFirst”) Instance method
getLast (Section 4.18, “getLast”) Instance method
getLogNames (Section 4.17, “getLogNames”) Instance method
getNumber (Section 4.16, “getNumber”) Instance method
isFull (Section 4.15, “isFull”) Instance method
minimumRead (Section 4.13, “minimumRead”) Instance method

minimumRead= (Section 4.14, “minimumRead=") | Instance method

open (Section 4.7, “open”) Instance method
Deprecated read (Section 4.9, “read Deprecated instance method
(deprecated)”)

readRecords (Section 4.10, “readRecords”) Instance method

write (Section 4.11, “write”) Instance method

4.1. Using WindowsEventLog

In Windows the Event Log service provides a central facility for both the operating system and
applications to log important events. The primary purpose for logging an event is to give administrators
a way to determine the cause of errors and to prevent future errors. The Event Log service provides
several standard logs: Application, Security, and System. The service also allows for applications to
register and create Custom logs. Each event is logged as a single event log record in a single log.

24

Using WindowsEventLog

The ooRexx WindowsEventLog class has methods that allow the programmer to query, read from,
write to, back up, and clear event logs. The class can access logs on both the local machine and on
remote machines accessed through the network. Full access to any log is governed by the security
settings of the system. Therefore an ooRexx program that interacts with the Event Log service will be
restricted to the privilege level of the user running the program.

The Event Log service uses information stored registry. This information controls how the service
operates. The following list discusses some of the event logging elements to help the programmer
better understand the methods and method arguments of the WindowsEventLog class:

Eventlog key

The Eventlog key is the key in the registry where all information for the Event Log service is
stored. There are several subkeys under the EventLog key. Each subkey names an event log. The
following shows the structure of the Eventlog key. The Application, Security and System subkeys
below name the standard logs provided by the system. The actual name(s) and the number of
Custom logs are dependent on the system.

HKEY_LOCAL_MACHINE
System
CurrentControlSet

Services

EventLog
Application
Security
System
CustomLog

Server

Many of WindowsEventLog instance methods have a server argument. This argument identifies
which machine contains the desired event log. The argument is always optional, with the default
server being the local machine. In all cases, using the empty string is the same as omitting the
argument.

To work with a log on a remote system, the server name must be in Universal Naming Convention
(UNC) format. For instance, \\Osprey.

Note that if there is an open (Opened event log) , the server argument is ignored.

Event Source

The event source is the name of the software or driver that logs the event. Event source names
are usually the name of the application, or a component of the application if the application is
large, or the driver name. Applications normally use the Application log, while drivers normally use
the System log. Event source names are stored in the registry as subkeys of the log they are used
in. Take the following registry example:

HKEY_LOCAL_MACHINE
System
CurrentControlSet
Services
EventLog
Application
WinApp1l
LoadPerf
Security
Security
System
Dhcp
atapi

25

Using WindowsEventLog

WinAppl, LoadPerf, Security, Dhcp, and atapi are all event sources.

Like the server (Server) argument, many of the WindowsEventLog instance methods have a
source argument. This argument specifies the event source and therefore determines exactly
which event log is used. The argument is always optional, the default is Application, and the empty
string is the same as omitting the argument. In the same manner as the server argument, if there
is an open event log (Opened event log), the source argument is ignored.

Note that if the Event Log service can not find the event source name in the registry, then the
service also uses Application for the source.

When opening, querying, or reading event logs, using an event source name is no different than
using the log name itself. For the above registry example, using:

eventLog~open(, "WinApp1")
or:

eventLog~open(, "LoadPerf")

is exactly the same as:

eventLog~open(, "Application")

However, when writing to an event log, the event source is included as part of the event log
record. Therefore:

eventLog~open(, "WinApp1")
produces a different result than using:

eventLog~open(, "LoadPerf")

Although both event records will be written to the System log, the records will show the event
source as WinAppl in the first record and LoadPerf for the source in the second record.

Event Log Record
Each event is stored in an event log as a single record. The information in the record includes
things like: time, type, category, record number, etc.. Each record contains the same fields,
although some fields, like the binary data field, are not always filled in.

Each record has a record number. The first record written to a log is number 1 and records are
then written consecutively. This makes the record with the lowest record number the oldest record.
Likewise the highest record number makes that record the youngest record. The user can set a
property for an event log to overwrite records when the maximum log size is reached. Because of
this, the oldest record is not always record number 1. The getFirst() (Section 4.19, “getFirst”) and
getLast() (Section 4.18, “getLast”) methods can be used to get the absolute record numbers of the
oldest and youngest records.

Record numbers can be used in the readRecords() (Section 4.10, “readRecords”) method to read
portions of the event log rather than the entire log.

When the readRecords() (Section 4.10, “readRecords”) method reads a record it converts the
information in the record to a string with a defined format that makes it easy to parse. The parts
(fields) of the string are as follows, in order:

26

Using WindowsEventLog

Table 4.2. Event Record Fields

Field Description Format

type The event type (Event Type) Single word

date The date the event was written Single word

time The time the event was written Single word

source The event source (Event Source) Enclosed in single
guotes

id The event ID (Event ID) Single word

userlD The user ID, if applicable Single word

computer The machine generating the event Single word

description A description of the event Enclosed in single
qguotes

data Binary data associated with the event Enclosed in single

quotes

Assuming that rec is the event record string, the following shows how to parse the string into its
component fields:

parse var rec type date time "'" source "'" id userID computer "'" description "'" "'"

data

Event Type

Each event recorded in an event log is a single type. There are five types of events that can be
logged. Each event type has well-defined common data and some optional data that is specific to
the event. When an event is logged the event type is included.

When the WindowsEventLog instance reads a record, the event type is indicated by a keyword.
When the programmer writes to the event log using a WindowsEventLog object, she specifies
the event type with its numeric value. The following table contains information on the five event
types and shows the event type keywords and numeric values.

Table 4.3. Event Types

Type
Error

Description

An event that indicates a significant problem such as
loss of data or loss of functionality. For example, if a
service fails to load during startup, an Error event is

logged.

Keyword

Error

Value
1 (0x01)

Warning

An event that is not necessarily significant, but may
indicate a possible future problem. For example, when
disk space is low, a Warning event is logged. If an
application can recover from an event without loss of
functionality or data, it can generally classify the event
as a warning event.

Warning

2 (0x02)

Information

An event that describes the successful operation of

an application, driver, or service. For example, when a
network driver loads successfully, it may be appropriate
to log an Information event. Note that it is generally
inappropriate for a desktop application to log each time it
starts.

Information

4 (0x04)

27

new (Class method)

Type
Information*

Description

* The Windows API allows the numeric value of 0. This
iS not a separate event type, but rather a mapping of O
to the Information event type. The WindowsEventLog
also allows the use of 0 for the numeric value of an
event type and maps it to Information.

Keyword

Information

Value
0 (0x00)

Success
Audit

An event that records an audited security access
attempt that is successful. For example, a user's
successful attempt to log on to the system is logged as a
Success Audit event.

Success

8 (0x08)

Failure Audit

An event that records an audited security access
attempt that fails. For example, if a user tries to access
a network drive and fails, the attempt is logged as a
Failure Audit event.

Failure

16 (0x10)

Event ID

The event identifier value is specific to the event source for the event. It is used with source name
to locate a description string in the message file for the event source.

Opened event log

When an event log has been opened using the open() (Section 4.7, “open”) method, that opened
log is always used until it has been closed. The log can be closed using the close() (Section 4.8,
“close”) method, or by another call to the open() method. This means that if there is an open
log, the server and source arguments are always ignored. The only exception to this is the write()
(Section 4.11, “write”) method. Each time a record is written to a log, the log is specifically opened
for writing and then closed.

Note that when there is not an open event log, then all the instance methods behave as the
write() method. That is, methods like readRecords() (Section 4.10, “readRecords”), isFull()
(Section 4.15, “isFull”), etc., will open the log specified in the method call and then explicitly close
the log before returning.

Event Category

Categories are used to organize events so that an event viewer can filter them. Each event source
(Event Source) can define its own numbered categories and the text strings to which they are
mapped.

The categories must be numbered consecutively, beginning with the number 1. The categories
themselves are defined in a message file and the category number maps to a text string in the
message file.

4.2. new (Class method)

Creates an instance of the WindowsEventLog class.
4.3. minimumReadMin (Attribute)

minimumReadMin

28

minimumReadMax (Attribute)

The programmer can set the size (Section 4.14, “minimumRead=") of the minimum read buffer, within
limits. minimumReadMin is the lowest acceptable size of the minimum read buffer.

~minimumReadMin= (set minimumReadMin)
minimumReadMin= is a private method, not intended to be changed by the programmer.

~minimumReadMin (get minimumReadMin)
The minimum number of kilobytes that the minimum read buffer can be set to.

Example:
The use of the attribute is straight-forward.

Example 4.1. WindowsEventLog class - minimumRead method

eventLog = .WindowsEventLog~new
say "Smallest possible read buffer is" eventLog~minimumReadMin "kilobytes"

iirequires 'winSystm.cls'
/* Output might be:
Smallest possible read buffer is 16 kilobytes

*/

4.4. minimumReadMax (Attribute)

The programmer can set the size (Section 4.14, “minimumRead=") of the minimum read buffer, within
limits. The minimumReadMax value is the largest acceptable size for the minimum read buffer.

~minimumReadMax= (set minimumReadMax)
minimumReadMax= is a private method, not intended to be changed by the programmer.

~minimumReadMax (get minimumReadMax)
The maximum number of kilobytes that the minimum read buffer can be set to.

Example:
This example displays the maximum size the programmer can set the minimum read buffer to.

Example 4.2. WindowsEventLog class - minimumReadMax method

eventLog = .WindowsEventLog~new
say "Largest possible minimum read buffer is" eventLog~minimumReadMax "kilobytes"

rirequires 'winSystm.cls'
/* Output might be:
Largest possible minimum read buffer is 256 kilobytes

*/

29

minimumReadBuffer (Attribute)

4.5. minimumReadBuffer (Attribute)

bb—‘ minimumReadBuffer ’—N

Returns the current size of the minimum read buffer in bytes. The programmer can adjust the size
(Section 4.14, “minimumRead=") of the minimum read buffer. The value of this attribute reflects that
size.

~minimumReadBuffer= (set minimumReadBuffer)
minimumReadBuffer=is a private method, not intended to be changed by the programmer.
The programmer changes the size of the buffer using the minimumRead= (Section 4.14,
“minimumRead=") method.

~minimumReadBuffer (get minimumReadBuffer)
The current size in bytes of the minimum read buffer.

Example:

This example displays the size of the minimum read buffer when a new WindowsEventLog object
is created and then displays the size after the programmer has changed the minimum.

Example 4.3. WindowsEventLog class - minimumReadBuffer method

eventLog = .WindowsEventLog~new
say "Current size of the minimum read buffer is" eventLog~minimumReadBuffer "bytes"

eventLog~minimumRead = 64
say "Adjusted size of the minimum read buffer to" eventLog~minimumReadBuffer "bytes"

r:requires 'winSystm.cls'
/* Output might be:

Current size of the minimum read buffer is 16384 bytes
Adjusted size of the minimum read buffer to 65536 bytes

*/

4.6. events (Attribute)

The events attribute is an array that holds the event log records that are read from the event
log during a call to readRecords() (Section 4.10, “readRecords”). The array is empty if no call to
readRecords() has been made. Each time readRecords () is called the array is first emptied.

Each index in the array holds one event record in the form of a string with a fixed format (Event Log
Record).

~events= (set events)
events= is a private method, not intended to be changed by the programmer.

~events (get events)

Returns the array holding the event log records from the last readRecords() (Section 4.10,
“readRecords”) call. The array will be empty if no call to readRecords () has been made.

30

open

Example:
This example displays the number of event log records that were read from the System log.

Example 4.4. WindowsEventLog class - events method

eventLog = .WindowsEventLog~new
if eventLog~readRecords("BACKWARDS", , "System") == 0 then do
say 'The System log has' eventLog~events~items 'records'
end
rirequires 'winSystm.cls'
/* Output might be:
The System log has 1983 records

*/

4.7. open

() 0 op

Opens the specified event log. Once an event log is opened, other methods of the
WindowsEventLog instance will use that opened log (Opened event log) until it has been closed
(Section 4.8, “close”).

If an event log is already open, then it is first closed before the specified log is opened.

Arguments:
The arguments are:
server

Optional. The name of the server (Server) where the event log resides).

source
Optional. The event source (Event Source).

Return value:
This method returns 0 on success, and the operating system error code on failure.

Example:

The following two code snippets are equivalent. They both open the Application log on the local
machine if they succeed:

Example 4.5. WindowsEventLog class - open method

eventLogl = .WindowsEventLog~new
ret = eventLogl~open
if ret \== 0 then do
say 'Failed to open the event log:'

say ' Error' ret':'SysGetErrortext(ret)
end
eventLog2 = .WindowsEventLog~new

ret = eventLog2~open(, "Application")
if ret \== 0 then do

31

close

say 'Failed to open the event log'
say ' Error' ret':'SysGetErrortext(ret)

end

The following example opens the System log on SERVEROL1:

Example 4.6. WindowsEventLog class - open method

eventLog = .WindowsEventLog~new
ret = eventLog~open("\\SERVERO1", "System")
if ret == 0 then do
-- Do something with the event log
eventLog~close
end
else do
-- Handle the error in some way

end

4.8. close

Closes an open event log (Opened event log). If no log is open, this method does nothing.

Arguments:
There are no arguments.

Return value:

This method returns 0 on success. If there is an error closing the event log the operating system
error code is returned. An error is highly unlikely.

Example:

The following code snippet opens the default event log (the Application log,) displays some
information about the log, then closes the open log.

Example 4.7. WindowsEventLog class - close method

log = .WindowsEventLog~new

ret = log~open
if ret == 0 then do

say " Total records: " log~getNumber
say " First record number" log~getFirst
say " Last record number " log~getLast
say " Log is full? " log~isFull
log~close

end

/* Output might be:

Total records: 1827
First record number 1
Last record number 1827
Log is full? 0]

32

read (deprecated)

/*

4.9. read (deprecated)

@e

This method is deprecated. It is replaced by the functionally equivalent readRecords()

(Section 4.10, “readRecords”) method. Do not use this method in new code. Try to migrate
existing code to to the readRecords () method. This method may not exist in future versions of
OORexx.

4.10. readRecords

readRecords(m m m O
(J Y Y Y

count

Reads the desired event records from the specified event log. Each record is stored in the
events(Section 4.6, “events (Attribute)”) array. After a successful read, all records will be contained
in the events array in the order there were read. Prior to starting the read operation the array is
emptied.

Details:
This method will raise syntax errors if the start or count arguments are used incorrectly. These
arguments, if used, must specify records actually contained in the event log. Use any combination
of the getFirst() (Section 4.19, “getFirst”), getLast() (Section 4.18, “getLast”), or getNumber()
(Section 4.16, “getNumber”) methods to determine the absolute record numbers contained in the
log.

During a read operation, if a single event record is larger than the read buffer an execution error
will be raised. The text of the error will read: An event log record is too large (recordSize) for the
read buffer (bufferSize.) Where recordSize is the size of the record and bufferSize is the size of
the read buffer at the time of the error.

The minimum size of the read buffer can be increased by using the minimumRead= (Section 4.14,
“minimumRead=") method. If this error occurred, the minimum read buffer should be set larger
than the size of the offending record.

Note well: It seems inconceivable that the read buffer could be smaller than a single event record.
The minimum possible size of the buffer is 16 KB and the average size of an event record is
between 100 and 200 bytes. The ooRexx programmer should not worry about this. This unlikely
possibility is simple documented for the sake of completeness.

Arguments:
The arguments are:

33

readRecords

direction
Optional. The direction to read the from the event log, forwards or backwards. The default
is to read forwards. If this argument is not omitted, it must be exactly one of the keywords,
BACKWARDS or FORWARDS. Case is not significant.

server
Optional. The name of the server (Server) where the event log resides

source
Optional. The event source (Event Source).

start
Optional. The starting record number for the read operation. The start and the count
arguments must be used together. Either both must be used or neither. If both arguments are
omitted, the entire log is read. When both arguments are used, the read begins with the record
number specified by start and reads in the direction specified for count records.

count
Optional. The count of records to be read during the read operation. The start and the count
arguments must be used together. Either both must be used or neither. If both arguments are
omitted, the entire log is read. When both arguments are specified, the read begins with the
record number specified by start and reads in the direction specified for count records.

Return value:
This method returns 0 on success, and the operating system error code on failure.

Example:
This example reads the 5 most recent event records in the System event log and displays them to
the console. (If there are less than 5 records in the log, then all the records are read.)

Example 4.8. WindowsEventLog class - readRecords method

log = .WindowsEventLog~new

startRec = log~getlLast(, "System")
count = log~getNumber~min(5)

ret = log~readRecords("BACKWARDS", , "System", startRec, count)

if ret == 0 then do
c = displayRecords(log~events)
say 'Displayed' c 'records'
end
else do
say "Error reading the System event log rc:" ret "-" SysGetErrorText(ret)
end

rirequires 'winSystm.cls'
/* Routine to display the event log records */
::routine displayRecords

use strict arg records

do record over records

Say " "

parse var record type date time "'" sourcename"'" id userid computer "'" string
min min data min

say 'Type : 'type

say 'Date . 'date

say 'Time 1 'time

34

write

say 'Source : 'sourcename
say 'ID 'id
say 'UserlId : 'userid
say 'Computer : 'computer
say 'Detail 1 'string
say 'Data : 'data

end

say "

return records~items

/* The output (shortened to 2 records) might be:

Type
Date
Time
Source
ID
UserId
Computer
Detail
15 minutes,

Information
02/14/09
11:32:21

! WinHttpAutoProxySvc

12503
N/A
OSPREY

: The WinHTTP Web Proxy Auto-Discovery Service has been idle for

it will be shut down.

Data

Type Information

Date 02/14/09

Time 11:15:51

Source Service Control Manager

D 7036

UserId N/A

Computer : OSPREY

Detail : The WinHTTP Web Proxy Auto-Discovery Service service entered

the running state.

Data

Displayed 5 records

*/

4.11. write

Or—70 O—0

Description

Arguments:
The arguments are:

‘-string
P

Optional. The name of the server (Server) where the event log resides

Optional. The event source (Event Source).

35

clear

type
Optional. The event type (Event Type) for the record. The default is the Error (1) event type.
When used, this argument must be the numeric value of a valid event type (Event Type).

category
Optional. The event category (Event Category) for the record. The default is 0, which is the
same as no category (none.)

id
Optional. The event identifier (Event ID) for the record.. The default is O.

data
Optional. The binary data for the record. The default is none. This is binary information
specific to the event being logged and to the source that generated the entry. It could for
example be the contents of the processor registers when a device driver got an error, a dump
of an invalid packet that was received from the network, etc..

string
Optional. The default is no string. This last argument can be repeated any number of times.
Each additional argument is a string used as a substitution string in the description string.

The event identifier (Event ID) together with the event source(Event Source) name identify
a description string contained in a message file that describes the event in more detail. The
description string can contain substitution place holders. The substitution strings named by
this argument are used to replace the substitution place holders in the description string.

Return value:
This method returns 0 on success, and the operating system error code on failure.

Example:
This example writes some fictitious data to an event log.

Example 4.9. WindowsEventLog class - write method

log = .WindowsEventLog~new
source = "MyApplication"
type = 4 -- Information
category = 22

id = 33

binaryData = "1 l1a ff 4b 0C"x

ret = log~write(, source, type, category, id, binarybData, "Stringl", "String2")
if ret == 0 then

say "Record" source "successfully written"
else

say "Error writing record" source "rc:" ret ":" SysGetErrorText(ret)

r:requires 'winSystm.cls'

4.12. clear

E O — T T U — ¢)

36

minimumRead

Clears (removes) all event records from the log. Optionally will back up the log first. When the optional
backup file name is supplied and for some reason the back up fails, then the event records are not
cleared.

Arguments:
The arguments are:
srvr
Optional. The name of the server (Server) where the event log resides

src
Optional. The event source (Event Source).

backupFileName
Optional. The path name to a back up file. If this argument is specified, the event log is first
backed up before it is cleared. If the back up fails, the log is not cleared. The back will fail if
the file name specified already exists.

The back up file will be created on the system that the event log file itself is on. This means
that if an event log on a remote system is specified, the log will be created on that remote
system. The file name must therefore be a valid file name on the remote system.

If the file name does not contain an extension, the the normal extension for event log back
ups, .evt, will be used.

Return value:
This method returns 0 on success, and the operating system error code on failure.

Example:
This example backs up the Application event log on the remote Eagle system and then
clears the log. If the back up fails, the log will not be cleared. The back up file will be named
eagle_application.evt and will be located on the Eagle system, not on the local machine.

Example 4.10. WindowsEventLog class - clear method

log = .wWindowsEventLog~new

ret = log~open("\\Eagle", "Application")
if ret == 0 then do
ret = log~clear(, , "C:\eagle_application")
if ret == 0 then do
say 'Backed up the Application event log on Eagle to:'

say ' C:\eagle_application.evt on the Eagle system.'
end
else do

say 'Failure backing up event log:' ret ":" SysGetErrorText(ret)
end

end

rirequires 'winSystm.cls'

4.13. minimumRead

37

minimumRead=

Determines the current minimum size, in kilobytes, of the buffer used to read (Section 4.10,
“readRecords”) event log records. The minimum size of this buffer can be adjusted (Section 4.14,
“minimumRead=") by the programmer.

Arguments:
There are no arguments to this method.

Return value:

The size in kilobytes of the minimum read buffer. For example if the minimum buffer size is 32,768,
this method will return 32. (32 KB.)

Example:
This example displays the current value of the minimum read buffer size.

Example 4.11. WindowsEventLog class - minimumRead method

log = .WindowsEventLog~new
say 'Current minimum size of the read buffer is:' log~minimumRead "KB"

rirequires 'winSystm.cls'
/* Output might be:
Current minimum size of the read buffer is: 16 KB

*/

4.14. minimumRead=

(o) (=} [

Adjusts the minimum size of the read buffer in increments of 1024 bytes. Note that the programmer
need not worry about the read buffer. This method is documented because it does exist and for the
sake of the rare Rexx programmer that might need to change the minimum size of the read buffer.

The read buffer is used by the underlying implementation during the readRecords() (Section 4.10,
“readRecords”) method only. During a read operation, the WindowsEventLog attempts to allocate
a buffer that is big enough to read in all the records at once. The size of the buffer is guessed at by
using the number of records in the event log. The size is constrained by a minimum (Section 4.3,
“minimumReadMin (Attribute)”) and maximum (Section 4.4, “minimumReadMax (Attribute)”). The
buffer will never be larger than the maximum and never smaller than the minimum. The maximum
value is fixed. The minimum value can be adjusted by the programmer by this, the minimumRead ()
method.

In almost all cases, the size of the buffer will be set towards the maximum constraint and the minimum
constraint will not come into play at all. There is only one circumstance where the Rexx programmer
would need to change the minimum constraint, which is this:

The Windows Event Log Service will only place whole records into the buffer. If a record is bigger

in size than the buffer, the record can not be read and an execution error will be raised by the
WindowsEventLog object. In this case the minimum constraint for the buffer size would need to be
set to a size bigger than the record size. The text of the error message lists both the record size and
the buffer size. To read the record, the programmer would set the minimum constraint larger than the
record size.

Again, it must be stressed that the above scenario is extremely unlikely.

38

isFull

Arguments:

The single argument is:
sizeKB

The minimum size to allocate the read buffer, in kilobytes.

Return value:
There is no return.

Example:
This method is straight forward to use:

Example 4.12. WindowsEventLog class - minimumRead= method

log = .WindowsEventLog~new
log~minimumRead = 64
say 'Current minimum read is' log~minimumRead 'KB.'
:requires 'winSystm.cls'
/* Output might be:

Current minimum size of the read buffer is: 64 KB

*/

4.15. isFuli

() 0 op

Determines if the event log is full.

Arguments:
The arguments are:
server

Optional. The server (Server) where the event log resides.

source
Optional. The event source (Event Source).

Return value:
The method returns . true or . false. True if the event log is full, otherwise false.

Example:

This example is a snippet of code from an application that monitors the system log. When the log
gets full, the log is backed up and cleared.

Example 4.13. WindowsEventLog class - isFull method

::routine checkLog
use strict arg sysLog, monitor

if sysLog~isFull then do
success = monitor~backupLog(sysLog)
if \ success then monitor~notifyAdmin
end

39

getNumber

return success

4.16. getNumber

bb—' getNumber()‘ @ @—N

Determines the number of records in the event log.

Arguments:
The arguments are:
server

Optional. The server (Server) where the event log resides.

source
Optional. The event source (Event Source).

Return value:

On success, the count of event records in the log. On error, the return is the negated system error
code.

Example:

This example opens the system log on the Osprey server. It then checks that there are at least 10
records before reading the log:

Example 4.14. WindowsEventLog class - getNumber method

log = .WindowsEventLog~new
log~open("\\Osprey", "System")
if log~getNumber > 10 then do
log~readRecords
say 'Read' log~events~items 'records.'
end

r:requires 'winSystm.cls'

4.17. getLogNames
bb—(getLogNames()—' names I—@—N

Obtains a list of all the event log names on the current system.

Arguments:
The single argument is:
names
An array object. On return the array will contain the names of the event logs on the current
system. This will include any custom logs, if there are any. The array is emptied before the
names are added. If an error happens, the array will be empty.

Return value:
This method returns 0 on success, and the operating system error code on failure.

40

getLast

Example:
This example displays the names of all the event logs on the current system.

Example 4.15. WindowsEventLog class - getLogNames method

logNames = .array~new
ret = log~getLogNames(logNames)

if ret == 0 then do name over logNames
say "Log:" name

end

iirequires 'winSystm.cls'

/* Output might be:

Log: Application

Log: Internet Explorer

Log: Security

Log: System

*/

4.18. getLast

getLast() @ @—N

Determines the absolute record number of the last record in the event log.

Arguments:
The arguments are:
server
Optional. The server (Server) where the event log resides.

source
Optional. The event source (Event Source).

Return value:

On success, the record number of the last (most recently written) event record. On error, the return
is the negated system error code.

Example:
This example displays the last record written to application log.

Example 4.16. WindowsEventLog class - getLast method

log = .WindowsEventLog~new~~open
log~readRecords(, , , log~getLast, 1)
rec = log~events[1]

if rec \== .nil then do

parse var rec type date time "'" src"'" id user computer "'" string "'" "'" data
men

say 'Type 1 'type

say 'Date : 'date

say 'Time : 'time

say 'Source : 'src

41

getFirst

say 'ID : 'id
say 'UserId : 'user
say 'Computer : 'computer
say 'Detail : 'string
say 'Data : 'data

end

rirequires 'winSystm.cls'

/* Output might be:

Type : Error

Date 1 02/14/09

Time 1 16:55:08

Source : Windows Search Service
ID : 3083

UserId : N/A

Computer : OSPREY

Detail : The protocol handler Search.Mapi2Handler.1 cannot be loaded. Error
description: Class not registered.
Data

*/

4.19. getFirst

bb—‘ getFirst()' @ @—N

Determines the absolute record number of the first record in the event log.

Arguments:
The arguments are:
server
Optional. The server (Server) where the event log resides.

source
Optional. The event source (Event Source).

Return value:

On success, the first record number in the event log. On error, the return is the negated system
error code.

Example:
This example displays the first record written to the application log.

It is somewhat interesting to note that this first record was written right after the operating system
had been installed, prior to the computer being added to a work group and given the Osprey
name. This can be seen when the record is displayed, the Computer field is MACHINENAME.

Example 4.17. WindowsEventLog class - getFirst method

log = .wWindowsEventLog~new~~open("\\Osprey", "System")
log~readRecords(, , , log~getFirst, 1)

rec = log~events[1]

if rec \== .nil then do

42

getFirst

parse var rec type date time "'" src"'" id user computer "'" string "'" "'" data
say 'Type : 'type
say 'Date : 'date
say 'Time 1 'time
say 'Source : 'src
say 'ID : 'id
say 'UserId : 'user
say 'Computer : 'computer
say 'Detail : 'string
say 'Data : 'data
end

rirequires 'winSystm.cls'

/* Output might be:

Type : Information

Date : 08/16/08

Time 1 04:27:01

Source . EventLog

ID 1 6009

UserId : N/A

Computer : MACHINENAME

Detail : 5.02. 3790 Service Pack 1 Multiprocessor Free
Data

*/

43

Chapter 5.

The WindowsManager Class

The WindowsManager class provides methods to query, manipulate, and interact with windows on
your desktop. Currently, this class is specifically for the Windows operating system and is not available
on other operating systems.

The WindowsManager class is not a built-in class, it is defined in the file winSystm. cls. To use the
class, add a : : requires statement to the program file:

r:irequires "winSystm.cls"

Methods the WindowsManager Class Defines
» desktopWindow

e find

« foregroundWindow

+ windowAtPosition

» consoleTitle

* consoleTitle=

» sendTextToWindow

* pushButtoninWindow

e processWindowCommand

 broadcastSettingChanged

5.1. desktopWindow

desktopWindow

Returns an instance of the WindowObject (Chapter 6, The WindowObject Class) class that represents
the Desktop window. The Desktop window is the parent of all top-level windows and therefore the
ancestor of every window on the system. If some error happens, .nil is returned. (This is extremely
unlikely.)

5.2. find

() [} Q)

Searches for a top-level window (not a child window) on your desktop with the specified title.

If this window already exists, an instance of the WindowObject class is returned. Otherwise, .Nil is
returned.

5.3. foregroundWindow

44

windowAtPosition

foregroundWindow

Returns an instance of the WindowObject class that is associated with the current foreground window.

5.4. windowAtPosition

windowAtPosition(. °

Returns an instance of the WindowObject class that is associated with the window at the specified
position (x,y). The coordinates are specified in screen pixels. This method does not retrieve hidden
or disabled windows. If you are interested in a particular child window, use method childAtPosition
(Section 6.23, “childAtPosition”).

5.5. consoleTitle

consoleTitle

|

Returns the title of the current console.

5.6. consoleTitle=

consoleTitle e

Sets the title of the current console.

5.7. sendTextToWindow

>>—(sendTextToWindow()—| title

Sends a case-sensitive text to the window with the specified title..

5.8. pushButtoninWindow
PP—(pushButtonInwindow()—' title

Selects the button with label text in the window with the specified title. If the button's label contains a
mnemonic (underscored letter), you must specify an ampersand (&) in front of it. You can also use this
method to select radio buttons and to check or uncheck check boxes.

Example:

winmgr~pushButtonInWindow("Testwindow", "List &Employees")

5.9. processMenuCommand

45

broadcastSettingChanged

»—(processMenuCommand(

Lo

Selects an item of the menu or submenu of the specified window title. You can specify as many
submenus as necessary to get to the required item.

5.10. broadcastSettingChanged

»—(broadcastSettingChanged H
@ 6

Causes the Windows operating system to send a message, (the WM_SETTINGCHANGE message,)
to every top-level window on the Desktop informing them that a system-wide setting has changed.
Well-written applications will then reload any system settings that they use.

An example of one use for this might be an installer program setting an environment variable, such as
the PATH. Then a call to broadcastSettingChanged would cause all open applications to update their
reference to the environment, without the necessity of a reboot.

There are two variations of calling this method. When called with no arguments, the message

is broadcast and returns immediately. When called with the time out parameter, the message is
broadcast and does not return until every window on the Desktop has acknowledged the message, or
timed out.

The problem with using a time out and waiting for acknowledgment is that, if a window is not
responding, or several windows are slow to respond, it may take a very long time to return. The
problem with not using a time out and returning immediately is that the caller will have no way of
knowing when every window has received the message. Generally this is not a problem, but it is up to
the programmer to decide how she wants to use this method.

The time out value is specified in milliseconds. For each window, the operating system will wait up to
the time out for a response before going on to the next window. Typically a time out value of 5000 (5
seconds) is used, and this is the default.

The single optional argument is:

timeOut
The time, in milliseconds, to wait for each window to acknowledge it received the setting changed
message. Specifying 0 or a negative number will cause the default time out of 5000 to be used.
(5000 is a typical value used by applications.)

Return value:

0
The setting changed message was broadcast successfully. If no time out argument was used, then
this is all it means. If a time out value was used, then all top-level windows have acknowledged
receiving the message.

-1

The setting changed message was broadcast, but one or more windows timed out. This return can
only happen when the time out parameter is used.

46

broadcastSettingChanged

A number less than -1 indicates a system error occurred. This value is the negation of the system
error code. l.e., if the return is -1400, the system error code was 1400. System error codes can be

looked up in the MSDN library or the Windows Platform SDK. Microsoft makes these references
available on the Internet.

+X

A number greater than 0 would be a window result of broadcasting the setting changed message
and would not be an error. It is unlikely that this would occur.

Example:

ret = winmgr~broadcastSettingChanged(1000)

47

Chapter 6.

The WindowObject Class

The WindowObject class provides methods to query, manipulate, and interact with a particular window
or one of its child windows.

Access to the WindowObiject class requires that the following directive appear in the Rexx program.
::requires 'winSystm.cls'

Note. Prior to the release of ooRexx 4.0.0, the WindowsObject class was implemented using the
original external function API. That API required that the external functions be registered with the
interpreter. For the most part this was done transparently to the Rexx programmer. However, with
the WindowsObiject class there was one scenario where the registration was not done and prior
documentation provided a work around.

Starting with ooRexx 4.0.0, that work around is not needed. There no longer is any need for the
programmer to register external functions at all. Requiring winSystm. cls is all that is needed from
ooRexx 4.0.0 and on. Disregard the previous documentation concerning external functions.

Methods the WindowObject Class Defines
» assocWindow

+ childAtPosition

+ coordinates

+ disable

* enable

* enumerateChildren
« findChild

o first

« firstChild
 focusltem

» focusNextltem
 focusPreviousltem
* getStyle

* handle

* hide

e id

* isMenu

* last

* maximize

48

assocWindow

menu
minimize

moveTo

next

owner

previous
processMenuCommand
pushButton

resize

restore

sendChar
sendCommand
sendKey
sendKeyDown
sendKeyUp
sendMenuCommand
sendMessage
sendMouseClick
sendSyscommand
sendText

state

systemMenu

title

title=

toForeground

wclass

6.1. assocWindow

>>—(assocWindow()—| handle I—@—N

Assigns a new window handle to the WindowObject instance.

49

handle

6.2. handle

0

Returns the handle of the associated window.

6.3. title

¢

Returns the title of the window.

6.4. title=

Sets a new title for the window.

6.5. wclass

0

Returns the class of the window associated with the WindowObiject instance.

6.6. id

.

Returns the numeric ID of the window.

6.7. coordinates

coordinates

|

Returns the upper left and the lower right corner positions of the window in the format

"left,top,right,bottom".
6.8. state

Returns information about the window state. The returned state can contain one or more of the

following constants:
* "Enabled" or "Disabled"

* "Visible" or "Invisible"

getStyle

» "Zoomed" or "Minimized"

* "Foreground”
6.9. getStyle

Returns the style and extended style flags of the window. This method is intended for use by
programmers that have some knowledge of the Windows APl and would not be much use to Rexx
programmers that do not have any understanding of that API.

The styles are returned in a string of two words. The first word is the window style and the second
word is the extend window style. Each word is in the format: ©xAAAAAAAA where A represents any
hexadecimal digit. If an error happens, the numerical system error code is returned instead of a string
with two words.

Example 6.1. getStyle

-- This function will return an array with all matching windows. An empty array
-- signals no match.
windows = fuzzyFindWindows(deskTop, text)

if windows~items > 0@ then do wnd over windows
say 'Found this window.'

say ' Title: ' wnd~title
say ' Class: ' wnd~wClass
say ' Position:' wnd~coordinates
say ' Styles: ' wnd~getStyle
say

end

/* Output might be:

Found this window.
Title: GetMenuState Function - MSDN Library - Microsoft Document Explorer
Class: wndclass_desked_gsk
Position: 0,0,1152,800
Styles: 0x16cfOOEOO OxCcOO40900

Found this window.
Title: C:\work.ooRexx\3.x\main
Class: ExplorewClass
Position: 0, 25,1150, 804
Styles: 0x16cfOOEOO OxCOOOO900

*/

6.10. restore

Activates and displays the associated window. If the window is minimized or maximized, it is restored
to its original size and position.

51

hide

6.11. hide

()

Hides the associated window and activates another window.

6.12. minimize

(i) >«

Minimizes the associated window and activates the next higher-level window.

6.13. maximize

(o)

Maximizes the associated window.

6.14. resize

() (oo} [)

Resizes the associated window to the specified width and height. The width and height are specified in
screen coordinates.

6.15. enable

enable

0

Enables the associated window if it was disabled.

6.16. disable

(s

Disables the associated window.

!

6.17. moveTo

(i) [10

Moves the associated window to the specified position (x,y). Specify the new position in screen pixels.

6.18. toForeground

52

focusNextltem

Makes the associated window the foreground window.

6.19. focusNextltem

focusNextItem

Sets the input focus to the next child window of the associated window.

6.20. focusPreviouslitem

focusPreviousItem

Sets the input focus to the previous child window of the associated window.

6.21. focusltem

bb—(focusltem(H wndObject I—@—N

Sets the input focus to the child window associated with the specified WindowObject instance
wndObject.

The following example sets the input focus to the last child window:

Example 6.2. focusltem

dlg = wndmgr~find("TestDialog")
if dlg \= .Nil then do
fChild = dlg~firstChild
1Cchild = fChild~last
dlg~focusItem(1lChild)
end

6.22. findChild
>>—(findchi|d()—| label I—@—N

Returns an instance of the WindowObiject class associated with the child window with the specified
label. If the associated window does not own such a window, the .Nil object is returned.

6.23. childAtPosition

childAtPosition(. o

Returns an instance of the WindowObject class associated with the child window at the specified
client position (x,y). The coordinates that are relative to the upper left corner of the associated window
must be specified in screen pixels. To retrieve top-level windows, use method windowAtPosition
(Section 5.4, “windowAtPosition”).

53

next

6.24. next

Returns an instance of the WindowObject class associated with the next window of the same level
as the associated window. If the associated window is the last window of a level, the .Nil object is
returned.

6.25. previous

Returns an instance of the WindowObiject class associated with the previous window of the same
level as the associated window. If the associated window is the first window of a level, the .Nil object is
returned.

6.26. first

Returns an instance of the WindowObject class associated with the first window of the same level as
the associated window.

6.27. last

Returns an instance of the WindowObject class associated with the last window of the same level as
the associated window.

6.28. owner

Returns an instance of the WindowObject class associated with the window that owns the associated
window (parent). If the associated window is a top-level window, the .Nil object is returned.

6.29. firstChild

Returns an instance of the WindowObject class associated with the first child window of the
associated window. If no child window exists, the .NIL object is returned.

6.30. enumerateChildren

54

sendMessage

enumerateChildren

Returns a stem that stores information about the child windows of the associated window. "Stem.0"
contains the number of child windows. The returned stem contains as many records as child windows.
The first record is stored at "Stem.1" continued by increments of 1. Each record contains the following
entries, where each entry starts with an exclamation mark (!):

IHandle
The handle of the window.

ITitle

IClass
The window class.

IState
ICoordinates

IChildren
1 if the window has child windows, O if is has none.

Ild
Example 6.3. enumerateChildren

wo = winmgr~find("TestDialog")

enum. = wo~enumerateChildren
do i =1 to enum.0 /* number of children */
Say Il___ll

say "Handle:" enum.i.'Handle

say "Title:" enum.i.!Title

say "Class:" enum.i.!Class

say "Id:" enum.i.!'Id

say "Children:" enum.i.!Children

say "State:" enum.i.!State

say "Rect:" enum.i.!Coordinates
end

6.31. sendMessage

bb—(sendMessage(H message I—O—{ wParam I—@—{ IParam

Sends a message to the associated window.

6.32. sendCommand

>>—(sendCommand()—' command I—@—N

Sends a WM_COMMAND message to the associated window. WM_COMMAND is sent, for example,
when a button is pressed, where command is the button ID.

55

sendMenuCommand

6.33. sendMenuCommand

>>—(sendMenuCommand(

Selects the menu item id of the associated window. Method idOf (Section 7.6, “idOf") returns the ID of
a menu item.

6.34. sendMouseClick

Pb—(sendMouseCIick(

. LEFTDOWN
MIDDLEDOWN

SHIFT

Simulates a mouse click event in the associated window.

Arguments:
The arguments are:

which
Specifies which mouse button is simulated. LEFT is the default.

kind
Selects the simulated mouse action. DBLCLK is the default.

X,y
Specifies the coordinates of the mouse click event, in screen coordinates, relative to the upper left
corner of the window.

ext
Can be one or more of the following strings:
LEFTDOWN
Simulates the pressed left mouse button.

RIGHTDOWN
Simulates the pressed right mouse button.

MIDDLEDOWN
Simulates the pressed middle mouse button.

SHIFT
Simulates the pressed Shift key.

sendSyscommand

CONTROL
Simulates the pressed Control key.

6.35. sendSyscommand

bb—(sendSysCommand(H SIZE

PREVWINDOW

CLOSE

VSCROLL

ARRANGE

RESTORE

TASKLIST

CONTEXTHELP

e

Sends a WM_SYSCOMMAND message to the associated window. These messages are normally
sent when the user selects a command in the Window menu.

Argument:
The only argument is:

command

One of the commands listed in the syntax diagram:
SIZE

Puts the window in size mode.

MOVE
Puts the window in move mode.

MINIMIZE
Minimizes the window.

MAXIMIZE
Maximizes the window.

NEXTWINDOW
Moves to the next window.

57

pushButton

PREVWINDOW
Moves to the previous window.

CLOSE
Closes the window.

VSCROLL
Scrolls vertically.

HSCROLL
Scrolls horizontally.

ARRANGE
Arranges the window.

RESTORE
Restores the window to its normal position and size.

TASKLIST
Activates the Start menu.

SCREENSAVE
Executes the screen-saver application specified in the [boot] section of the SYSTEM.INI file.

CONTEXTHELP
Changes the cursor to a question mark with a pointer. If the user then clicks on a control in the
dialog box, the control receives a WM_HELP message.

6.36. pushButton

>>—(pushButton()—| label

Selects the button with the specified label within the associated window and sends the corresponding
WM_COMMAND message. If the button's label contains a mnemonic (underscored letter), you must
specify an ampersand (&) in front of it. You can also use this method to select radio buttons and check
or uncheck check boxes.

6.37. sendKey

»>—{ sendkey()| keyname | LO T @—N

Sends all messages (CHAR, KEYDOWN, and KEYUP) that would be sent by pressing a specific key
on the keyboard. Character keys (a to z) are not case-sensitive.

If the alt argument is 1, the Alt key flag is set, which is equal to pressing the specified key together with
the Alt key.

The Ext argument must be 1 if the key is an extended key, such as a right Ctrl or a right Shift.

For a list of key names, refer to Section 1.10, “Symbolic Names for Virtual Keys”.

58

sendChar

6.38. sendChar

bb—(sendchar()—' character I @—N

Sends a WM_CHAR message to the associated window. If the alt argument is 1, a pressed Alt key is
simulated.

6.39. sendKeyDown

Pb—(sendKeyDown(H keyName I @—N

Sends a WM_KEYDOWN message to the associated window. The ext argument must be 1 if the key
is an extended key, such as a right Ctrl or a right Shift.

For a list of key names, refer to Section 1.10, “Symbolic Names for Virtual Keys”.

6.40. sendKeyUp

bb—(sendKeyUp()—' keyName I @—N

Sends a WM_KEYUP message to the associated window. The ext argument must be 1 if the key is an
extended key, such as a right Ctrl or a right Shift.

For a list of key names, refer to Section 1.10, “Symbolic Names for Virtual Keys”.
6.41. sendText

bb—(sendText(H text I—@—N

Sends a (case-sensitive) text to the associated window by sending a sequence of WM_CHAR,
WM_KEYDOWN, and WM_KEYUP messages.

6.42. menu

Returns an instance of the MenuObject class that refers to the menu of the associated window.

6.43. systemMenu

Returns an instance of the MenuObiject class that refers to the system menu of the associated window.

59

isMenu

6.44. isMenu

Returns 1 if the associated window is a menu, otherwise 0.

6.45. processMenuCommand

bb—(processMenuC ‘() (o submenu . menuitem o

Selects an item of the menu or submenu of the associated window. You can specify as many
submenus as necessary to get to the required item.

60

Chapter 7.

The MenuObject Class

The MenuObject class provides methods to query, manipulate, and interact with the menu or submenu
of a window.

Use of the MenuObjects requires that the following directive appear in the Rexx program.
::requires 'winSystm.cls'

Methods the MenuObject Class Defines

* findltem

 findSubmenu

* idOf

* ischecked

* isMenu

* isSubMenu

* isSeparator

* items

e processltem

* submenu

* textOf(id)

* textOf(position)

7.1. isMenu

Returns 1 if the associated window is a menu, otherwise 0.

7.2. iIsSubMenu

bb—(isSubMenu()—' position I—@—N

Returns . true if the menu item at the position specified is a submenu of this menu, otherwise
.false. Menu items are zero-based, so the first menu item is at position 0.

7.3. isChecked

bb—(isChecked(H position

Returns . true if the menu item at the position specified is checked, otherwise . false. Menu items
are zero-based, so the first menu item is at position 0. Submenus and separators can be be checked.

61

isSeparator

This method can not be 100% reliable. Some applications do not set the check mark for a menu
item until the menu is displayed. To be confident of the result, the programmer should first test how a
specific application behaves.

7.4. isSeparator

bb—(isSeparator()—' position

Returns . true if the menu item at the position specified is a separator line, otherwise . false. Menu
items are zero-based, so the first menu item is at position 0.

7.5. items

Returns the number of menu items contained in the associated menu.
7.6. idOf

@

Returns the ID of the menu item at the specified position, starting with 0.
7.7. textOf(position)

>>—(text0f()—| position

Returns the text of the menu item at the specified position, starting with 0. A mnemonic (underscored
letter) is represented by a leading ampersand (&). If the menu item contains an accelerator, it is
separated by a tab.

7.8. textOf(id)

CIORTIRD

Returns the text of menu item id. A mnemonic is represented by a leading ampersand (&). If the menu
item contains an accelerator, it is separated by a tab.

7.9. submenu

>>—(submenu()—| position I—@—N

Returns an instance of the MenuObject class that is associated with the submenu at the specified
position, starting with 0. If no submenu exists at this position, the .Nil object is returned.

Example:

sub = menu~submenu(5)

62

findSubmenu

if sub \= .Nil then do
say "Items:" sub~items
end

7.10. findSubmenu

bb—(findSubmenu()—| label

Returns an instance of the MenuObject class that is associated with the submenu with the specified
label. If the associated menu does not contain such a submenu, the .Nil object is returned.

7.11. findltem

»—(find:tem(H label I—@—N

Returns the ID of the menu item /abel. If the specified label does not include an accelerator, the
comparison excludes the accelerators of the menu items. If no menu item is found that matches the
specified label, 0 is returned.

Example:

f = menu~findItem("&Tools" || "9"x || "Ctrl+T")
if f \= 0 then menu~processItem(f)

7.12. processltem

(rmint) [}

Selects the menu item id. This causes a WM_COMMAND to be sent to the window owning the menu.

63

Chapter 8.

OLE Automation

OLE (Object Linking and Embedding) automation is a subset of COM (Component Object Model).
These technologies were first developed on Windows and are deeply embedded in the Windows
operating system. Although COM is not tied to the Windows operating system, in practice it is not seen
much on other operating systems. Because of this, the coRexx classes supporting OLE Automation
are currently Windows only classes.

8.1. Overview of OLE Automation

OLE (Object Linking and Embedding) is an implementation of COM (Component Object Model).
OLE automation makes it possible for one application to manipulate objects implemented in another
application, or to expose objects so they can be manipulated. ooRexx provides two classes,
OLEO®biject (Section 8.3, “The OLEObject Class”) and OLEVariant (Section 8.4, “The Windows
OLEVariant Class” that allow the programmer to take advantage of this ability to manipulate objects
that are exposed as OLE objects.

An automation client is an application that can manipulate exposed objects belonging to another
application. An automation server is an application that exposes the objects. The OLEObject class
enables Rexx to be an OLE automation client. In addition, some automation servers have an event
mechanism (Section 8.2, “OLE Events”) that allows them to invoke methods in the OLE automation
client. The OLEODbiject class also supports this mechanism.

Applications can provide OLE objects, and OLE objects that support automation can be used by a
Rexx script to remotely control the object through the supplied methods. This lets you write a Rexx
script that, for example, starts a Web browser, navigates to a certain page, and changes the display
mode of the browser.

Every application that supports OLE places a unigue identifier in the registry. This identifier is called
the class ID (CLSID) of the OLE object. It consists of several hexadecimal numbers separated by the
minus symbol.

Example: CLSID of Microsoft® Internet Explorer (Version 5.00.2014.0216):
" {0002DFO1-0000-0000-CO00-0000000000463 "

The CLSID number can prove inconvenient when you want to create or access a certain object, so

a corresponding easy-to-remember entry is provided in the registry, and this entry is mapped to the
CLSID. This entry is called the ProgID (the program ID), and is a string containing words separated by
periods.

Example: ProglD of Microsoft Internet Explorer: "InternetExplorer.Application”

To find the ProgID of an application, you can use the sample script OLEINFO.REX or the Microsoft
OLEViewer, you can consult the documentation of the application, or you can search the registry
manually.

Several sample programs are provided in the Open Object Rexx installation directory under samples
\ole

» The apps directory contains examples of how to use Rexx to remote-control other applications.

« The oleinfo directory is a sample Rexx application that can be used to browse through the
information an OLE object provides.

64

OLE Events

 In the adsi directory there are eight examples of how to use the Active Directory Services Interface
with the Rexx OLE interface.

» The methinfo directory contains a very basic example of how to access the information an OLE
object provides.

 Finally, the wmi directory contains five examples of how to work with the Windows Management
Instrumentation.

8.2. OLE Events

Some, but not all, OLE automation objects support events. The most prevalent use of OLE is for the
automation server (the OLE object) to implement methods that the automation client (the ooRexx
OLEODbject) invokes. However, it is also possible for the automation client (the ooRexx OLEODbject) to
implement methods that the automation server (the OLE object) invokes.

The methods that the automation client implements are called event methods and the automation
server that suports event methods is called a connectable object. The connectable object defines the
events it supports by defining the name of the method and its arguments, but does not implement the
method. Rather the automation client implements the method. The client asks the automation server
to make a connection. If the connection is established, then from that point on whenever one of the
defined events occurs, the server invokes the event method on the connected client.

In effect, what is happening is that the automation server is notifying the automation client that some
event has occurred and giving the client a chance to react to the event. Any number of clients can be
connected to the same connectable object at the same time. Each client will receive a notification for
any event they are interested in. There is no need for the client to receive notifications for every event.
When the client is not interested in an event, the client simply does not implement a method for that
event.

The original implementation of OLEObject allowed the Rexx programmer to use events in this way:
The programmer defines and implements a subclass of the OLEObject. Within the subclass, the
programmer defines and implements the event methods for which she wants to receive notifications.
The programmer has the client make a connection to the automation server at the time the OLEObject
object is instantiated (Section 8.3.1, “new (Class method)” by using the WITHEVENTS keyword for

the events argument. If the WITHEVENTS keyword is not used during instantiation, then no event
connection can be made.

This is relatively easy to understand and a simple example should make this clear. In the following,
rather than create a new OLEObject, the programmer defines a subclass of the OLEODbject, a
WatchedlE class. The WatchedIE object is instantiated with events. This tells the OLEObject to
make an event connection, if possible. In the subclass, the programmer implements the events he is
interested in receiving notifications for.

Example 8.1. OLEODbject - WatchedIE

-- Instantiate an instance of the subclassed OLEObject
myIE = .WatchedIE~new("InternetExplorer.Application", "WITHEVENTS")

-- This class is derived from OLEObject and contains several methods
-- that will be called when certain events take place.
::class 'WatchedIE' subclass OLEObject

-- This is an event of the Internet Explorer */
::method titleChange

65

OLE Events

use arg Text
say "The title has changed to:" text

-- This is an event of the Internet Explorer
::method beforeNavigate2
use arg pDisp, URL, Flags, TargetFrameName, PostData, Headers, Cancel

-- This is an event of the Internet Explorer */
::method onQuit

However, the process described above only allows using events with OLEObject objects that are
directly instantiated by the programmer. There are a number of OLE objects that support events,
where the OLEObject object is not instantiated by the programmer, but rather is returned from a
method invocation. Prior to ooRexx 4.0.0, events could not be used with these objects. In 4.0.0,
methods were added to the OLEObject class that allow using events with any OLE object that
supports events.

This second process works this way: With an already instantiated object, the programmer can
create method objects for any events of interest and use the addEventMethod () (Section 8.3.3,
“addEventMethod”) method to add the method to the instantiated object. Then the connectEvents ()
(Section 8.3.7, “connectEvents”) method is used to connect the automation client (the instantiated
object in this case) to the connectable OLE automation server.

The following example demonstrates this second process that is available in ooRexx 4.0.0 and
onwards.

Example 8.2. OLEObject - Watch Word

wordApp = .OLEObject~new("Word.Application")
wordApp~visible = .true
document = wordApp~documents~Add

-- Use the isConnectable method to ensure the object supports connections.
if document~isConnectable then do

-- Create a method for the OLEEvent_Close event. From the Word documentation
--and experimentation, it is known that this event has no arguments.

mArray = .array~new

mArray[1] 'say "Received the OLEEvent_Close event."'

mArray[2] 'say " Event has" arg() "parameters."'

mArray[3] = 'say'

mClose = .Method~new("OLEEvent_Close", mArray)

-- Now add this method to the document object.
document~addEventMethod("OLEEvent_Close", mClose)

-- Tell the object to make an events connection.
document~connectEvents
end

The preceding example brings up one last point that is important to note when defining event methods.
It is possible for an event method to have the same name as a normal invocation method of the OLE
object. This gives rise to this scenario:

The programmer adds an ooRexx event method to the OLEObject with that name. Then the
programmer tries to invoke the normal method. However, the invocation will no longer get forwarded

66

OLE Events

to the unknown() (Section 8.3.22, “unknown”) method. Instead the event method by the same name
is invoked. This is the case in the above example. The document object has a close() method that is
used to close the document. The document also has the close() event method that is used to notify
clients that the document is about to close.

To prevent this scenario, when an event method of an OLE object has the same name as a normal
method name, the programmer must prepend OLEEvent_ to the method name. The implementation
of OLEODbject assumes the programmer has done so. If the programmer does not name the event
methods using this convention, the results are unpredictable.

Note that only the event method names that have matching normal event names can be prepended
with the OLEEvent_prefix. Other event names must not have the prefix. One way to check for this is
to use the getkKnownEvents() (Section 8.3.11, “getKnownEvents”) method. This method will return the
correct names for all events the OLE object supports.

Example:

This example is a complete working program. To run it, Microsoft OutLook must be installed. The
program demonstrates some of the various methods of the OLEObject that deal with events. The
interface to the program is simplistic, but workable.

Once the program starts, the user controls it by creating specific named files in working directory of the
program. This could be done for example using echo:

echo " " > stop.monitor

The three specific file names are: stop.monitor, pause.monitor, and restart.monitor. The
stop file ends the program. The pause file has the program stop monitoring for new mail, but keep
running. The restart file has the program restart monitoring from the paused state.

Example 8.3. OLEObject - Monitor Outlook

/* Monitor OutLook for new mail */
say; say; say 'ooRexx Mail Monitor version 1.0.0'

outLook = .oleObject~new("Outlook.Application")

inboxID = outLook~getConstant(olFolderInBox)
inboxItems = outLook~getNameSpace("MAPI")~getDefaultFolder (inboxID)~items

if \ inboxItems~isConnectable then do
say 'Inbox items is NOT connectable, quitting'
return 99

end

inboxItems~addEventMethod("ItemAdd", .methods~printNewMail)
inboxItems~connectEvents

if \ inboxItems~isConnected then do
say 'Error connecting to inbox events, quitting'
return 99

end

monitor = .Monitor~new
say 'ooRexx Mail Monitor - monitoring ...'
do while monitor~isActive

j = SysSleep(1)

status = monitor~getStatus

select
when status == 'disconnect' then do

67

OLE Events

inboxItems~disconnectEvents
say 'ooRexx Mail Monitor - paused ...'
end
when status == "reconnect" then do
inboxItems~connectEvents
say 'ooRexx Mail Monitor - monitoring
end
otherwise do
nop
end
end
-- End select
end
say 'ooRexx Mail Monitor version 1.0.0 ended'

return 0

:method printNewMail unguarded
use arg mailItem

say 'You have mail'

say 'Subject:' mailltem~subject

::class 'Monitor'
::method init
expose state active

state = 'continue'

active = .true

j = SysFileDelete('stop.monitor')

Jj SysFileDelete('pause.monitor')

j SysFileDelete('restart.monitor')

::method isActive
expose active
return active

::method getStatus
expose state active

if SysIsFile('stop.monitor') then do
j = SysFileDelete('stop.monitor')

active = .false

state = 'quit'

return state
end

if SysIsFile('pause.monitor') then do
j = SysFileDelete('pause.monitor')
if state == "paused" then return "continue"

if state \== 'quit' then do

state = "paused"
return 'disconnect'
end

end
if SysIsFile('restart.monitor') then do
j = SysFileDelete('restart.monitor')

if state == 'continue' then return state

if state \== 'quit' then do

state = 'continue'
return 'reconnect'
end

end

68

The OLEODbject Class

return 'continue'

8.3. The OLEODbject Class

The OLEObiject class is a built-in class. No : : requires directive is needed to use the class.
Methods available to the OLEODbject class:

new (Class method)
getObject(Class method)
addEventMethod
class

CLSID

copy

connectEvents
disconnectEvents
dispatch
getConstant
getKnownEvents
getKnownMethods
getOutParameters
hasOleMethod
isConnectable
isConnected

ProgID
removeEventHandler
removeEventMethod
start

startWith

unknown

Note: It is somewhat useful to think of the Rexx OLEObject object as a proxy to the real OLE

object. The real OLE object has its own methods. Which methods it has is dependent on its
individual implementation. These methods are then accessed transparently through the unknown()
(Section 8.3.22, “unknown”) method mechanism of the OLEObject by invoking a method of the same
name on the OLEObject object.

8.3.1. new (Class method)

o
,

()

O

Instantiates a new OLEODbject as a proxy for a COM / OLE object with the specified classID (the
ProgID or CLSID). If the COM / OLE object can not be accessed or created, an error will be raised.
See the list of OLE specific errors in the Open Object Rexx Reference document.

Arguments:
The arguments are:
classID
The ProgID or CLSID that identifies the COM / OLE object to proxy for.

69

getObject (Class method)

events
Controls how the event methods of the COM / OLE object are handled:

If the argument is omitted completely, then no action concerning the event methods is taken.

If the argument is NOEVENTS then the COM / OLE object is queried to determine if it is a
connectable object. If it is, an internal table is constructed listing all the event methods. But the
object is not connected.

If the argument is WITHEVENTS then the COM / OLE object is queried to determine if itis a
connectable object. If it is, an internal table is constructed listing all the event methods, and an
event connection is established.

getObject
A flag asking to first try to get an already instantiated OLE object, rather than instantiate a
new object. Some OLE automation servers register themselves with the operating system
when an object is first created, but not all do. If this flag is true, then the OLEObiject first tries
to proxy for an already running OLE / COM obiject. If this fails, then a new OLE / COM object
is instantiated.

If the flag is omitted, or . false then no attempt to look for an already running OLE / COM
object is made.

Example:

myOLEObject = .OLEObject~new("InternetExplorer.Application")

8.3.2. getObject (Class method)

»—(getObject(H moniker . o

This is a class method that allows you to obtain an OLE object through the use of a moniker. A
moniker is a string and is similar to a nickname. Monikers are used by OLE to connect to and activate
OLE objects. OLE returns the object that the moniker identifies.

If the object is already running, OLE will find it in memory. If the object is stored passively on disk,

OLE will locate a server for the object, run the server, and have the server bring the object into the
running state. This makes monikers very easy for the automation client to use. OLE hides all the
details from the client. However, since the OLEODbject also hides all the details when a new OLE object
is instantiated, for the Rexx programmer there is not much difference between using the getObject
method and using the new method.

Note that file system names are monikers. Therefore, if a file is associated with an application that

is an OLE automation server, a new OLE object can be instantiated by using the file name as the
moniker. Obviously, this is not true of every file. It is true for files like .x1s and . doc files, for example,
because Word and Excel are OLE automation applications.

The optional class argument can be used to specify a subclass of OLEObject, and can be used to
obtain an OLE object that supports events (the ' WITHEVENTS' option will be used in this case). This
method is similar to the new method where the programmer supplies a ProgID or CLSID. In this case
the programmer supplies a moniker.

Example 8.4. OLEODbject - getObjectMoniker method

/* create a Word.Document by opening a certain file */

70

addEventMethod

myOLEObject = .OLEObject~GetObject("C:\DOCS\HELLOWORLD.DOC")

8.3.3. addEventMethod

>>—(addEventMethod()—| name I—O—{ methodObject I—@—N

addEventMethod adds a new method to this object's collection of methods. The name argument
specifies the name of the new method and the methodObject argument defines the method.

The acceptable values for methodObject are the same as those for the second argument to the
setMethod method of the.Object class. That is, it can be a method object, a string containing a
method source line, or an array of strings containing individual method source lines.

The purpose of this method is to add an event method to a OLEObject after the object has been
instantiated. See the OLE Events (Section 8.2, “OLE Events”) section for more details on events.

Example:

Note that in this example, the printNewMail method is defined as a floating method. See the
documentation for the .methods directory in the Open Object Rexx Reference book for more details if
needed.

Example 8.5. OLEObject - printNewMail method

inboxID = outLook~getConstant(olFolderInBox)
inboxItems = outLook~getNameSpace("MAPI")~getDefaultFolder (inboxID)~items

inboxItems~addEventMethod("ItemAdd", .methods~printNewMail)

::method printNewMail unguarded
use arg mailltem
say 'You have mail'
say 'Subject:' mailItem~subject

8.3.4. class

If self~hasOleMethod('class’) returns . true, then forwards to Windows, otherwise to superclass
(ooRexx root class Object).

Note: to force resolution to the ooRexx root class Object, use the scope override option.
Example 8.6. OLEObject - use scope override option to resolve to ooRexx root class Object

. cut ...
clz=o0leObj~class:.object -- use method 'class' in the ooRexx root class Object

. cut ...

8.3.5. CLSID

71

copy

Returns the string value of the CLSID attribute, .nil if no value is present.

8.3.6. copy

If self~hasOleMethod(‘copy’) returns . true, then forwards to Windows, otherwise to superclass
(ooRexx root class Object).

Note: to force resolution to the ooRexx root class Object, use the scope override option.

Example 8.7. OLEObiject - use scope override option to resolve to ooRexx root class Object

. cut ...
o=0leObj~copy:.object -- use method 'copy' in the ooRexx root class Object

. cut ...

8.3.7. connectEvents

The connectEvents() method is used to connect the instantiated automation client (the OLEObject
subclass object) to the automation server (the OLE object) at any time. The method returns . true
if the connection was made, otherwise . false. Remember, not all OLE objects support events.
The programmer can determine if the OLE object supports events by using the isConnectable()
(Section 8.3.15, “isConnectable”) method.

Example 8.8. OLEObject - connectEvents method

wordApp = .OLEObject~new("Word.Application")
wordApp~visible = .true
document = wordApp~documents~Add

wordApp~connectEvents

8.3.8. disconnectEvents

disconnectEvents

This method disconnects from the connectable OLE object. The method returns . false if there is
not a current connection, otherwise . true. After this method is called, the OLE object will no longer
invoke the event methods, in effect stopping event notifications.

The internal data structures used to manage events remain intact. The programmer can use the
connectEvents() (Section 8.3.7, “connectEvents”) method to reconnect at any time. Since the internal
data structures do not need to be rebuilt, this will save some small amount of processor time. To
completely remove the internal data structures use the removeEventHandler() (Section 8.3.18,
“removeEventHandler”) method.

72

dispatch

Example:

This example shows some code snippets from a program that monitors the user's inbox in OutLook.
When a new mail item arrives, the user is notified. The interface for the program allows the user to
turn off the notifications when she wants, then turn them back on later. When the interface signals the
program to stop the notifications, the program simply disconnects the events from the OutLook object.
When the user wants to resume notifications, the program reconnects the events.

Example 8.9. OLEObject - disconnectEvents method

outLook = .oleObject~new("Outlook.Application")
inboxID = outLook~getConstant(olFolderInBox)
inboxItems = outLook~getNameSpace("MAPI")~getDefaultFolder (inboxID)~items

inboxItems~addEventMethod("ItemAdd", .methods~printNewMail)
inboxItems~connectEvents

select
when status == 'disconnect' then do
inboxItems~disconnectEvents
say 'ooRexx Mail Monitor - paused ...'
end
when status == "reconnect" then do
inboxItems~connectEvents
say 'ooRexx Mail Monitor - monitoring ...
end
otherwise do
nop
end
end
-- End select

8.3.9. dispatch

bb—(dispatch()—| methodname

Dispatches a method with the optionally supplied arguments.

8.3.10. getConstant

bb—‘ getConstant()' @—N
\—| ConstantName I—/

Retrieves the value of a constant that is associated with this OLE object. If no constant of that name
exists, the .Nil object will be returned. You can also omit the name of the constant; this returns a stem
with all known constants and their values. In this case the constant names will be prefixed with a "!"
symbol.

Example 1:

myExcel = .OLEObject~new("Excel.Application")

73

getKnownEvents

say "x1lCenter has the value" myExcel~getConstant('"x1lCenter")
myExcel~quit
exit

Possible output:
x1Center has the value -4108
Example 2:

myExcel = .OLEObject~new("Excel.Application")
constants. = myExcel~getConstant
myExcel~quit

do i over constants.
say i"="constants.i
end

Possible output:

! XLFORMULA=5
I XLMOVE=2
IXLTEXTMAC=19

8.3.11. getKnownEvents

getKnownEvents

Returns a stem with information on the events (Section 8.2, “OLE Events” that the connectable OLE
object supports. It collects this information from the type library of the OLE object. A type library
provides the names, types, and arguments of the provided methods. The OLEObject object does not
need to be currently connected to connectable OLE object.

This method will return the event methods for any connectable object. Prior to ooRexx 4.0.0, only
OLEODbjects created directly, and created with the 'event’ flag (WITHEVENTS or NOEVENTS) would
return any known events. This fact had not been fully documented. Therefore, if the user did not create
the OLEODbiject correctly, .nil would be returned for objects that did support event connections.

In 4.0.0, the behavior is fixed (or enhanced depending on the point of view) so that the known events
are returned for all connectable objects under all circumstances.

The stem provides the following information:

Table 8.1. Stem Information

stem.0 The number of events.

stem.n.INAME Name of n-th event.

stem.n.!DOC Description of n-th event (if available).

stem.n.!PARAMS.0 Number of parameters for n-th event.

stem.n.!PARAMS.i.INAME Name of i-th parameter of n-th event.

stem.n.!PARAMS.i.ITYPE Type of i-th parameter of n-th event.

stem.n.!PARAMS.i.IFLAGS Flags of i-th parameter of n-th event; can be "in",
"out", "opt", or any combination of these.

74

getKnownMethods

If no information is available, the .NIL object is returned. This indicates that the OLE object does

support events.

Example script:

myIE = .OLEObject~new("InternetExplorer.Application", "NOEVENTS")

events. = myIE~getKnownEvents

if events. == .nil then

say "Sorry, this object does not have any events."

else do
say "The following events may occur:"
do i =1 to events.0
say events.i.!NAME
end
end

exit
Sample output:

The following events may occur:
ONTHEATERMODE

ONFULLSCREEN

ONSTATUSBAR

For an example of how to use events, see examples samples\ole\apps\samp12.rex and
samples\ole\apps\samp13.rex. The samples directory is installed as part of the normal Windows

installation.

8.3.12. getKknownMethods

getKnownMethods

Returns a stem with information on the methods that the OLE object supplies. It collects this
information from the type library of the object. A type library provides the names, types, and arguments
of the provided methods. Parts of the supplied information have only informational character as you

cannot use them directly.

The stem provides the following information:

Table 8.2. Stem Information

stem.0

The number of methods.

stem.!LIBNAME

Name of the type library that describes this
object.

stem.!LIBDOC

A help string describing the type library. Only set
when the string is available.

stem.!COCLASSNAME

COM class name of this object.

stem.!ICOCLASSDOC

A string describing the COM class. Only set
when the string is supplied by the type library.

stem.n.INAME

The name of the n-th method.

stem.n.!DOC

A help string for the n-th method. If this
information is not supplied in the type library this
value will not be set.

75

getKnownMethods

stem.n.!INVKIND A number that represents the invocation
kind of the method: 1 = normal method
call, 2 = property get, 4 = property
put. A normal method call is used with
brackets; for a property get only the
name is to be specified; and a property
set uses the "=" symbol, as in these
examples: object~methodCall(a, b, c)
object~propertyPut="Hello" say
object~propertyGet

stem.n.!RETTYPE The return type of the n-th method. The return
type will be automatically converted to a Rexx
object (see Type Conversion (Section 8.3.23,
“Type Conversion” in the description of the
UNKNOWN method of the OLEODbject class).

stem.n.IMEMID The MemberID of the n-th method. This is only
used internally to call the method.

stem.n.!PARAMS.0 The number of parameters of the n-th method.

stem.n.!PARAMS.i.INAME The name of the i-th parameter of the n-th
method.

stem.n.!PARAMS.i.ITYPE The type of the i-th parameter of the n-th
method.

stem.n.!PARAMS.i.IFLAGS The flags of the i-th parameter of the n-

th method; can be "in", "out", "opt", or any
combination of these (for example: "[in, opt]").

If no information is available, the .NIL object is returned.

Note that it is not required that an OLE object supply a type library. The methods of OLE objects that
do not supply a type library can still be invoked by name, but there is no way for getKnownMethods
to look up the methods. To use these OLE objects the Rexx programmer would need to consult the
documentation for the OLE object.

In addition all OLE objects have methods that can only be used internally. There are mechanisms
to hide these methods from the user, because they can not be used by the automation client. It is
possible that these are not hidden properly and will be listed when using getKnownMethods. The
following methods can not be used by an instance of the OLEObject:

AddRef
GetTypelnfoCount
GetTypelnfo
GetIDsOfNames
Querylinterface
Release

Example 8.10. OLEObject - getKnownMethods method

myOLEObject = .OLEObject~new("InternetExplorer.Application")
methods. = myOLEObject~getkKnownMethods

if methods. == .nil then
say "Sorry, no information on the methods available!"

76

getOutParameters

else do
say "The following methods are available to this OLE object:"
do i = 1 to methods.0
say methods.i.!NAME
end
end

exit

Sample output:

The following methods are available to this OLE object:
GoBack

GoForward

GoHome

8.3.13. getOutParameters

getOutParameters

Returns an array containing the results of the single out parameters of the OLE object, or the .NIL
object if it does not have any. Out parameters are arguments to the OLE object that are filled in by
the OLE obiject. As this is not possible in Rexx due to data encapsulation, the results are placed in the
array mentioned above.

Example:

Consider an OLE object method with the following signature:
aMethod([in] A, [in] B, [out] sumAB)

The resulting out parameter of the method invocation will be placed in the out array at position one;
the "normal” return value gets processed as usual. In this case the method will return the .NIL object:

Example 8.11. OLEODbject - getOutParameters method

resultTest = myOLEObject~aMethod(1, 2, .NIL)
say "Invocation result :" resultTest
say "Result in out array:" myOLEObject~getOutParameters~at(1)

The output of this sample script will be:

The NIL object
3

Out parameters are placed in the out array in order from left to right. If the above OLE method looked
like this:

aMethod([in] A, [in] B, [out] sumAB, [out] productAB),

then the out array would contain the sum of A and B at position one, and the product at position two.

77

hasOleMethod

8.3.14. hasOleMethod

bb—(hasOIeMethod()—' methodName I—@—N

Queries whether a method named methodName exists. Returns . true if methodName exists,
.false else.

8.3.15. isConnectable

isConnectable

Determines if the OLE object is a connectable object. In other words, does the OLE object support
event methods and will it accept connections at this time. Not all OLE objects support events, probably
the majority do not support events. This method returns . true if the object is connectable, otherwise
.false.

Example 8.12. OLEObject - isConnectable method

outLook = .oleObject~new("Outlook.Application")

-- This searches all folders for the 'Mailbox - .. ' folder. Which is
-- usually the default folder in a business installation of Outlook.
nameSpace = outLook~getNameSpace('MAPI')
folders = nameSpace~folders
do i =1 to folders~count
if folders~item(i)~name~caselessPos("Mailbox") <> 0 then do
theMailBoxFolder = folders~item(1i)
leave
end
end

-- Now that we have the Mailbox folder, get the collection of folders that
-- are contained in the Mailbox folder.
folders = theMailBoxFolder~folders

if folders~isConnectable then do
-- Add event methods to the folders object.

end

8.3.16. isConnected

Determines if the OLEObject instance is currently connected to a connectable OLE automation server.
Returns . true if the instance is connected and . false if not.

Example 8.13. OLEObject - isConnected method

wordObj = .oleObject~new("Word.Application", "WITHEVENTS")
if wordObj~isConnected then do

end
else do

end

78

ProglID

8.3.17. ProgID

ProgID

Returns the string value of the ProgID attribute, .nil if no value is present.

8.3.18. removeEventHandler

bb—(removeEventHandIer)—N

Removes the event handler and cleans up the internal data structures used to manage events. No
event methods will be invoked after this method is called. See the disconnectEvents() (Section 8.3.8,
“disconnectEvents”) method for a way to temporarily disconnect from event natifications.

Example 8.14. OLEODbject - removeEventHandler method

inboxItems~removeEventHandler
inboxItems~removeEventMethod("ItemAdd")

8.3.19. removeEventMethod

Pb—(removeEventMethod(H name I—@—N

Removes the event method with the specified name that has been previously added to this object by
the addEventMethod() (Section 8.3.3, “addEventMethod”) method.

Example 8.15. OLEODbject - removeEventMethod method

inboxID = outLook~getConstant(olFolderInBox)
inboxItems = outLook~getNameSpace("MAPI")~getDefaultFolder (inboxID)~items

inboxItems~addEventMethod("ItemAdd", .methods~printNewMail)
inboxItems~connectEvents

::method donewWithItemEvents private
expose inboxItems

inboxItems~removeEventHandler
inboxItems~removeEventMethod("ItemAdd")

8.3.20. start

If self~hasOleMethod('start’) returns . true, then forwards to Windows, otherwise to superclass
(ooRexx root class Object).

Note: to force resolution to the ooRexx root class Object, use the scope override option.

79

startWith

Example 8.16. OLEObject - use scope override option to resolve to ooRexx root class Object

. cut ...
m=o0leObj~start:.object(..) -- use method 'start' in the ooRexx root class Object

. cut ...

8.3.21. startWith

If self~hasOleMethod('startwith') returns . true, then forwards to Windows, otherwise to superclass
(ooRexx root class Object).

Note: to force resolution to the ooRexx root class Object, use the scope override option.
Example 8.17. OLEODbject - use scope override option to resolve to ooRexx root class Object

. cut ...
m=oleObj~startWith:.object(..) -- use method 'startWith' in the ooRexx root class Object

. cut ...

8.3.22. unknown

>>—(unknown()—| messageName I @_N
8

The unknown message is the central mechanism through which methods of the OLE object are
called.

For further information on the details on how an unknown method works, see Defining an unknown
Method in the Open Object Rexx Reference.

The programmer can invoke the methods of the real OLE object by simply invoking the methods on
the the Rexx (proxy) OLEODbject object like this:

myOLEObject~OLEMethodName

This calls the method "OLEMethodName" of the real OLE object for any message (method) that does
not exist in the Rexx OLEODbject object through the unknown method mechanism. The implementation
for the unknown() method in the OLEObiject class does this by dispatching the method call to the real
OLE object.

This presents a problem when an OLE object has a method with a name that is identical to a method
defined for the OLEObject object. When this situation happens, the programmer has two choices.

One choice is for the programmer to call the unknown method directly. E.g., take an OLE object that
has the method copy used to copy something from a source to a destination. Since copy is a method

80

Type Conversion

of the Object class, the copy method of the OLE object is a method name already defined for the
OLEObject. The programmer can invoke the unknown method directly, like this:

Example 8.18. OLEObject - unknown method

msgArgs = .array~of("C:\open\myFile.txt", "C:\processDir\")
val = myOLEObject~unknown("copy", msgArgs)

This causes the implementation of the unknown() method in the OLEObject object to invoke the copy
method of the OLE object with the arguments of C:\open\myFile. txt and C:\processDir\.

The other thing the Rexx programmer can do is use the dispatch() (Section 8.3.9, “dispatch”) method.
Since, in OLE automation terms, the act of invoking a method on the OLE object is commonly referred
to as dispatching a message to the OLE object, this may make the code a little easier to understand.
In the above example the dispatch method would be used like this:

val = myOLEObject~dispatch("copy", "C:\open\myFile.txt", "C:\processDir\")

8.3.23. Type Conversion

Unlike Rexx, OLE uses strict typing of data. Conversion to and from these types is done automatically,
if conversion is possible. OLE types are called variants, because they are stored in one structure that
gets flagged with the type it represents. The following is a list of all variant types valid for use with OLE
Automation and the Rexx objects that they are converted from or into.

Table 8.3. OLE/Rexx Types

VARIANT type Rexx object

VT_EMPTY .NIL

VT_NULL .NIL

VT_ERROR .NIL

VT 11 Rexx string (a whole number)

VT_I2 Rexx string (a whole number)

VT 14 Rexx string (a whole number)

VT_18 Rexx string (a whole number)

VT_Ull Rexx string (a whole, positive number)

VT _UI2 Rexx string (a whole, positive number)

VT _Ul4 Rexx string (a whole, positive number)

VT_UI8 Rexx string (a whole, positive number)

VT_INT Rexx string (a whole number)

VT_UINT Rexx string (a whole, positive number)

VT_DECIMAL Rexx string (a decimal number)

VT_R4 Rexx string (a real number)

VT_R8 Rexx string (a real number)

VT_CY Rexx string (currency, a fixed-point number with
15 digits to the left of the decimal point and 4
digits to the right)

81

The Windows OLEVariant Class

VARIANT type Rexx object

VT_DATE Rexx string (a date)

VT_BSTR Rexx string

VT_DISPATCH Rexx OLEObject

VT_BOOL .TRUE or .FALSE

VT_VARIANT Any Rexx object that can be represented as a
VARIANT

VT_UNKNOWN OLEObject

VT_ARRAY * Rexx Array

VT _BYREF* Any Rexx object

*VT_ARRAY and VT_BYREF are combined with any of the other variant types and never used alone.
VT_ARRAY and another variant type are used for a SAFEARRAY datatype, an array of the other
variant type. VT_BYREF and another variant type are used to pass the other variant type to or from an
OLE object by reference. The programmer need not worry about this passing by reference, the OLE
support handles this transparently.

8.4. The Windows OLEVariant Class

The OLEVariant class enhances the support for OLE Automation provided by the OLEObject class
(Section 8.3, “The OLEObject Class” and is used in conjunction with that class. An OLEVariant object
is used as a parameter in a method call of an OLEODbject object. In the OLEObject's role as a proxy
for a OLE / COM object, the parameters in method calls are forwarded on to the actual OLE / COM
object. (OLE / COM objects will be referred to simply as COM objects.)

There are two areas where the OLEVariant adds to the capabilities of OLEObject method calls.

» Parameters forwarded on to COM objects must be converted to and from the proper datatypes.
This conversion is done automatically (see Section 8.3.23, “Type Conversion”.) Occasionally this
automatic conversion is incorrect. The OLEVariant allows the ooRexx programmer to override the
automatic conversion by specifying how the conversion should be done.

» COM objects can return data to the caller in "out" parameters (JOUT] parameters.) The OLEVariant
can be used to transport this returned data back to the calling cooRexx program.

In general, the automatic type conversion in the OLE support uses type libraries to determine how to
format the parameters being sent to an OLE object in a method call. The information in a type library
specifies the variant type an ooRexx object, used as a parameter, needs to be converted to. Type
libraries also detail how a parameter is to be flagged when it is sent to the COM object.

However, COM objects are not required to supply type libraries. When there is no type library, ooRexx
uses an educated guess to determine this information. On rare occasions this guess is wrong and the
method call fails. In theses cases, if the ooRexx programmer knows what the correct information is,
the programmer can use an OLEVariant to specify this information. The programmer can supply either
or both of these pieces of information by specifying the variant type for the converted ooRexx object
and the parameter flags.

The following is a real world example where the automatic conversion in the OLE support does not
work and shows how the OLEVariant is used to specify the correct conversion. The snippet comes
from code to automate a CICS client. In this case the variant type that the ooRexx object needs to be

82

The Windows OLEVariant Class

converted to is specified. The parameter flags are omitted. The fourth parameter to the ~link method
call is the parameter where the default conversion was failing.

Example 8.19. OLEObject - automatic conversions

connect = .OLEObject~new("Ccl.Connect")

flow = .0OLEObject~new("Ccl.Flow")

buffer = .OLEObject~new("Ccl.Buffer")

uow = .OLEVariant~New(.nil, VT_DISPATCH)

connect~link(flow, "FOO", buffer, uow)

It is extremely rare that the OLE support fails to do the right thing with its automatic conversion.
99.999% of the time the ooRexx programmer does not need to use an OLEVariant object to
specify the type conversion. This use of the OLEVariant is provided for those few times when it
is necessary to override the default conversion. Furthermore, if the ooRexx programmer does
not know what variant type to specify, this usage will not be much help. Normally the ooRexx
programmer would know what type to specify through the documentation for the COM class the
programmer is using.

The next example shows how the OLEVariant can be used to transport the data returned in an "out"
parameter back to the calling ooRexx program. This usage will be more common and does not require
that the ooRexx have a lot of detailed knowledge of the COM object. Obviously, the programmer

does need to know that the parameter is an out parameter. This example comes from updating a

MS Access database where the number of records affected by the update is returned in an "out"
parameter. Here the out parameter is the second parameter in the ~execute method call.

Example 8.20. OLEVariant - new

sql = "update myTable set id=id*3 where id > 7"
param = .OLEVariant~new(0)

conn~execute(sql, param)

count = param~!varValue_

say count "record(s) were affected."

Finally an example where the OLE support does not use the correct parameter flags for the method
call. The Windows Management Instrumentation, Win32_Process COM class does not supply a type
library. The fourth parameter in the ~create method call is an "out" parameter. That information is
known by the ooRexx programmer through the documentation of the class. However, without a type
library, ooRexx has no way to know that. Here the variant type specification is omitted (signaling
ooRexx to go ahead and use its automatic conversion) and the parameter flags are specified. Since
this an out parameter, the OLEVariant object is also used to transport the returned data back to the
calling program.

Example 8.21. OLEObject - incorrect parameter flags

objProcess = .oleObject~getObject("WinMgmts:Win32_Process")

83

new Class method

param = .OLEvariant~new(©, , "IN,OUT")
ret = objProcess~create('notepad.exe', .nil, .nil, param)
if ret == 0 then do

pid = param~!varValue_

say 'The notepad process was created and its PID is' pid
end

Methods available to the OLEVariant class

new
lvarValue_
lvarValue_=
lvarType_
lvarType =
IparamFlags_
IparamFlags_=

e

A possible future enhancement of the OLEVariant class requires that its method names be
unique, which is the reason for the method name style. In normal usage the ooRexx programmer
would only be concerned with the new and the !varValue methods. Therefore the slightly
unorthodox method names should not present a problem.

8.4.1. new Class method

bb—(new()—' valueObject I f
L0
g

Instantiates a new OLEVariant object to be used as a parameter in an OLEObject method call. The
first argument is the ooRexx object to be converted to a variant type for the method call. It is the object
to be used in the method call. This argument is required. The varType and paramFlags arguments are
optional.

O

The varType argument is used to specify the type of the variant that the valueObject is to be converted
to. If this argument is omitted or is .nil then ooRexx will use the default conversion for the valueObject.
If it is not omitted it must be a valid OLE Automation variant type and ooRexx will attempt to convert
the valueObject to this variant type.

The valid variant type symbols are listed in Section 8.3.23, “Type Conversion”. In addition any of
those symbols can be combined with the VT_BYREF or the VT_ARRAY symbol. When symbols
are combined a comma is used to separate the two symbols. This of course necessitates that the
argument be quoted. Case does not matter for this argument. For example vt_bool, VT_bool, or
VT_BOOL are all treated the same.

The paramFlags argument is used to specify the flags for the parameter. The flags are separated
by a comma. Although any combination of valid PARAMFLAGS as defined for OLE Automation will
be accepted, in practice the ooRexx programmer will probably only need to use "IN,OUT" for this
argument.

The PARAMFLAGS defined for OLE Automation:

84

IVARVALUE_

PARAMFLAG_NONE
PARAMFLAG_FIN
PARAMFLAG_FOUT
PARAMFLAG_FLCID
PARAMFLAG_FRETVAL
PARAMFLAG_FOPT
PARAMFLAG_FHASDEFAULT
PARAMFLAG_FHASCUSTDATA

The ooRexx programmer should only use the last portion of the symbol. I.e., NONE, IN, OUT, LCID,
RETVAL, OPT, HASDEFAULT, or HASCUSTOMDATA. Case also does not matter for this argument
and "in,out" is equivalent to "IN,OUT"

If the paramFlags argument is omitted or .nil, (the normal case,) ooRexx will determine the flags for
the parameter through its default mechanism. If the argument is not omitted, ooRexx will use the
specified flags unconditionally.

@

If either the varType or paramFlags arguments are used, and not the .nil object, they must be
valid variant types or param flags for OLE Automation. If they are not valid, a syntax error will be
raised.

Example 8.22. OLEObject - parameters

manager = .oleObject~new('"com.sun.star.ServiceManager", "WITHEVENTS")
cf = manager~createInstance("com.sun.star.reflection.CoreReflection")

classSize = .cf~forName("com.sun.star.awt.Size")
param = .OLEVariant~new(.nil, "VT_DISPATCH,VT_BYREF", "IN,OQUT")

retval = classSize~createObject(param)

8.4.2. 'VARVALUE_

IVARVALUE_()

Returns the value object set within an instance of an OLEVariant. If the parameter in a COM method
call that the OLEVariant was used for is an "out" parameter, than the value object of the instance
will be the data returned by the COM object. Otherwise, the value object is that set by the coRexx
programmer.

manager = .oleObject~new('"com.sun.star.ServiceManager", "WITHEVENTS")
cf = manager~createInstance("com.sun.star.reflection.CoreReflection")

classSize = .cf~forName('"com.sun.star.awt.Size")
param = .OLEVariant~new(.nil, "VT_DISPATCH,VT_BYREF", "IN,OQUT")

retvVal = classSize~createObject(param)
size = param~!varValue_

85

I'VARVALUE_=

8.4.3. IVARVALUE_-=

e) (=

Sets the value object an instance of an OLEVariant contains.

8.4.4. \WVARTYPE_

IVARTYPE_()

!

Returns the variant type specification of the OLEVariant instance.

8.4.5. IVARTYPE_=

e) (=)

Sets the variant type specification of an OLEVariant instance. This serves the same purpose as the
second argument to the new method (Section 8.4.1, “new Class method”) and follows the same rules
as specified in the documentation of the new method. I.e., the value must be a valid variant type used
in OLE Automation, or .nil. If not a syntax error is raised.

8.4.6. IPARAMFLAGS _

IPARAMFLAGS_()

Returns the parameter flags specification of the OLEVariant instance.

8.4.7. \PARAMFLAGS_=

IPARAMFLAGS_ e newparamflags

Sets the flags specification of an OLEVariant instance. This serves the same purpose as the third
argument to the new method (Section 8.4.1, “new Class method”) and follows the same rules as
specified in the documentation of the new method. I.e., the value must be a valid combination of
PARAMFLAG types as documented for use in OLE Automation, or .nil. If not a syntax error is raised.

86

Appendix A. Notices

Any reference to a non-open source product, program, or service is not intended to state or imply that
only non-open source product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any Rexx Language Association (RexxLA) intellectual
property right may be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-open source product, program, or service.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-open source products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. RexxLA has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims related to
non-RexxLA packages. Questions on the capabilities of non-RexxLA packages should be addressed
to the suppliers of those products.

All statements regarding RexxLA's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to the names and addresses used by
an actual business enterprise is entirely coincidental.

A.l. Trademarks

Open Object Rexx™ and ooRexx™ are trademarks of the Rexx Language Association.

The following terms are trademarks of the IBM Corporation in the United States, other countries, or
both:

1-2-3

AlX

IBM

Lotus
0Ss/2
S/390
VisualAge

AMD is a trademark of Advanced Micro Devices, Inc.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the Unites States,
other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

87

Source Code For This Document

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

A.2. Source Code For This Document

The source code for this document is available under the terms of the Common Public License v1.0
which accompanies this distribution and is available in the appendix Appendix B, Common Public
License Version 1.0. The source code is available at https://sourceforge.net/p/oorexx/code-0/HEAD/
tree/docs/.

The source code for this document is maintained in DocBook SGML/XML format.

Creztix DUCEE’GI{

with g Sowree for
Documerieiion

The railroad diagrams were generated with the help of "Railroad Diagram Generator" located at
https://github.com/GuntherRademacher/rr. Special thanks to Gunther Rademacher for creating and
maintaining this tool.

\/
i

88

https://sourceforge.net/p/oorexx/code-0/HEAD/tree/docs/
https://sourceforge.net/p/oorexx/code-0/HEAD/tree/docs/
https://github.com/GuntherRademacher/rr

Appendix B. Common Public License
Version 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

B.1. Definitions

"Contribution" means:

1. inthe case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and

2. inthe case of each subsequent Contributor:
a. changes to the Program, and

b. additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by that
particular Contributor. A Contribution ‘originates’ from a Contributor if it was added to the Program

by such Contributor itself or anyone acting on such Contributor's behalf. Contributions do not include
additions to the Program which: (i) are separate modules of software distributed in conjunction with the
Program under their own license agreement, and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

"Program” means the Contributions distributed in accordance with this Agreement.

"Recipient” means anyone who receives the Program under this Agreement, including all Contributors.

B.2. Grant of Rights

1. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly
display, publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell,
import and otherwise transfer the Contribution of such Contributor, if any, in source code and
object code form. This patent license shall apply to the combination of the Contribution and
the Program if, at the time the Contribution is added by the Contributor, such addition of the
Contribution causes such combination to be covered by the Licensed Patents. The patent license
shall not apply to any other combinations which include the Contribution. No hardware per se is
licensed hereunder.

3. Recipient understands that although each Contributor grants the licenses to its Contributions
set forth herein, no assurances are provided by any Contributor that the Program does not
infringe the patent or other intellectual property rights of any other entity. Each Contributor
disclaims any liability to Recipient for claims brought by any other entity based on infringement

89

Requirements

of intellectual property rights or otherwise. As a condition to exercising the rights and licenses
granted hereunder, each Recipient hereby assumes sole responsibility to secure any other
intellectual property rights needed, if any. For example, if a third party patent license is required
to allow Recipient to distribute the Program, it is Recipient's responsibility to acquire that license
before distributing the Program.

4. Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

B.3. Requirements

A Contributor may choose to distribute the Program in object code form under its own license
agreement, provided that:

1. it complies with the terms and conditions of this Agreement; and
2. itslicense agreement:

a. effectively disclaims on behalf of all Contributors all warranties and conditions, express and
implied, including warranties or conditions of title and non-infringement, and implied warranties
or conditions of merchantability and fithess for a particular purpose;

b. effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;

c. states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and

d. states that source code for the Program is available from such Contributor, and informs
licensees how to obtain it in a reasonable manner on or through a medium customarily used
for software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and

2. acopy of this Agreement must be included with each copy of the Program.
Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

B.4. Commercial Distribution

Commercial distributors of software may accept certain responsibilities with respect to end users,
business partners and the like. While this license is intended to facilitate the commercial use of the
Program, the Contributor who includes the Program in a commercial product offering should do so in
a manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor ("Commercial Contributor")
hereby agrees to defend and indemnify every other Contributor ("Indemnified Contributor") against
any losses, damages and costs (collectively "Losses") arising from claims, lawsuits and other legal
actions brought by a third party against the Indemnified Contributor to the extent caused by the acts
or omissions of such Commercial Contributor in connection with its distribution of the Program in

a commercial product offering. The obligations in this section do not apply to any claims or Losses
relating to any actual or alleged intellectual property infringement. In order to qualify, an Indemnified

90

No Warranty

Contributor must: a) promptly notify the Commercial Contributor in writing of such claim, and b) allow
the Commercial Contributor to control, and cooperate with the Commercial Contributor in, the defense
and any related settlement negotiations. The Indemnified Contributor may participate in any such
claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering, Product

X. That Contributor is then a Commercial Contributor. If that Commercial Contributor then makes
performance claims, or offers warranties related to Product X, those performance claims and
warranties are such Commercial Contributor's responsibility alone. Under this section, the Commercial
Contributor would have to defend claims against the other Contributors related to those performance
claims and warranties, and if a court requires any other Contributor to pay any damages as a result,
the Commercial Contributor must pay those damages.

B.5. No Warranty

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED ON
AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS
OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF
TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Each Recipient is solely responsible for determining the appropriateness of using and distributing the
Program and assumes all risks associated with its exercise of rights under this Agreement, including
but not limited to the risks and costs of program errors, compliance with applicable laws, damage to or
loss of data, programs or equipment, and unavailability or interruption of operations.

B.6. Disclaimer of Liability

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION
LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE

OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

B.7. General

If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this Agreement, and without further action
by the parties hereto, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to
software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by
that Contributor to such Recipient under this Agreement shall terminate as of the date such litigation
is filed. In addition, if Recipient institutes patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program with
other software or hardware) infringes such Recipient's patent(s), then such Recipient's rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient's rights under this Agreement shall terminate if it fails to comply with any of the material
terms or conditions of this Agreement and does not cure such failure in a reasonable period of time
after becoming aware of such noncompliance. If all Recipient's rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.

91

General

However, Recipient's obligations under this Agreement and any licenses granted by Recipient relating
to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid
inconsistency the Agreement is copyrighted and may only be modified in the following manner.

The Agreement Steward reserves the right to publish new versions (including revisions) of this
Agreement from time to time. No one other than the Agreement Steward has the right to modify

this Agreement. IBM is the initial Agreement Steward. IBM may assign the responsibility to serve

as the Agreement Steward to a suitable separate entity. Each new version of the Agreement will

be given a distinguishing version number. The Program (including Contributions) may always be
distributed subject to the version of the Agreement under which it was received. In addition, after a
new version of the Agreement is published, Contributor may elect to distribute the Program (including
its Contributions) under the new version. Except as expressly stated in Sections 2(a) and 2(b) above,
Recipient receives no rights or licenses to the intellectual property of any Contributor under this
Agreement, whether expressly, by implication, estoppel or otherwise. All rights in the Program not
expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.

92

Appendix C. Revision History

Revision 0-0 Aug 2016
Initial creation for 5.0

93

Index
A

addDesktoplcon method
of WindowsProgramManager class, 1
addEventMethod method
of OLEODbiject class, 71
addGroup method
of WindowsProgramManager class, 3
addltem method
of WindowsProgramManager class, 4
addShortCut method
of WindowsProgramManager class, 2
assocWindow method
of WindowsObiject class, 49
attribute
classes_root attribute
of WindowsRegistry class, 15
CLSID
of OLEODbject class, 71
current_key attribute
of WindowsRegistry class, 16
current_key= attribute
of WindowsRegistry class, 16
current_user attribute
of WindowsRegistry class, 17
local_machine attribute
of WindowsRegistry class, 20
ProgID
of OLEODbject class, 79
users attribute
of WindowsRegistry class, 23

B

broadcastSettingChanged method
of WindowsManager class, 46

C

childAtPosition method
of WindowsObject class, 53
class
MenuObiject class, 61
WindowsClipboard class, 11
WindowsEventLog class, 24
WindowsManager class, 44
WindowsObiject class, 48
WindowsProgramManager class, 1, 14
class method
of OLEODbiject class, 71
classes_root attribute
of WindowsRegistry class, 15
clear
WindowsEventLog class, 36

close method

of WindowsEventLog class, 32

of WindowsRegistry class, 15
CLSID attribute

of OLEODbject class, 71
Common Public License, 89
connect method

of WindowsRegistry class, 16
connectEvents method

of OLEODbiject class, 72
consoleTitle method

of WindowsManager class, 45
consoleTitle= method

of WindowsManager class, 45
coordinates method

of WindowsObiject class, 50
copy method

of OLEODbject class, 72

of WindowsClipboard class, 11
CPL, 89
create method

of WindowsRegistry class, 16
current_key attribute

of WindowsRegistry class, 16
current_key= attribute

of WindowsRegistry class, 16
current_user attribute

of WindowsRegistry class, 17

D

delete method

of WindowsRegistry class, 17
deleteDesktoplcon method

of WindowsProgramManager class, 5
deleteGroup method

of WindowsProgramManager class, 6
deleteltem method

of WindowsProgramManager class, 6
deleteKey method

of WindowsRegistry class, 17
deleteValue method

of WindowsRegistry class, 18
deprecated

WindowsEventLog class

read, 33

desktopWindow method

of WindowsManager class, 44
disable method

of WindowsObiject class, 52
disconnectEvents method

of OLEODbject class, 72
dispatch method

of OLEODbject class, 73

94

E

empty method

of WindowsClipboard class, 12
enable method

of WindowsObiject class, 52
enumerateChildren method

of WindowsObject class, 54
events

WindowsEventLog class, 30

F

find method

of WindowsManager class, 44
findChild method

of WindowsObiject class, 53
findltem method

of MenuObiject class, 63
findSubmenu method

of MenuObject class, 63
first method

of WindowsObiject class, 54
firstChild method

of WindowsObiject class, 54
flush method

of WindowsRegistry class, 18
focusltem method

of WindowsObiject class, 53
focusNextltem method

of WindowsObiject class, 53
focusPreviousltem method

of WindowsObiject class, 53
foregroundWindow method

of WindowsManager class, 44

G

getConstant method

of OLEODbiject class, 73
getFirst

WindowsEventLog class, 42
getKnownEvents method

of OLEODbject class, 74
getKnownMethods method

of OLEODbject class, 75
getLast

WindowsEventLog class, 41
getLogNames

WindowsEventLog class, 40
getNumber

WindowsEventLog class, 40
getObject method

of OLEODbject class, 70
getOutParameters method

of OLEODbject class, 77

getStyle method

of WindowsObiject class, 51
getValue method

of WindowsRegistry class, 18

H

handle method

of WindowsObiject class, 50
hasOleMethod method

of OLEODbject class, 78
hide method

of WindowsObiject class, 52

id method

of WindowsObiject class, 50
idOf method

of MenuObiject class, 62
isChecked method

of MenuObject class, 61
isConnectable method

of OLEODbject class, 78
isConnected method

of OLEODbject class, 78
isDataAvailable method

of WindowsClipboard class, 12
isFull

WindowsEventLog class, 39
isMenu method

of MenuObject class, 61

of WindowsObiject class, 60
isSeparator method

of MenuObiject class, 62
isSubMenu method

of MenuObiject class, 61
items method

of MenuObject class, 62

L

last method

of WindowsObiject class, 54
License, Common Public, 89
License, Open Object Rexx, 89
list method

of WindowsRegistry class, 19
listValues method

of WindowsRegistry class, 19
load method

of WindowsRegistry class, 20
locale method

of WindowsClipboard class, 12
local_machine attribute

of WindowsRegistry class, 20

95

makeArray method

of WindowsClipboard class, 11

maximize method

of WindowsObiject class, 52

menu method

of WindowsObject class, 59

MenuObiject class, 61
method

AddDesktoplcon method

of WindowsProgramManager class, 1
addEventMethod

of OLEODbject class, 71
addGroup method

of WindowsProgramManager class, 3
addltem method

of WindowsProgramManager class, 4
addShortCut method

of WindowsProgramManager class, 2
assocWindow method

of WindowsObiject class, 49
broadcastSettingChanged method

of WindowsManager class, 46
childAtPosition method

of WindowsObject class, 53
class

of OLEODbject class, 71
close method

of WindowsEventLog class, 32

of WindowsRegistry class, 15
connect method

of WindowsRegistry class, 16
connectEvents

of OLEODbiject class, 72
consoleTitle method

of WindowsManager class, 45
consoleTitle= method

of WindowsManager class, 45
coordinates method

of WindowsObiject class, 50
copy

of OLEODbject class, 72
copy method

of WindowsClipboard class, 11
create method

of WindowsRegistry class, 16
delete method

of WindowsRegistry class, 17
deleteDesktoplcon method

of WindowsProgramManager class, 5
deleteGroup method

of WindowsProgramManager class, 6
deleteltem method

of WindowsProgramManager class, 6
deleteKey method

of WindowsRegistry class, 17
deleteValue method

of WindowsRegistry class, 18
desktopWindow method

of WindowsManager class, 44
disable method

of WindowsObiject class, 52
disconnectEvents

of OLEODbiject class, 72
dispatch method

of OLEODbject class, 73
empty method

of WindowsClipboard class, 12
enable method

of WindowsObiject class, 52
enumerateChildren method

of WindowsObiject class, 54
find method

of WindowsManager class, 44
findChild method

of WindowsObiject class, 53
findltem method

of MenuObject class, 63
findSubmenu method

of MenuObiject class, 63
first method

of WindowsObiject class, 54
firstChild method

of WindowsObiject class, 54
flush method

of WindowsRegistry class, 18
focusltem method

of WindowsObiject class, 53
focusNextltem method

of WindowsObiject class, 53
focusPreviousltem method

of WindowsObiject class, 53
foregroundWindow method

of WindowsManager class, 44
getConstant

of OLEODbject class, 73
getKnownEvents method

of OLEODbject class, 74
getkKnownMethods method

of OLEODbject class, 75
getObject method

of OLEODbject class, 70
getOutParameters method

of OLEODbiject class, 77
getStyle method

of WindowsObiject class, 51
getValue method

96

of WindowsRegistry class, 18
handle method

of WindowsObiject class, 50
hasOleMethod

of OLEODbject class, 78
hide method

of WindowsObiject class, 52
id method

of WindowsObiject class, 50
idOf method

of MenuObject class, 62
isChecked method

of MenuObject class, 61
isConnectable

of OLEODbiject class, 78
isConnected

of OLEODbject class, 78
isDataAvailable method

of WindowsClipboard class, 12
isMenu method

of MenuObject class, 61

of WindowsObiject class, 60
isSeparator method

of MenuObject class, 62
isSubMenu method

of MenuObject class, 61
items method

of MenuObiject class, 62
last method

of WindowsObject class, 54
list method

of WindowsRegistry class, 19
listValues method

of WindowsRegistry class, 19
load method

of WindowsRegistry class, 20
locale method

of WindowsClipboard class, 12
makeArray method

of WindowsClipboard class, 11
maximize method

of WindowsObject class, 52
menu method

of WindowsObiject class, 59
minimize method

of WindowsObiject class, 52
moveTo method

of WindowsObject class, 52
new method

of OLEODbject class, 69

of WindowsEventLog class, 28

of WindowsProgramManager class, 1

of WindowsRegistry class, 15
next method

of WindowsObiject class, 54
open method

of WindowsEventLog class, 31

of WindowsRegistry class, 20
owner method

of WindowsObject class, 54
paste method

of WindowsClipboard class, 12
previous method

of WindowsObiject class, 54
processltem method

of MenuObject class, 63
processMenuCommand method

of WindowsManager class, 45
ProcessMenuCommand method

of WindowsObiject class, 60
PushButton method

of WindowsObject class, 58
pushButtoninWindow method

of WindowsManager class, 45
guery method

of WindowsRegistry class, 22
removeEventHandler

of OLEODbject class, 79
removeEventMethod

of OLEODbject class, 79
replace method

of WindowsRegistry class, 22
resize method

of WindowsObject class, 52
restore method

of WindowsObiject class, 51

of WindowsRegistry class, 22
save method

of WindowsRegistry class, 22
sendChar method

of WindowsObiject class, 59
sendCommand method

of WindowsObiject class, 55
sendKey method

of WindowsObiject class, 58
sendKeyDown method

of WindowsObiject class, 59
sendKeyUp method

of WindowsObiject class, 59
sendMenuCommand method

of WindowsObiject class, 56
sendMessage method

of WindowsObiject class, 55
sendMouseClick method

of WindowsObiject class, 56
sendSyscommand method

of WindowsObiject class, 57
sendText method

of WindowsObiject class, 59
sendTextToWindow method

of WindowsManager class, 45

setValue method
of WindowsRegistry class, 23
showGroup method

of WindowsProgramManager class, 7

start

of OLEODbiject class, 79
startwith

of OLEODbject class, 80
state method

of WindowsObiject class, 50
submenu method

of MenuObject class, 62
systemMenu method

of WindowsObiject class, 59
textOf(id) method

of MenuObject class, 62
textOf(position) method

of MenuObject class, 62
titte method

of WindowsObiject class, 50
titte= method

of WindowsObiject class, 50
toForeground method

of WindowsObiject class, 52
unknown method

of OLEODbject class, 80
unload method

of WindowsRegistry class, 23
wclass method

of WindowsObiject class, 50
windowAtPosition method

of WindowsManager class, 45

minimize method
of WindowsObiject class, 52
minimumRead
WindowsEventLog class, 37
minimumRead=
WindowsEventLog class, 38
minimumReadBuffer
WindowsEventLog class, 30
minimumReadMax
WindowsEventLog class, 29
minimumReadMin
WindowsEventLog class, 28
moveTo method
of WindowsObiject class, 52

N

new method
of OLEODbject class, 69
of WindowsEventLog class, 28

of WindowsProgramManager class, 1

of WindowsRegistry class, 15
next method

of WindowsObiject class, 54
Notices, 87

o

OLE Automation
OLE events, 65
OLEObiject class, 69
OLEVariant class, 82
overview, 64
OLEObiject class, 69
OLEVariant Class, 82
ooRexx License, 89
open method
of WindowsEventLog class, 31
of WindowsRegistry class, 20
Open Object Rexx License, 89
owner method
of WindowsObiject class, 54

P

paste method

of WindowsClipboard class, 12
previous method

of WindowsObiject class, 54
processltem method

of MenuObject class, 63
processMenuCommand method

of WindowsManager class, 45

of WindowsObiject class, 60
ProgID attribute

of OLEODbject class, 79
pushButton method

of WindowsObiject class, 58
pushButtoninWindow method

of WindowsManager class, 45

Q

guery method
of WindowsRegistry class, 22

R

readRecords

WindowsEventLog class, 33
removeEventHandler method

of OLEODbject class, 79
removeEventMethod method

of OLEODbject class, 79
replace method

of WindowsRegistry class, 22
resize method

of WindowsObiject class, 52
restore method

of WindowsObiject class, 51

of WindowsRegistry class, 22

S

save method

of WindowsRegistry class, 22
sendChar method

of WindowsObiject class, 59
sendCommand method

of WindowsObiject class, 55
sendKey method

of WindowsObject class, 58
sendKeyDown method

of WindowsObiject class, 59
sendKeyUp method

of WindowsObiject class, 59
sendMenuCommand method

of WindowsObject class, 56
sendMessage method

of WindowsObiject class, 55
sendMouseClick method

of WindowsObiject class, 56
sendSyscommand method

of WindowsObject class, 57
sendText method

of WindowsObiject class, 59
sendTextToWindow method

of WindowsManager class, 45
setValue method

of WindowsRegistry class, 23
showGroup method

of WindowsProgramManager class, 7
start method

of OLEODbject class, 79
startwith method

of OLEODbiject class, 80
state method

of WindowsObiject class, 50
submenu method

of MenuObiject class, 62
systemMenu method

of WindowsObject class, 59

T

textOf(id) method

of MenuObject class, 62
textOf(position) method

of MenuObject class, 62
titte method

of WindowsObject class, 50
titte= method

of WindowsObiject class, 50
toForeground method

of WindowsObiject class, 52
Type conversion, 81

U

unknown method

of OLEODbiject class, 80
unload method

of WindowsRegistry class, 23
usage

of WindowsEventLog class, 24
users attribute

of WindowsRegistry class, 23

Vv

virtual keys, 7

w

wclass method

of WindowsObiject class, 50
windowAtPosition method

of WindowsManager class, 45
WindowsClipboard class, 11
WindowsEventLog class, 24

getLogNames, 40

getNumber, 40
WindowsManager class, 44
WindowsObject class, 48

WindowsProgramManager class, 1

WindowsRegistry class, 14
write
WindowsEventLog class, 35

99

	Open Object Rexx
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Notes and Warnings

	2. How to Read the Syntax Diagrams
	3. Getting Help and Submitting Feedback
	3.1. The Open Object Rexx SourceForge Site
	3.2. The Rexx Language Association Mailing List

	4. Related Information

	Chapter 1. The WindowsProgramManager Class
	1.1. new (Class method)
	1.2. addDesktopIcon
	1.3. addShortCut
	1.4. addGroup
	1.5. addItem
	1.6. deleteDesktopIcon
	1.7. deleteGroup
	1.8. deleteItem
	1.9. showGroup
	1.10. Symbolic Names for Virtual Keys

	Chapter 2. The WindowsClipboard Class
	2.1. copy
	2.2. makeArray
	2.3. paste
	2.4. empty
	2.5. isDataAvailable
	2.6. locale

	Chapter 3. The WindowsRegistry Class
	3.1. new (Class method)
	3.2. classes_root (Attribute [get])
	3.3. close
	3.4. connect
	3.5. create
	3.6. current_key (Attribute [get])
	3.7. current_key= (Attribute [set])
	3.8. current_user (Attribute [get])
	3.9. delete
	3.10. deleteKey
	3.11. deleteValue
	3.12. flush
	3.13. getValue
	3.14. list
	3.15. listValues
	3.16. load
	3.17. local_machine (Attribute [get])
	3.18. open
	3.19. query
	3.20. replace
	3.21. restore
	3.22. save
	3.23. setValue
	3.24. unload
	3.25. users (Attribute [get])

	Chapter 4. The WindowsEventLog Class
	4.1. Using WindowsEventLog
	4.2. new (Class method)
	4.3. minimumReadMin (Attribute)
	4.4. minimumReadMax (Attribute)
	4.5. minimumReadBuffer (Attribute)
	4.6. events (Attribute)
	4.7. open
	4.8. close
	4.9. read (deprecated)
	4.10. readRecords
	4.11. write
	4.12. clear
	4.13. minimumRead
	4.14. minimumRead=
	4.15. isFull
	4.16. getNumber
	4.17. getLogNames
	4.18. getLast
	4.19. getFirst

	Chapter 5. The WindowsManager Class
	5.1. desktopWindow
	5.2. find
	5.3. foregroundWindow
	5.4. windowAtPosition
	5.5. consoleTitle
	5.6. consoleTitle=
	5.7. sendTextToWindow
	5.8. pushButtonInWindow
	5.9. processMenuCommand
	5.10. broadcastSettingChanged

	Chapter 6. The WindowObject Class
	6.1. assocWindow
	6.2. handle
	6.3. title
	6.4. title=
	6.5. wclass
	6.6. id
	6.7. coordinates
	6.8. state
	6.9. getStyle
	6.10. restore
	6.11. hide
	6.12. minimize
	6.13. maximize
	6.14. resize
	6.15. enable
	6.16. disable
	6.17. moveTo
	6.18. toForeground
	6.19. focusNextItem
	6.20. focusPreviousItem
	6.21. focusItem
	6.22. findChild
	6.23. childAtPosition
	6.24. next
	6.25. previous
	6.26. first
	6.27. last
	6.28. owner
	6.29. firstChild
	6.30. enumerateChildren
	6.31. sendMessage
	6.32. sendCommand
	6.33. sendMenuCommand
	6.34. sendMouseClick
	6.35. sendSyscommand
	6.36. pushButton
	6.37. sendKey
	6.38. sendChar
	6.39. sendKeyDown
	6.40. sendKeyUp
	6.41. sendText
	6.42. menu
	6.43. systemMenu
	6.44. isMenu
	6.45. processMenuCommand

	Chapter 7. The MenuObject Class
	7.1. isMenu
	7.2. isSubMenu
	7.3. isChecked
	7.4. isSeparator
	7.5. items
	7.6. idOf
	7.7. textOf(position)
	7.8. textOf(id)
	7.9. submenu
	7.10. findSubmenu
	7.11. findItem
	7.12. processItem

	Chapter 8. OLE Automation
	8.1. Overview of OLE Automation
	8.2. OLE Events
	8.3. The OLEObject Class
	8.3.1. new (Class method)
	8.3.2. getObject (Class method)
	8.3.3. addEventMethod
	8.3.4. class
	8.3.5. CLSID
	8.3.6. copy
	8.3.7. connectEvents
	8.3.8. disconnectEvents
	8.3.9. dispatch
	8.3.10. getConstant
	8.3.11. getKnownEvents
	8.3.12. getKnownMethods
	8.3.13. getOutParameters
	8.3.14. hasOleMethod
	8.3.15. isConnectable
	8.3.16. isConnected
	8.3.17. ProgID
	8.3.18. removeEventHandler
	8.3.19. removeEventMethod
	8.3.20. start
	8.3.21. startWith
	8.3.22. unknown
	8.3.23. Type Conversion

	8.4. The Windows OLEVariant Class
	8.4.1. new Class method
	8.4.2. !VARVALUE_
	8.4.3. !VARVALUE_=
	8.4.4. !VARTYPE_
	8.4.5. !VARTYPE_=
	8.4.6. !PARAMFLAGS_
	8.4.7. !PARAMFLAGS_=

	Appendix A. Notices
	A.1. Trademarks
	A.2. Source Code For This Document

	Appendix B. Common Public License Version 1.0
	B.1. Definitions
	B.2. Grant of Rights
	B.3. Requirements
	B.4. Commercial Distribution
	B.5. No Warranty
	B.6. Disclaimer of Liability
	B.7. General

	Appendix C. Revision History
	Index

