
ooRexx
Documentation 5.1.0

Open Object Rexx
Windows Extensions Reference



ooRexx Documentation 5.1.0 Open Object Rexx
Windows Extensions Reference
Edition 2025.05.02 (last revised on 2025-05-01 with r12966)

Author W. David Ashley
Author Gil Barmwater
Author Rony G. Flatscher
Author Mark Hessling
Author Rick McGuire
Author Lee Peedin
Author Oliver Sims
Author Erich Steinböck
Author Jon Wolfers

Copyright © 2005-2025 Rexx Language Association. All rights reserved.

Portions Copyright © 1995, 2004 IBM Corporation and others. All rights reserved.

This documentation and accompanying materials are made available under the terms of the Common
Public License v1.0 which accompanies this distribution. A copy is also available as an appendix to
this document and at the following address: https://www.oorexx.org/license.html.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

Neither the name of Rexx Language Association nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

https://www.oorexx.org/license.html


Preface                                                                                                                                        vii
1. Document Conventions ................................................................................................... vii

1.1. Typographic Conventions .....................................................................................  vii
1.2. Notes and Warnings ...........................................................................................  viii

2. How to Read the Syntax Diagrams ................................................................................. viii
3. Getting Help and Submitting Feedback .............................................................................  x

3.1. The Open Object Rexx SourceForge Site ............................................................... x
3.2. The Rexx Language Association Mailing List .........................................................  xi

4. Related Information .........................................................................................................  xi

1. The WindowsProgramManager Class                                                                                       1
1.1. new (Class method) ......................................................................................................  1
1.2. addDesktopIcon ............................................................................................................  1
1.3. addShortCut .................................................................................................................  2
1.4. addGroup .....................................................................................................................  3
1.5. addItem ........................................................................................................................  4
1.6. deleteDesktopIcon ......................................................................................................... 5
1.7. deleteGroup ..................................................................................................................  6
1.8. deleteItem ..................................................................................................................... 6
1.9. showGroup ...................................................................................................................  7
1.10. Symbolic Names for Virtual Keys .................................................................................  7

2. The WindowsClipboard Class                                                                                                11
2.1. copy ...........................................................................................................................  11
2.2. makeArray ..................................................................................................................  11
2.3. paste ..........................................................................................................................  12
2.4. empty .........................................................................................................................  12
2.5. isDataAvailable ...........................................................................................................  12
2.6. locale .......................................................................................................................... 12

3. The WindowsRegistry Class                                                                                                   14
3.1. new (Class method) ....................................................................................................  15
3.2. classes_root (Attribute [get]) ........................................................................................  15
3.3. close ..........................................................................................................................  15
3.4. connect ....................................................................................................................... 16
3.5. create .........................................................................................................................  16
3.6. current_key (Attribute [get]) .........................................................................................  16
3.7. current_key= (Attribute [set]) ........................................................................................ 16
3.8. current_user (Attribute [get]) ........................................................................................  17
3.9. delete .........................................................................................................................  17
3.10. deleteKey .................................................................................................................. 17
3.11. deleteValue ...............................................................................................................  18
3.12. flush .........................................................................................................................  18
3.13. getValue .................................................................................................................... 18
3.14. list ............................................................................................................................  19
3.15. listValues ..................................................................................................................  19
3.16. load ..........................................................................................................................  20
3.17. local_machine (Attribute [get]) ....................................................................................  20
3.18. open .........................................................................................................................  20
3.19. query ........................................................................................................................  22
3.20. replace .....................................................................................................................  22
3.21. restore ......................................................................................................................  22
3.22. save .........................................................................................................................  22
3.23. setValue .................................................................................................................... 23
3.24. unload ......................................................................................................................  23

iii



3.25. users (Attribute [get]) .................................................................................................  23

4. The WindowsEventLog Class                                                                                                 24
4.1. Using WindowsEventLog .............................................................................................  24
4.2. new (Class method) ....................................................................................................  28
4.3. minimumReadMin (Attribute) ........................................................................................ 28
4.4. minimumReadMax (Attribute) .......................................................................................  29
4.5. minimumReadBuffer (Attribute) ....................................................................................  30
4.6. events (Attribute) ......................................................................................................... 30
4.7. open ...........................................................................................................................  31
4.8. close ..........................................................................................................................  32
4.9. read (deprecated) ......................................................................................................  33
4.10. readRecords .............................................................................................................  33
4.11. write .......................................................................................................................... 35
4.12. clear .........................................................................................................................  36
4.13. minimumRead ...........................................................................................................  37
4.14. minimumRead= .........................................................................................................  38
4.15. isFull ......................................................................................................................... 39
4.16. getNumber ................................................................................................................  40
4.17. getLogNames ............................................................................................................ 40
4.18. getLast .....................................................................................................................  41
4.19. getFirst .....................................................................................................................  42

5. The WindowsManager Class                                                                                                  44
5.1. desktopWindow ...........................................................................................................  44
5.2. find .............................................................................................................................  44
5.3. foregroundWindow ......................................................................................................  44
5.4. windowAtPosition ........................................................................................................  45
5.5. consoleTitle ................................................................................................................. 45
5.6. consoleTitle= ............................................................................................................... 45
5.7. sendTextToWindow ...................................................................................................... 45
5.8. pushButtonInWindow ...................................................................................................  45
5.9. processMenuCommand ...............................................................................................  45
5.10. broadcastSettingChanged ..........................................................................................  46

6. The WindowObject Class                                                                                                       48
6.1. assocWindow ..............................................................................................................  49
6.2. handle ........................................................................................................................  50
6.3. title .............................................................................................................................  50
6.4. title= ...........................................................................................................................  50
6.5. wclass ........................................................................................................................  50
6.6. id ................................................................................................................................ 50
6.7. coordinates .................................................................................................................  50
6.8. state ...........................................................................................................................  50
6.9. getStyle ......................................................................................................................  51
6.10. restore ......................................................................................................................  51
6.11. hide ..........................................................................................................................  52
6.12. minimize ...................................................................................................................  52
6.13. maximize ..................................................................................................................  52
6.14. resize .......................................................................................................................  52
6.15. enable ......................................................................................................................  52
6.16. disable ......................................................................................................................  52
6.17. moveTo .....................................................................................................................  52
6.18. toForeground ............................................................................................................  52
6.19. focusNextItem ...........................................................................................................  53

iv



6.20. focusPreviousItem .....................................................................................................  53
6.21. focusItem ..................................................................................................................  53
6.22. findChild ...................................................................................................................  53
6.23. childAtPosition ........................................................................................................... 53
6.24. next ..........................................................................................................................  54
6.25. previous ....................................................................................................................  54
6.26. first ...........................................................................................................................  54
6.27. last ...........................................................................................................................  54
6.28. owner .......................................................................................................................  54
6.29. firstChild ...................................................................................................................  54
6.30. enumerateChildren ....................................................................................................  54
6.31. sendMessage ............................................................................................................ 55
6.32. sendCommand ..........................................................................................................  55
6.33. sendMenuCommand .................................................................................................. 56
6.34. sendMouseClick ........................................................................................................  56
6.35. sendSyscommand .....................................................................................................  57
6.36. pushButton ................................................................................................................ 58
6.37. sendKey ...................................................................................................................  58
6.38. sendChar ..................................................................................................................  59
6.39. sendKeyDown ...........................................................................................................  59
6.40. sendKeyUp ...............................................................................................................  59
6.41. sendText ...................................................................................................................  59
6.42. menu ........................................................................................................................  59
6.43. systemMenu .............................................................................................................. 59
6.44. isMenu ...................................................................................................................... 60
6.45. processMenuCommand .............................................................................................  60

7. The MenuObject Class                                                                                                           61
7.1. isMenu .......................................................................................................................  61
7.2. isSubMenu .................................................................................................................. 61
7.3. isChecked ................................................................................................................... 61
7.4. isSeparator .................................................................................................................  62
7.5. items ..........................................................................................................................  62
7.6. idOf ............................................................................................................................  62
7.7. textOf(position) ............................................................................................................  62
7.8. textOf(id) ..................................................................................................................... 62
7.9. submenu ..................................................................................................................... 62
7.10. findSubmenu .............................................................................................................  63
7.11. findItem .....................................................................................................................  63
7.12. processItem ..............................................................................................................  63

8. OLE Automation                                                                                                                     64
8.1. Overview of OLE Automation ....................................................................................... 64
8.2. OLE Events ................................................................................................................  65
8.3. The OLEObject Class .................................................................................................  69

8.3.1. new (Class method) .........................................................................................  69
8.3.2. getObject (Class method) .................................................................................  70
8.3.3. addEventMethod ..............................................................................................  71
8.3.4. class ................................................................................................................  71
8.3.5. CLSID .............................................................................................................. 71
8.3.6. copy ................................................................................................................  72
8.3.7. connectEvents .................................................................................................. 72
8.3.8. disconnectEvents .............................................................................................  72
8.3.9. dispatch ...........................................................................................................  73
8.3.10. getConstant .................................................................................................... 73

v



8.3.11. getKnownEvents .............................................................................................  74
8.3.12. getKnownMethods ..........................................................................................  75
8.3.13. getOutParameters ..........................................................................................  77
8.3.14. hasOleMethod ................................................................................................  78
8.3.15. isConnectable ................................................................................................. 78
8.3.16. isConnected ...................................................................................................  78
8.3.17. ProgID ...........................................................................................................  79
8.3.18. removeEventHandler ......................................................................................  79
8.3.19. removeEventMethod .......................................................................................  79
8.3.20. start ...............................................................................................................  79
8.3.21. startWith ......................................................................................................... 80
8.3.22. unknown ........................................................................................................  80
8.3.23. Type Conversion ............................................................................................  81

8.4. The Windows OLEVariant Class ..................................................................................  82
8.4.1. new Class method ...........................................................................................  84
8.4.2. !VARVALUE_ ....................................................................................................  85
8.4.3. !VARVALUE_= ..................................................................................................  86
8.4.4. !VARTYPE_ ......................................................................................................  86
8.4.5. !VARTYPE_= ....................................................................................................  86
8.4.6. !PARAMFLAGS_ ............................................................................................... 86
8.4.7. !PARAMFLAGS_= ............................................................................................. 86

A. Notices                                                                                                                                   87
A.1. Trademarks ................................................................................................................  87
A.2. Source Code For This Document ................................................................................  88

B. Common Public License Version 1.0                                                                                     89
B.1. Definitions ..................................................................................................................  89
B.2. Grant of Rights ...........................................................................................................  89
B.3. Requirements .............................................................................................................  90
B.4. Commercial Distribution ..............................................................................................  90
B.5. No Warranty ...............................................................................................................  91
B.6. Disclaimer of Liability ..................................................................................................  91
B.7. General ......................................................................................................................  91

C. Revision History                                                                                                                     93

Index                                                                                                                                           94

vi



Preface
This book describes extensions to the Open Object Rexx Interpreter that are specific to the Windows
operating system. The extensions are in two main categories.

The first category is a number of classes implemented in a library package, winSystm.cls. These
classes are used to interact with Windows system objects like the event log and the clipboard. The
second category is OLE Automation (Chapter 8, OLE Automation).

These extensions are currently only available on Windows. The Windows Scripting Host and
OLE Automation can only be implemented on Windows. Some of the classes, such as the
WindowsEventLog (Chapter 4, The WindowsEventLog Class) and the WindowsRegistry (Chapter 3,
The WindowsRegistry Class) classes must be, by their nature, Windows specific. Some of the other
classes, such as the MenuObject (Chapter 7, The MenuObject Class) or WindowObject (Chapter 6,
The WindowObject Class) classes could certainly be enhanced to be cross-platform. However, at this
time there are no plans to do so.

This book is intended for people who plan to develop applications using ooRexx and one or more of
the Windows specific classes. In general no special knowledge of Windows programming is needed
to use the Windows extensions. Therefore this book is applicable for users ranging in experience from
the novice ooRexx programmer, to the experienced application developer.

This book is a reference rather than a tutorial. It assumes the reader has some exposure to object-
oriented programming concepts and Rexx programming.

The use and syntax of all the classes and their methods is covered in this book. A brief overview of
OLE Automation and the Windows Scripting Host Engine is given. Many of the descriptions of class
methods also include example code snippets.

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

1.1. Typographic Conventions
Typographic conventions are used to call attention to specific words and phrases. These conventions,
and the circumstances they apply to, are as follows.

Mono-spaced Bold is used to highlight literal strings, class names, or inline code examples. For
example:

The Class class comparison methods return .true or .false, the result of
performing the comparison operation.

This method is exactly equivalent to subWord(n, 1).

Mono-spaced Normal denotes method names or source code in program listings set off as separate
examples.

This method has no effect on the action of any hasEntry, hasIndex, items,
remove, or supplier message sent to the collection.

-- reverse an array
a = .Array~of("one", "two", "three", "four", "five")

vii



Notes and Warnings

-- five, four, three, two, one
aReverse = .CircularQueue~new(a~size)~appendAll(a)~makeArray("lifo")

Proportional Italic is used for method and function variables and arguments.

A supplier loop specifies one or two control variables, index, and item, which receive a
different value on each repetition of the loop.

Returns a string of length length with string centered in it and with pad characters
added as necessary to make up length.

1.2. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed, like mandatory initialization. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The  symbol indicates the beginning of a statement.

The  symbol indicates that the statement syntax is continued on the next line.

The  symbol indicates that a statement is continued from the previous line.

The  symbol indicates the end of a statement.

• Required items appear on the horizontal line (the main path).

STATEMENT required_item

viii



How to Read the Syntax Diagrams

• Optional items appear below the main path.

STATEMENT

optional_item

• If you can choose from two or more items, they appear vertically, in a stack. If you must choose one
of the items, one item of the stack appears on the main path.

STATEMENT required_choice1

required_choice2

• If choosing one of the items is optional, the entire stack appears below the main path.

STATEMENT

optional_choice1

optional_choice2

• If one of the items is the default, it is usually the topmost item of the stack of items below the main
path.

STATEMENT

default_choice

optional_choice

optional_choice

• A path returning to the left above the main line indicates an item that can be repeated.

STATEMENT repeatable_item

,

A repeat path above a stack indicates that you can repeat the items in the stack.

• A pointed rectangle around an item indicates that the item is a fragment, a part of the syntax
diagram that appears in greater detail below the main diagram.

STATEMENT DETAIL - fragment

• Keywords appear in uppercase (for example, SIGNAL). They must be spelled exactly as shown
but you can type them in upper, lower, or mixed case. Variables appear in all lowercase letters (for
example, index). They represent user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

MAX( number

,

)

ix



Getting Help and Submitting Feedback

3. Getting Help and Submitting Feedback
The Open Object Rexx Project has a number of methods to obtain help and submit feedback for
ooRexx and the extension packages that are part of ooRexx. These methods, in no particular order of
preference, are listed below.

3.1. The Open Object Rexx SourceForge Site
Open Object Rexx utilizes SourceForge to house its source repositories, mailing lists and other project
features at https://sourceforge.net/projects/oorexx. ooRexx uses the Developer and User mailing lists
at https://sourceforge.net/p/oorexx/mailman for discussions concerning ooRexx. The ooRexx user is
most likely to get timely replies from one of these mailing lists.

Here is a list of some of the most useful facilities provided by SourceForge.

The Developer Mailing List
Subscribe to the oorexx-devel mailing list at https://sourceforge.net/projects/oorexx/lists/oorexx-
devel to discuss ooRexx project development activities and future interpreter enhancements. You
can find its archive of past messages at https://sourceforge.net/p/oorexx/mailman/oorexx-devel.

The Users Mailing List
Subscribe to the oorexx-users mailing list at https://sourceforge.net/projects/oorexx/lists/oorexx-
users to discuss how to use ooRexx. It also supports a historical archive of past messages.

The Announcements Mailing List
Subscribe to the oorexx-announce mailing list at https://sourceforge.net/projects/oorexx/lists/
oorexx-announce to receive announcements of significant ooRexx project events.

The Bug Mailing List
Subscribe to the oorexx-bugs mailing list at https://sourceforge.net/projects/oorexx/lists/oorexx-
bugs to monitor changes in the ooRexx bug tracking system.

Bug Reports
You can view ooRexx bug reports at https://sourceforge.net/p/oorexx/bugs. To be able to create
new bug reports, you will need to first register for a SourceForge userid at https://sourceforge.net/
user/registration. When reporting a bug, please try to provide as much information as possible to
help developers determine the cause of the issue. Sample program code that can reproduce your
problem will make it easier to debug reported problems.

Documentation Feedback
You can submit feedback for, or report errors in, the documentation at https://sourceforge.net/p/
oorexx/documentation. Please try to provide as much information in a documentation report as
possible. In addition to listing the document and section the report concerns, direct quotes of the
text will help the developers locate the text in the source code for the document. (Section numbers
are generated when the document is produced and are not available in the source code itself.)
Suggestions as to how to reword or fix the existing text should also be included.

Request For Enhancement
You can suggest new ooRexx features or enhancements at https://sourceforge.net/p/oorexx/
feature-requests.

Patch Reports
If you create an enhancement patch for ooRexx please post the patch at https://sourceforge.net/
p/oorexx/patches. Please provide as much information in the patch report as possible so that the
developers can evaluate the enhancement as quickly as possible.

x

https://sourceforge.net/projects/oorexx
https://sourceforge.net/p/oorexx/mailman
https://sourceforge.net/projects/oorexx/lists/oorexx-devel
https://sourceforge.net/projects/oorexx/lists/oorexx-devel
https://sourceforge.net/p/oorexx/mailman/oorexx-devel
https://sourceforge.net/projects/oorexx/lists/oorexx-users
https://sourceforge.net/projects/oorexx/lists/oorexx-users
https://sourceforge.net/projects/oorexx/lists/oorexx-announce
https://sourceforge.net/projects/oorexx/lists/oorexx-announce
https://sourceforge.net/projects/oorexx/lists/oorexx-bugs
https://sourceforge.net/projects/oorexx/lists/oorexx-bugs
https://sourceforge.net/p/oorexx/bugs
https://sourceforge.net/user/registration
https://sourceforge.net/user/registration
https://sourceforge.net/p/oorexx/documentation
https://sourceforge.net/p/oorexx/documentation
https://sourceforge.net/p/oorexx/feature-requests
https://sourceforge.net/p/oorexx/feature-requests
https://sourceforge.net/p/oorexx/patches
https://sourceforge.net/p/oorexx/patches


The Rexx Language Association Mailing List

Please do not post bug fix patches here, instead you should open a bug report at https://
sourceforge.net/p/oorexx/bugs and attach the patch to it.

The ooRexx Forums
The ooRexx project maintains a set of forums that anyone may contribute to or monitor. They are
located at https://sourceforge.net/p/oorexx/discussion. There are currently three forums available:
Help, Developers and Open Discussion. In addition, you can monitor the forums via email.

3.2. The Rexx Language Association Mailing List
The Rexx Language Association maintains a forum at https://groups.io/g/rexxla-members/topics.

4. Related Information
See also: Open Object Rexx: Reference

xi

https://sourceforge.net/p/oorexx/bugs
https://sourceforge.net/p/oorexx/bugs
https://sourceforge.net/p/oorexx/discussion
https://groups.io/g/rexxla-members/topics


Chapter 1.

The WindowsProgramManager Class
The WindowsProgramManager class allows the programmer to interact with the Windows Program
Manager. This class can be use to create program groups and shortcuts to access your programs.

The WindowsProgramManager class is defined in the file winSystm.cls To use this class in a
program, place a ::requires statement in the program file:

::requires "winSystm.cls"

A sample program desktop.rex is provided in the samples\oodialog\winsystem directory.

Methods of the WindowsProgramManager class are:

Table 1.1. Methods Available to the WindowsProgramManager Class
Method... ...link

new (Class method) init (Section 1.1, “new (Class method)”) (Class
method)

addDeskTopIcon addDesktopIcon (Section 1.2, “addDesktopIcon”)

addGroup addGroup (Section 1.4, “addGroup”)

addItem addItem (Section 1.5, “addItem”)

addShortCut addShortCut (Section 1.3, “addShortCut”)

deleteDesktopIcon deleteDesktopIcon (Section 1.6,
“deleteDesktopIcon”)

deleteGroup deleteGroup (Section 1.7, “deleteGroup”)

deleteItem deleteItem (Section 1.8, “deleteItem”)

showGroup showGroup (Section 1.9, “showGroup”)

1.1. new (Class method)

new

Creates an instance of the WindowsProgramManager class.

1.2. addDesktopIcon

1



addShortCut

addDesktopIcon( name , program ,

iconfile

,

0

iconr

,

workdir

,

PERSONAL

COMMON

,

args

,

hotkey

,

NORMAL

MAXIMIZED

MINIMIZED

)

Adds a shortcut to the Windows desktop. A sample program DESKICON.REX is provided in the
ooRexx\SAMPLES directory.

Arguments:
The arguments are:
name

The name of the shortcut, displayed below the icon.

program
The program file launched by the shortcut.

iconfile
The name of the icon used for the shortcut. If not specified, the icon of program is used.

iconnr
The number of the icon within the iconfile. The default is 0.

workdir
The working directory of the shortcut.

location
Either of the following locations:
"PERSONAL"

The shortcut is personal and displayed only on the desktop of the user.

"COMMON"
The shortcut is common to all users and displayed on the desktop of all users.

args
The arguments passed to the program that the shortcut refers to.

hotkey
The virtual key to be used as a hotkey to open the shortcut. For a list of the key names, see
Section 1.10, “Symbolic Names for Virtual Keys”.

run
Specifies one of the options listed in the syntax diagram. The default is "NORMAL".

1.3. addShortCut

2



addGroup

addShortcut( name , program ,

iconfile

,

0

iconr

,

workdir

,

PERSONAL

COMMON

,

args

,

hotkey

,

NORMAL

MAXIMIZED

MINIMIZED

)

Creates a shortcut within the specified folder.

Arguments:
The arguments are:
name

The full name of the shortcut.

program
The program file launched by the shortcut.

iconfile
The name of the icon used for the shortcut. If not specified, the icon of program is used.

iconnr
The number of the icon within the iconfile. The default is 0.

workdir
The working directory of the shortcut.

args
The arguments passed to the program that the shortcut refers to.

hotkey
The virtual key to be used as a hotkey to open the shortcut. For a list of the key names, see
Section 1.10, “Symbolic Names for Virtual Keys”.

run
Specifies one of the options listed in the syntax diagram. The default is "NORMAL".

Example:
The following example creates a shortcut named "My NotePad" to the Notepad editor within the
directory c:\temp:

Example 1.1. WindowsProgramManager class - addShortCut method

pm = .WindowsProgramManager~new
    if pm~InitCode \= 0 then exit
    pm~addShortCut("c:\temp\My Notepad","%SystemRoot%\system32\notepad.exe")
    ::requires "winsystm.cls"

1.4. addGroup

3



addItem

addGroup( group )

Adds a program group to the Programs group of the desktop. If the group already exists, it is opened.
The group argument specifies the name of the program group to be added. Example:

addGroup("Object Rexx Redbook")

Note

The name that you specify for the group argument must not contain any brackets or parenthesis.
Otherwise, this method fails.

Return value:

0
The method was successful.

1
The method failed.

1.5. addItem

addItem( shortcut , program ,

iconfile

,

iconnumber

,

workdir

)

Adds a shortcut to a program group. The shortcut is placed into the last group used with either
AddGroup or ShowGroup.

Example 1.2. WindowsProgramManager class - addItem method

AddItem("OODialog Samples", ,
"rexx oodialog\samples\sample.rex", ,
"oodialog\samples\oodialog.ico")

Note

The name that you specify for the group argument must not contain characters that are not valid,
such as brackets or parenthesis. Otherwise, this method fails. Some characters are changed, for
example / to _.

Return value:

4



deleteDesktopIcon

0
The method was successful.

1
The method failed.

1.6. deleteDesktopIcon

deleteDesktopIcon( name , PERSONAL

COMMON

)

Deletes a shortcut from the Windows desktop that was previously created with AddDesktopIcon.

The arguments are:

name
The name of the shortcut to be deleted.

location
Either of the following locations:

"PERSONAL"
The shortcut was previously created with AddDesktopIcon and the location option
"PERSONAL". This is the default.

"COMMON"
The shortcut was previously created with AddDesktopIcon and the location option
"COMMON".

Return codes:

0
Shortcut deleted successfully.

2
Shortcut not found.

3
Path to shortcut not found.

5
Access denied or busy.

26
Not a DOS disk.

32
Sharing violation.

36
Sharing buffer exceeded.

87
Does not exist.

5



deleteGroup

206
Shortcut name exceeds range error.

Note:

Return code 2 is also returned when a "PERSONAL" should be deleted that was previously
created with "COMMON" and vice versa.

Example 1.3. WindowsProgramManager class - deleteDesktopIcon method

pm = .WindowsProgramManager~new
if pm~InitCode \= 0 then exit

rc = pm~deleteDesktopIcon("MyNotepad1", ,
     "%SystemRoot%\system32\notepad.exe")
if rc \= 0 then do
  say "Error deleting shortcut: My Notepad 1"
  exit
end

exit

::requires "winsystm.cls"

1.7. deleteGroup

deleteGroup( group )

Deletes a program group from the desktop. The group argument specifies the name of the program
group to be deleted.

Return value:

0
The method was successful.

1
The method failed.

1.8. deleteItem

deleteItem( shortcut )

Deletes a shortcut from a program group.

Return value:

0
The method was successful.

1
The method failed.

6



showGroup

1.9. showGroup

showGroup( group

, MIN

MAX

)

Opens a program group. The group argument specifies the name of the program group to be opened.
If MIN or MAX is specified, the program group is opened minimized or maximized.

Return value:

0
The method was successful.

1
The method failed.

1.10. Symbolic Names for Virtual Keys

Table 1.2, “Symbolic Names for Virtual Keys” shows the symbolic names and the keyboard
equivalents for the virtual keys used by Object Rexx.

Table 1.2. Symbolic Names for Virtual Keys
Symbolic Name Mouse or Keyboard Equivalent

LBUTTON Left mouse button

RBUTTON Right mouse button

CANCEL Control-break processing

MBUTTON Middle mouse button (three-button mouse)

BACK BACKSPACE key

TAB TAB key

CLEAR CLEAR key

RETURN ENTER key

SHIFT SHIFT key

CONTROL CTRL key

MENU ALT key

PAUSE PAUSE key

CAPITAL CAPS LOCK key

ESCAPE ESC key

SPACE SPACEBAR

PRIOR PAGE UP key

NEXT PAGE DOWN key

END END key

HOME HOME key

LEFT LEFT ARROW key

7



Symbolic Names for Virtual Keys

Symbolic Name Mouse or Keyboard Equivalent

UP UP ARROW key

RIGHT RIGHT ARROW key

DOWN DOWN ARROW key

SELECT SELECT key

EXECUTE EXECUTE key

SNAPSHOT PRINT SCREEN key

INSERT INS key

DELETE DEL key

HELP HELP key

0 0 key

1 1 key

2 2 key

3 3 key

4 4 key

5 5 key

6 6 key

7 7 key

8 8 key

9 9 key

A A key

B B key

C C key

D D key

E E key

F F key

G G key

H H key

I I key

J J key

K K key

L L key

M M key

N N key

O O key

Q Q key

R R key

S S key

T T key

8



Symbolic Names for Virtual Keys

Symbolic Name Mouse or Keyboard Equivalent

U U key

V V key

W W key

X X key

Y Y key

Z Z key

NUMPAD0 Numeric keypad 0 key

NUMPAD1 Numeric keypad 1 key

NUMPAD2 Numeric keypad 2 key

NUMPAD3 Numeric keypad 3 key

NUMPAD4 Numeric keypad 4 key

NUMPAD5 Numeric keypad 5 key

NUMPAD6 Numeric keypad 6 key

NUMPAD7 Numeric keypad 7 key

NUMPAD8 Numeric keypad 8 key

NUMPAD9 Numeric keypad 9 key

MULTIPLY Multiply key

ADD Add key

SEPARATOR Separator key

SUBTRACT Subtract key

DECIMAL Decimal key

DIVIDE Divide key

F1 F1 key

F2 F2 key

F3 F3 key

F4 F4 key

F5 F5 key

F6 F6 key

F7 F7 key

F8 F8 key

F9 F9 key

F10 F10 key

F11 F11 key

F12 F12 key

F13 F13 key

F14 F14 key

F15 F15 key

F16 F16 key

9



Symbolic Names for Virtual Keys

Symbolic Name Mouse or Keyboard Equivalent

F17 F17 key

F18 F18 key

F19 F19 key

F20 F20 key

F21 F21 key

F22 F22 key

F23 F23 key

F24 F24 key

NUMLOCK NUM LOCK key

SCROLL SCROLL LOCK key

10



Chapter 2.

The WindowsClipboard Class
The WindowsClipboard class provides methods to interact with a clipboard. Typically a clipboard is
used to transfer data back and forth between different windows in a graphical user interface.

The WindowsClipboard class is not a built-in class. It is defined in the winSystm.cls file. This
means, you must use a ::requires statement to use its functionality, as follows:

::requires "winSystm.cls"

Methods the WindowsClipboard Class Defines

• copy

• makeArray

• paste

• empty

• isDataAvailable

• locale

2.1. copy

copy( text ,

codepage

,

translateflags

)

Empties the clipboard and copies the specified text to it.

If codepage is omitted or is an empty string, the text (which should be an ANSI string) is converted to
Unicode by the system.

If codepage is "UNICODE", the text (which should be a UTF-16 string) is put as-is in the clipboard.

For any other value of codepage, the text (which should be a string encoded in codepage ) is
converted to Unicode using the Rexx utility  SysToUnicode. The arguments codepage  and
translateflags are passed to SysToUnicode. They are described in the ooRexx reference
documentation.

Example 2.1. WindowsClipboard class - copy method

clipboard = .WindowsClipboard~new
clipboard~copy("Noel")                              -- ANSI text
clipboard~copy("4E00 6F00 EB00 6C00"x, "UNICODE")   -- UTF-16 text (stored as-is)
clipboard~copy("Noël", "UTF8")                      -- SysToUnicode is used
clipboard~copy("Noël", "UTF8", "ERR_INVALID_CHARS") -- SysToUnicode is used

2.2. makeArray

makearray

11



paste

If the content of the clipboard is a string with newline characters in it, makeArray can be used to split
up the string into individual lines. An array is returned containing those lines.

Note

This method is limited to the default codepage. If you need to specify a codepage then use:

.WindowsClipboard~new~paste("UTF8")~makeArray

2.3. paste

paste(

codepage

,

mappingflags

,

defaultchar

)

Retrieves the text data stored on the clipboard.

If codepage is omitted or is an empty string, the clipboard contents is converted from Unicode by the
system and returned as an ANSI string.

If codepage is "UNICODE", the clipboard contents is returned as a UTF-16 string.

For any other value of codepage, the clipboard contents is converted from Unicode using the Rexx
utility SysFromUnicode and returned as a string encoded in codepage. The arguments codepage,
mappingflags and defaultchar are passed to SysFromUnicode. They are described in the ooRexx
reference documentation.

Example 2.2. WindowsClipboard class - paste method

clipboard = .WindowsClipboard~new
text = clipboard~paste                              -- ANSI text
text = clipboard~paste("UNICODE")                   -- UTF-16 (returned as stored)
text = clipboard~paste("UTF8")                      -- SysFromUnicode is used
text = clipboard~paste("CP1252", "DEFAULTCHAR","#") -- SysFromUnicode is used

2.4. empty

empty

Empties the clipboard.

2.5. isDataAvailable

isDataAvailable

Returns 1 if the text data is available on the clipboard. If no data is available, 0 is returned.

2.6. locale

12



locale

locale

Returns the locale name associated with the text in the clipboard.

For example: "de-DE_phoneb" where

• "de" is the primary language

• "DE" is the sublanguage (optional)

• "phoneb" is the sort order (optional)

13



Chapter 3.

The WindowsRegistry Class
The WindowsRegistry class allows the programmer to interface with the operating system APIs
that are used to access the registry. The class can be used to query the registry and modify, add, and
delete entries.

In the Windows operating systems, the registry is a system-defined database in which applications
and system components store and retrieve configuration data. The data stored in the registry varies
according to the version of Microsoft Windows. Applications use the registry APIs to retrieve, modify,
or delete registry data.

You should not edit registry data that does not belong to your application unless it is absolutely
necessary. If there is an error in the registry, your system may not function properly. If this happens,
you can restore the registry to the state it was in when you last started the computer successfully. For
more information, see the help for your operating system.

The registry stores data in a tree format. Each node in the tree is called a key. Each key can contain
both subkeys and data entries called values. Sometimes, the presence of a key is all the data that an
application requires; other times, an application opens a key and uses the values associated with the
key. A key can have any number of values, and the values can be in any form.

Each key has a name consisting of one or more printable characters. Key names are not case
sensitive. Key names cannot include a backslash (\), but any other printable or unprintable character
can be used. The name of each subkey is unique with respect to the key that is immediately above it
in the hierarchy. Key names are not localized into other languages, although values may be.

Note: Windows provides a command line user tool named regedit that displays the registry and its
tree structure on the local machine. The tool can be very helpful in picturing the layout of the registry.
To use it, merely type regedit at the command prompt of a console window, or use the run option of
the Start menu.

Most of the operating system functions that manipulate the registry require the open handle of a parent
key. As a convenience to the programmer, the WindowsRegistry class usually allows this handle
to be omitted as an argument in its methods. The class keeps track of the most recently opened
handle and supplies this handle when the programmer omits the parent handle argument in a method.
This mechanism is implemented through the current_key (Section 3.6, “current_key (Attribute [get])”)
attribute. When a method has a parent handle argument and the programmer omits the argument, the
current key handle is used.

The WindowsRegistry class is not a built-in class; it is defined in the file winSystm.cls.

Use a ::requires statement to use the class in a program.

::requires "winSystm.cls"

A sample program, registry.rex, is provided in the samples\oodialog\winsystem directory.

Methods the WindowsRegistry Class Defines

• new (Class method)

• classes_root (Attribute [get])

• close

• create

• current_key (Attribute [get])

14



new (Class method)

• current_key= (Attribute [set])

• current_user (Attribute [get])

• delete

• deleteKey

• deleteValue

• flush

• getValue

• list

• listValues

• load

• local_machine (Attribute [get])

• open

• query

• replace

• restore

• save

• setValue

• unload

• users (Attribute [get])

3.1. new (Class method)

new

Creates an instance of the WindowsRegistry class. The current key is set to
HKEY_LOCAL_MACHINE.

3.2. classes_root (Attribute [get])

classes_root

Returns the handle of the root key HKEY_CLASSES_ROOT. This handle is maintained by the
operating system, it can not be changed.

3.3. close

15



connect

close(

key_handle

)

Closes a previously opened key specified by its handle. Example:

rg~close(objectrexxkey)

It can take several seconds before all data is written to disk. You can use FLUSH to empty the cache.

If key_handle is omitted, CURRENT_KEY is closed.

3.4. connect

connect( key , computer )

Opens a key on a remote computer. This is supported only for HKEY_LOCAL_MACHINE and
HKEY_USERS.

3.5. create

create(

parent

, subkey )

Adds a new named subkey to the registry and returns its handle. The first argument is the parent key
handle. The second argument is the name of the new subkey.

Example 3.1. WindowsRegistry class - create method

newKey = rg~create(rg~local_machine, "myOwnKey")

3.6. current_key (Attribute [get])

current_key()

Returns the handle of the current key. The current key is set by the new() (Section 3.1, “new (Class
method)”) method to HKEY_LOCAL_MACHINE. It's value is then updated by every call to create()
(Section 3.5, “create”) and open() (Section 3.18, “open”). Therefore its value is always that of the
handle of the most recently opened key unless the programmer sets (Section 3.7, “current_key=
(Attribute [set])”) it to some other value.

Most registry operations require an open handle to the parent key of the subkey being operated on. In
the WindowsRegistry class most methods that require the parent key allow the programmer to omit
the parent key. When the parent key is omitted, the current_key handle is used.

3.7. current_key= (Attribute [set])

current_key =

16



current_user (Attribute [get])

Sets the handle of the current key. The WindowsRegistry class maintains (Section 3.6, “current_key
(Attribute [get])”) this key, but the programmer can set it to any value at any time.

3.8. current_user (Attribute [get])

current_user

Returns the handle of the root key HKEY_CURRENT_USER. This handle is maintained by the
operating system and can not be changed.

3.9. delete

delete(

keyHandle

, subkeyName )

Deletes a subkey and all its descendants. The method will remove the key, all of the key's values, and
all of its subkeys from the registry. To delete a key only if the key does not have subkeys values, use
the deleteKey() (Section 3.10, “deleteKey”) method.

Arguments
The two arguments are:
keyHandle [optional]

A handle to an open registry key. The key must have been opened with the DELETE access
right. If this argument is omitted then the CURRENT_KEY attribute is used.

subkeyName [required]
The name of the subkey to be deleted. The name is case insensitive.

Return
O on success, otherwise the Windows system error code. A generic description of the error can be
obtained by using the Rexx Utility function, SysGetErrorText() .

3.10. deleteKey

deleteKey(

keyHandle

, subkeyName )

Deletes a subkey and its values from the registry. The subkey to be deleted must not have subkeys.
To delete a key and all its subkeys, you need to enumerate the subkeys and delete them individually.
To delete keys recursively, use the delete() (Section 3.9, “delete”) method.

Arguments
The two arguments are:
keyHandle [optional]

A handle to an open registry key. The key must have been opened with the DELETE access
right. If this argument is omitted then the CURRENT_KEY attribute is used.

subkeyName [required]
The name of the subkey to be deleted. The name is case insensitive.

17



deleteValue

Return
O on success, otherwise the Windows system error code. A generic description of the error can be
obtained by using the Rexx Utility function, SysGetErrorText() .

3.11. deleteValue

deleteValue(

key_handle , value

)

Deletes the named value for a given key. If key_handle is omitted, CURRENT_KEY is used. If value is
blank or omitted, the default value is deleted.

3.12. flush

flush(

key_handle

)

Forces the system to write the cache buffer of a given key to disk. If key_handle is omitted,
CURRENT_KEY is flushed.

3.13. getValue

getValue(

key_handle , value

)

Retrieves the data and type for a named value of a given key. The result is a compound variable with
suffixes data and type. If key_handle is omitted, CURRENT_KEY is used. If named value is blank or
omitted, the default value is retrieved.

On error 0 is returned. Errors can occur, for instance, if a non-existent key is queried or if the user
does not have sufficient privileges to query the key.

Example:

Example 3.2. WindowsRegistry class - getValue method

myval. = rg~getvalue(,"filesystem")        /* current key */
say "Type is" myval.type
if myval.type = "NORMAL" then say "Value is" myval.data
myval. = rg~getvalue(mykey)
say "my default value is:" myval.data
myval. = rg~getvalue(mykey,"")
say "my default value is:" myval.data

On success, possible types are: NORMAL, EXPAND, MULTI, NUMBER, BINARY, NONE, OTHER.

Since errors are possible, it may be best to test that the return is a stem before assigning the return to
a stem. Something like this:

18



list

Example 3.3. WindowsRegistry class - getValue errors

  retVal = rg~getvalue(,"filesystem")        /* current key */
  if retVal~isA(.Stem) then do
    say "Type is" myval.type
    if myval.type = "NORMAL" then say "Value is" myval.data
  else do
    say "Error getting registry value."
  end

3.14. list

list(

key_handle

, stem. )

Retrieves the list of subkeys for a given key in a stem variable. The name of the stem variable must
include the period. The keys are returned as stem.1, stem.2, and so on.

Example 3.4. WindowsRegistry class - list method

rg~LIST(objectrexxkey,orexxkeys.)
do i over orexxkeys.
say orexxkeys.i
end

3.15. listValues

listValues(

key_handle

, variable. )

Retrieves all value entries of a given key into a compound variable. The name of the variable must
include the period. The suffixes of the compound variable are numbered starting with 1, and for each
number the three values are the name (var.i.name), the data (var.i.data), and the type (var.i.type). The
type is NORMAL for alphabetic values, EXPAND for expandable strings such as a path, NONE for
no specified type, MULTI for multiple strings, NUMBER for a 4-byte value, and BINARY for any data
format.

If key_handle is omitted, the values of CURRENT_KEY are listed.

Example 3.5. WindowsRegistry class - listValues method

qstem. = rg~QUERY(objectrexxkey)
rg~LISTVALUES(objectrexxkey,lv.)
do i=1 to qstem.values
say "name of value:" lv.i.name "(type="lv.i.type")"
if lv.i.type = "NORMAL" then
say "data of value:" lv.i.data
end

19



load

3.16. load

load(

key_handle

, subkeyname , filename )

Load creates a named subkey under the open key key_handle and loads registry data from the
file filename (created by SAVE (Section 3.22, “save”)) and stores the data under the newly created
subkey.

key_handle can only be HKEY_USERS or HKEY_LOCAL_MACHINE. Registry information is stored in
the form of a hive - a discrete body of keys, subkeys, and values that is rooted at the top of the registry
hierarchy. A hive is backed by a single file.

If key_handle is omitted, the subkey is created under HKEY_LOCAL_MACHINE.

Use UNLOAD (Section 3.24, “unload”) to delete the subkey and to unlock the registry data file
filename.

3.17. local_machine (Attribute [get])

local_machine

Returns the handle of the root key HKEY_LOCAL_MACHINE. This handle is maintained by the
operating system, it can not be changed.

3.18. open

open(

parentHandle

,

subkey , access

)

Opens a named subkey with the specified access rights and returns its handle. When the programmer
is done with the handle it should be closed using the close () (Section 3.3, “close”) method.

Note: The default for the access argument is ALL access. As Microsoft has tightened up the security
in it operating systems, it has made access to the registry more restrictive than it was when the
WindowsRegistry class was first introduced. Opening a registry key with more access rights than
the user running the Rexx program has will result in failure. Best practice is to open a key with the
least rights needed for the operation being performed.

For instance, in a Rexx program where the function is to read the values of a single key, the key
should be opened with just the INQUIRE right. This is not only less likely to fail if the program user is
not an Administrator, but is more secure in every case.

Arguments
The two arguments are:
parentHandle [optional]

A handle to the open parent key. If this argument is omitted then the current_key (Section 3.6,
“current_key (Attribute [get])”) attribute is used.

20



open

subkey [optional]
The name of the subkey to be opened. If this argument is omitted or the empty string, a new
handle to the key identified by parentHandle is opened.

subkey [optional]
A string consisting of one or more of the following key words. The keywords are not case
sensitive. The default is the ALL keyword.

ALL
Opens the key with all possible access. Although this is the default, as discussed above
some forethought should be given to using this access.

WRITE
Combines the rights to create subkeys, set key values, and to read a key's access rights.

READ
Combines the rights to query key values, enumerate subkeys, read keys access rights,
and the notify right. Note that READ access and EXECUTE access are exactly the same.

QUERY
Combines the right to query values of a registry key (specified by the INQUIRE keyword
here,) with the right to enumerate subkeys.

INQUIRE
Required to query the values of a registry key.

ENUMERATE
Required to enumerate the subkeys of a registry key.

SET
Required to create, delete, or set a registry value.

DELETE
Exactly equivalent to SET access. The keyword is a convenience to make programs more
readable.

CREATE
Required to create a subkey of a registry key.

NOTIFY
Required to request change notifications for a registry key or for subkeys of a registry key.

EXECUTE
Exactly equivalent to READ access.

LINK
The Microsoft documentation states that this right is reserved for system use. The
keyword is listed here simply because it was documented in previous versions of ooRexx
and Object Rexx. The programmer is advised not to use it.

Return
A handle to the opened key on success, otherwise 0. If the key was opened correctly, the value
of the current_key (Section 3.6, “current_key (Attribute [get])”) attribute is set to this handle. If the
method fails, current_key is left unchanged.

21



query

3.19. query

query(

key_handle

)

Retrieves information about a given key in a compound variable. The values returned are class
(class name), subkeys (number of subkeys) values (number of value entries), date and time of last
modification. If key_handle is omitted, CURRENT_KEY is queried. Example:

Example 3.6. WindowsRegistry class - query method

myquery. = rg~query(objectrexxkey)
say "class="myquery.class "at" myquery.date
say "subkeys="myquery.subkeys "values="myquery.values

3.20. replace

replace(

key_handle

,

subkeyname

, newfilename , oldfilename )

Replaces the backup file of a key or subkey with a new file. Key must be an immediate descendant
of HKEY_LOCAL_MACHINE or HKEY_USERS. If key_handle is omitted, the backup file of
CURRENT_KEY is replaced. The values in the new file become active when the system is restarted. If
subkeyname is omitted, the key and all its subkeys will be replaced.

3.21. restore

restore(

key_handle

, filename

,

VOLATILE

)

Restores a key from a file. If key_handle is omitted, CURRENT_KEY is restored. Example:

rg~restore(objectrexxkey,"\objrexx\orexx")

The VOLATILE keyword creates a new memory-only set of registry information that is valid only until
the system is restarted.

3.22. save

save(

key_handle

, filename )

Saves the entries of a given key into a file. If key_handle is omitted, CURRENT_KEY is saved.
Example:

rg~SAVE(objectrexxkey,"\objrexx\orexx")

On a FAT system, do not use a file extension in filename.

22



setValue

3.23. setValue

setValue(

key_handle

,

name

, value

, NORMAL

EXPAND

MULTI

NUMBER

BINARY

NONE

)

Sets a named value of a given key. If name is blank or omitted, the default value is set.

Example 3.7. WindowsRegistry class - setValue method

rg~SETVALUE(objectrexxkey, ,"My default","NORMAL")
rg~SETVALUE(objectrexxkey,"Product_Name","Object Rexx")
rg~SETVALUE(objectrexxkey,"VERSION","1.0")

3.24. unload

unload(

key_handle

, subkey )

Removes a named subkey (created with LOAD (Section 3.16, “load”)) and its dependents from the
registry, but does not modify the file containing the registry information. If key_handle is omitted, the
subkey under CURRENT_KEY is unloaded. Unload also unlocks the registry information file.

3.25. users (Attribute [get])

users

Returns the handle of the root key HKEY_USERS. This handle is maintained by the operating system
and can not be changed.

23



Chapter 4.

The WindowsEventLog Class
The WindowsEventLog class provides functionality to interact with the Windows system event log.

The WindowsEventLog class is not a built-in class. It is defined in the file winSystm.cls. To use the
class, place a ::requires statement in the program file:

::requires "winSystm.cls"

A sample program eventlog.rex is provided in the samples\oodialog\winsystem directory.

Methods:

The WindowsEventLog class implements the class and instance methods listed in the following table.

Table 4.1. WindowsEventLog Methods
Method Category

new (Section 4.2, “new (Class method)”) Class method

events (Section 4.6, “events (Attribute)”) Attribute

minimumReadBuffer (Section 4.5,
“minimumReadBuffer (Attribute)”)

Attribute

minimumReadMin (Section 4.3,
“minimumReadMin (Attribute)”)

Attribute

minimumReadMax (Section 4.3,
“minimumReadMin (Attribute)”)

Attribute

clear (Section 4.12, “clear”) Instance method

close (Section 4.8, “close”) Instance method

getFirst (Section 4.19, “getFirst”) Instance method

getLast (Section 4.18, “getLast”) Instance method

getLogNames (Section 4.17, “getLogNames”) Instance method

getNumber (Section 4.16, “getNumber”) Instance method

isFull (Section 4.15, “isFull”) Instance method

minimumRead (Section 4.13, “minimumRead”) Instance method

minimumRead= (Section 4.14, “minimumRead=”) Instance method

open (Section 4.7, “open”) Instance method

Deprecated read (Section 4.9, “read
(deprecated)”)

Deprecated instance method

readRecords (Section 4.10, “readRecords”) Instance method

write (Section 4.11, “write”) Instance method

4.1. Using WindowsEventLog

In Windows the Event Log service provides a central facility for both the operating system and
applications to log important events. The primary purpose for logging an event is to give administrators
a way to determine the cause of errors and to prevent future errors. The Event Log service provides
several standard logs: Application, Security, and System. The service also allows for applications to
register and create Custom logs. Each event is logged as a single event log record in a single log.

24



Using WindowsEventLog

The ooRexx WindowsEventLog class has methods that allow the programmer to query, read from,
write to, back up, and clear event logs. The class can access logs on both the local machine and on
remote machines accessed through the network. Full access to any log is governed by the security
settings of the system. Therefore an ooRexx program that interacts with the Event Log service will be
restricted to the privilege level of the user running the program.

The Event Log service uses information stored registry. This information controls how the service
operates. The following list discusses some of the event logging elements to help the programmer
better understand the methods and method arguments of the WindowsEventLog class:

Eventlog key
The Eventlog key is the key in the registry where all information for the Event Log service is
stored. There are several subkeys under the EventLog key. Each subkey names an event log. The
following shows the structure of the Eventlog key. The Application, Security and System subkeys
below name the standard logs provided by the system. The actual name(s) and the number of
Custom logs are dependent on the system.

HKEY_LOCAL_MACHINE
  System
    CurrentControlSet
      Services
      EventLog
        Application
        Security
        System
        CustomLog

Server
Many of WindowsEventLog instance methods have a server argument. This argument identifies
which machine contains the desired event log. The argument is always optional, with the default
server being the local machine. In all cases, using the empty string is the same as omitting the
argument.

To work with a log on a remote system, the server name must be in Universal Naming Convention
(UNC) format. For instance, \\Osprey.

Note that if there is an open (Opened event log) , the server argument is ignored.

Event Source
The event source is the name of the software or driver that logs the event. Event source names
are usually the name of the application, or a component of the application if the application is
large, or the driver name. Applications normally use the Application log, while drivers normally use
the System log. Event source names are stored in the registry as subkeys of the log they are used
in. Take the following registry example:

HKEY_LOCAL_MACHINE
  System
    CurrentControlSet
      Services
      EventLog
        Application
          WinApp1
          LoadPerf
        Security
          Security
        System
          Dhcp
          atapi

25



Using WindowsEventLog

WinApp1, LoadPerf, Security, Dhcp, and atapi are all event sources.

Like the server (Server) argument, many of the WindowsEventLog instance methods have a
source argument. This argument specifies the event source and therefore determines exactly
which event log is used. The argument is always optional, the default is Application, and the empty
string is the same as omitting the argument. In the same manner as the server argument, if there
is an open event log (Opened event log), the source argument is ignored.

Note that if the Event Log service can not find the event source name in the registry, then the
service also uses Application for the source.

When opening, querying, or reading event logs, using an event source name is no different than
using the log name itself. For the above registry example, using:

eventLog~open( , "WinApp1")

or:

eventLog~open( , "LoadPerf")

is exactly the same as:

eventLog~open( , "Application")

However, when writing to an event log, the event source is included as part of the event log
record. Therefore:

eventLog~open( , "WinApp1")

produces a different result than using:

eventLog~open( , "LoadPerf")

Although both event records will be written to the System log, the records will show the event
source as WinApp1 in the first record and LoadPerf for the source in the second record.

Event Log Record
Each event is stored in an event log as a single record. The information in the record includes
things like: time, type, category, record number, etc.. Each record contains the same fields,
although some fields, like the binary data field, are not always filled in.

Each record has a record number. The first record written to a log is number 1 and records are
then written consecutively. This makes the record with the lowest record number the oldest record.
Likewise the highest record number makes that record the youngest record. The user can set a
property for an event log to overwrite records when the maximum log size is reached. Because of
this, the oldest record is not always record number 1. The getFirst() (Section 4.19, “getFirst”) and
getLast() (Section 4.18, “getLast”) methods can be used to get the absolute record numbers of the
oldest and youngest records.

Record numbers can be used in the readRecords() (Section 4.10, “readRecords”) method to read
portions of the event log rather than the entire log.

When the readRecords() (Section 4.10, “readRecords”) method reads a record it converts the
information in the record to a string with a defined format that makes it easy to parse. The parts
(fields) of the string are as follows, in order:

26



Using WindowsEventLog

Table 4.2. Event Record Fields
Field Description Format

type The event type (Event Type) Single word

date The date the event was written Single word

time The time the event was written Single word

source The event source (Event Source) Enclosed in single
quotes

id The event ID (Event ID) Single word

userID The user ID, if applicable Single word

computer The machine generating the event Single word

description A description of the event Enclosed in single
quotes

data Binary data associated with the event Enclosed in single
quotes

Assuming that rec is the event record string, the following shows how to parse the string into its
component fields:

parse var rec type date time "'" source "'" id userID computer "'" description "'" "'"
 data "'"

Event Type
Each event recorded in an event log is a single type. There are five types of events that can be
logged. Each event type has well-defined common data and some optional data that is specific to
the event. When an event is logged the event type is included.

When the WindowsEventLog instance reads a record, the event type is indicated by a keyword.
When the programmer writes to the event log using a WindowsEventLog object, she specifies
the event type with its numeric value. The following table contains information on the five event
types and shows the event type keywords and numeric values.

Table 4.3. Event Types
Type Description Keyword Value

Error An event that indicates a significant problem such as
loss of data or loss of functionality. For example, if a
service fails to load during startup, an Error event is
logged.

Error 1 (0x01)

Warning An event that is not necessarily significant, but may
indicate a possible future problem. For example, when
disk space is low, a Warning event is logged. If an
application can recover from an event without loss of
functionality or data, it can generally classify the event
as a warning event.

Warning 2 (0x02)

Information An event that describes the successful operation of
an application, driver, or service. For example, when a
network driver loads successfully, it may be appropriate
to log an Information event. Note that it is generally
inappropriate for a desktop application to log each time it
starts.

Information 4 (0x04)

27



new (Class method)

Type Description Keyword Value

Information* * The Windows API allows the numeric value of 0. This
is not a separate event type, but rather a mapping of 0
to the Information event type. The WindowsEventLog
also allows the use of 0 for the numeric value of an
event type and maps it to Information.

Information 0 (0x00)

Success
Audit

An event that records an audited security access
attempt that is successful. For example, a user's
successful attempt to log on to the system is logged as a
Success Audit event.

Success 8 (0x08)

Failure Audit An event that records an audited security access
attempt that fails. For example, if a user tries to access
a network drive and fails, the attempt is logged as a
Failure Audit event.

Failure 16 (0x10)

Event ID
The event identifier value is specific to the event source for the event. It is used with source name
to locate a description string in the message file for the event source.

Opened event log
When an event log has been opened using the open() (Section 4.7, “open”) method, that opened
log is always used until it has been closed. The log can be closed using the close() (Section 4.8,
“close”) method, or by another call to the open() method. This means that if there is an open
log, the server and source arguments are always ignored. The only exception to this is the write()
(Section 4.11, “write”) method. Each time a record is written to a log, the log is specifically opened
for writing and then closed.

Note that when there is not an open event log, then all the instance methods behave as the
write() method. That is, methods like readRecords() (Section 4.10, “readRecords”), isFull()
(Section 4.15, “isFull”), etc., will open the log specified in the method call and then explicitly close
the log before returning.

Event Category
Categories are used to organize events so that an event viewer can filter them. Each event source
(Event Source) can define its own numbered categories and the text strings to which they are
mapped.

The categories must be numbered consecutively, beginning with the number 1. The categories
themselves are defined in a message file and the category number maps to a text string in the
message file.

4.2. new (Class method)

new

Creates an instance of the WindowsEventLog class.

4.3. minimumReadMin (Attribute)

minimumReadMin

28



minimumReadMax (Attribute)

The programmer can set the size (Section 4.14, “minimumRead=”) of the minimum read buffer, within
limits. minimumReadMin is the lowest acceptable size of the minimum read buffer.

~minimumReadMin= (set minimumReadMin)
minimumReadMin= is a private method, not intended to be changed by the programmer.

~minimumReadMin (get minimumReadMin)
The minimum number of kilobytes that the minimum read buffer can be set to.

Example:
The use of the attribute is straight-forward.

Example 4.1. WindowsEventLog class - minimumRead method

eventLog = .WindowsEventLog~new
say "Smallest possible read buffer is" eventLog~minimumReadMin "kilobytes"

::requires 'winSystm.cls'

/* Output might be:

Smallest possible read buffer is 16 kilobytes

*/

4.4. minimumReadMax (Attribute)

minimumReadMax

The programmer can set the size (Section 4.14, “minimumRead=”) of the minimum read buffer, within
limits. The minimumReadMax value is the largest acceptable size for the minimum read buffer.

~minimumReadMax= (set minimumReadMax)
minimumReadMax= is a private method, not intended to be changed by the programmer.

~minimumReadMax (get minimumReadMax)
The maximum number of kilobytes that the minimum read buffer can be set to.

Example:
This example displays the maximum size the programmer can set the minimum read buffer to.

Example 4.2. WindowsEventLog class - minimumReadMax method

 eventLog = .WindowsEventLog~new
 say "Largest possible minimum read buffer is" eventLog~minimumReadMax "kilobytes"

::requires 'winSystm.cls'

/* Output might be:

Largest possible minimum read buffer is 256 kilobytes

*/

29



minimumReadBuffer (Attribute)

4.5. minimumReadBuffer (Attribute)

minimumReadBuffer

Returns the current size of the minimum read buffer in bytes. The programmer can adjust the size
(Section 4.14, “minimumRead=”) of the minimum read buffer. The value of this attribute reflects that
size.

~minimumReadBuffer= (set minimumReadBuffer)
minimumReadBuffer= is a private method, not intended to be changed by the programmer.
The programmer changes the size of the buffer using the minimumRead= (Section 4.14,
“minimumRead=”) method.

~minimumReadBuffer (get minimumReadBuffer)
The current size in bytes of the minimum read buffer.

Example:
This example displays the size of the minimum read buffer when a new WindowsEventLog object
is created and then displays the size after the programmer has changed the minimum.

Example 4.3. WindowsEventLog class - minimumReadBuffer method

 eventLog = .WindowsEventLog~new
 say "Current size of the minimum read buffer is" eventLog~minimumReadBuffer "bytes"

 eventLog~minimumRead = 64
  say "Adjusted size of the minimum read buffer to" eventLog~minimumReadBuffer "bytes"

::requires 'winSystm.cls'

/* Output might be:

Current size of the minimum read buffer is 16384 bytes
Adjusted size of the minimum read buffer to 65536 bytes

*/

4.6. events (Attribute)

events

The events attribute is an array that holds the event log records that are read from the event
log during a call to readRecords() (Section 4.10, “readRecords”). The array is empty if no call to
readRecords() has been made. Each time readRecords() is called the array is first emptied.

Each index in the array holds one event record in the form of a string with a fixed format (Event Log
Record).

~events= (set events)
events= is a private method, not intended to be changed by the programmer.

~events (get events)
Returns the array holding the event log records from the last readRecords() (Section 4.10,
“readRecords”) call. The array will be empty if no call to readRecords() has been made.

30



open

Example:
This example displays the number of event log records that were read from the System log.

Example 4.4. WindowsEventLog class - events method

  eventLog = .WindowsEventLog~new
  if eventLog~readRecords("BACKWARDS", , "System") == 0 then do
    say 'The System log has' eventLog~events~items 'records'
  end

::requires 'winSystm.cls'

/* Output might be:

The System log has 1983 records

*/

4.7. open

open(

server

,

source

)

Opens the specified event log. Once an event log is opened, other methods of the
WindowsEventLog instance will use that opened log (Opened event log) until it has been closed
(Section 4.8, “close”).

If an event log is already open, then it is first closed before the specified log is opened.

Arguments:
The arguments are:
server

Optional. The name of the server (Server) where the event log resides).

source
Optional. The event source (Event Source).

Return value:
This method returns 0 on success, and the operating system error code on failure.

Example:
The following two code snippets are equivalent. They both open the Application log on the local
machine if they succeed:

Example 4.5. WindowsEventLog class - open method

eventLog1 = .WindowsEventLog~new
ret = eventLog1~open
if ret \== 0 then do
  say 'Failed to open the event log:'
  say '  Error' ret':'SysGetErrortext(ret)
  ...
end

eventLog2 = .WindowsEventLog~new
ret = eventLog2~open( , "Application")
if ret \== 0 then do

31



close

  say 'Failed to open the event log'
  say '  Error' ret':'SysGetErrortext(ret)
  ...
end

The following example opens the System log on SERVER01:

Example 4.6. WindowsEventLog class - open method

eventLog = .WindowsEventLog~new
ret = eventLog~open("\\SERVER01", "System")
if ret == 0 then do
  -- Do something with the event log
  ...
  eventLog~close
  ...
end
else do
  -- Handle the error in some way
  ...
end

4.8. close

close

Closes an open event log (Opened event log). If no log is open, this method does nothing.

Arguments:
There are no arguments.

Return value:
This method returns 0 on success. If there is an error closing the event log the operating system
error code is returned. An error is highly unlikely.

Example:
The following code snippet opens the default event log (the Application log,) displays some
information about the log, then closes the open log.

Example 4.7. WindowsEventLog class - close method

log = .WindowsEventLog~new

ret = log~open
if ret == 0 then do
  say "  Total records:     " log~getNumber
  say "  First record number" log~getFirst
  say "  Last record number " log~getLast
  say "  Log is full?       " log~isFull
  log~close
end

/* Output might be:

  Total records:      1827
  First record number 1
  Last record number  1827
  Log is full?        0

32



read (deprecated)

/*

4.9. read (deprecated)

Note

This method is deprecated. It is replaced by the functionally equivalent readRecords()
(Section 4.10, “readRecords”) method. Do not use this method in new code. Try to migrate
existing code to to the readRecords() method. This method may not exist in future versions of
ooRexx.

4.10. readRecords

readRecords(

direction

,

server

,

source

,

start

,

count

)

Reads the desired event records from the specified event log. Each record is stored in the
events(Section 4.6, “events (Attribute)”) array. After a successful read, all records will be contained
in the events array in the order there were read. Prior to starting the read operation the array is
emptied.

Details:
This method will raise syntax errors if the start or count arguments are used incorrectly. These
arguments, if used, must specify records actually contained in the event log. Use any combination
of the getFirst() (Section 4.19, “getFirst”), getLast() (Section 4.18, “getLast”), or getNumber()
(Section 4.16, “getNumber”) methods to determine the absolute record numbers contained in the
log.

During a read operation, if a single event record is larger than the read buffer an execution error
will be raised. The text of the error will read: An event log record is too large (recordSize) for the
read buffer (bufferSize.) Where recordSize is the size of the record and bufferSize is the size of
the read buffer at the time of the error.

The minimum size of the read buffer can be increased by using the minimumRead= (Section 4.14,
“minimumRead=”) method. If this error occurred, the minimum read buffer should be set larger
than the size of the offending record.

Note well: It seems inconceivable that the read buffer could be smaller than a single event record.
The minimum possible size of the buffer is 16 KB and the average size of an event record is
between 100 and 200 bytes. The ooRexx programmer should not worry about this. This unlikely
possibility is simple documented for the sake of completeness.

Arguments:
The arguments are:

33



readRecords

direction
Optional. The direction to read the from the event log, forwards or backwards. The default
is to read forwards. If this argument is not omitted, it must be exactly one of the keywords,
BACKWARDS or FORWARDS. Case is not significant.

server
Optional. The name of the server (Server) where the event log resides

source
Optional. The event source (Event Source).

start
Optional. The starting record number for the read operation. The start and the count
arguments must be used together. Either both must be used or neither. If both arguments are
omitted, the entire log is read. When both arguments are used, the read begins with the record
number specified by start and reads in the direction specified for count records.

count
Optional. The count of records to be read during the read operation. The start and the count
arguments must be used together. Either both must be used or neither. If both arguments are
omitted, the entire log is read. When both arguments are specified, the read begins with the
record number specified by start and reads in the direction specified for count records.

Return value:
This method returns 0 on success, and the operating system error code on failure.

Example:
This example reads the 5 most recent event records in the System event log and displays them to
the console. (If there are less than 5 records in the log, then all the records are read.)

Example 4.8. WindowsEventLog class - readRecords method

  log = .WindowsEventLog~new

  startRec = log~getLast( , "System")
  count = log~getNumber~min(5)

  ret = log~readRecords("BACKWARDS", , "System", startRec, count)

  if ret == 0 then do
    c = displayRecords(log~events)
    say 'Displayed' c 'records'
  end
  else do
    say "Error reading the System event log rc:" ret "-" SysGetErrorText(ret)
  end

::requires 'winSystm.cls'

/* Routine to display the event log records */
::routine displayRecords
  use strict arg records

  do record over records
    say "=========================================================================="
    parse var record type date time "'" sourcename"'" id userid computer "'" string
 "'" "'" data "'"
    say 'Type     : 'type
    say 'Date     : 'date
    say 'Time     : 'time

34



write

    say 'Source   : 'sourcename
    say 'ID       : 'id
    say 'UserId   : 'userid
    say 'Computer : 'computer
    say 'Detail   : 'string
    say 'Data     : 'data
  end
  say "=========================================================================="
return records~items

/* The output (shortened to 2 records) might be:

==========================================================================
Type     : Information
Date     : 02/14/09
Time     : 11:32:21
Source   : WinHttpAutoProxySvc
ID       : 12503
UserId   : N/A
Computer : OSPREY
Detail   : The WinHTTP Web Proxy Auto-Discovery Service has been idle for
15 minutes, it will be shut down.

Data     :
==========================================================================
Type     : Information
Date     : 02/14/09
Time     : 11:15:51
Source   : Service Control Manager
ID       : 7036
UserId   : N/A
Computer : OSPREY
Detail   : The WinHTTP Web Proxy Auto-Discovery Service service entered
the running state.

Data     :
==========================================================================
Displayed 5 records

*/

4.11. write

write( srvr ,

src

,

type

,

category

,

id

,

data

,

string

)

Description

Arguments:
The arguments are:
srvr

Optional. The name of the server (Server) where the event log resides

src
Optional. The event source (Event Source).

35



clear

type
Optional. The event type (Event Type) for the record. The default is the Error (1) event type.
When used, this argument must be the numeric value of a valid event type (Event Type).

category
Optional. The event category (Event Category) for the record. The default is 0, which is the
same as no category (none.)

id
Optional. The event identifier (Event ID) for the record.. The default is 0.

data
Optional. The binary data for the record. The default is none. This is binary information
specific to the event being logged and to the source that generated the entry. It could for
example be the contents of the processor registers when a device driver got an error, a dump
of an invalid packet that was received from the network, etc..

string
Optional. The default is no string. This last argument can be repeated any number of times.
Each additional argument is a string used as a substitution string in the description string.

The event identifier (Event ID) together with the event source(Event Source) name identify
a description string contained in a message file that describes the event in more detail. The
description string can contain substitution place holders. The substitution strings named by
this argument are used to replace the substitution place holders in the description string.

Return value:
This method returns 0 on success, and the operating system error code on failure.

Example:
This example writes some fictitious data to an event log.

Example 4.9. WindowsEventLog class - write method

  log = .WindowsEventLog~new

  source     = "MyApplication"
  type       = 4  -- Information
  category   = 22
  id         = 33
  binaryData = "01 1a ff 4b 0C"x

  ret = log~write( , source, type, category, id, binaryData, "String1", "String2")
  if ret == 0 then
    say "Record" source "successfully written"
  else
    say "Error writing record" source "rc:" ret ":" SysGetErrorText(ret)

::requires 'winSystm.cls'

4.12. clear

clear(

srvr

,

src

,

type

,

backupFileName

)

36



minimumRead

Clears (removes) all event records from the log. Optionally will back up the log first. When the optional
backup file name is supplied and for some reason the back up fails, then the event records are not
cleared.

Arguments:
The arguments are:
srvr

Optional. The name of the server (Server) where the event log resides

src
Optional. The event source (Event Source).

backupFileName
Optional. The path name to a back up file. If this argument is specified, the event log is first
backed up before it is cleared. If the back up fails, the log is not cleared. The back will fail if
the file name specified already exists.

The back up file will be created on the system that the event log file itself is on. This means
that if an event log on a remote system is specified, the log will be created on that remote
system. The file name must therefore be a valid file name on the remote system.

If the file name does not contain an extension, the the normal extension for event log back
ups, .evt, will be used.

Return value:
This method returns 0 on success, and the operating system error code on failure.

Example:
This example backs up the Application event log on the remote Eagle system and then
clears the log. If the back up fails, the log will not be cleared. The back up file will be named
eagle_application.evt and will be located on the Eagle system, not on the local machine.

Example 4.10. WindowsEventLog class - clear method

  log = .WindowsEventLog~new

  ret = log~open("\\Eagle", "Application")
  if ret == 0 then do
    ret = log~clear( , , "C:\eagle_application")
    if ret == 0 then do
      say 'Backed up the Application event log on Eagle to:'
      say '  C:\eagle_application.evt on the Eagle system.'
    end
    else do
      say 'Failure backing up event log:' ret ":" SysGetErrorText(ret)
    end
  end

::requires 'winSystm.cls'

4.13. minimumRead

minimumRead

37



minimumRead=

Determines the current minimum size, in kilobytes, of the buffer used to read (Section 4.10,
“readRecords”) event log records. The minimum size of this buffer can be adjusted (Section 4.14,
“minimumRead=”) by the programmer.

Arguments:
There are no arguments to this method.

Return value:
The size in kilobytes of the minimum read buffer. For example if the minimum buffer size is 32,768,
this method will return 32. (32 KB.)

Example:
This example displays the current value of the minimum read buffer size.

Example 4.11. WindowsEventLog class - minimumRead method

  log = .WindowsEventLog~new
  say 'Current minimum size of the read buffer is:' log~minimumRead "KB"

::requires 'winSystm.cls'

/* Output might be:

Current minimum size of the read buffer is: 16 KB

*/

4.14. minimumRead=

minimumRead = sizeKB

Adjusts the minimum size of the read buffer in increments of 1024 bytes. Note that the programmer
need not worry about the read buffer. This method is documented because it does exist and for the
sake of the rare Rexx programmer that might need to change the minimum size of the read buffer.

The read buffer is used by the underlying implementation during the readRecords() (Section 4.10,
“readRecords”) method only. During a read operation, the WindowsEventLog attempts to allocate
a buffer that is big enough to read in all the records at once. The size of the buffer is guessed at by
using the number of records in the event log. The size is constrained by a minimum (Section 4.3,
“minimumReadMin (Attribute)”) and maximum (Section 4.4, “minimumReadMax (Attribute)”). The
buffer will never be larger than the maximum and never smaller than the minimum. The maximum
value is fixed. The minimum value can be adjusted by the programmer by this, the minimumRead()
method.

In almost all cases, the size of the buffer will be set towards the maximum constraint and the minimum
constraint will not come into play at all. There is only one circumstance where the Rexx programmer
would need to change the minimum constraint, which is this:

The Windows Event Log Service will only place whole records into the buffer. If a record is bigger
in size than the buffer, the record can not be read and an execution error will be raised by the
WindowsEventLog object. In this case the minimum constraint for the buffer size would need to be
set to a size bigger than the record size. The text of the error message lists both the record size and
the buffer size. To read the record, the programmer would set the minimum constraint larger than the
record size.

Again, it must be stressed that the above scenario is extremely unlikely.

38



isFull

Arguments:
The single argument is:
sizeKB

The minimum size to allocate the read buffer, in kilobytes.

Return value:
There is no return.

Example:
This method is straight forward to use:

Example 4.12. WindowsEventLog class - minimumRead= method

  log = .WindowsEventLog~new
  log~minimumRead = 64
  say 'Current minimum read is' log~minimumRead 'KB.'

::requires 'winSystm.cls'

/* Output might be:

Current minimum size of the read buffer is: 64 KB

*/

4.15. isFull

isFull(

server

,

source

)

Determines if the event log is full.

Arguments:
The arguments are:
server

Optional. The server (Server) where the event log resides.

source
Optional. The event source (Event Source).

Return value:
The method returns .true or .false. True if the event log is full, otherwise false.

Example:
This example is a snippet of code from an application that monitors the system log. When the log
gets full, the log is backed up and cleared.

Example 4.13. WindowsEventLog class - isFull method

::routine checkLog
  use strict arg sysLog, monitor

  if sysLog~isFull then do
    success = monitor~backupLog(sysLog)
    if \ success then monitor~notifyAdmin
  end

39



getNumber

return success

4.16. getNumber

getNumber(

server

,

source

)

Determines the number of records in the event log.

Arguments:
The arguments are:
server

Optional. The server (Server) where the event log resides.

source
Optional. The event source (Event Source).

Return value:
On success, the count of event records in the log. On error, the return is the negated system error
code.

Example:
This example opens the system log on the Osprey server. It then checks that there are at least 10
records before reading the log:

Example 4.14. WindowsEventLog class - getNumber method

  log = .WindowsEventLog~new
  log~open("\\Osprey", "System")
  if log~getNumber > 10 then do
    log~readRecords
    say 'Read' log~events~items 'records.'
  end

::requires 'winSystm.cls'

4.17. getLogNames

getLogNames( names )

Obtains a list of all the event log names on the current system.

Arguments:
The single argument is:
names

An array object. On return the array will contain the names of the event logs on the current
system. This will include any custom logs, if there are any. The array is emptied before the
names are added. If an error happens, the array will be empty.

Return value:
This method returns 0 on success, and the operating system error code on failure.

40



getLast

Example:
This example displays the names of all the event logs on the current system.

Example 4.15. WindowsEventLog class - getLogNames method

logNames = .array~new
ret = log~getLogNames(logNames)

if ret == 0 then do name over logNames
  say "Log:" name
end

::requires 'winSystm.cls'

/* Output might be:

Log: Application
Log: Internet Explorer
Log: Security
Log: System

*/

4.18. getLast

getLast(

server

,

source

)

Determines the absolute record number of the last record in the event log.

Arguments:
The arguments are:
server

Optional. The server (Server) where the event log resides.

source
Optional. The event source (Event Source).

Return value:
On success, the record number of the last (most recently written) event record. On error, the return
is the negated system error code.

Example:
This example displays the last record written to application log.

Example 4.16. WindowsEventLog class - getLast method

  log = .WindowsEventLog~new~~open
  log~readRecords( , , , log~getLast, 1)
  rec = log~events[1]
  if rec \== .nil then do

    parse var rec type date time "'" src"'" id user computer "'" string "'" "'" data
 "'"
    say 'Type     : 'type
    say 'Date     : 'date
    say 'Time     : 'time
    say 'Source   : 'src

41



getFirst

    say 'ID       : 'id
    say 'UserId   : 'user
    say 'Computer : 'computer
    say 'Detail   : 'string
    say 'Data     : 'data
  end

::requires 'winSystm.cls'

/* Output might be:

Type     : Error
Date     : 02/14/09
Time     : 16:55:08
Source   : Windows Search Service
ID       : 3083
UserId   : N/A
Computer : OSPREY
Detail   : The protocol handler Search.Mapi2Handler.1 cannot be loaded. Error
description: Class not registered.
Data     :

*/

4.19. getFirst

getFirst(

server

,

source

)

Determines the absolute record number of the first record in the event log.

Arguments:
The arguments are:
server

Optional. The server (Server) where the event log resides.

source
Optional. The event source (Event Source).

Return value:
On success, the first record number in the event log. On error, the return is the negated system
error code.

Example:
This example displays the first record written to the application log.

It is somewhat interesting to note that this first record was written right after the operating system
had been installed, prior to the computer being added to a work group and given the Osprey
name. This can be seen when the record is displayed, the Computer field is MACHINENAME.

Example 4.17. WindowsEventLog class - getFirst method

  log = .WindowsEventLog~new~~open("\\Osprey", "System")
  log~readRecords( , , , log~getFirst, 1)
  rec = log~events[1]
  if rec \== .nil then do

42



getFirst

    parse var rec type date time "'" src"'" id user computer "'" string "'" "'" data
 "'"
    say 'Type     : 'type
    say 'Date     : 'date
    say 'Time     : 'time
    say 'Source   : 'src
    say 'ID       : 'id
    say 'UserId   : 'user
    say 'Computer : 'computer
    say 'Detail   : 'string
    say 'Data     : 'data
  end

::requires 'winSystm.cls'

/* Output might be:

Type     : Information
Date     : 08/16/08
Time     : 04:27:01
Source   : EventLog
ID       : 6009
UserId   : N/A
Computer : MACHINENAME
Detail   : 5.02. 3790 Service Pack 1 Multiprocessor Free
Data     :

*/

43



Chapter 5.

The WindowsManager Class
The WindowsManager class provides methods to query, manipulate, and interact with windows on
your desktop. Currently, this class is specifically for the Windows operating system and is not available
on other operating systems.

The WindowsManager class is not a built-in class, it is defined in the file winSystm.cls. To use the
class, add a ::requires statement to the program file:

::requires "winSystm.cls"

Methods the WindowsManager Class Defines

• desktopWindow

• find

• foregroundWindow

• windowAtPosition

• consoleTitle

• consoleTitle=

• sendTextToWindow

• pushButtonInWindow

• processWindowCommand

• broadcastSettingChanged

5.1. desktopWindow

desktopWindow

Returns an instance of the WindowObject (Chapter 6, The WindowObject Class) class that represents
the Desktop window. The Desktop window is the parent of all top-level windows and therefore the
ancestor of every window on the system. If some error happens, .nil is returned. (This is extremely
unlikely.)

5.2. find

find( title )

Searches for a top-level window (not a child window) on your desktop with the specified title.

If this window already exists, an instance of the WindowObject class is returned. Otherwise, .Nil is
returned.

5.3. foregroundWindow

44



windowAtPosition

foregroundWindow

Returns an instance of the WindowObject class that is associated with the current foreground window.

5.4. windowAtPosition

windowAtPosition( x , y )

Returns an instance of the WindowObject class that is associated with the window at the specified
position (x,y). The coordinates are specified in screen pixels. This method does not retrieve hidden
or disabled windows. If you are interested in a particular child window, use method childAtPosition
(Section 6.23, “childAtPosition”).

5.5. consoleTitle

consoleTitle

Returns the title of the current console.

5.6. consoleTitle=

consoleTitle = title

Sets the title of the current console.

5.7. sendTextToWindow

sendTextToWindow( title , text )

Sends a case-sensitive text to the window with the specified title..

5.8. pushButtonInWindow

pushButtonInwindow( title , text )

Selects the button with label text in the window with the specified title. If the button's label contains a
mnemonic (underscored letter), you must specify an ampersand (&) in front of it. You can also use this
method to select radio buttons and to check or uncheck check boxes.

Example:

winmgr~pushButtonInWindow("Testwindow","List &Employees")

5.9. processMenuCommand

45



broadcastSettingChanged

processMenuCommand(

title

,

popup

,

submenu

, menuItem

)

Selects an item of the menu or submenu of the specified window title. You can specify as many
submenus as necessary to get to the required item.

5.10. broadcastSettingChanged

broadcastSettingChanged

( timeOut )

Causes the Windows operating system to send a message, (the WM_SETTINGCHANGE message,)
to every top-level window on the Desktop informing them that a system-wide setting has changed.
Well-written applications will then reload any system settings that they use.

An example of one use for this might be an installer program setting an environment variable, such as
the PATH. Then a call to broadcastSettingChanged would cause all open applications to update their
reference to the environment, without the necessity of a reboot.

There are two variations of calling this method. When called with no arguments, the message
is broadcast and returns immediately. When called with the time out parameter, the message is
broadcast and does not return until every window on the Desktop has acknowledged the message, or
timed out.

The problem with using a time out and waiting for acknowledgment is that, if a window is not
responding, or several windows are slow to respond, it may take a very long time to return. The
problem with not using a time out and returning immediately is that the caller will have no way of
knowing when every window has received the message. Generally this is not a problem, but it is up to
the programmer to decide how she wants to use this method.

The time out value is specified in milliseconds. For each window, the operating system will wait up to
the time out for a response before going on to the next window. Typically a time out value of 5000 (5
seconds) is used, and this is the default.

The single optional argument is:

timeOut
The time, in milliseconds, to wait for each window to acknowledge it received the setting changed
message. Specifying 0 or a negative number will cause the default time out of 5000 to be used.
(5000 is a typical value used by applications.)

Return value:

0
The setting changed message was broadcast successfully. If no time out argument was used, then
this is all it means. If a time out value was used, then all top-level windows have acknowledged
receiving the message.

-1
The setting changed message was broadcast, but one or more windows timed out. This return can
only happen when the time out parameter is used.

46



broadcastSettingChanged

-x
A number less than -1 indicates a system error occurred. This value is the negation of the system
error code. I.e., if the return is -1400, the system error code was 1400. System error codes can be
looked up in the MSDN library or the Windows Platform SDK. Microsoft makes these references
available on the Internet.

+x
A number greater than 0 would be a window result of broadcasting the setting changed message
and would not be an error. It is unlikely that this would occur.

Example:

ret = winmgr~broadcastSettingChanged(1000)

47



Chapter 6.

The WindowObject Class
The WindowObject class provides methods to query, manipulate, and interact with a particular window
or one of its child windows.

Access to the WindowObject class requires that the following directive appear in the Rexx program.

::requires 'winSystm.cls'

Note. Prior to the release of ooRexx 4.0.0, the WindowsObject class was implemented using the
original external function API. That API required that the external functions be registered with the
interpreter. For the most part this was done transparently to the Rexx programmer. However, with
the WindowsObject class there was one scenario where the registration was not done and prior
documentation provided a work around.

Starting with ooRexx 4.0.0, that work around is not needed. There no longer is any need for the
programmer to register external functions at all. Requiring winSystm.cls is all that is needed from
ooRexx 4.0.0 and on. Disregard the previous documentation concerning external functions.

Methods the WindowObject Class Defines

• assocWindow

• childAtPosition

• coordinates

• disable

• enable

• enumerateChildren

• findChild

• first

• firstChild

• focusItem

• focusNextItem

• focusPreviousItem

• getStyle

• handle

• hide

• id

• isMenu

• last

• maximize

48



assocWindow

• menu

• minimize

• moveTo

• next

• owner

• previous

• processMenuCommand

• pushButton

• resize

• restore

• sendChar

• sendCommand

• sendKey

• sendKeyDown

• sendKeyUp

• sendMenuCommand

• sendMessage

• sendMouseClick

• sendSyscommand

• sendText

• state

• systemMenu

• title

• title=

• toForeground

• wclass

6.1. assocWindow

assocWindow( handle )

Assigns a new window handle to the WindowObject instance.

49



handle

6.2. handle

handle

Returns the handle of the associated window.

6.3. title

title

Returns the title of the window.

6.4. title=

title = newtitle

Sets a new title for the window.

6.5. wclass

wclass

Returns the class of the window associated with the WindowObject instance.

6.6. id

id

Returns the numeric ID of the window.

6.7. coordinates

coordinates

Returns the upper left and the lower right corner positions of the window in the format
"left,top,right,bottom".

6.8. state

state

Returns information about the window state. The returned state can contain one or more of the
following constants:

• "Enabled" or "Disabled"

• "Visible" or "Invisible"

50



getStyle

• "Zoomed" or "Minimized"

• "Foreground"

6.9. getStyle

getStyle

Returns the style and extended style flags of the window. This method is intended for use by
programmers that have some knowledge of the Windows API and would not be much use to Rexx
programmers that do not have any understanding of that API.

The styles are returned in a string of two words. The first word is the window style and the second
word is the extend window style. Each word is in the format: 0xAAAAAAAA where A represents any
hexadecimal digit. If an error happens, the numerical system error code is returned instead of a string
with two words.

Example 6.1. getStyle

-- This function will return an array with all matching windows.  An empty array
-- signals no match.
windows = fuzzyFindWindows(deskTop, text)

if windows~items > 0 then do wnd over windows
  say 'Found this window.'
  say '  Title:   ' wnd~title
  say '  Class:   ' wnd~wClass
  say '  Position:' wnd~coordinates
  say '  Styles:  ' wnd~getStyle
  say
end

/* Output might be:

Found this window.
  Title:    GetMenuState Function - MSDN Library - Microsoft Document Explorer
  Class:    wndclass_desked_gsk
  Position: 0,0,1152,800
  Styles:   0x16cf0000 0xc0040900

Found this window.
  Title:    C:\work.ooRexx\3.x\main
  Class:    ExploreWClass
  Position: 0,25,1150,804
  Styles:   0x16cf0000 0xc0000900

*/

6.10. restore

restore

Activates and displays the associated window. If the window is minimized or maximized, it is restored
to its original size and position.

51



hide

6.11. hide

hide

Hides the associated window and activates another window.

6.12. minimize

minimize

Minimizes the associated window and activates the next higher-level window.

6.13. maximize

maximize

Maximizes the associated window.

6.14. resize

resize( width , height )

Resizes the associated window to the specified width and height. The width and height are specified in
screen coordinates.

6.15. enable

enable

Enables the associated window if it was disabled.

6.16. disable

disable

Disables the associated window.

6.17. moveTo

moveTo( x , y )

Moves the associated window to the specified position (x,y). Specify the new position in screen pixels.

6.18. toForeground

52



focusNextItem

toForeground

Makes the associated window the foreground window.

6.19. focusNextItem

focusNextItem

Sets the input focus to the next child window of the associated window.

6.20. focusPreviousItem

focusPreviousItem

Sets the input focus to the previous child window of the associated window.

6.21. focusItem

focusItem( wndObject )

Sets the input focus to the child window associated with the specified WindowObject instance
wndObject.

The following example sets the input focus to the last child window:

Example 6.2. focusItem

 dlg = wndmgr~find("TestDialog")
    if dlg \= .Nil then do
        fChild = dlg~firstChild
        lChild = fChild~last
        dlg~focusItem(lChild)
    end

6.22. findChild

findChild( label )

Returns an instance of the WindowObject class associated with the child window with the specified
label. If the associated window does not own such a window, the .Nil object is returned.

6.23. childAtPosition

childAtPosition( x , y )

Returns an instance of the WindowObject class associated with the child window at the specified
client position (x,y). The coordinates that are relative to the upper left corner of the associated window
must be specified in screen pixels. To retrieve top-level windows, use method windowAtPosition
(Section 5.4, “windowAtPosition”).

53



next

6.24. next

next

Returns an instance of the WindowObject class associated with the next window of the same level
as the associated window. If the associated window is the last window of a level, the .Nil object is
returned.

6.25. previous

previous

Returns an instance of the WindowObject class associated with the previous window of the same
level as the associated window. If the associated window is the first window of a level, the .Nil object is
returned.

6.26. first

first

Returns an instance of the WindowObject class associated with the first window of the same level as
the associated window.

6.27. last

last

Returns an instance of the WindowObject class associated with the last window of the same level as
the associated window.

6.28. owner

owner

Returns an instance of the WindowObject class associated with the window that owns the associated
window (parent). If the associated window is a top-level window, the .Nil object is returned.

6.29. firstChild

firstChild

Returns an instance of the WindowObject class associated with the first child window of the
associated window. If no child window exists, the .NIL object is returned.

6.30. enumerateChildren

54



sendMessage

enumerateChildren

Returns a stem that stores information about the child windows of the associated window. "Stem.0"
contains the number of child windows. The returned stem contains as many records as child windows.
The first record is stored at "Stem.1" continued by increments of 1. Each record contains the following
entries, where each entry starts with an exclamation mark (!):

!Handle
The handle of the window.

!Title

!Class
The window class.

!State

!Coordinates

!Children
1 if the window has child windows, 0 if is has none.

!Id

Example 6.3. enumerateChildren

      wo = winmgr~find("TestDialog")
        enum. = wo~enumerateChildren
        do i = 1 to enum.0   /* number of children */
           say "---"
           say "Handle:" enum.i.!Handle
           say "Title:" enum.i.!Title
           say "Class:" enum.i.!Class
           say "Id:" enum.i.!Id
           say "Children:" enum.i.!Children
           say "State:" enum.i.!State
           say "Rect:" enum.i.!Coordinates
        end

6.31. sendMessage

sendMessage( message , wParam , lParam )

Sends a message to the associated window.

6.32. sendCommand

sendCommand( command )

Sends a WM_COMMAND message to the associated window. WM_COMMAND is sent, for example,
when a button is pressed, where command is the button ID.

55



sendMenuCommand

6.33. sendMenuCommand

sendMenuCommand( id )

Selects the menu item id of the associated window. Method idOf (Section 7.6, “idOf”) returns the ID of
a menu item.

6.34. sendMouseClick

sendMouseClick( RIGHT

LEFT

MIDDLE

, UP

DOWN

DBLCLK

, x , y

, LEFTDOWN

RIGHTDOWN

MIDDLEDOWN

SHIFT

CONTROL

)

Simulates a mouse click event in the associated window.

Arguments:

The arguments are:

which
Specifies which mouse button is simulated. LEFT is the default.

kind
Selects the simulated mouse action. DBLCLK is the default.

x,y
Specifies the coordinates of the mouse click event, in screen coordinates, relative to the upper left
corner of the window.

ext
Can be one or more of the following strings:
LEFTDOWN

Simulates the pressed left mouse button.

RIGHTDOWN
Simulates the pressed right mouse button.

MIDDLEDOWN
Simulates the pressed middle mouse button.

SHIFT
Simulates the pressed Shift key.

56



sendSyscommand

CONTROL
Simulates the pressed Control key.

6.35. sendSyscommand

sendSysCommand( SIZE

MOVE

MINIMIZE

MAXIMIZE

NEXTWINDOW

PREVWINDOW

CLOSE

VSCROLL

HSCROLL

ARRANGE

RESTORE

TASKLIST

SCREENSAVE

CONTEXTHELP

)

Sends a WM_SYSCOMMAND message to the associated window. These messages are normally
sent when the user selects a command in the Window menu.

Argument:

The only argument is:

command
One of the commands listed in the syntax diagram:
SIZE

Puts the window in size mode.

MOVE
Puts the window in move mode.

MINIMIZE
Minimizes the window.

MAXIMIZE
Maximizes the window.

NEXTWINDOW
Moves to the next window.

57



pushButton

PREVWINDOW
Moves to the previous window.

CLOSE
Closes the window.

VSCROLL
Scrolls vertically.

HSCROLL
Scrolls horizontally.

ARRANGE
Arranges the window.

RESTORE
Restores the window to its normal position and size.

TASKLIST
Activates the Start menu.

SCREENSAVE
Executes the screen-saver application specified in the [boot] section of the SYSTEM.INI file.

CONTEXTHELP
Changes the cursor to a question mark with a pointer. If the user then clicks on a control in the
dialog box, the control receives a WM_HELP message.

6.36. pushButton

pushButton( label )

Selects the button with the specified label within the associated window and sends the corresponding
WM_COMMAND message. If the button's label contains a mnemonic (underscored letter), you must
specify an ampersand (&) in front of it. You can also use this method to select radio buttons and check
or uncheck check boxes.

6.37. sendKey

sendKey( keyName

,

alt , ext

)

Sends all messages (CHAR, KEYDOWN, and KEYUP) that would be sent by pressing a specific key
on the keyboard. Character keys (a to z) are not case-sensitive.

If the alt argument is 1, the Alt key flag is set, which is equal to pressing the specified key together with
the Alt key.

The Ext argument must be 1 if the key is an extended key, such as a right Ctrl or a right Shift.

For a list of key names, refer to Section 1.10, “Symbolic Names for Virtual Keys”.

58



sendChar

6.38. sendChar

sendChar( character

, alt

)

Sends a WM_CHAR message to the associated window. If the alt argument is 1, a pressed Alt key is
simulated.

6.39. sendKeyDown

sendKeyDown( keyName

, ext

)

Sends a WM_KEYDOWN message to the associated window. The ext argument must be 1 if the key
is an extended key, such as a right Ctrl or a right Shift.

For a list of key names, refer to Section 1.10, “Symbolic Names for Virtual Keys”.

6.40. sendKeyUp

sendKeyUp( keyName

, ext

)

Sends a WM_KEYUP message to the associated window. The ext argument must be 1 if the key is an
extended key, such as a right Ctrl or a right Shift.

For a list of key names, refer to Section 1.10, “Symbolic Names for Virtual Keys”.

6.41. sendText

sendText( text )

Sends a (case-sensitive) text to the associated window by sending a sequence of WM_CHAR,
WM_KEYDOWN, and WM_KEYUP messages.

6.42. menu

menu

Returns an instance of the MenuObject class that refers to the menu of the associated window.

6.43. systemMenu

systemMenu

Returns an instance of the MenuObject class that refers to the system menu of the associated window.

59



isMenu

6.44. isMenu

isMenu

Returns 1 if the associated window is a menu, otherwise 0.

6.45. processMenuCommand

processMenuCommand(

menu

, submenu , menuitem )

Selects an item of the menu or submenu of the associated window. You can specify as many
submenus as necessary to get to the required item.

60



Chapter 7.

The MenuObject Class
The MenuObject class provides methods to query, manipulate, and interact with the menu or submenu
of a window.

Use of the MenuObjects requires that the following directive appear in the Rexx program.

::requires 'winSystm.cls'

Methods the MenuObject Class Defines

• findItem

• findSubmenu

• idOf

• ischecked

• isMenu

• isSubMenu

• isSeparator

• items

• processItem

• submenu

• textOf(id)

• textOf(position)

7.1. isMenu

isMenu

Returns 1 if the associated window is a menu, otherwise 0.

7.2. isSubMenu

isSubMenu( position )

Returns .true if the menu item at the position specified is a submenu of this menu, otherwise
.false. Menu items are zero-based, so the first menu item is at position 0.

7.3. isChecked

isChecked( position )

Returns .true if the menu item at the position specified is checked, otherwise .false. Menu items
are zero-based, so the first menu item is at position 0. Submenus and separators can be be checked.

61



isSeparator

This method can not be 100% reliable. Some applications do not set the check mark for a menu
item until the menu is displayed. To be confident of the result, the programmer should first test how a
specific application behaves.

7.4. isSeparator

isSeparator( position )

Returns .true if the menu item at the position specified is a separator line, otherwise .false. Menu
items are zero-based, so the first menu item is at position 0.

7.5. items

items

Returns the number of menu items contained in the associated menu.

7.6. idOf

idOf( position )

Returns the ID of the menu item at the specified position, starting with 0.

7.7. textOf(position)

textOf( position )

Returns the text of the menu item at the specified position, starting with 0. A mnemonic (underscored
letter) is represented by a leading ampersand (&). If the menu item contains an accelerator, it is
separated by a tab.

7.8. textOf(id)

textOf( id )

Returns the text of menu item id. A mnemonic is represented by a leading ampersand (&). If the menu
item contains an accelerator, it is separated by a tab.

7.9. submenu

submenu( position )

Returns an instance of the MenuObject class that is associated with the submenu at the specified
position, starting with 0. If no submenu exists at this position, the .Nil object is returned.

Example:

sub = menu~submenu(5)

62



findSubmenu

    if sub \= .Nil then do
         say "Items:" sub~items
    end

7.10. findSubmenu

findSubmenu( label )

Returns an instance of the MenuObject class that is associated with the submenu with the specified
label. If the associated menu does not contain such a submenu, the .Nil object is returned.

7.11. findItem

findItem( label )

Returns the ID of the menu item label. If the specified label does not include an accelerator, the
comparison excludes the accelerators of the menu items. If no menu item is found that matches the
specified label, 0 is returned.

Example:

f = menu~findItem("&Tools" || "9"x || "Ctrl+T")
    if f \= 0 then menu~processItem(f)

7.12. processItem

processItem( id )

Selects the menu item id. This causes a WM_COMMAND to be sent to the window owning the menu.

63



Chapter 8.

OLE Automation
OLE (Object Linking and Embedding) automation is a subset of COM (Component Object Model).
These technologies were first developed on Windows and are deeply embedded in the Windows
operating system. Although COM is not tied to the Windows operating system, in practice it is not seen
much on other operating systems. Because of this, the ooRexx classes supporting OLE Automation
are currently Windows only classes.

8.1. Overview of OLE Automation

OLE (Object Linking and Embedding) is an implementation of COM (Component Object Model).
OLE automation makes it possible for one application to manipulate objects implemented in another
application, or to expose objects so they can be manipulated. ooRexx provides two classes,
OLEObject (Section 8.3, “The OLEObject Class”) and OLEVariant (Section 8.4, “The Windows
OLEVariant Class” that allow the programmer to take advantage of this ability to manipulate objects
that are exposed as OLE objects.

An automation client is an application that can manipulate exposed objects belonging to another
application. An automation server is an application that exposes the objects. The OLEObject class
enables Rexx to be an OLE automation client. In addition, some automation servers have an event
mechanism (Section 8.2, “OLE Events”) that allows them to invoke methods in the OLE automation
client. The OLEObject class also supports this mechanism.

Applications can provide OLE objects, and OLE objects that support automation can be used by a
Rexx script to remotely control the object through the supplied methods. This lets you write a Rexx
script that, for example, starts a Web browser, navigates to a certain page, and changes the display
mode of the browser.

Every application that supports OLE places a unique identifier in the registry. This identifier is called
the class ID (CLSID) of the OLE object. It consists of several hexadecimal numbers separated by the
minus symbol.

Example: CLSID of Microsoft® Internet Explorer (Version 5.00.2014.0216):

"{0002DF01-0000-0000-C000-000000000046}"

The CLSID number can prove inconvenient when you want to create or access a certain object, so
a corresponding easy-to-remember entry is provided in the registry, and this entry is mapped to the
CLSID. This entry is called the ProgID (the program ID), and is a string containing words separated by
periods.

Example: ProgID of Microsoft Internet Explorer: "InternetExplorer.Application"

To find the ProgID of an application, you can use the sample script OLEINFO.REX or the Microsoft
OLEViewer, you can consult the documentation of the application, or you can search the registry
manually.

Several sample programs are provided in the Open Object Rexx installation directory under samples
\ole

• The apps directory contains examples of how to use Rexx to remote-control other applications.

• The oleinfo directory is a sample Rexx application that can be used to browse through the
information an OLE object provides.

64



OLE Events

• In the adsi directory there are eight examples of how to use the Active Directory Services Interface
with the Rexx OLE interface.

• The methinfo directory contains a very basic example of how to access the information an OLE
object provides.

• Finally, the wmi directory contains five examples of how to work with the Windows Management
Instrumentation.

8.2. OLE Events

Some, but not all, OLE automation objects support events. The most prevalent use of OLE is for the
automation server (the OLE object) to implement methods that the automation client (the ooRexx
OLEObject) invokes. However, it is also possible for the automation client (the ooRexx OLEObject) to
implement methods that the automation server (the OLE object) invokes.

The methods that the automation client implements are called event methods and the automation
server that suports event methods is called a connectable object. The connectable object defines the
events it supports by defining the name of the method and its arguments, but does not implement the
method. Rather the automation client implements the method. The client asks the automation server
to make a connection. If the connection is established, then from that point on whenever one of the
defined events occurs, the server invokes the event method on the connected client.

In effect, what is happening is that the automation server is notifying the automation client that some
event has occurred and giving the client a chance to react to the event. Any number of clients can be
connected to the same connectable object at the same time. Each client will receive a notification for
any event they are interested in. There is no need for the client to receive notifications for every event.
When the client is not interested in an event, the client simply does not implement a method for that
event.

The original implementation of OLEObject allowed the Rexx programmer to use events in this way:
The programmer defines and implements a subclass of the OLEObject. Within the subclass, the
programmer defines and implements the event methods for which she wants to receive notifications.
The programmer has the client make a connection to the automation server at the time the OLEObject
object is instantiated (Section 8.3.1, “new (Class method)” by using the WITHEVENTS keyword for
the events argument. If the WITHEVENTS keyword is not used during instantiation, then no event
connection can be made.

This is relatively easy to understand and a simple example should make this clear. In the following,
rather than create a new OLEObject, the programmer defines a subclass of the OLEObject, a
WatchedIE class. The WatchedIE object is instantiated with events. This tells the OLEObject to
make an event connection, if possible. In the subclass, the programmer implements the events he is
interested in receiving notifications for.

Example 8.1. OLEObject - WatchedIE

-- Instantiate an instance of the subclassed OLEObject
myIE = .WatchedIE~new("InternetExplorer.Application", "WITHEVENTS")
...

-- This class is derived from OLEObject and contains several methods
-- that will be called when certain events take place.
::class 'WatchedIE' subclass OLEObject

-- This is an event of the Internet Explorer */
::method titleChange

65



OLE Events

  use arg Text
  say "The title has changed to:" text

-- This is an event of the Internet Explorer
::method beforeNavigate2
  use arg pDisp, URL, Flags, TargetFrameName, PostData, Headers, Cancel
  ...

-- This is an event of the Internet Explorer */
::method onQuit
  ...

However, the process described above only allows using events with OLEObject objects that are
directly instantiated by the programmer. There are a number of OLE objects that support events,
where the OLEObject object is not instantiated by the programmer, but rather is returned from a
method invocation. Prior to ooRexx 4.0.0, events could not be used with these objects. In 4.0.0,
methods were added to the OLEObject class that allow using events with any OLE object that
supports events.

This second process works this way: With an already instantiated object, the programmer can
create method objects for any events of interest and use the addEventMethod () (Section 8.3.3,
“addEventMethod”) method to add the method to the instantiated object. Then the connectEvents ()
(Section 8.3.7, “connectEvents”) method is used to connect the automation client (the instantiated
object in this case) to the connectable OLE automation server.

The following example demonstrates this second process that is available in ooRexx 4.0.0 and
onwards.

Example 8.2. OLEObject - Watch Word

  wordApp = .OLEObject~new("Word.Application")
  wordApp~visible = .true
  document = wordApp~documents~Add

  -- Use the isConnectable method to ensure the object supports connections.
  if document~isConnectable then do

    -- Create a method for the OLEEvent_Close event. From the Word documentation
    --and experimentation, it is known that this event has no arguments.
    mArray = .array~new
    mArray[1] = 'say "Received the OLEEvent_Close event."'
    mArray[2] = 'say "  Event has" arg() "parameters."'
    mArray[3] = 'say'

    mClose = .Method~new("OLEEvent_Close", mArray)

    -- Now add this method to the document object.
    document~addEventMethod("OLEEvent_Close", mClose)

    -- Tell the object to make an events connection.
    document~connectEvents
  end

The preceding example brings up one last point that is important to note when defining event methods.
It is possible for an event method to have the same name as a normal invocation method of the OLE
object. This gives rise to this scenario:

The programmer adds an ooRexx event method to the OLEObject with that name. Then the
programmer tries to invoke the normal method. However, the invocation will no longer get forwarded

66



OLE Events

to the unknown() (Section 8.3.22, “unknown”) method. Instead the event method by the same name
is invoked. This is the case in the above example. The document object has a close() method that is
used to close the document. The document also has the close() event method that is used to notify
clients that the document is about to close.

To prevent this scenario, when an event method of an OLE object has the same name as a normal
method name, the programmer must prepend OLEEvent_ to the method name. The implementation
of OLEObject assumes the programmer has done so. If the programmer does not name the event
methods using this convention, the results are unpredictable.

Note that only the event method names that have matching normal event names can be prepended
with the OLEEvent_prefix. Other event names must not have the prefix. One way to check for this is
to use the getKnownEvents() (Section 8.3.11, “getKnownEvents”) method. This method will return the
correct names for all events the OLE object supports.

Example:

This example is a complete working program. To run it, Microsoft OutLook must be installed. The
program demonstrates some of the various methods of the OLEObject that deal with events. The
interface to the program is simplistic, but workable.

Once the program starts, the user controls it by creating specific named files in working directory of the
program. This could be done for example using echo:

echo " " > stop.monitor

The three specific file names are: stop.monitor, pause.monitor, and restart.monitor. The
stop file ends the program. The pause file has the program stop monitoring for new mail, but keep
running. The restart file has the program restart monitoring from the paused state.

Example 8.3. OLEObject - Monitor Outlook

/* Monitor OutLook for new mail */
  say; say; say 'ooRexx Mail Monitor version 1.0.0'

  outLook = .oleObject~new("Outlook.Application")

  inboxID = outLook~getConstant(olFolderInBox)
  inboxItems = outLook~getNameSpace("MAPI")~getDefaultFolder(inboxID)~items

  if \ inboxItems~isConnectable then do
    say 'Inbox items is NOT connectable, quitting'
    return 99
  end

  inboxItems~addEventMethod("ItemAdd", .methods~printNewMail)
  inboxItems~connectEvents

  if \ inboxItems~isConnected then do
    say 'Error connecting to inbox events, quitting'
    return 99
  end

  monitor = .Monitor~new
  say 'ooRexx Mail Monitor - monitoring ...'
  do while monitor~isActive
    j = SysSleep(1)
    status = monitor~getStatus

    select
      when status == 'disconnect' then do

67



OLE Events

        inboxItems~disconnectEvents
        say 'ooRexx Mail Monitor - paused ...'
      end
      when status == "reconnect" then do
        inboxItems~connectEvents
        say 'ooRexx Mail Monitor - monitoring ...'
      end
      otherwise do
        nop
      end
    end
    -- End select
  end
  say 'ooRexx Mail Monitor version 1.0.0 ended'

return 0

::method printNewMail unguarded
  use arg mailItem
  say 'You have mail'
  say 'Subject:' mailItem~subject

::class 'Monitor'
::method init
  expose state active

  state = 'continue'
  active = .true
  j = SysFileDelete('stop.monitor')
  j = SysFileDelete('pause.monitor')
  j = SysFileDelete('restart.monitor')

::method isActive
  expose active
  return active

::method getStatus
  expose state active

  if SysIsFile('stop.monitor') then do
    j = SysFileDelete('stop.monitor')
    active = .false
    state = 'quit'
    return state
  end

  if SysIsFile('pause.monitor') then do
    j = SysFileDelete('pause.monitor')
    if state == "paused" then return "continue"

    if state \== 'quit' then do
      state = "paused"
      return 'disconnect'
    end
  end

  if SysIsFile('restart.monitor') then do
    j = SysFileDelete('restart.monitor')
    if state == 'continue' then return state

    if state \== 'quit' then do
      state = 'continue'
      return 'reconnect'
    end
  end

68



The OLEObject Class

  return 'continue'

8.3. The OLEObject Class

The OLEObject class is a built-in class. No ::requires directive is needed to use the class.

Methods available to the OLEObject class:

new (Class method)
getObject(Class method)
addEventMethod
class
CLSID
copy
connectEvents
disconnectEvents
dispatch
getConstant
getKnownEvents
getKnownMethods
getOutParameters
hasOleMethod
isConnectable
isConnected
ProgID
removeEventHandler
removeEventMethod
start
startWith
unknown

Note: It is somewhat useful to think of the Rexx OLEObject object as a proxy to the real OLE
object. The real OLE object has its own methods. Which methods it has is dependent on its
individual implementation. These methods are then accessed transparently through the unknown()
(Section 8.3.22, “unknown”) method mechanism of the OLEObject by invoking a method of the same
name on the OLEObject object.

8.3.1. new (Class method)

new( classID

,

events , getObject

)

Instantiates a new OLEObject as a proxy for a COM / OLE object with the specified classID (the
ProgID or CLSID). If the COM / OLE object can not be accessed or created, an error will be raised.
See the list of OLE specific errors in the Open Object Rexx Reference document.

Arguments:
The arguments are:
classID

The ProgID or CLSID that identifies the COM / OLE object to proxy for.

69



getObject (Class method)

events
Controls how the event methods of the COM / OLE object are handled:

If the argument is omitted completely, then no action concerning the event methods is taken.

If the argument is NOEVENTS then the COM / OLE object is queried to determine if it is a
connectable object. If it is, an internal table is constructed listing all the event methods. But the
object is not connected.

If the argument is WITHEVENTS then the COM / OLE object is queried to determine if it is a
connectable object. If it is, an internal table is constructed listing all the event methods, and an
event connection is established.

getObject
A flag asking to first try to get an already instantiated OLE object, rather than instantiate a
new object. Some OLE automation servers register themselves with the operating system
when an object is first created, but not all do. If this flag is true, then the OLEObject first tries
to proxy for an already running OLE / COM object. If this fails, then a new OLE / COM object
is instantiated.

If the flag is omitted, or .false then no attempt to look for an already running OLE / COM
object is made.

Example:

myOLEObject = .OLEObject~new("InternetExplorer.Application")

8.3.2. getObject (Class method)

getObject( moniker , class )

This is a class method that allows you to obtain an OLE object through the use of a moniker. A
moniker is a string and is similar to a nickname. Monikers are used by OLE to connect to and activate
OLE objects. OLE returns the object that the moniker identifies.

If the object is already running, OLE will find it in memory. If the object is stored passively on disk,
OLE will locate a server for the object, run the server, and have the server bring the object into the
running state. This makes monikers very easy for the automation client to use. OLE hides all the
details from the client. However, since the OLEObject also hides all the details when a new OLE object
is instantiated, for the Rexx programmer there is not much difference between using the getObject
method and using the new method.

Note that file system names are monikers. Therefore, if a file is associated with an application that
is an OLE automation server, a new OLE object can be instantiated by using the file name as the
moniker. Obviously, this is not true of every file. It is true for files like .xls and .doc files, for example,
because Word and Excel are OLE automation applications.

The optional class argument can be used to specify a subclass of OLEObject, and can be used to
obtain an OLE object that supports events (the'WITHEVENTS' option will be used in this case). This
method is similar to the new method where the programmer supplies a ProgID or CLSID. In this case
the programmer supplies a moniker.

Example 8.4. OLEObject - getObjectMoniker method

/* create a Word.Document by opening a certain file */

70



addEventMethod

myOLEObject = .OLEObject~GetObject("C:\DOCS\HELLOWORLD.DOC")

8.3.3. addEventMethod

addEventMethod( name , methodObject )

addEventMethod adds a new method to this object's collection of methods. The name argument
specifies the name of the new method and the methodObject argument defines the method.
The acceptable values for methodObject are the same as those for the second argument to the
setMethod method of the.Object class. That is, it can be a method object, a string containing a
method source line, or an array of strings containing individual method source lines.

The purpose of this method is to add an event method to a OLEObject after the object has been
instantiated. See the OLE Events (Section 8.2, “OLE Events”) section for more details on events.

Example:

Note that in this example, the printNewMail method is defined as a floating method. See the
documentation for the .methods directory in the Open Object Rexx Reference book for more details if
needed.

Example 8.5. OLEObject - printNewMail method

  inboxID = outLook~getConstant(olFolderInBox)
  inboxItems = outLook~getNameSpace("MAPI")~getDefaultFolder(inboxID)~items

  inboxItems~addEventMethod("ItemAdd", .methods~printNewMail)

...

::method printNewMail unguarded
  use arg mailItem
  say 'You have mail'
  say 'Subject:' mailItem~subject

8.3.4. class

class

If self~hasOleMethod('class') returns .true, then forwards to Windows, otherwise to superclass
(ooRexx root class Object).

Note: to force resolution to the ooRexx root class Object, use the scope override option.

Example 8.6. OLEObject - use scope override option to resolve to ooRexx root class Object

  ... cut ...

  clz=oleObj~class:.object    -- use method 'class' in the ooRexx root class Object

  .. cut ...

8.3.5. CLSID

71



copy

CLSID

Returns the string value of the CLSID attribute, .nil if no value is present.

8.3.6. copy

copy

If self~hasOleMethod('copy') returns .true, then forwards to Windows, otherwise to superclass
(ooRexx root class Object).

Note: to force resolution to the ooRexx root class Object, use the scope override option.

Example 8.7. OLEObject - use scope override option to resolve to ooRexx root class Object

  ... cut ...

  o=oleObj~copy:.object    -- use method 'copy' in the ooRexx root class Object

  .. cut ...

8.3.7. connectEvents

connectEvents

The connectEvents() method is used to connect the instantiated automation client (the OLEObject
subclass object) to the automation server (the OLE object) at any time. The method returns .true
if the connection was made, otherwise .false. Remember, not all OLE objects support events.
The programmer can determine if the OLE object supports events by using the isConnectable()
(Section 8.3.15, “isConnectable”) method.

Example 8.8. OLEObject - connectEvents method

  wordApp = .OLEObject~new("Word.Application")
  wordApp~visible = .true
  document = wordApp~documents~Add

  wordApp~connectEvents

8.3.8. disconnectEvents

disconnectEvents

This method disconnects from the connectable OLE object. The method returns .false if there is
not a current connection, otherwise .true. After this method is called, the OLE object will no longer
invoke the event methods, in effect stopping event notifications.

The internal data structures used to manage events remain intact. The programmer can use the
connectEvents() (Section 8.3.7, “connectEvents”) method to reconnect at any time. Since the internal
data structures do not need to be rebuilt, this will save some small amount of processor time. To
completely remove the internal data structures use the removeEventHandler() (Section 8.3.18,
“removeEventHandler”) method.

72



dispatch

Example:

This example shows some code snippets from a program that monitors the user's inbox in OutLook.
When a new mail item arrives, the user is notified. The interface for the program allows the user to
turn off the notifications when she wants, then turn them back on later. When the interface signals the
program to stop the notifications, the program simply disconnects the events from the OutLook object.
When the user wants to resume notifications, the program reconnects the events.

Example 8.9. OLEObject - disconnectEvents method

  outLook = .oleObject~new("Outlook.Application")
  inboxID = outLook~getConstant(olFolderInBox)
  inboxItems = outLook~getNameSpace("MAPI")~getDefaultFolder(inboxID)~items

  ...

  inboxItems~addEventMethod("ItemAdd", .methods~printNewMail)
  inboxItems~connectEvents

  ...

    select
      when status == 'disconnect' then do
        inboxItems~disconnectEvents
        say 'ooRexx Mail Monitor - paused ...'
      end
      when status == "reconnect" then do
        inboxItems~connectEvents
        say 'ooRexx Mail Monitor - monitoring ...'
      end
      otherwise do
        nop
      end
    end
    -- End select

8.3.9. dispatch

dispatch( methodname , arg )

Dispatches a method with the optionally supplied arguments.

8.3.10. getConstant

getConstant(

ConstantName

)

Retrieves the value of a constant that is associated with this OLE object. If no constant of that name
exists, the .Nil object will be returned. You can also omit the name of the constant; this returns a stem
with all known constants and their values. In this case the constant names will be prefixed with a "!"
symbol.

Example 1:

myExcel = .OLEObject~new("Excel.Application")

73



getKnownEvents

say "xlCenter has the value" myExcel~getConstant("xlCenter")
myExcel~quit
exit

Possible output:

xlCenter has the value -4108

Example 2:

myExcel = .OLEObject~new("Excel.Application")
constants. = myExcel~getConstant
myExcel~quit

do i over constants.
  say i"="constants.i
end

Possible output:

!XLFORMULA=5
!XLMOVE=2
!XLTEXTMAC=19
...

8.3.11. getKnownEvents

getKnownEvents

Returns a stem with information on the events (Section 8.2, “OLE Events” that the connectable OLE
object supports. It collects this information from the type library of the OLE object. A type library
provides the names, types, and arguments of the provided methods. The OLEObject object does not
need to be currently connected to connectable OLE object.

This method will return the event methods for any connectable object. Prior to ooRexx 4.0.0, only
OLEObjects created directly, and created with the 'event' flag (WITHEVENTS or NOEVENTS) would
return any known events. This fact had not been fully documented. Therefore, if the user did not create
the OLEObject correctly, .nil would be returned for objects that did support event connections.

In 4.0.0, the behavior is fixed (or enhanced depending on the point of view) so that the known events
are returned for all connectable objects under all circumstances.

The stem provides the following information:

Table 8.1. Stem Information
stem.0 The number of events.

stem.n.!NAME Name of n-th event.

stem.n.!DOC Description of n-th event (if available).

stem.n.!PARAMS.0 Number of parameters for n-th event.

stem.n.!PARAMS.i.!NAME Name of i-th parameter of n-th event.

stem.n.!PARAMS.i.!TYPE Type of i-th parameter of n-th event.

stem.n.!PARAMS.i.!FLAGS Flags of i-th parameter of n-th event; can be "in",
"out", "opt", or any combination of these.

74



getKnownMethods

If no information is available, the .NIL object is returned. This indicates that the OLE object does
support events.

Example script:

myIE = .OLEObject~new("InternetExplorer.Application","NOEVENTS")
events. = myIE~getKnownEvents

if events. == .nil then
  say "Sorry, this object does not have any events."
else do
  say "The following events may occur:"
  do i = 1 to events.0
    say events.i.!NAME
  end
end

exit

Sample output:

The following events may occur:
ONTHEATERMODE
ONFULLSCREEN
ONSTATUSBAR
...

For an example of how to use events, see examples samples\ole\apps\samp12.rex and
samples\ole\apps\samp13.rex. The samples directory is installed as part of the normal Windows
installation.

8.3.12. getKnownMethods

getKnownMethods

Returns a stem with information on the methods that the OLE object supplies. It collects this
information from the type library of the object. A type library provides the names, types, and arguments
of the provided methods. Parts of the supplied information have only informational character as you
cannot use them directly.

The stem provides the following information:

Table 8.2. Stem Information
stem.0 The number of methods.

stem.!LIBNAME Name of the type library that describes this
object.

stem.!LIBDOC A help string describing the type library. Only set
when the string is available.

stem.!COCLASSNAME COM class name of this object.

stem.!COCLASSDOC A string describing the COM class. Only set
when the string is supplied by the type library.

stem.n.!NAME The name of the n-th method.

stem.n.!DOC A help string for the n-th method. If this
information is not supplied in the type library this
value will not be set.

75



getKnownMethods

stem.n.!INVKIND A number that represents the invocation
kind of the method: 1 = normal method
call, 2 = property get, 4 = property
put. A normal method call is used with
brackets; for a property get only the
name is to be specified; and a property
set uses the "=" symbol, as in these
examples: object~methodCall(a,b,c)
object~propertyPut="Hello" say
object~propertyGet

stem.n.!RETTYPE The return type of the n-th method. The return
type will be automatically converted to a Rexx
object (see Type Conversion (Section 8.3.23,
“Type Conversion” in the description of the
UNKNOWN method of the OLEObject class).

stem.n.!MEMID The MemberID of the n-th method. This is only
used internally to call the method.

stem.n.!PARAMS.0 The number of parameters of the n-th method.

stem.n.!PARAMS.i.!NAME The name of the i-th parameter of the n-th
method.

stem.n.!PARAMS.i.!TYPE The type of the i-th parameter of the n-th
method.

stem.n.!PARAMS.i.!FLAGS The flags of the i-th parameter of the n-
th method; can be "in", "out", "opt", or any
combination of these (for example: "[in, opt]").

If no information is available, the .NIL object is returned.

Note that it is not required that an OLE object supply a type library. The methods of OLE objects that
do not supply a type library can still be invoked by name, but there is no way for getKnownMethods
to look up the methods. To use these OLE objects the Rexx programmer would need to consult the
documentation for the OLE object.

In addition all OLE objects have methods that can only be used internally. There are mechanisms
to hide these methods from the user, because they can not be used by the automation client. It is
possible that these are not hidden properly and will be listed when using getKnownMethods. The
following methods can not be used by an instance of the OLEObject:

AddRef
GetTypeInfoCount
GetTypeInfo
GetIDsOfNames
QueryInterface
Release

Example 8.10. OLEObject - getKnownMethods method

myOLEObject = .OLEObject~new("InternetExplorer.Application")
methods. = myOLEObject~getKnownMethods

if methods. == .nil then
  say "Sorry, no information on the methods available!"

76



getOutParameters

else do
  say "The following methods are available to this OLE object:"
  do i = 1 to methods.0
    say methods.i.!NAME
  end
end

exit

Sample output:

The following methods are available to this OLE object:
GoBack
GoForward
GoHome
...

8.3.13. getOutParameters

getOutParameters

Returns an array containing the results of the single out parameters of the OLE object, or the .NIL
object if it does not have any. Out parameters are arguments to the OLE object that are filled in by
the OLE object. As this is not possible in Rexx due to data encapsulation, the results are placed in the
array mentioned above.

Example:

Consider an OLE object method with the following signature:

aMethod([in] A, [in] B, [out] sumAB)

The resulting out parameter of the method invocation will be placed in the out array at position one;
the "normal" return value gets processed as usual. In this case the method will return the .NIL object:

Example 8.11. OLEObject - getOutParameters method

resultTest = myOLEObject~aMethod(1, 2, .NIL)
say "Invocation result  :" resultTest
say "Result in out array:" myOLEObject~getOutParameters~at(1)

The output of this sample script will be:

The NIL object
3

Out parameters are placed in the out array in order from left to right. If the above OLE method looked
like this:

aMethod([in] A, [in] B, [out] sumAB, [out] productAB),

then the out array would contain the sum of A and B at position one, and the product at position two.

77



hasOleMethod

8.3.14. hasOleMethod

hasOleMethod( methodName )

Queries whether a method named methodName exists. Returns .true if methodName exists,
.false else.

8.3.15. isConnectable

isConnectable

Determines if the OLE object is a connectable object. In other words, does the OLE object support
event methods and will it accept connections at this time. Not all OLE objects support events, probably
the majority do not support events. This method returns .true if the object is connectable, otherwise
.false.

Example 8.12. OLEObject - isConnectable method

  outLook = .oleObject~new("Outlook.Application")

  -- This searches all folders for the 'Mailbox - .. ' folder.  Which is
  -- usually the default folder in a business installation of Outlook.
  nameSpace = outLook~getNameSpace('MAPI')
  folders = nameSpace~folders
  do i = 1 to folders~count
    if folders~item(i)~name~caselessPos("Mailbox") <> 0 then do
      theMailBoxFolder = folders~item(i)
      leave
    end
  end

  -- Now that we have the Mailbox folder, get the collection of folders that
  -- are contained in the Mailbox folder.
  folders = theMailBoxFolder~folders

  if folders~isConnectable then do
    -- Add event methods to the folders object.
    ...
  end

8.3.16. isConnected

isConnected

Determines if the OLEObject instance is currently connected to a connectable OLE automation server.
Returns .true if the instance is connected and .false if not.

Example 8.13. OLEObject - isConnected method

  wordObj = .oleObject~new("Word.Application", "WITHEVENTS")
  if wordObj~isConnected then do
    ...
  end
  else do
    ...
  end

78



ProgID

8.3.17. ProgID

ProgID

Returns the string value of the ProgID attribute, .nil if no value is present.

8.3.18. removeEventHandler

removeEventHandler

Removes the event handler and cleans up the internal data structures used to manage events. No
event methods will be invoked after this method is called. See the disconnectEvents() (Section 8.3.8,
“disconnectEvents”) method for a way to temporarily disconnect from event notifications.

Example 8.14. OLEObject - removeEventHandler method

  inboxItems~removeEventHandler
  inboxItems~removeEventMethod("ItemAdd")

8.3.19. removeEventMethod

removeEventMethod( name )

Removes the event method with the specified name that has been previously added to this object by
the addEventMethod() (Section 8.3.3, “addEventMethod”) method.

Example 8.15. OLEObject - removeEventMethod method

  inboxID = outLook~getConstant(olFolderInBox)
  inboxItems = outLook~getNameSpace("MAPI")~getDefaultFolder(inboxID)~items

  inboxItems~addEventMethod("ItemAdd", .methods~printNewMail)
  inboxItems~connectEvents

  ...

::method doneWithItemEvents private
  expose inboxItems

  inboxItems~removeEventHandler
  inboxItems~removeEventMethod("ItemAdd")

8.3.20. start

start( ... )

If self~hasOleMethod('start') returns .true, then forwards to Windows, otherwise to superclass
(ooRexx root class Object).

Note: to force resolution to the ooRexx root class Object, use the scope override option.

79



startWith

Example 8.16. OLEObject - use scope override option to resolve to ooRexx root class Object

  ... cut ...

  m=oleObj~start:.object(…)    -- use method 'start' in the ooRexx root class Object

  .. cut ...

8.3.21. startWith

startWith( ... )

If self~hasOleMethod('startwith') returns .true, then forwards to Windows, otherwise to superclass
(ooRexx root class Object).

Note: to force resolution to the ooRexx root class Object, use the scope override option.

Example 8.17. OLEObject - use scope override option to resolve to ooRexx root class Object

  ... cut ...

  m=oleObj~startWith:.object(…) -- use method 'startWith' in the ooRexx root class Object

  .. cut ...

8.3.22. unknown

unknown( messageName

, messageArgs

)

The unknown message is the central mechanism through which methods of the OLE object are
called.

For further information on the details on how an unknown method works, see Defining an unknown
Method in the Open Object Rexx Reference.

The programmer can invoke the methods of the real OLE object by simply invoking the methods on
the the Rexx (proxy) OLEObject object like this:

myOLEObject~OLEMethodName

This calls the method "OLEMethodName" of the real OLE object for any message (method) that does
not exist in the Rexx OLEObject object through the unknown method mechanism. The implementation
for the unknown() method in the OLEObject class does this by dispatching the method call to the real
OLE object.

This presents a problem when an OLE object has a method with a name that is identical to a method
defined for the OLEObject object. When this situation happens, the programmer has two choices.

One choice is for the programmer to call the unknown method directly. E.g., take an OLE object that
has the method copy used to copy something from a source to a destination. Since copy is a method

80



Type Conversion

of the Object class, the copy method of the OLE object is a method name already defined for the
OLEObject. The programmer can invoke the unknown method directly, like this:

Example 8.18. OLEObject - unknown method

msgArgs = .array~of("C:\open\myFile.txt", "C:\processDir\")
val = myOLEObject~unknown("copy", msgArgs)

This causes the implementation of the unknown() method in the OLEObject object to invoke the copy
method of the OLE object with the arguments of C:\open\myFile.txt and C:\processDir\.

The other thing the Rexx programmer can do is use the dispatch() (Section 8.3.9, “dispatch”) method.
Since, in OLE automation terms, the act of invoking a method on the OLE object is commonly referred
to as dispatching a message to the OLE object, this may make the code a little easier to understand.
In the above example the dispatch method would be used like this:

val = myOLEObject~dispatch("copy", "C:\open\myFile.txt", "C:\processDir\")

8.3.23. Type Conversion

Unlike Rexx, OLE uses strict typing of data. Conversion to and from these types is done automatically,
if conversion is possible. OLE types are called variants, because they are stored in one structure that
gets flagged with the type it represents. The following is a list of all variant types valid for use with OLE
Automation and the Rexx objects that they are converted from or into.

Table 8.3. OLE/Rexx Types
VARIANT type Rexx object

VT_EMPTY .NIL

VT_NULL .NIL

VT_ERROR .NIL

VT_I1 Rexx string (a whole number)

VT_I2 Rexx string (a whole number)

VT_I4 Rexx string (a whole number)

VT_I8 Rexx string (a whole number)

VT_UI1 Rexx string (a whole, positive number)

VT_UI2 Rexx string (a whole, positive number)

VT_UI4 Rexx string (a whole, positive number)

VT_UI8 Rexx string (a whole, positive number)

VT_INT Rexx string (a whole number)

VT_UINT Rexx string (a whole, positive number)

VT_DECIMAL Rexx string (a decimal number)

VT_R4 Rexx string (a real number)

VT_R8 Rexx string (a real number)

VT_CY Rexx string (currency, a fixed-point number with
15 digits to the left of the decimal point and 4
digits to the right)

81



The Windows OLEVariant Class

VARIANT type Rexx object

VT_DATE Rexx string (a date)

VT_BSTR Rexx string

VT_DISPATCH Rexx OLEObject

VT_BOOL .TRUE or .FALSE

VT_VARIANT Any Rexx object that can be represented as a
VARIANT

VT_UNKNOWN OLEObject

VT_ARRAY * Rexx Array

VT_BYREF * Any Rexx object

* VT_ARRAY and VT_BYREF are combined with any of the other variant types and never used alone.
VT_ARRAY and another variant type are used for a SAFEARRAY datatype, an array of the other
variant type. VT_BYREF and another variant type are used to pass the other variant type to or from an
OLE object by reference. The programmer need not worry about this passing by reference, the OLE
support handles this transparently.

8.4. The Windows OLEVariant Class

The OLEVariant class enhances the support for OLE Automation provided by the OLEObject class
(Section 8.3, “The OLEObject Class” and is used in conjunction with that class. An OLEVariant object
is used as a parameter in a method call of an OLEObject object. In the OLEObject's role as a proxy
for a OLE / COM object, the parameters in method calls are forwarded on to the actual OLE / COM
object. (OLE / COM objects will be referred to simply as COM objects.)

There are two areas where the OLEVariant adds to the capabilities of OLEObject method calls.

• Parameters forwarded on to COM objects must be converted to and from the proper datatypes.
This conversion is done automatically (see Section 8.3.23, “Type Conversion”.) Occasionally this
automatic conversion is incorrect. The OLEVariant allows the ooRexx programmer to override the
automatic conversion by specifying how the conversion should be done.

• COM objects can return data to the caller in "out" parameters ([OUT] parameters.) The OLEVariant
can be used to transport this returned data back to the calling ooRexx program.

In general, the automatic type conversion in the OLE support uses type libraries to determine how to
format the parameters being sent to an OLE object in a method call. The information in a type library
specifies the variant type an ooRexx object, used as a parameter, needs to be converted to. Type
libraries also detail how a parameter is to be flagged when it is sent to the COM object.

However, COM objects are not required to supply type libraries. When there is no type library, ooRexx
uses an educated guess to determine this information. On rare occasions this guess is wrong and the
method call fails. In theses cases, if the ooRexx programmer knows what the correct information is,
the programmer can use an OLEVariant to specify this information. The programmer can supply either
or both of these pieces of information by specifying the variant type for the converted ooRexx object
and the parameter flags.

The following is a real world example where the automatic conversion in the OLE support does not
work and shows how the OLEVariant is used to specify the correct conversion. The snippet comes
from code to automate a CICS client. In this case the variant type that the ooRexx object needs to be

82



The Windows OLEVariant Class

converted to is specified. The parameter flags are omitted. The fourth parameter to the ~link method
call is the parameter where the default conversion was failing.

Example 8.19. OLEObject - automatic conversions

  connect  = .OLEObject~new("Ccl.Connect")
  flow     = .OLEObject~new("Ccl.Flow")
  buffer   = .OLEObject~new("Ccl.Buffer")

  uow      = .OLEVariant~New(.nil, VT_DISPATCH)
  ...
  connect~link(flow, "FOO", buffer, uow)

Note

It is extremely rare that the OLE support fails to do the right thing with its automatic conversion.
99.999% of the time the ooRexx programmer does not need to use an OLEVariant object to
specify the type conversion. This use of the OLEVariant is provided for those few times when it
is necessary to override the default conversion. Furthermore, if the ooRexx programmer does
not know what variant type to specify, this usage will not be much help. Normally the ooRexx
programmer would know what type to specify through the documentation for the COM class the
programmer is using.

The next example shows how the OLEVariant can be used to transport the data returned in an "out"
parameter back to the calling ooRexx program. This usage will be more common and does not require
that the ooRexx have a lot of detailed knowledge of the COM object. Obviously, the programmer
does need to know that the parameter is an out parameter. This example comes from updating a
MS Access database where the number of records affected by the update is returned in an "out"
parameter. Here the out parameter is the second parameter in the ~execute method call.

Example 8.20. OLEVariant - new

  sql = "update myTable set id=id*3 where id > 7"
  param = .OLEVariant~new(0)
  conn~execute(sql, param)
  count = param~!varValue_
  say count "record(s) were affected."

Finally an example where the OLE support does not use the correct parameter flags for the method
call. The Windows Management Instrumentation, Win32_Process COM class does not supply a type
library. The fourth parameter in the ~create method call is an "out" parameter. That information is
known by the ooRexx programmer through the documentation of the class. However, without a type
library, ooRexx has no way to know that. Here the variant type specification is omitted (signaling
ooRexx to go ahead and use its automatic conversion) and the parameter flags are specified. Since
this an out parameter, the OLEVariant object is also used to transport the returned data back to the
calling program.

Example 8.21. OLEObject - incorrect parameter flags

  objProcess = .oleObject~getObject("WinMgmts:Win32_Process")

83



new Class method

  param = .OLEVariant~new( 0, , "IN,OUT" )
  ret = objProcess~create('notepad.exe', .nil, .nil, param)
  if ret == 0 then do
    pid = param~!varValue_
    say 'The notepad process was created and its PID is' pid
  end

Methods available to the OLEVariant class

new
!varValue_
!varValue_=
!varType_
!varType_=
!paramFlags_
!paramFlags_=

Note

A possible future enhancement of the OLEVariant class requires that its method names be
unique, which is the reason for the method name style. In normal usage the ooRexx programmer
would only be concerned with the new and the !varValue methods. Therefore the slightly
unorthodox method names should not present a problem.

8.4.1. new Class method
new( valueObject

,

varType , paramFlags

)

Instantiates a new OLEVariant object to be used as a parameter in an OLEObject method call. The
first argument is the ooRexx object to be converted to a variant type for the method call. It is the object
to be used in the method call. This argument is required. The varType and paramFlags arguments are
optional.

The varType argument is used to specify the type of the variant that the valueObject is to be converted
to. If this argument is omitted or is .nil then ooRexx will use the default conversion for the valueObject.
If it is not omitted it must be a valid OLE Automation variant type and ooRexx will attempt to convert
the valueObject to this variant type.

The valid variant type symbols are listed in Section 8.3.23, “Type Conversion”. In addition any of
those symbols can be combined with the VT_BYREF or the VT_ARRAY symbol. When symbols
are combined a comma is used to separate the two symbols. This of course necessitates that the
argument be quoted. Case does not matter for this argument. For example vt_bool, VT_bool, or
VT_BOOL are all treated the same.

The paramFlags argument is used to specify the flags for the parameter. The flags are separated
by a comma. Although any combination of valid PARAMFLAGS as defined for OLE Automation will
be accepted, in practice the ooRexx programmer will probably only need to use "IN,OUT" for this
argument.

The PARAMFLAGS defined for OLE Automation:

84



!VARVALUE_

PARAMFLAG_NONE
PARAMFLAG_FIN
PARAMFLAG_FOUT
PARAMFLAG_FLCID
PARAMFLAG_FRETVAL
PARAMFLAG_FOPT
PARAMFLAG_FHASDEFAULT
PARAMFLAG_FHASCUSTDATA

The ooRexx programmer should only use the last portion of the symbol. I.e., NONE, IN, OUT, LCID,
RETVAL, OPT, HASDEFAULT, or HASCUSTOMDATA. Case also does not matter for this argument
and "in,out" is equivalent to "IN,OUT"

If the paramFlags argument is omitted or .nil, (the normal case,) ooRexx will determine the flags for
the parameter through its default mechanism. If the argument is not omitted, ooRexx will use the
specified flags unconditionally.

Note

If either the varType or paramFlags arguments are used, and not the .nil object, they must be
valid variant types or param flags for OLE Automation. If they are not valid, a syntax error will be
raised.

Example 8.22. OLEObject - parameters

manager = .oleObject~new("com.sun.star.ServiceManager", "WITHEVENTS")
cf = manager~createInstance("com.sun.star.reflection.CoreReflection")
...
classSize = .cf~forName("com.sun.star.awt.Size")

param = .OLEVariant~new(.nil, "VT_DISPATCH,VT_BYREF", "IN,OUT")

retVal = classSize~createObject(param)

8.4.2. !VARVALUE_
!VARVALUE_()

Returns the value object set within an instance of an OLEVariant. If the parameter in a COM method
call that the OLEVariant was used for is an "out" parameter, than the value object of the instance
will be the data returned by the COM object. Otherwise, the value object is that set by the ooRexx
programmer.

manager = .oleObject~new("com.sun.star.ServiceManager", "WITHEVENTS")
cf = manager~createInstance("com.sun.star.reflection.CoreReflection")
...
classSize = .cf~forName("com.sun.star.awt.Size")

param = .OLEVariant~new(.nil, "VT_DISPATCH,VT_BYREF", "IN,OUT")

retVal = classSize~createObject(param)
size = param~!varValue_

85



!VARVALUE_=

8.4.3. !VARVALUE_=
!VARVALUE_ = newvalue

Sets the value object an instance of an OLEVariant contains.

8.4.4. !VARTYPE_
!VARTYPE_()

Returns the variant type specification of the OLEVariant instance.

8.4.5. !VARTYPE_=
!VARTYPE_ = newtype

Sets the variant type specification of an OLEVariant instance. This serves the same purpose as the
second argument to the new method (Section 8.4.1, “new Class method”) and follows the same rules
as specified in the documentation of the new method. I.e., the value must be a valid variant type used
in OLE Automation, or .nil. If not a syntax error is raised.

8.4.6. !PARAMFLAGS_
!PARAMFLAGS_()

Returns the parameter flags specification of the OLEVariant instance.

8.4.7. !PARAMFLAGS_=
!PARAMFLAGS_ = newparamflags

Sets the flags specification of an OLEVariant instance. This serves the same purpose as the third
argument to the new method (Section 8.4.1, “new Class method”) and follows the same rules as
specified in the documentation of the new method. I.e., the value must be a valid combination of
PARAMFLAG types as documented for use in OLE Automation, or .nil. If not a syntax error is raised.

86



Appendix A. Notices
Any reference to a non-open source product, program, or service is not intended to state or imply that
only non-open source product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any Rexx Language Association (RexxLA) intellectual
property right may be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-open source product, program, or service.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-open source products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. RexxLA has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims related to
non-RexxLA packages. Questions on the capabilities of non-RexxLA packages should be addressed
to the suppliers of those products.

All statements regarding RexxLA's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to the names and addresses used by
an actual business enterprise is entirely coincidental.

A.1. Trademarks
Open Object Rexx™ and ooRexx™ are trademarks of the Rexx Language Association.

The following terms are trademarks of the IBM Corporation in the United States, other countries, or
both:

1-2-3
AIX
IBM
Lotus
OS/2
S/390
VisualAge

AMD is a trademark of Advanced Micro Devices, Inc.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the Unites States,
other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

87



Source Code For This Document

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

A.2. Source Code For This Document
The source code for this document is available under the terms of the Common Public License v1.0
which accompanies this distribution and is available in the appendix Appendix B, Common Public
License Version 1.0. The source code is available at https://sourceforge.net/p/oorexx/code-0/HEAD/
tree/docs/.

The source code for this document is maintained in DocBook SGML/XML format.

The railroad diagrams were generated with the help of "Railroad Diagram Generator" located at
https://github.com/GuntherRademacher/rr. Special thanks to Gunther Rademacher for creating and
maintaining this tool.

R R

88

https://sourceforge.net/p/oorexx/code-0/HEAD/tree/docs/
https://sourceforge.net/p/oorexx/code-0/HEAD/tree/docs/
https://github.com/GuntherRademacher/rr


Appendix B. Common Public License
Version 1.0
THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

B.1. Definitions
"Contribution" means:

1. in the case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and

2. in the case of each subsequent Contributor:
a. changes to the Program, and

b. additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by that
particular Contributor. A Contribution 'originates' from a Contributor if it was added to the Program
by such Contributor itself or anyone acting on such Contributor's behalf. Contributions do not include
additions to the Program which: (i) are separate modules of software distributed in conjunction with the
Program under their own license agreement, and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all Contributors.

B.2. Grant of Rights
1. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,

worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly
display, publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell,
import and otherwise transfer the Contribution of such Contributor, if any, in source code and
object code form. This patent license shall apply to the combination of the Contribution and
the Program if, at the time the Contribution is added by the Contributor, such addition of the
Contribution causes such combination to be covered by the Licensed Patents. The patent license
shall not apply to any other combinations which include the Contribution. No hardware per se is
licensed hereunder.

3. Recipient understands that although each Contributor grants the licenses to its Contributions
set forth herein, no assurances are provided by any Contributor that the Program does not
infringe the patent or other intellectual property rights of any other entity. Each Contributor
disclaims any liability to Recipient for claims brought by any other entity based on infringement

89



Requirements

of intellectual property rights or otherwise. As a condition to exercising the rights and licenses
granted hereunder, each Recipient hereby assumes sole responsibility to secure any other
intellectual property rights needed, if any. For example, if a third party patent license is required
to allow Recipient to distribute the Program, it is Recipient's responsibility to acquire that license
before distributing the Program.

4. Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

B.3. Requirements
A Contributor may choose to distribute the Program in object code form under its own license
agreement, provided that:

1. it complies with the terms and conditions of this Agreement; and

2. its license agreement:

a. effectively disclaims on behalf of all Contributors all warranties and conditions, express and
implied, including warranties or conditions of title and non-infringement, and implied warranties
or conditions of merchantability and fitness for a particular purpose;

b. effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;

c. states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and

d. states that source code for the Program is available from such Contributor, and informs
licensees how to obtain it in a reasonable manner on or through a medium customarily used
for software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and

2. a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

B.4. Commercial Distribution
Commercial distributors of software may accept certain responsibilities with respect to end users,
business partners and the like. While this license is intended to facilitate the commercial use of the
Program, the Contributor who includes the Program in a commercial product offering should do so in
a manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor ("Commercial Contributor")
hereby agrees to defend and indemnify every other Contributor ("Indemnified Contributor") against
any losses, damages and costs (collectively "Losses") arising from claims, lawsuits and other legal
actions brought by a third party against the Indemnified Contributor to the extent caused by the acts
or omissions of such Commercial Contributor in connection with its distribution of the Program in
a commercial product offering. The obligations in this section do not apply to any claims or Losses
relating to any actual or alleged intellectual property infringement. In order to qualify, an Indemnified

90



No Warranty

Contributor must: a) promptly notify the Commercial Contributor in writing of such claim, and b) allow
the Commercial Contributor to control, and cooperate with the Commercial Contributor in, the defense
and any related settlement negotiations. The Indemnified Contributor may participate in any such
claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering, Product
X. That Contributor is then a Commercial Contributor. If that Commercial Contributor then makes
performance claims, or offers warranties related to Product X, those performance claims and
warranties are such Commercial Contributor's responsibility alone. Under this section, the Commercial
Contributor would have to defend claims against the other Contributors related to those performance
claims and warranties, and if a court requires any other Contributor to pay any damages as a result,
the Commercial Contributor must pay those damages.

B.5. No Warranty
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED ON
AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS
OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF
TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Each Recipient is solely responsible for determining the appropriateness of using and distributing the
Program and assumes all risks associated with its exercise of rights under this Agreement, including
but not limited to the risks and costs of program errors, compliance with applicable laws, damage to or
loss of data, programs or equipment, and unavailability or interruption of operations.

B.6. Disclaimer of Liability
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION
LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE
OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

B.7. General
If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this Agreement, and without further action
by the parties hereto, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to
software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by
that Contributor to such Recipient under this Agreement shall terminate as of the date such litigation
is filed. In addition, if Recipient institutes patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program with
other software or hardware) infringes such Recipient's patent(s), then such Recipient's rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient's rights under this Agreement shall terminate if it fails to comply with any of the material
terms or conditions of this Agreement and does not cure such failure in a reasonable period of time
after becoming aware of such noncompliance. If all Recipient's rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.

91



General

However, Recipient's obligations under this Agreement and any licenses granted by Recipient relating
to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid
inconsistency the Agreement is copyrighted and may only be modified in the following manner.
The Agreement Steward reserves the right to publish new versions (including revisions) of this
Agreement from time to time. No one other than the Agreement Steward has the right to modify
this Agreement. IBM is the initial Agreement Steward. IBM may assign the responsibility to serve
as the Agreement Steward to a suitable separate entity. Each new version of the Agreement will
be given a distinguishing version number. The Program (including Contributions) may always be
distributed subject to the version of the Agreement under which it was received. In addition, after a
new version of the Agreement is published, Contributor may elect to distribute the Program (including
its Contributions) under the new version. Except as expressly stated in Sections 2(a) and 2(b) above,
Recipient receives no rights or licenses to the intellectual property of any Contributor under this
Agreement, whether expressly, by implication, estoppel or otherwise. All rights in the Program not
expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.

92



Appendix C. Revision History
Revision 0-0 Aug 2016

Initial creation for 5.0

93



Index
A
addDesktopIcon method

of WindowsProgramManager class, 1
addEventMethod method

of OLEObject class, 71
addGroup method

of WindowsProgramManager class, 3
addItem method

of WindowsProgramManager class, 4
addShortCut method

of WindowsProgramManager class, 2
assocWindow method

of WindowsObject class, 49
attribute

classes_root attribute
of WindowsRegistry class, 15

CLSID
of OLEObject class, 71

current_key attribute
of WindowsRegistry class, 16

current_key= attribute
of WindowsRegistry class, 16

current_user attribute
of WindowsRegistry class, 17

local_machine attribute
of WindowsRegistry class, 20

ProgID
of OLEObject class, 79

users attribute
of WindowsRegistry class, 23

B
broadcastSettingChanged method

of WindowsManager class, 46

C
childAtPosition method

of WindowsObject class, 53
class

MenuObject class, 61
WindowsClipboard class, 11
WindowsEventLog class, 24
WindowsManager class, 44
WindowsObject class, 48
WindowsProgramManager class, 1, 14

class method
of OLEObject class, 71

classes_root attribute
of WindowsRegistry class, 15

clear
WindowsEventLog class, 36

close method
of WindowsEventLog class, 32
of WindowsRegistry class, 15

CLSID attribute
of OLEObject class, 71

Common Public License, 89
connect method

of WindowsRegistry class, 16
connectEvents method

of OLEObject class, 72
consoleTitle method

of WindowsManager class, 45
consoleTitle= method

of WindowsManager class, 45
coordinates method

of WindowsObject class, 50
copy method

of OLEObject class, 72
of WindowsClipboard class, 11

CPL, 89
create method

of WindowsRegistry class, 16
current_key attribute

of WindowsRegistry class, 16
current_key= attribute

of WindowsRegistry class, 16
current_user attribute

of WindowsRegistry class, 17

D
delete method

of WindowsRegistry class, 17
deleteDesktopIcon method

of WindowsProgramManager class, 5
deleteGroup method

of WindowsProgramManager class, 6
deleteItem method

of WindowsProgramManager class, 6
deleteKey method

of WindowsRegistry class, 17
deleteValue method

of WindowsRegistry class, 18
deprecated

WindowsEventLog class
read, 33

desktopWindow method
of WindowsManager class, 44

disable method
of WindowsObject class, 52

disconnectEvents method
of OLEObject class, 72

dispatch method
of OLEObject class, 73

94



E
empty method

of WindowsClipboard class, 12
enable method

of WindowsObject class, 52
enumerateChildren method

of WindowsObject class, 54
events

WindowsEventLog class, 30

F
find method

of WindowsManager class, 44
findChild method

of WindowsObject class, 53
findItem method

of MenuObject class, 63
findSubmenu method

of MenuObject class, 63
first method

of WindowsObject class, 54
firstChild method

of WindowsObject class, 54
flush method

of WindowsRegistry class, 18
focusItem method

of WindowsObject class, 53
focusNextItem method

of WindowsObject class, 53
focusPreviousItem method

of WindowsObject class, 53
foregroundWindow method

of WindowsManager class, 44

G
getConstant method

of OLEObject class, 73
getFirst

WindowsEventLog class, 42
getKnownEvents method

of OLEObject class, 74
getKnownMethods method

of OLEObject class, 75
getLast

WindowsEventLog class, 41
getLogNames

WindowsEventLog class, 40
getNumber

WindowsEventLog class, 40
getObject method

of OLEObject class, 70
getOutParameters method

of OLEObject class, 77

getStyle method
of WindowsObject class, 51

getValue method
of WindowsRegistry class, 18

H
handle method

of WindowsObject class, 50
hasOleMethod method

of OLEObject class, 78
hide method

of WindowsObject class, 52

I
id method

of WindowsObject class, 50
idOf method

of MenuObject class, 62
isChecked method

of MenuObject class, 61
isConnectable method

of OLEObject class, 78
isConnected method

of OLEObject class, 78
isDataAvailable method

of WindowsClipboard class, 12
isFull

WindowsEventLog class, 39
isMenu method

of MenuObject class, 61
of WindowsObject class, 60

isSeparator method
of MenuObject class, 62

isSubMenu method
of MenuObject class, 61

items method
of MenuObject class, 62

L
last method

of WindowsObject class, 54
License, Common Public, 89
License, Open Object Rexx, 89
list method

of WindowsRegistry class, 19
listValues method

of WindowsRegistry class, 19
load method

of WindowsRegistry class, 20
locale method

of WindowsClipboard class, 12
local_machine attribute

of WindowsRegistry class, 20

95



M
makeArray method

of WindowsClipboard class, 11
maximize method

of WindowsObject class, 52
menu method

of WindowsObject class, 59
MenuObject class, 61
method

AddDesktopIcon method
of WindowsProgramManager class, 1

addEventMethod
of OLEObject class, 71

addGroup method
of WindowsProgramManager class, 3

addItem method
of WindowsProgramManager class, 4

addShortCut method
of WindowsProgramManager class, 2

assocWindow method
of WindowsObject class, 49

broadcastSettingChanged method
of WindowsManager class, 46

childAtPosition method
of WindowsObject class, 53

class
of OLEObject class, 71

close method
of WindowsEventLog class, 32
of WindowsRegistry class, 15

connect method
of WindowsRegistry class, 16

connectEvents
of OLEObject class, 72

consoleTitle method
of WindowsManager class, 45

consoleTitle= method
of WindowsManager class, 45

coordinates method
of WindowsObject class, 50

copy
of OLEObject class, 72

copy method
of WindowsClipboard class, 11

create method
of WindowsRegistry class, 16

delete method
of WindowsRegistry class, 17

deleteDesktopIcon method
of WindowsProgramManager class, 5

deleteGroup method
of WindowsProgramManager class, 6

deleteItem method

of WindowsProgramManager class, 6
deleteKey method

of WindowsRegistry class, 17
deleteValue method

of WindowsRegistry class, 18
desktopWindow method

of WindowsManager class, 44
disable method

of WindowsObject class, 52
disconnectEvents

of OLEObject class, 72
dispatch method

of OLEObject class, 73
empty method

of WindowsClipboard class, 12
enable method

of WindowsObject class, 52
enumerateChildren method

of WindowsObject class, 54
find method

of WindowsManager class, 44
findChild method

of WindowsObject class, 53
findItem method

of MenuObject class, 63
findSubmenu method

of MenuObject class, 63
first method

of WindowsObject class, 54
firstChild method

of WindowsObject class, 54
flush method

of WindowsRegistry class, 18
focusItem method

of WindowsObject class, 53
focusNextItem method

of WindowsObject class, 53
focusPreviousItem method

of WindowsObject class, 53
foregroundWindow method

of WindowsManager class, 44
getConstant

of OLEObject class, 73
getKnownEvents method

of OLEObject class, 74
getKnownMethods method

of OLEObject class, 75
getObject method

of OLEObject class, 70
getOutParameters method

of OLEObject class, 77
getStyle method

of WindowsObject class, 51
getValue method

96



of WindowsRegistry class, 18
handle method

of WindowsObject class, 50
hasOleMethod

of OLEObject class, 78
hide method

of WindowsObject class, 52
id method

of WindowsObject class, 50
idOf method

of MenuObject class, 62
isChecked method

of MenuObject class, 61
isConnectable

of OLEObject class, 78
isConnected

of OLEObject class, 78
isDataAvailable method

of WindowsClipboard class, 12
isMenu method

of MenuObject class, 61
of WindowsObject class, 60

isSeparator method
of MenuObject class, 62

isSubMenu method
of MenuObject class, 61

items method
of MenuObject class, 62

last method
of WindowsObject class, 54

list method
of WindowsRegistry class, 19

listValues method
of WindowsRegistry class, 19

load method
of WindowsRegistry class, 20

locale method
of WindowsClipboard class, 12

makeArray method
of WindowsClipboard class, 11

maximize method
of WindowsObject class, 52

menu method
of WindowsObject class, 59

minimize method
of WindowsObject class, 52

moveTo method
of WindowsObject class, 52

new method
of OLEObject class, 69
of WindowsEventLog class, 28
of WindowsProgramManager class, 1
of WindowsRegistry class, 15

next method

of WindowsObject class, 54
open method

of WindowsEventLog class, 31
of WindowsRegistry class, 20

owner method
of WindowsObject class, 54

paste method
of WindowsClipboard class, 12

previous method
of WindowsObject class, 54

processItem method
of MenuObject class, 63

processMenuCommand method
of WindowsManager class, 45

ProcessMenuCommand method
of WindowsObject class, 60

PushButton method
of WindowsObject class, 58

pushButtonInWindow method
of WindowsManager class, 45

query method
of WindowsRegistry class, 22

removeEventHandler
of OLEObject class, 79

removeEventMethod
of OLEObject class, 79

replace method
of WindowsRegistry class, 22

resize method
of WindowsObject class, 52

restore method
of WindowsObject class, 51
of WindowsRegistry class, 22

save method
of WindowsRegistry class, 22

sendChar method
of WindowsObject class, 59

sendCommand method
of WindowsObject class, 55

sendKey method
of WindowsObject class, 58

sendKeyDown method
of WindowsObject class, 59

sendKeyUp method
of WindowsObject class, 59

sendMenuCommand method
of WindowsObject class, 56

sendMessage method
of WindowsObject class, 55

sendMouseClick method
of WindowsObject class, 56

sendSyscommand method
of WindowsObject class, 57

sendText method

97



of WindowsObject class, 59
sendTextToWindow method

of WindowsManager class, 45
setValue method

of WindowsRegistry class, 23
showGroup method

of WindowsProgramManager class, 7
start

of OLEObject class, 79
startwith

of OLEObject class, 80
state method

of WindowsObject class, 50
submenu method

of MenuObject class, 62
systemMenu method

of WindowsObject class, 59
textOf(id) method

of MenuObject class, 62
textOf(position) method

of MenuObject class, 62
title method

of WindowsObject class, 50
title= method

of WindowsObject class, 50
toForeground method

of WindowsObject class, 52
unknown method

of OLEObject class, 80
unload method

of WindowsRegistry class, 23
wclass method

of WindowsObject class, 50
windowAtPosition method

of WindowsManager class, 45
minimize method

of WindowsObject class, 52
minimumRead

WindowsEventLog class, 37
minimumRead=

WindowsEventLog class, 38
minimumReadBuffer

WindowsEventLog class, 30
minimumReadMax

WindowsEventLog class, 29
minimumReadMin

WindowsEventLog class, 28
moveTo method

of WindowsObject class, 52

N
new method

of OLEObject class, 69
of WindowsEventLog class, 28

of WindowsProgramManager class, 1
of WindowsRegistry class, 15

next method
of WindowsObject class, 54

Notices, 87

O
OLE Automation

OLE events, 65
OLEObject class, 69
OLEVariant class, 82
overview, 64

OLEObject class, 69
OLEVariant Class, 82
ooRexx License, 89
open method

of WindowsEventLog class, 31
of WindowsRegistry class, 20

Open Object Rexx License, 89
owner method

of WindowsObject class, 54

P
paste method

of WindowsClipboard class, 12
previous method

of WindowsObject class, 54
processItem method

of MenuObject class, 63
processMenuCommand method

of WindowsManager class, 45
of WindowsObject class, 60

ProgID attribute
of OLEObject class, 79

pushButton method
of WindowsObject class, 58

pushButtonInWindow method
of WindowsManager class, 45

Q
query method

of WindowsRegistry class, 22

R
readRecords

WindowsEventLog class, 33
removeEventHandler method

of OLEObject class, 79
removeEventMethod method

of OLEObject class, 79
replace method

of WindowsRegistry class, 22
resize method

98



of WindowsObject class, 52
restore method

of WindowsObject class, 51
of WindowsRegistry class, 22

S
save method

of WindowsRegistry class, 22
sendChar method

of WindowsObject class, 59
sendCommand method

of WindowsObject class, 55
sendKey method

of WindowsObject class, 58
sendKeyDown method

of WindowsObject class, 59
sendKeyUp method

of WindowsObject class, 59
sendMenuCommand method

of WindowsObject class, 56
sendMessage method

of WindowsObject class, 55
sendMouseClick method

of WindowsObject class, 56
sendSyscommand method

of WindowsObject class, 57
sendText method

of WindowsObject class, 59
sendTextToWindow method

of WindowsManager class, 45
setValue method

of WindowsRegistry class, 23
showGroup method

of WindowsProgramManager class, 7
start method

of OLEObject class, 79
startwith method

of OLEObject class, 80
state method

of WindowsObject class, 50
submenu method

of MenuObject class, 62
systemMenu method

of WindowsObject class, 59

T
textOf(id) method

of MenuObject class, 62
textOf(position) method

of MenuObject class, 62
title method

of WindowsObject class, 50
title= method

of WindowsObject class, 50
toForeground method

of WindowsObject class, 52
Type conversion, 81

U
unknown method

of OLEObject class, 80
unload method

of WindowsRegistry class, 23
usage

of WindowsEventLog class, 24
users attribute

of WindowsRegistry class, 23

V
virtual keys, 7

W
wclass method

of WindowsObject class, 50
windowAtPosition method

of WindowsManager class, 45
WindowsClipboard class, 11
WindowsEventLog class, 24

getLogNames, 40
getNumber, 40

WindowsManager class, 44
WindowsObject class, 48
WindowsProgramManager class, 1
WindowsRegistry class, 14
write

WindowsEventLog class, 35

99


	Open Object Rexx
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Notes and Warnings

	2. How to Read the Syntax Diagrams
	3. Getting Help and Submitting Feedback
	3.1. The Open Object Rexx SourceForge Site
	3.2. The Rexx Language Association Mailing List

	4. Related Information

	Chapter 1. The WindowsProgramManager Class
	1.1. new (Class method)
	1.2. addDesktopIcon
	1.3. addShortCut
	1.4. addGroup
	1.5. addItem
	1.6. deleteDesktopIcon
	1.7. deleteGroup
	1.8. deleteItem
	1.9. showGroup
	1.10. Symbolic Names for Virtual Keys

	Chapter 2. The WindowsClipboard Class
	2.1. copy
	2.2. makeArray
	2.3. paste
	2.4. empty
	2.5. isDataAvailable
	2.6. locale

	Chapter 3. The WindowsRegistry Class
	3.1. new (Class method)
	3.2. classes_root (Attribute [get])
	3.3. close
	3.4. connect
	3.5. create
	3.6. current_key (Attribute [get])
	3.7. current_key= (Attribute [set])
	3.8. current_user (Attribute [get])
	3.9. delete
	3.10. deleteKey
	3.11. deleteValue
	3.12. flush
	3.13. getValue
	3.14. list
	3.15. listValues
	3.16. load
	3.17. local_machine (Attribute [get])
	3.18. open
	3.19. query
	3.20. replace
	3.21. restore
	3.22. save
	3.23. setValue
	3.24. unload
	3.25. users (Attribute [get])

	Chapter 4. The WindowsEventLog Class
	4.1. Using WindowsEventLog
	4.2. new (Class method)
	4.3. minimumReadMin (Attribute)
	4.4. minimumReadMax (Attribute)
	4.5. minimumReadBuffer (Attribute)
	4.6. events (Attribute)
	4.7. open
	4.8. close
	4.9. read (deprecated)
	4.10. readRecords
	4.11. write
	4.12. clear
	4.13. minimumRead
	4.14. minimumRead=
	4.15. isFull
	4.16. getNumber
	4.17. getLogNames
	4.18. getLast
	4.19. getFirst

	Chapter 5. The WindowsManager Class
	5.1. desktopWindow
	5.2. find
	5.3. foregroundWindow
	5.4. windowAtPosition
	5.5. consoleTitle
	5.6. consoleTitle=
	5.7. sendTextToWindow
	5.8. pushButtonInWindow
	5.9. processMenuCommand
	5.10. broadcastSettingChanged

	Chapter 6. The WindowObject Class
	6.1. assocWindow
	6.2. handle
	6.3. title
	6.4. title=
	6.5. wclass
	6.6. id
	6.7. coordinates
	6.8. state
	6.9. getStyle
	6.10. restore
	6.11. hide
	6.12. minimize
	6.13. maximize
	6.14. resize
	6.15. enable
	6.16. disable
	6.17. moveTo
	6.18. toForeground
	6.19. focusNextItem
	6.20. focusPreviousItem
	6.21. focusItem
	6.22. findChild
	6.23. childAtPosition
	6.24. next
	6.25. previous
	6.26. first
	6.27. last
	6.28. owner
	6.29. firstChild
	6.30. enumerateChildren
	6.31. sendMessage
	6.32. sendCommand
	6.33. sendMenuCommand
	6.34. sendMouseClick
	6.35. sendSyscommand
	6.36. pushButton
	6.37. sendKey
	6.38. sendChar
	6.39. sendKeyDown
	6.40. sendKeyUp
	6.41. sendText
	6.42. menu
	6.43. systemMenu
	6.44. isMenu
	6.45. processMenuCommand

	Chapter 7. The MenuObject Class
	7.1. isMenu
	7.2. isSubMenu
	7.3. isChecked
	7.4. isSeparator
	7.5. items
	7.6. idOf
	7.7. textOf(position)
	7.8. textOf(id)
	7.9. submenu
	7.10. findSubmenu
	7.11. findItem
	7.12. processItem

	Chapter 8. OLE Automation
	8.1. Overview of OLE Automation
	8.2. OLE Events
	8.3. The OLEObject Class
	8.3.1. new (Class method)
	8.3.2. getObject (Class method)
	8.3.3. addEventMethod
	8.3.4. class
	8.3.5. CLSID
	8.3.6. copy
	8.3.7. connectEvents
	8.3.8. disconnectEvents
	8.3.9. dispatch
	8.3.10. getConstant
	8.3.11. getKnownEvents
	8.3.12. getKnownMethods
	8.3.13. getOutParameters
	8.3.14. hasOleMethod
	8.3.15. isConnectable
	8.3.16. isConnected
	8.3.17. ProgID
	8.3.18. removeEventHandler
	8.3.19. removeEventMethod
	8.3.20. start
	8.3.21. startWith
	8.3.22. unknown
	8.3.23. Type Conversion

	8.4. The Windows OLEVariant Class
	8.4.1. new Class method
	8.4.2. !VARVALUE_
	8.4.3. !VARVALUE_=
	8.4.4. !VARTYPE_
	8.4.5. !VARTYPE_=
	8.4.6. !PARAMFLAGS_
	8.4.7. !PARAMFLAGS_=


	Appendix A. Notices
	A.1. Trademarks
	A.2. Source Code For This Document

	Appendix B. Common Public License Version 1.0
	B.1. Definitions
	B.2. Grant of Rights
	B.3. Requirements
	B.4. Commercial Distribution
	B.5. No Warranty
	B.6. Disclaimer of Liability
	B.7. General

	Appendix C. Revision History
	Index

