oOReXxX
Documentation 5.1.0

Open Object Rexx

Reference

R

ooRexx Documentation 5.1.0 Open Object Rexx
Reference
Edition 2024.06.01 (last revised on 2024-06-01 with r12841)

Author W. David Ashley
Author Rony G. Flatscher
Author Mark Hessling
Author Rick McGuire
Author Lee Peedin
Author Oliver Sims
Author Erich Steinbdck
Author Jon Wolfers

Copyright © 2005-2022 Rexx Language Association. All rights reserved.
Portions Copyright © 1995, 2004 IBM Corporation and others. All rights reserved.

This documentation and accompanying materials are made available under the terms of the Common
Public License v1.0 which accompanies this distribution. A copy is also available as an appendix to
this document and at the following address: http://www.oorexx.org/license.html.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

Neither the name of Rexx Language Association nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

http://www.oorexx.org/license.html

Preface Xiv
I B o Toi [g 1= o | 0] 0 VZ=] o] i o] o PPN Xiv
1.1. TypographiC CONVENTIONSccouuuiieiiiii ettt ettt e e et eeeae e eeees Xiv

2 N o) (<SR- U (o YA = Vg 11 o TS Xiv

2. How to Read the Syntax DIagramscoevuieiiiieiiieiii e e e e e e e e et e e e e e e aanas XV
3. Getting Help and Submitting Feedback ... XVi
3.1. The Open Object ReXX SOUIrCEFOrge Stcoicuiiiiiiiiiiiiiii e XVi

3.2. The Rexx Language Association Mailing LiStcoooieiiiiiiiiiiniiiiicci e, XVii

3.3. cOMP.IANG.FEXX NEWSGIOUD ..cevuuiiiitietiiti ettt e e et e et e e e et e e e e eeai e eenanns XViii

4. Related INfOrMAtIONiiiii et e et e eeeab e Xviii
1. Open Object Rexx General Concepts 1
1.1. What Is Object-Oriented Programming?oocoeiuiiiiiiiiiiiie e e e eens 1
1.2. MOAUIAHZING DALA ...ttt e et e e e 1
I VT To 1= 11 o @] 1= £ 3
3 o o VYA @] o] [=Tox £ 11 =1 - Uod (PR 4
ST /1= 1 0 To o L PSPPSR 4
1.6. Data ADSIFACLIONc.uiiiit e ettt et et e e e e e e e eaas 5
1.7. ClasseS @nd INSLANCESiiiiiiiiiiieii et e e et e et e et e e e e eeanns 5
1.8, POIYMOIPRISIM ettt e e e e e 7
1.9. Subclasses, Superclasses, and INNEMtANCEc.ovviiii i 7
1.10. Structure and GENETral SYNTAXc..uiiiuuiiiiiiieiiie et e e e e e e e e e e et e e e ranae 8
O I O ¢ =V = T (] £ PP 8
1.10.2. WHITESPACE ...nietieeii ettt ettt et e et e et e e et e et e et e e et e e ea e et 9
1.10.3. COMIMENTES ettt ettt et et et et e e et e et e et e et e en e e e e e e e enaees 9
0 S o] (= 0 11
1.10.5. Implied SEMICOIONSc.uiiiiiiie e e e e eans 16
1.20.6. CONLINUALIONS ...uuuiiiiiii ettt e et e et e e et e e e e ta e e e erenes 16
1.11. Terms, EXpressions, and OPEIALOrSccuuieuueiiu it e e e e e e eaneeees 17
1.11.1. Terms and EXPreSSIONSiiuuiiiiieiii et e et e e e e e et e e et e et eeaneeeaaaes 17
R O o= = 1o £ PPN 18
1.11.3. Parentheses and Operator PreCedenCecc.uiviiiiiiiiiiiiiiineeee e 21
O B Y TS 7= o T T =1 0 23
1.11.5. MESSAQE SEUUEINCES ...uueerieetieen et eeieeieetaaeneeen e taeea e e e ea e enteanaean et e eaeeteenaeenns 24
N B T Y = Y =T 1 0 PPN 25
1.11.7. Variable ReferenCe TeIMco. i 26
1.12. Clauses and INSIFUCHIONSiieuiiiiei e e e e e et e e e e e e eeens 26
2 O VL0 T £ = 26
O B 1 (=T 1Y PP 27
L.12.3. LADEIS et 27
L1.12.4. INSIFUCTIONS .ttt et ettt e et e et e e e e e et e e et e e e eeaens 27
1.12.5. ASSIGNIMENTS ...ttt et e et et e et e e et e e et e e et e e aa e aeaaeeenns 27
1.12.6. MeSSage INSIIUCHIONScoeuuiieiiiiie et 28
1.12.7. Keyword INSIFUCLIONSuiiiiiiiiieeiii ettt et e et e eeeaa e eees 28
1.12.8. COMMANAS ..iiiinieiiiii et e e e et e et e e e et e e e e et e e e e et e e e e et 28
1.13. Assignments and SYMDOIScooouiiiiiii 28
1.13.1. Extended ASSIGNMENLSciiiiiiii e e e e e e e e e e 29
1.13.2. CoNnStant SYMDOIScouniiiiii e e 30
1.13.3. SIMPIE SYMDOISoiieiiee e 30
] 1 0 1P 30
1.13.5. Compound SYMDOISciiiiiiiie e 33
1.13.6. Environment SYMDOIScooiiiiiiiii e 34
L1.14. NAIMESPEACESevuetneiteet ettt et et et e e ettt e et e et et ea et e et e e ta e eateea e an e et e et e et eeneenns 35
1.15. MESSAQe INSIIUCHIONS ...ttt et et et e e et e e e et e e e e aeannas 36

1.16. Commands to External ENVIFONMENTSoouuiiiiiiiiie e 37
L1.16. 1. ENVIFONMENT .ottt et e e e e e e e e e e et e et e et e e et e eaeenaens 37
T o 11011 1 = 1 o [PPSR 38

1.17. Using Rexx on Windows and Unix-like SyStemsc.cccoveiiiiiiiii i, 40
1.17.1. Calling other REXX SCIPLS ..uuiiuiiiiiiieii e e e e e e e e e e e e ean s 40
1.17.2. SNEDANG SUPPOIT ..ttt e et e e eenns 40
1.17.3. Line-eNnd CRAraClersoiiuiiiiiiie e 40
1.17.4. End-0f-file CharacCteroiiiiii e 41

2. Keyword Instructions 42

2.1, ADDRESS ..ottt et e s 42

2 Y = C USRS 46

22 T O A I PP 47

S 5 1 TP 50

2.0, DR e e 52

P22 G T = N PP 53

2.7 EXPOSE ..ottt r s 54

2.8, FORWARD ...ttt ettt e et e e e et e e e et r e e e et e et e e et aaaann 55

2.9, GUARD ..ot a et araann 57

205 1 TR | PSP 58

2 T T N I o e 59

P N I = = N I PSPPSR 61

2,030 LEAVE oottt aaan 62

2 S X 1 | = PSP 63

25 11 T VL PP 64

2.16. NUMERIC ..ottt e et e et e e et e e e e et e e e e et e e e e et s 64

2 ©] = [] N £ PP 66

2,08, PARSE ..ottt e e e et aae 66

2.19. PROCEDURE ..ottt et e e et e e e et e e e et e e e e aan s 69

220 0 R = | PP 71

2 N = U 1 PSP 72

2 © 18 1 L P 72

2,23, RAISE .. 73

2. 24, REPLY it et e e e aat e e 75

2.25. RETURN ittt e et e e e et e e e et e e e et e e e e b s 76

B T A PP 76

A] =1 = P 77

2.28. SIGINAL ..ottt — et r 79

2.29. TRACE ..o e 81
2.29.1. Trace Alphabetic Character (Word) OptioNScovveviiviiiiiriii e 82
2.29.2. PrefiX OPtion .. 83
A TG T \\[W] 4 1= o3 @ o1 o] o 84
2.29.4. TrACING TIPS -utttuiteunaeet et e et et e et e e et e et e e e e e et e e et e e et e e etn e ean e eateaeanaaeanans 84
2.29.5. *CHG* The Format of Trace OULPULccuuuiiiiiiiiieiiiiieeee e 84

22 10 T 1 Y PP 86
2.30.1. USE ARG, USE STRICT ARG ...ttt 86
2.30.2. USE LOCAL .ottt et e e et e e et e e et e e e e e e e aee 88

3. Directives 20

0 I A | [1 I I P 90

B F 2 N I I 1= L N 91

R T O I 1 SRR 94

I 1@ 1IN 1S I/ N PPN 96

G T |V 1 = N [5 LSO 97

G G T ©] = [N £ 100

3.7. TREQUIRES ... e 102

3.8. IRESOURCEuiiiiiiiiei ittt ettt e et e e e et e e e e e et a e a e et e aaaa 103
G 78 TRt L I I P 104
4. Objects and Classes 107
R Y] 1= TS 0 1 = 11T 107
o I R @] o] [T o R O - T PP PTRPPTRPN 107

o A Y D] I O =TT PP 108
O T AN o)1 = T A =TT 108

A 14, METACIASSES ...vuiiiiii e et e e e ae 108

4.2. Creating and Using Classes and Methodsccuiiiiiiiiiiiiiiii e 111
o N U L= o T =TT = 112
S ol o | o1 PPN 113
4.2.3. Defining Instance Methods with SETMETHOD or ENHANCEDccccvviiieen. 113
Y/ =Y 1 T Yo I AN = Vg = 113
4.2.5. Default Search Order for Method Selectioncccooviiiiiiiiiii e 113
4.2.6. Defining an UNKNOWN Methodoiiiiiiiii e 114
4.2.7. Changing the Search Order for Methodscccooviiiiiii i, 114
4.2.8. Public, Package-Scope, and Private Methodscccoiiiiiiiiiiiiiiieee, 115
4.2.9. INILALZALION ...eeeeee e et 116
4.2.10. Object Destruction and Uninitializationc.ocoviiiiiiiiiin e, 117
4.2.11. Required String ValUESoiiiiiiiieii e e e e e e e e e e ee 117
o B @ o o1 B 1= [Y 118

4.3. Overview of Classes Provided DY REeXXoiuiiiiiiiiiiiie e 118
4.3.1. The Class HIErarChy ... e 118
4.3.2. Class LIDrary NOLESiiiiiiiiiiiiii ettt e eeeans 120

5. Builtin Classes 121
5.1. FUNDAMENTAl ClASSES ...ovviiiiiiiiieieii et et e et e e e aaans 121
5.1.1. Class Class (MetacClass)ccuuviiuiiiiiii e ea s 121
5.1.2. MESSAQE ClASS .. .ceuiiiiiiiii ettt e 132
N I T V11 To To IO = L PP 142
B5.1.4. ODJECE ClASS ...vuiiiiiiii ettt 147
B5.1.5. PACKAGE CIASS ...iiiiiiiiiiiiiii ettt 157
5.1.6. ROULINE ClASS ..oiutuiiiiiii ettt et e et e e et e e eaeanas 166
L0t O A 1 1T T4 = 1 169

5.2, SIIEAIM CIASSES ...niiitiiiiiii ettt ettt et e e e et e e et e e e e aan s 214
5.2.1. INPUtOULPULSTIEAM CIASSiiiiriieiiiii et 215
5.2.2. INPUESTIEAM CIASSciiiiiiieiiiii ettt et e et e e e eeees 215
5.2.3. OUIPULSIIEAM CIASSiiiiiiiieiiiiiie ettt e et 216
B5.2.4. SIrEAM CIASS ...iiiiiiieiiiii ettt r e aee 218

5.3. COlIECHON CIASSESietiiiiiiieii ettt ettt et e et e et e e et e e et e e eaeeennaes 236
5.3.1. Organization of the Collection CIaSSeSooiiuiiiiiiiiiiiie e 237

IR I @70 | (=Tl 1o o IO F= 11 PR 238
5.3.3. MAPCOIECHON CIASS ...ceviiniiiiiiieeeei et e e 241
5.3.4. OrderedCollection ClaSScccuiiiiiiiiieei e e e eans 243
5.3.5. SetCOlECHON ClASSuuiiiiiiiiieiiiii et 247
B.3.6. ATAY ClaSS ..vuiiiiiiiiiiiii e e 247
LR A T Vo I 5 - 1 PSP 261
5.3.8. CircularQUEUE CIASScieuiiiiiiiiii et et e e 267
5.3.9. DIFECIONY CIASS ...iiitiiiiiiiii ettt ettt ettt e s 273
5.3.10. IdentityTable ClassSooieiiiiiiiiii e 279
LT B0 I O I) A 1 = T PR 283
5.3.12. ProPertieS ClaSS ...ccuiiiiiiiiiiiie ettt e e 288
5.3.13. QUEUE ClaSS ..iitiiiiiiii ittt et e e e 292

5.3.14. REIALHON CIASS ...viiiieiiiii ettt e e et et e e e e e eaeaens 298

5,315, S ClASS ..iiiiiiiii ittt a e e e 304
LR 0 G TS (T ¢ T = T 308

LR A S 1 ¢ o = o] L= - T 313
5.3.18. TADIE ClaSS ..iieiiiiiiiii i 318
5.3.19. Sorting Ordered ColleCtiONScoouuiiiiiii e 321
5.3.20. Concept of Set OPEratiONSuoiiuuiiiiiiiiii e 324

B4, ULIILY ClASSES ...ttt ettt et e et e e et eeeaa s 328
Lo T Y = T g T G - T 328
5.4.2. AlarmNOtIfiCatioN ClaSSccuuiiiiiiiiiiiiiii e 331
L T =TT (=] G O = 1 PP 332
5.4.4. Comparable CIaSsSco.iiiinii e 332
5.4.5. COMPArator ClASSEScuuiiiiiiiiiaiii e ettt e aeaans 333
5.4.6. DAtETIME ClASS ..euuiiitiiiiieii et et e e e et e e an e e et e e eaeeenns 339
5.4.7. EVentSemaphore ClassSccouuiiiiiiiiiiii e 357
BUA.8. File ClasS ..oouuiiiiiiii i 360
5.4.9. MessageNotification Classcc.cveviiiiiiiiiiiie e 371
5.4.10. MONITOE CIASS ...cuniiiiiiiii et e e eees 371
5.4.11. MutableBUFfer CIassc.. i e 373
5.4.12. MUteXSemaphore CIaSSc.uuiiiiiiiiiieiiiie et 387
5.4.13. Orderable Classccuuiiiiiiiiiiei e 390
I I B o1 1 (= G O - T PR 391
5.4.15. ReguIarEXPression ClasScc.uieiiiiiiii i e e 392
5.4.16. ReXXCONEXE CIASSuuiiiiiiiiiiiei et e ean s 397
5.4.17. ReXXINFO CIASS ...uiiiiiiii et 400
5.4.18. REXXQUEBUE CIASS ...uiiitiiiitiiii ettt ettt e e e e e e et e e e een s 409
5.4.19. Singleton Class (MELACIASS)uuiiiiriiiiiiii e 413
5.4.20. StACKFIAmME ClASS . .ciiiiiiiiiiii it e e et eees 415
5.4.21. StreamSupPPlier Classccuiiiiiiiii e 417
5.4.22. SUPPHEE ClIASS ...ttt et e 419
5.4.23. TICKEI CIASS ..euiiiniiiit et et e e et e e e e ean s 421
5.4.24. TIMESPAN CIASS ...eeeiiueiiiiii ettt ettt ettt eeeaa s 424
5.4.25. *NEW?* TraceODJECE ClIASSccuuuniiiiiiiiieiiiii ettt 431
5.4.26. ValIdAte CIASS .. ccieuiiiiiiiiiiieeee ettt et 435
5.4.27. VariableReference Classoviiiiiiiiiiiiii e 438
5.4.28. WeakReferenCe CIasScouuiiiiiiiiiii it 440

6. Rexx Runtime Objects 441
6.1. The Environment Directory ((ENVIRONMENT)iiiiiiiiiiii e 441
6.1.1. The ENDOFLINE Constant (.ENDOFLINE)cccuuiiiiiiiiniiiiiiiieeeeiineeeeiin e 441
6.1.2. The FALSE Constant ((FALSE)uoiiiiiiiii e 441
6.1.3. The NIL ODBJECE ((NIL) ..ueiieiiieieiie et e e e e e e 441
6.1.4. The RexxInfo Object (REXXINFO)ccouuuiiiiiiiiiii e 441
6.1.5. The TRUE Constant ((TRUE)iiiiiiiiiiii e 442

6.2. The Local DireCtory ((LOCAL)ciie it e e e e e e ean s 442
6.3. The Debug Input Monitor (DEBUGINPUT)cociiiiiiic e e 443
6.4. The Error Monitor ((ERRORY)iouiiiii e e e ee s 443
6.5. The INput MONItOr ((INPUT) L.uuiiiiii e e et e e e e e e e ra s 443
6.6. The Output MoNItor (LOUTPUT) ...t 443
6.7. The Trace Output Monitor (TRACEOUTPUT) ...cciiiiiiiiiiii e 443
6.8. The STDERR Stream (.STDERR)c.uuiiiiiiiiiiiii e 443
6.9. The STDIN Stream ((STDIN) ...couuiiiieii e e e e e e e et e e eeaneees 443
6.10. The STDOUT Stream (.STDOUT) ..uiiiiiiiieiiiiiie et e e eeeaa e eenenns 444
6.11. The STDQUE Queue (.STDQUE)ccuuuiiiiiiiiiiiiiie et e e 444

Vi

6.12. The SYSCARGS Array (.SYSCARGS)ccouiiiiiiiiieeei et 444

6.13. The Rexx ContexXt ((CONTEXT) ...iiitiiiiiiiiei it e et e et et eeer e eees 444
6.14. The Line Number (LLINE)iiii e 444
6.15. The METHODS StringTable ((METHODS)cooiiiiiiiiiiiiieeeeeee e 445
6.16. The ROUTINES StringTable ((ROUTINES)cccoiiiiiiiiiiiieeeee e 445
6.17. The RESOURCES StringTable (RESOURCES)cuviiiiiiiiiiiiiiiii e 445
6.18. The Return StatUS ((RS)uuiiiiiiiiiiiiit ettt e et e e e e e eeaeaanas 446
7. Functions 447
00 O V] 1 = G 447
7.2. FUNCLIONS aNd SUDBIOULINEScovuiiiiiii ettt e e e e e 447
7.2.1. SEAICN OFUEI ...ttt ettt e e et e e e e eee 448
7.2.2. Errors during EXECULIONcoouuuiiiiiiiee ettt e e 452

A T (= 11 T 2= 11 1= 452
7.4, BUIIt-IN FUNCHONS ..oiieiiiii et e e 453
7.4.1. ABBREV (ADDIeVIation)ccceeiieeiiiiiiiee et 454
7.4.2. ABS (ADSOIULE VAIUL) ...cvniieii e 455
T.4.3. ADDRESS ...ttt e a e e e e 455
T.4.4. ARG (AFQUIMENT) ..ottt ettt ettt e e et e et e e et et a e e e et eeeeeaas 455
7.4.5. B2X (Binary to Hexadecimal)c.oooeuiiiiiiiii e 457
TA.B. BEEP ... 457
7.4.7. BITAND (Bit DY Bit AND) ...ovuiiiiieeiiiieeiii e 458
7.4.8. BITOR (Bit DY Bit OR) ...iiiiiiiiiiiiiii et 459
7.4.9. BITXOR (Bit by Bit EXCIUSIVE OR) ...couviiiiiiiiiiiiiiiiiii e 459
7.4.10. C2D (Character to DeCimal)cc.uuiiiiiiiiieiiii e 460
7.4.11. C2X (Character to Hexadecimal)ccouiiiiiiiiiiiiiii e 460
7.4.12. CENTER (0F CENTRE) ...ciiiiiiiitiii ittt e e e e ennnes 461
7.4.13. CHANGESTR ..ottt e et e e e e e ennnees 461
7.4.14. CHARIN (Character INPUL)couuiiiiiiiei e 462
7.4.15. CHAROUT (Character OULPUL)uuuuiieeieieiiiiiiaa e e e e eeeiiti e e e e e eeeebii e 463
7.4.16. CHARS (Characters Remaining)ooeeeuuuieiimiiieiiiineeeenise e 464
T.A4.017. COMPARE ..ottt e e e e e anas 464
7.4.18. CONDITION ..oiiiiiiii ettt e e e e 464
T.4.19. COPIES ...ttt 466
7.4.20. COUNTSTR ..ottt ettt e e e e e e et e e e e 466
7.4.21. D2C (Decimal t0 Character)ooeeuiiiiieii e 467
7.4.22. D2X (Decimal to HexadeCimal)ccoouuuieiiiiiiieiiii e 467

7.4, 23, AT AT Y PE e e 468
TA.24. DATE ..o 469
7.4.25. DELSTR (Delete StrNQG) .ueevuieiiiieiiii e et e e e e e e e e e e e e e e et e e ean e e aanaeees 473
7.4.26. DELWORD (Delete WOr)ccooiiiiiiiiiiiieeeieeiiiiiie et 474

T4, 27 . DIGIT S ittt et e e ettt e e e et e et aaaaaee 474
7.4.28. DIRECTORY ...ttt e et e e e e e et a bbb e e e e e 474
7.4.29. ENDLOCAL (LiNUX ONIY) ittt ettt e e e e s 475
7.4.30. ERRORTEXT ..oiiiiiiiiiieiiii sttt e e e e e s e e e 475
TA.3L. FILESPEC ..ottt e e 476
T.4.32. FORM .ottt e aeeenaa 476
74,33, FORM AT oot e e et e ettt e e e et e aaaaeae 477
TABA. FUZZ .ot e e 478
74,35, INSE R T o e 478
7.4.36. LASTPOS (Last POSItION)uiiieiiiiiiesece e e e e e e eanne e 478

T 4. 37 LERT e 479
T.4.38. LENGTH oottt e e e et et e eeeeeeenaes 479
7.4.39. LINEIN (LiN€ INPUL) «.oiiiiiiiiie ettt e e e e e e e e e 479

Vii

7.4.40. LINEOUT (LiNE OUIPUL) «.....vveeeeeeeee e 481

7.4.41. LINES (Lines ReM@AINING)coouuuiiiiiiiiieiieii ettt 482
A I VY N 483
A o T Y (1, = {14 T o) 483
7.4.44. MIN (MINIMUMY) oot e e e e et e e e et e e e e et neeaenan s 484
7445, OVERLAY .oiiii ittt e et e e e e e et a e aae 484
T.4.46. POS (POSITION) ..iiiitiiiiiiie et e et e e e e e e et e e e e et e e e eaen e 484
A A @ 10 7 PP 485
T.4.48. QUEUED ...t e e e 485
T.4.49. RANDOM ..oiiiiiii et e et e e et e e e e eaaan 485
7.4.50. REVERSE ...t 486
A O] I PSP 486
T.4.52. RXFUNGCADD ...ouiiiiiiiii ettt e et e e et n e e et s e e e et e e eannnns 487
7.4.53. RXFUNCDROP ..ottt e e e e e e e e et e e e aat e aeaaes 487
7.4.54. RXFUNCQUERY oo 487
7.4.55. RXQUEUE ..ottt e e et e e e et e e e eaa e e eens 488
7.4.56. SETLOCAL (LINUX ONIY) ©etuiiiiiiiieiiiii ettt e e 489

T 457, SIGN Lottt aaann 490
7.4.58. SOURCELINE ..ottt e e e e et e e e e e e e 490
T.4.59. SPACE ...t e 490
T.4.60. STREAM ..o e 491
TA.BL. STRIP oot aaan 498
7.4.62. SUBSTR (SUDBSIING) ..uiieiiiiiiiiie e e e e e e e e 499
T7.4.63. SUBWORD ..ottt e e e e e e e e et e e e e s 500
TA.B4. SYMBOL ..uuiiiiiiiii ettt e r e 500
A T I 1 PP 501
TA.66. TRACE ..o e e 504
T.4.67. TRANSLATE ..ottt e e e e et e e e b s 505
7.4.68. TRUNC (TIUNCALE)ievieiiieiiiieieiee et e e e e e e e e e e s e et e st r e e st e e et e e et s e eaneeanns 506
T.4.89. UPPER ..ottt ettt ettt et aaaan 506
A L U 1] =1 = 3| 5 U 507
TATL VALUE ..ot e e e e e e e e e e a e 507

T A T2, VAR o e 509

T4 T3, VERIFY ottt e et e et e et e e eab e 510
TATA WORD ..ot e et et 510
T.4.75. WORDINDEX ...ttt e et e et e e et 511
7.4.76. WORDLENGTH ..iiiiiiiiiii e e et e e e 511
7.4.77. WORDPOS (WOrd POSItION)uiiiiiiiiieiiiiie e e 511
TA.T8. WORDS ..o e 512
7.4.79. X2B (Hexadecimal to BiNary)coovuiiiiiiiiii e e e 512
7.4.80. X2C (Hexadecimal to Character)ccoccuuiieiiiiiiiii e e e 513
7.4.81. X2D (Hexadecimal to Decimal)oovviiiiiiiii e 513
7.4.82. XRANGE (Hexadecimal RAnNge)oceuuiiiiiiiiiii e 514

8. Rexx Utilities (RexxUtil) 516
8.1. A NOLE ON EITOr COUESiiiiiiieiiiii ettt e e e et e e e et eeeaan s 516
8.2. List of Rexx ULility FUNCLONSc.uiiiiiiiiiii e e e e e 516
8.3. RxMessageBoxX (WINAOWS ONIY) ...t e e e 518
8.4. RXWINEXeC (WINAOWS ONIY) ...oiiiiiiiiiii ettt e e e 520
8.5. SYSAUUREXXMACTO .. evtiieiiii ettt e e et e e et e e e s 522
8.6. SysBOOtDrive (WINAOWS ONIY)iiieiiiiiei et e e e e e e eanas 522
8.7. SYSCIearREXXMACIOSPACE ...c.uueeiuniiiiieiiiie et et e e e e e et s e et e e e e e et s e et eean e eateeennaeennaaes 522
S S} V2= 1 PSP 522
8.9. SysCreatePipe (Unix-like SYStemMS ONlY)c.uiiiiiiiiiiie e 522

viii

8.10.
8.11.
8.12.
8.13.
8.14.
8.15.
8.16.
8.17.
8.18.
8.19.
8.20.
8.21.
8.22.
8.23.
8.24.
8.25.
8.26.
8.27.
8.28.
8.29.
8.30.
8.31.
8.32.
8.33.
8.34.
8.35.
8.36.
8.37.
8.38.
8.39.
8.40.
8.41.
8.42.
8.43.
8.44.
8.45.
8.46.
8.47.
8.48.
8.49.
8.50.
8.51.
8.52.
8.53.
8.54.
8.55.
8.56.
8.57.
8.58.
8.59.
8.60.
8.61.
8.62.
8.63.

SYSCUrP0OS (WINAOWS ONY) ..ottt e e e e e e eens 523
SysCurState (WINAOWS ONIY) ...oouniiiiiieeiei et 523
SysDrivelnfo (WINAOWS ONIY) ..o e 524
SysDriveMap (WINAOWS ONIY) ...coueiiiiiciiec e e e e e e e e e e e ean s 524
S A 0] o1 (=71, = T o 525
SYSDUMPVANADIES ..o e et e 525
)Y 1 (=1 @] o) PP 526
SYSFIEDEIELE ..ot e 526
SYSFIEEXISIS .ttt 527
SYSFIIEMOVE ...eiiiii i et e e 528
SYSFIIESEAICH ...ceeii e 528
SysFileSystemType (WINAOWS ONIY)oeeniiiiiii e 530
SY S T O et e e e e ea e 530
SysFork (Unix-like SYStEMS ONIY)uiiiiiiiiieiii e 533
SYSFOIMAIMESSAGE .. ettt ettt et 534
SysFromUnicode (WINAOWS ONIY) ...eeuniiiiieiei e e e e e e e e 535
YA T | 1 o] = A 537
S e 11T = (= T = 537
S S G OIKBY .t 538
SysGetLongPathName (WINdOWS ONIY)uuiiiiiiiiiii e 538
SysGetMessage (Unix-like SysStems ONly)oooieuiiiiiiiiii e 539
SysGetMessageX (Unix-like systems Only)c.oovviiiiiiiiiiiie e 539
SysGetShortPathName (WINdOWS ONlY)coovnieiiiiiicece e 540
SYSINE (WINAOWS ONIY) e e e e e e e e e enas 541
SY SISl et e e 543
SyslsFileCompressed (WINAOWS ONIY)cooiiiiiiiii e 543
SYSISFHEDITECIONY ...ttt ettt et e e b 544
SyslsFileEncrypted (WIiNAOWS ONIY)viveiiiii e e 544
YA £ 1= I 544
SyslsFileNotContentindexed (WINdows only)coooiiiiiiiiii e, 545
SyslsFileOffline (WINAOWS ONIY)iiiiiie e 545
SyslsFileSparse (WINAOWS ONIY)cooiiiiiiii e 546
SyslsFileTemporary (WIiNdOWS ONIY)oouuiiiiiiiiii e 546
SYSLINVEr (LINUX ONIY) ouniiiiiei e e e e e e e e e e e e et e e e e e eaneees 547
SYSLOAAREXXMACTOSPACE ...ucvvuieiiineeii ettt eette et e e et e e et e e et e e et e et eeana e e et e eeanaeeanaaenes 547
SYSMKDIE .ttt ettt e et e e e e e e aeene 547
SYSQUEIYPIOCESS ...ttt ettt ettt et et et e e e et e e e et e eaaenns 549
SYSQUEIYREXXMECTO ...eviiiiiieiii ettt ettt ettt et e e et e e eaaeees 550
SYSREOIAEIREXXIMBCIOceeviieieiii ettt ettt e et eeeae s 550
Y25 11 | 551
SYSSAVEREXXMACIOSPACE . ..uiiiiiitiee e e et e e e e e e e et e et e e e et e et e enaeenns 552
SYSSEArChPAtN ..o 552
SYSSEtFIEDAIETIME ...t e e e e et e et e e e e aeens 553
SYSSEEPTIONILY ... eeeiet ettt ettt ettt e e ettt e ettt et e e e e e e aae 554
SysShutdownSystem (WINAOWS ONIY) ...oiiuiiiiiiiie e 554
Y2511 1= o 556
33 (=] 141 @) 557
SYSSIEMDEIELE ...t 558
SY S S EIMINSEIT <.ttt et et e e e e e e e 559
SYSSIEMISONT ..ottt ettt e ettt 559
SysSwitchSession (WINAOWS ONIY) ... e 560
SysSystemDirectory (WINAOWS ONIY)uiveiiei e e e 561
SYSTEMPFIIENGIME ..o e e e e e e eanas 561
SysTextScreenRead (WINAOWS ONIY) ...oveniiniii e 562

8.64.
8.65.
8.66.
8.67.
8.68.
8.69.
8.70.
8.71.
8.72.
8.73.
8.74.
8.75.
8.76.

SysTextScreenSize (WINdOWS ONIY)ieniii e
SysToUnicode (WINAOWS ONIY)uuniiiiiiiiiii et
SYSULIVEISION .t e e
)Y £ V4= £ (o) o
SysVolumeLabel (WINdOWS ONIY)couuiiiiii e e e e
SysWait (Unix-like SYyStemMS ONIY)vuniiiiii e
SysWaitNamedPipe (WIiNdOWS ONIY)couuiiiiii e e
SysWinDecryptFile (WINAOWS ONIY)oooiiiiiiiiiieece e
SysWiInEncryptFile (WIiNdOWS ONIY)iiiiiiii e
SysWinGetDefaultPrinter (WIiNndows Only)ooviiiiiiii e
SysWinGetPrinters (WINAOWS ONIY)viiiiiiiice e e e
SysWinSetDefaultPrinter (WIiNdows Only)cooeiiiiii e
SysSWInVer (WINAOWS ONIY) ... e et e e e eaa e

9. Parsing

9.1.

9.2.
9.3.

9.4.
9.5.
9.6.
9.7.
9.8.

Simple Templates for Parsing into WOrdSc..oiiiiiiiiniiiiiiei e
9.1.1. Message Term ASSIGNMENTSuiiiunieiii e e e e e e e e e e e e e e eanaeeees
9.1.2. The Period as a Placeholderuuiiiiiiiiii e

Templates Containing String Patternso

Templates Containing Positional (NUMeric) PAtternsccooovviiiieiiiinieeeiieeeeiie e
9.3.1. Combining Patterns and Parsing into WOrdsccooooiiiiiiiiiiiiniiiii e
Parsing with Variable Patterns ..o

Using UPPER, LOWER, and CASELESSooioiiiiiii e
Parsing INStruCtionS SUMMAIY ... couuiiiiiiiiii e e e e e et e e e eaens
Parsing INStructions EXamPIEScoouniiiiiiiii e

Advanced TOPICS IN PArSINGuuuiiiiiiiieiiii ettt e e e e e e
9.8.1. Parsing Several StrINGSccouuuiiiiiiiiiiii e
9.8.2. Combining String and Positional Patternscooviiiiiiiiinieiiiieec e
9.8.3. Conceptual Overview of Parsingccoveviiiiiiiiiiii e e e

10. Numbers and Arithmetic

10.1
10.2

10.3
10.4
10.5

c PIECISION .o e
 AITNMETIC OPEIALOIS ...t ettt ettt e e e e e eat e eens
B0, 2.0, POWET ettt
02 1 (=T = DTV T o
10.2.3. REMAINAET ...ttt et e e e e e e e e e e e e ennneenas
10.2.4. Operator EXAMPIES ...t e
. Exponential NOTAtiONcouniiii e e
. NUMETIC COMPANISONSiiiiiiii et ettt e et e e et e e e e e enees
. Limits and Errors when Rexx Uses Numbers DireCtlycooveveiiiiiiiiiiniiiiiinieceenenn.

11. Conditions and Condition Traps
11.1. Action Taken when a Condition IS NOt Trappedovieuiiiiiiiiiie e
11.2. Action Taken when a Condition IS Trappedccouuiiiiiiiiiiie e
11.3. Condition INFOrMEALIONiieii e e e e e e e e ees

11.3.1. DESCHIPLVE STINGS wevueeeiiineeiiii ettt ettt e et e et e e et e e et eeeaaa s
11.3.2. Additional Object INformationcoeveiiiiiii e
11.3.3. The Special Variable RCcoiiiiiiiii e
11.3.4. The Special Variable SIGL ...
11.3.5. CoNditioN ODJECLiiieiiii e

12. Concurrency

12.1
12.2
12.3

CEBAIY REPIY e
Y 1= 1ST Vo L= @ o] (= od £
B B 1= = T || A O o T o T =1 o o3
12.3.1. Sending Messages within an ACHIVILYccoooiiiiiiiiii e,

X

12.4. Using Additional Concurrency MeChaniSMScc.uiiiiiiiiiiiiiiiiei e
12.4.1. SETUNGUARDED Method and UNGUARDED Optioncccovvviviiiiineeeeeeannns
12.4.2. GUARD ON and GUARD OFF ...
12.4.3. Guarded MEtNOSiiiiiiii e e eaaas
12.4.4. Additional EXAmMPIESciiiiiiiii e

13. The Security Manager

13.1. Calls to the SeCUrity MaNAGETc.uiiiiieiiieei e e e e e e e e et e e e e aneees
R T O O e T 13 o] - P

14. Input and Output Streams

14.1. The Input and OULPUL MOEIouiiiiiii e
o T o 10 [] (=T 11 I S PP PTUPTTPRPPN
14.1.2. OULPUL SEIEAIMS ...eiieiiit ittt ettt ettt e e et et e et e et e en e aa e et e eaaeaaenns
14.1.3. External Data QUEUEooiuuniiiiie e e e e e e e e e e e eeanns
14.1.4. Default Stream NAMESc..oiiiiii e e e e e
14.1.5. Line versus Character POSItIONINGccvuiiiiiiiiiiei e e

S 410] (=T g T=T) = 4o o P

14.3. Operating SYStEM SPECITICScuuiiei i e

14.4. Examples of Input and OULIPULiiuiiii e ea e

14.5. Errors during INput and OUEPULoouuiiiiiiiee e

14.6. Summary of Rexx I/O Instructions and Methodsccoviiiiiiiiiiiinieiii e,

15. Debugging Aids

15.1. Interactive Debugging Of Programsoociiiuiiiiiiiiiee e e
15.2. DEBUGGING AIUS ..uieiiiiiiee ittt e e et
15.3. RXTRACE Variableocooiiiiiii e e
15.4. *NEW* Debugging Multithreaded Programscccoieiiiiiiiiiieinc e
15.4.1. Multithreaded Additions t0 TRACEc..uiiiiiiiieiii e
15.4.2. EXAMPIES oot

16. Reserved Keywords
17. Special Variables

18. Useful Services

18.1. WINAOWS COMMANGAS . ..uiitiiiiiiiiiiiie et ee e e e et e e e e e e e e e et e et e et e et e et eeaaeeenns
18.2. LINUX COMIMANGAS ..ouiitiiitieitiei e ettt e e e e et e e e et et e e et e e e et e et e st s aaesaneeaeeaeees
18.3. Subcommand HandIEr SEIVICEScuuiiniiiiiiei e e eaas

18.3.1. The RXSUBCOM COMMANGuiviiiiiiiii it
18.4. The RXQUEUE FiltEIuciiiiiii e
18.5. Distributing Programs WithOUt SOUICEviiiiiiiiiiiiiii e

A. Using DO and LOOP

AL, SIMPIE DO GIOUP .eettnieiiii ettt ettt e et et e ettt e e e e et e e e e ett e e e eett e eeeebeaeeees
N = =T o =1 1] Y= 1 T 1
A.2.1. SImple REPELItIVE LOOPS ..u.iiieiiiiieiii ettt e e e e e e
A.2.2. Controlled REPEtitiVe LOOPSccuuiiiiiiiiiiiei et e e e et ea e
A.2.3. Repetitive Loops over COHECHONSc..uiiiuiiiiiieei e
A.2.4. Repetitive LOOPS OVEr SUPPHEISoiiiiiiieie e
A.3. Conditional Phrases (WHILE and UNTIL)uiiiiiiiiiiiiiieeeii e
A4, LABEL PRIASE ...oeiiiiiii ittt et
A5, COUNTER PRIBSE ...ttt ettt n s
A.6. Conceptual Model Of LOOPS .. .cvuiiiiiiiiiiiei et

B. Migration

B.1. Incompatible 00REXX fEALUIESceuiiiiiiii e
B.1.1. RexxUtil SySTEMPFIIENAMEoiiiiiiiii e

B.2. Deprecated REXX fRALUIESoiiuiiii it e e e aa e 661

B.2.1. RexxUtil Semaphore fUNCLIONSocooiiiiiiiii e 661
B.2.2. RexxUtil SysLoadFuncs/SYSDIOPFUNCScoivuiiiiiiiiiiieeeiie e 661
B.2.3. ::OPTIONS NOVALUE ERROR dif€CtiVecccvvuiiiiiiiiieiiiiiiee e 661
B.2.4. Class ArgULLcoouiii e 662
C. Error Numbers and Messages 663
L I ¢ o T 663
C.1.1. Error 3 - Failure during initialization.cccoceiiiiiiiriii e 663
C.1.2. Error 4 - Program interrupted.cceuiieiiiiiiie i e e e et e e e 663
C.1.3. Error 5 - System resources exhausted.ccoviiiiiiiiiieiiiei e, 664
C.1.4. Error 6 - Unmatched "/*" OF QUOLE.c.uiiiiiiiiiii e 664
C.1.5. Error 7 - WHEN or OTHERWISE eXPected.ccccuiiiiiiiiiieiiiiieeeiiiieeeeeiiee 664
C.1.6. Error 8 - Unexpected THEN Or ELSE.ccouuiiiiiiiiiiiiii e 665
C.1.7. Error 9 - Unexpected WHEN or OTHERWISE.c.ccciiiiiiiiiiiee e 665
C.1.8. Error 10 - Unexpected or unmatched END.cccoovviiiiiiiiiiie e, 665
C.1.9. Error 11 - Control stack full.coouiiiiii e 666
C.1.10. Error 13 - Invalid character in Program.occuuioieuieeiieeiee e e 667
C.1.11. Error 14 - Incomplete DO/LOOP/SELECT/IF.coiviiiiiiiiiiiiieeieeee e 667
C.1.12. Error 15 - Invalid hexadecimal or binary String.cccoooviiiiiinniiiinne, 667
C.1.13. Error 16 - Label Not fouNd.ooiiiiiiiiiiii e 668
C.1.14. Error 17 - Unexpected PROCEDURE.cccoiviiiiiiiiieie e e e 668
C.1.15. Error 18 - THEN eXPECIEA.ieuiiiiii i 669
C.1.16. Error 19 - String or symbol expected.c.ccooiiiiiiiiiii e 669
C.1.17. Error 20 - Symbol @XPeCed.iiieiiiieiiiiiii it 671
C.1.18. Error 21 - Invalid data on end of clause.c.cooiiiiiiiiiii e 673
C.1.19. Error 22 - Invalid character String.cccceuiiiiiiiiiiier e 674
C.1.20. Error 23 - Invalid data StriNg.cc.uieeeiiiiiiicieee e 674
C.1.21. Error 24 - Invalid TRACE reqUEST.c.uuiiiiiiiii i 674
C.1.22. Error 25 - Invalid subkeyword found.coooiiiiiiiiiii e 675
C.1.23. Error 26 - Invalid whole number. ..., 677
C.1.24. Error 27 - Invalid DO Or LOOP SYNEAX.ceevvinieiiiiiiaeiiiiieeeeiie e et eeeiiaeaees 678
C.1.25. Error 28 - Invalid LEAVE or ITERATE. . ..ottt 679
C.1.26. Error 29 - Environment name t00 lONQ.coovvuiiiiiiiiiiiiei e 679
C.1.27. Error 30 - Name or symbol t00 I0Ng.ccoviiniiiiii e, 679
C.1.28. Error 31 - Name starts with number or ".".o, 680
C.1.29. Error 33 - Invalid expression reSuUlt.cooeuiiiiiiiiiie e 680
C.1.30. Error 34 - Logical value Not 0 OF L.couuniiiiiiiiieeiiii et 681
C.1.31. Error 35 - Invalid eXPreSSION.ivee i e e e e e e e e e e 681
C.1.32. Error 36 - Unmatched "(" or "[" in @XPression.coceueveviiiieiiieeiiiieciiieeaneeennn 684
C.1.33. Error 37 - Unexpected ", "), OF M . o 684
C.1.34. Error 38 - Invalid template or pattern.ccoooiiiiiiiiiii e 685
C.1.35. Error 39 - Evaluation stack overflow.ccoooiiiiiiiiiiii e 685
C.1.36. Error 40 - Incorrect call t0 roUtiNe.couiiiiiiiiii e 685
C.1.37. Error 41 - Bad arithmetic CONVEISION.ovviiiiiiiiiiiiiie e e 688
C.1.38. Error 42 - Arithmetic overflow/underflow.ccooooiiiiiiiiiiiii e, 688
C.1.39. Error 43 - Routing NOt fOUND.ooiuniiiiiii e 689
C.1.40. Error 44 - Function or message did not return data.cc.oceivieiiiiiiiniennnns 689
C.1.41. Error 45 - No data specified on function RETURN.ccccooviiiiiiniiiiiiineeiinnnn. 690
C.1.42. Error 46 - Invalid variable reference.coooeeoiiiiiiiiiii e 690
C.1.43. Error 47 - Unexpected 1abel.ccooeeiiiii e 690
C.1.44. Error 48 - Failure in SYStEM SEIVICE.c.uiiiiiieiiiiieeii et ee e e e e e e 691
C.1.45. Error 49 - INterpretation ©TOF.ceu. i eaaaeeees 691
C.1.46. Error 88 - Invalid argumEeNt.iiiiiiiiiiaiiie e 691

Xii

C.1.47. Error 89 - Variable or message term expected.coooveviiiiiiiiiiniiiiiieeieeeen, 693

C.1.48. Error 90 - External name not fouNnd.cooeiiiiiiiiiiii e 693

C.1.49. Error 91 - NO result ODJECE.cooiiiiiiiii e 694

C.1.50. EITOr 92 - OLE BITOK. .iiuiiiiiieii ettt et e e et e e e e e e eees 694

C.1.51. Error 93 - Incorrect call to method.ccoiiiiiiiiiiii 695

C.1.52. Error 97 - Object method not found.ccooiiiiiiiii e 699

C.1.53. Error 98 - EXECULION ©ITOK. ...euuiii ettt e e e e eaa s 699

C.1.54. Error 99 - TranSlation ©ITOiiiuueii e e e e e e een s 703

C.2. RXSUBCOM ULIlIty PrOgIamieiiiiiiieiiiii ettt 706
C.2.1. Error 116 - The RXSUBCOM REGISTER parameters are incorrect. 706

C.2.2. Error 117 - The RXSUBCOM DROP parameters are inCorrect.cccceeevunnene. 706

C.2.3. Error 118 - The RXSUBCOM LOAD parameters are inCOrrect.cceeeeen... 706

C.2.4. Error 125 - The RXSUBCOM QUERY parameters are inCorrect.c....... 707

C.3. RXQUEUE ULlIty PrOgramcoouuuieiiiiiiee ettt ettt e et e e 707
C.3.1. Error 119 - The REXX rxapi queuing system is not available. 707

C.3.2. Error 120 - The size of the data iS iNCOrrect.ccoovveiiiiiniiiiii e, 707

C.3.3. Error 121 - Storage for data queues is exhausted.c.cceeviiriieiiinieiineennns 707

C.3.4. Error 122 - The name %1 is not a valid queue name.ccoeveeuiiiiiineeinneennnn. 707

C.3.5. Error 123 - The queue access mode iS NOt COMECt.ccuivieuniiiiiieiiiieiiieeennnn. 707

C.3.6. Error 124 - The queue %1 d0es NOt €XIST.veveeuinieiiiiiieiiii et 707

C.3.7. Error 131 - The syntax of the command is inCorrect.c.occoeveviieviineninnennnn. 708

C.3.8. Error 132 - System error occurred while processing the command. 708

C.4. rexXC ULIIILY PrOQramociuiiiiiii e e e e e e e e e e e e e e e e e eanaas 708
C.4.1. Error 127 - The rexxc command parameters are iNCOrrect.ccceceeuveeeuneennnn. 708

C.4.2. Error 128 - Output file name must be different from input file name. 708

C.4.3. Error 129 - SYNTAX: rexxc inputfile [outputfile] [-S] [-€] ...cvvvviiiiiiiiieiiiieeeie, 708

C.4.4. Error 130 - Without outputfile rexxc only performs a syntax check. 708

D. Notices 709
D 0 =T [T o 1 P Vg PP 709

D.2. Source Code FOor ThiS DOCUMENTciuuiiiiiiiiii e 710

E. Common Public License Version 1.0 711
[B = 11 011 1o PPN 711

E.2. Grant Of RIGNTS ... 711

S R = o U =T 0 =T £ 712

E.4. Commercial DiStriDULIONcooouuiiiiiiii e e eees 712

[T N [0 VY= 1 = g 1 PP 713

E.6. Disclaimer oOf Liabilityco..iiiiuiii e e 713

S =T o T - PN 713

F. Revision History 715
Index 716

Xii

Preface

This book describes the Open Object Rexx Interpreter, called the interpreter or language processor in
the following, and the object-oriented Rexx language.

This book is intended for people who plan to develop applications using Rexx. Its users range from the
novice, who might have experience in some programming language but no Rexx experience, to the
experienced application developer, who might have had some experience with Open Object Rexx.

This book is a reference rather than a tutorial. It assumes you are already familiar with object-oriented
programming concepts.

Descriptions include the use and syntax of the language and explain how the language processor
"interprets"” the language as a program is running.

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

1.1. Typographic Conventions

Typographic conventions are used to call attention to specific words and phrases. These conventions,
and the circumstances they apply to, are as follows.

Mono-spaced Bold is used to highlight literal strings, class names, or inline code examples. For
example:

The Class class comparison methods return . true or . false, the result of
performing the comparison operation.

This method is exactly equivalent to subWord(n, 1).

Mono-spaced Normal denotes method names or source code in program listings set off as separate
examples.

This method has no effect on the action of any hasentry, hasIndex, items,
remove, or supplier message sent to the collection.

-- reverse an array
a = .Array~of("one", "two", "three", "four", "five")

-- five, four, three, two, one
aReverse = .CircularQueue~new(a~size)~appendAll(a)~makeArray("lifo")

Proportional Italic is used for method and function variables and arguments.

A supplier loop specifies one or two control variables, index, and item, which receive a
different value on each repetition of the loop.

Returns a string of length length with string centered in it and with pad characters
added as necessary to make up length.

1.2. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Xiv

How to Read the Syntax Diagrams

@e

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

M

Important boxes detail things that are easily missed, like mandatory initialization. Ignoring a box
labeled 'Important’ will not cause data loss but may cause irritation and frustration.

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. How to Read the Syntax Diagrams

Throughout this book, syntax is described using the structure defined below.

Read the syntax diagrams from left to right, from top to bottom, following the path of the line.
The »— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next line.

The --— symbol indicates that a statement is continued from the previous line.

The —»< symbol indicates the end of a statement.

Required items appear on the horizontal line (the main path).

DD—(STATEMENT)— required_item |-

Optional items appear below the main path.
optional_item

If you can choose from two or more items, they appear vertically, in a stack. If you must choose one
of the items, one item of the stack appears on the main path.

>>—[STATEMENT required_choicel T

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

XV

Getting Help and Submitting Feedback

»»—{ STATEMENT } —
J

optional_choicel

optional _choice2

« If one of the items is the default, it is usually the topmost item of the stack of items below the main

path.

»—' STATEMENT J >«

default_choice

optional_choice

optional_choice

» A path returning to the left above the main line indicates an item that can be repeated.

»—(STATEMENT

repeatable_item

A repeat path above a stack indicates that you can repeat the items in the stack.

» A pointed rectangle around an item indicates that the item is a fragment, a part of the syntax
diagram that appears in greater detail below the main diagram.

>>—(STATEMENT)—< DETAIL - fragment)—N

» Keywords appear in uppercase (for example, SIGNAL). They must be spelled exactly as shown
but you can type them in upper, lower, or mixed case. Variables appear in all lowercase letters (for
example, index). They represent user-supplied names or values.

« If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

»—(MAX(

number

3. Getting Help and Submitting Feedback

The Open Object Rexx Project has a number of methods to obtain help and submit feedback for
ooRexx and the extension packages that are part of ooRexx. These methods, in no particular order of
preference, are listed below.

3.1. The Open Object Rexx SourceForge Site

Open Object Rexx utilizes SourceForge to house its source repositories, mailing lists and other project
features at https://sourceforge.net/projects/oorexx. ooRexx uses the Developer and User mailing lists
at https://sourceforge.net/p/oorexx/mailman for discussions concerning ooRexx. The ooRexx user is
most likely to get timely replies from one of these mailing lists.

XVi

https://sourceforge.net/projects/oorexx
https://sourceforge.net/p/oorexx/mailman

The Rexx Language Association Mailing List

Here is a list of some of the most useful facilities provided by SourceForge.

The Developer Mailing List
Subscribe to the oorexx-devel mailing list at https.//lists.sourceforge.net/lists/listinfo/oorexx-
devel to discuss ooRexx project development activities and future interpreter enhancements.
You can find its archive of past messages at http://sourceforge.net/mailarchive/forum.php?
forum_name=oorexx-devel.

The Users Mailing List
Subscribe to the oorexx-users mailing list at htips://lists.sourceforge.net/lists/listinfo/oorexx-users
to discuss how to use ooRexx. It also supports a historical archive of past messages.

The Announcements Mailing List
Subscribe to the oorexx-announce mailing list at https.//lists.sourceforge.net/lists/listinfo/oorexx-
announce to receive announcments of significant ooRexx project events.

The Bug Mailing List
Subscribe to the oorexx-bugs mailing list at https://lists.sourceforge.net/lists/listinfo/oorexx-bugs to
monitor changes in the ooRexx bug tracking system.

Bug Reports
You can view ooRexx bug reports at https:/sourceforge.net/p/oorexx/bugs. To be able to create
new bug reports, you will need to first register for a SourceForge userid at https://sourceforge.net/
user/registration. When reporting a bug, please try to provide as much information as possible to
help developers determine the cause of the issue. Sample program code that can reproduce your
problem will make it easier to debug reported problems.

Documentation Feedback
You can submit feedback for, or report errors in, the documentation at https://sourceforge.net/p/
oorexx/documentation. Please try to provide as much information in a documentation report as
possible. In addition to listing the document and section the report concerns, direct quotes of the
text will help the developers locate the text in the source code for the document. (Section numbers
are generated when the document is produced and are not available in the source code itself.)
Suggestions as to how to reword or fix the existing text should also be included.

Request For Enhancement

You can new suggest ooRexx features or enhancements at https.//sourceforge.net/p/oorexx/
feature-requests.

Patch Reports

If you create an enhancement patch for ooRexx please post the patch at https://sourceforge.net/
p/oorexx/patches. Please provide as much information in the patch report as possible so that the
developers can evaluate the enhancement as quickly as possible.

Please do not post bug fix patches here, instead you should open a bug report at https:/
sourceforge.net/p/oorexx/bugs and attach the patch to it.

The ooRexx Forums
The ooRexx project maintains a set of forums that anyone may contribute to or monitor. They are
located at https://sourceforge.net/p/oorexx/discussion. There are currently three forums available:
Help, Developers and Open Discussion. In addition, you can monitor the forums via email.

3.2. The Rexx Language Association Mailing List
The Rexx Language Association maintains a forum at http.//www.rexxla.org/forum.html.

XVii

https://lists.sourceforge.net/lists/listinfo/oorexx-devel
https://lists.sourceforge.net/lists/listinfo/oorexx-devel
http://sourceforge.net/mailarchive/forum.php?forum_name=oorexx-devel
http://sourceforge.net/mailarchive/forum.php?forum_name=oorexx-devel
https://lists.sourceforge.net/lists/listinfo/oorexx-users
https://lists.sourceforge.net/lists/listinfo/oorexx-announce
https://lists.sourceforge.net/lists/listinfo/oorexx-announce
https://lists.sourceforge.net/lists/listinfo/oorexx-bugs
https://sourceforge.net/p/oorexx/bugs
https://sourceforge.net/user/registration
https://sourceforge.net/user/registration
https://sourceforge.net/p/oorexx/documentation
https://sourceforge.net/p/oorexx/documentation
https://sourceforge.net/p/oorexx/feature-requests
https://sourceforge.net/p/oorexx/feature-requests
https://sourceforge.net/p/oorexx/patches
https://sourceforge.net/p/oorexx/patches
https://sourceforge.net/p/oorexx/bugs
https://sourceforge.net/p/oorexx/bugs
https://sourceforge.net/p/oorexx/discussion
http://www.rexxla.org/forum.html

comp.lang.rexx Newsgroup

3.3. comp.lang.rexx Newsgroup

The comp.lang.rexx newsgroup at https://groups.google.com/forum/#!forum/comp.lang.rexx is a good
place to obtain help from many individuals within the Rexx community. You can obtain help on Open
Object Rexx and other Rexx interpreters and tools.

4. Related Information

See also Open Object Rexx: Programmer Guide and Open Object Rexx: Application Programming
Interfaces.

XViii

https://groups.google.com/forum/#!forum/comp.lang.rexx

Chapter 1.

Open Object Rexx General Concepts

The Rexx language is particularly suitable for:
 Application scripting

» Command procedures

* Application front ends

» User-defined macros (such as editor subcommands)
* Prototyping

e Personal computing

As an object-oriented language, Rexx provides data encapsulation, polymorphism, an object class
hierarchy, class-based inheritance of methods, and concurrency. It includes a number of useful base
classes and allows you create new object classes of your own.

Open Object Rexx is compatible with earlier Rexx versions, both non-object based Rexx and IBM's
Object Rexx. It has the usual structured-programming instructions, for example IF, SELECT, DO
WHILE, and LEAVE, and a number of useful built-in functions.

The language imposes few restrictions on the program format. There can be more than one clause
on a line, or a single clause can occupy more than one line. Any indentation scheme is allowed. You
can, therefore, code programs in a format that emphasizes their structure, making them easier to read.

There is no limit to the size of variable values, as long as all values fit into the storage available. There
are no restrictions on the types of data that variables can contain.

A language processor (interpreter) runs Rexx programs. That is, the program runs line by line and
word by word, without first being translated (compiled) to machine language. One of the advantages of
this is that you can fix the error and rerun the program faster than when using a compiler.

Note: Open Object Rexx also supplies the rexxc program that can be used to translate Rexx programs
into a sourceless executable file. Translating a program is not the same as compiling a program to
machine language. A translated Rexx program will still be interpreted line by line, though it will typically
start faster as the initial parsing has already been done.

1.1. What Is Object-Oriented Programming?

Object-oriented programming is a way to write computer programs by focusing not on the instructions
and operations a program uses to manipulate data, but on the data itself. First, the program simulates,
or models, objects in the physical world as closely as possible. Then the objects interact with each
other to produce the desired result.

Real-world objects, such as a company's employees, money in a bank account, or a report, are stored
as data so the computer can act upon it. For example, when you print a report, print is the action and
report is the object acted upon. Essentially, the objects are the "nouns”, while the actions are the
"verbs".

1.2. Modularizing Data

Modularizing Data

In conventional, structured programming, actions like print are often isolated from the data by placing
them in subroutines or modules. A module typically contains an operation for implementing one

simple action. You might have a PRINT module, a SEND module, an ERASE module. The data these
modules operate on must be constructed by the programmer and passed to the modules to perform an

action.

PROGRAM ...

cata
data
data data
data data q
ata
datg data

data
data data
data

But with object-oriented programming, it is the data that is modularized. And each data module
includes its own operations for performing actions directly related to its data. The programmer that
uses the objects need only be aware of the operations an object performs and not how the data is

organized internally.

PRINT
Report

data
data
data
data
data

SEND

ERASE

ERIE

Figure 1.1. Modular Data—a Report Object

In the case of report, the report object would contain its own built-in PRINT, SEND, ERASE, and FILE

operations.

Object-oriented programming lets you model real-world objects—even very complex ones—precisely
and elegantly. As a result, object manipulation becomes easier and computer instructions become
simpler and can be modified later with minimal effort.

2

Modeling Objects

Object-oriented programming hides any information that is not important for acting on an object,
thereby concealing the object's complexities. Complex tasks can then be initiated simply, at a very
high level.

1.3. Modeling Objects

In object-oriented programming, objects are modeled to real-world objects. A real-world object has
actions related to it and characteristics of its own.

Take a ball, for example. A ball can be acted on—rolled, tossed, thrown, bounced, caught. But it also
has its own physical characteristics—size, shape, composition, weight, color, speed, position. An
accurate data model of a real ball would define not only the physical characteristics but all related
actions and characteristics in one package:

BOUNCE

Size
Shape
Comp
Weight
Color
Speed
Pos

THROW
HO1VvO

ROLL ——TOSS
Figure 1.2. A Ball Object

In object-oriented programming, objects are the basic building blocks—the fundamental units of data.

There are many kinds of objects; for example, character strings, collections, and input and output
streams. An object—such as a character string—always consists of two parts: the possible actions or
operations related to it, and its characteristics or variables. A variable has a name, and an associated
data value that can change over time. The variables represent the internal state of the object, and can
be directly accessed only by the code that implements the object's actions.

BOUNCE
Size = 3
Shape = round
< Comp = rubber Q
8 Weight = 2 a
E Color = yellow T
Speed = 32
Pos = 4

ROLL ——TOSS

Figure 1.3. Ball Object with Variable Names and Values

To access an object's data, you must always specify an action. For example, suppose the object is the
number 5. Its actions might include addition, subtraction, multiplication, and division. Each of these

3

How Objects Interact

actions is an interface to the object's data. The data is said to be encapsulated because the only way
to access it is through one of these surrounding actions. The encapsulated internal characteristics of
an object are its variables. The variables are associated with an object and exist for the lifetime of that
object:

Subtraction

Addition
o
ualsing

Multiplication
Figure 1.4. Encapsulated 5 Object

1.4. How Objects Interact

The actions defined by an object are its only interface to other objects. Actions form a kind of "wall"
that encapsulates the object, and shields its internal information from outside objects. This shielding
is called information hiding. Information hiding protects an object's data from corruption by outside
objects, and also protects outside objects from relying on another object's private data, which can
change without warning.

One object can act upon another (or cause it to act) only by calling that object's actions, namely by
sending messages. Objects respond to these messages by performing an action, returning data, or
both. A message to an object must specify:

» Areceiving object

» The "message send" symbol, ~, which is called the twiddle
« The action and, optionally in parentheses, any parameters required by the action

So the message format looks like this:
object~action(parameters)

Assume that the object is the string 'iH. Sending it a message to use its REVERSE action:
"1iH"~reverse

returns the string object Hi! .

1.5. Methods

Sending a message to an object results in performing some action; that is, it executes some
underlying code. The action-generating code is called a method. When you send a message to an
object, the message is the name of the target method. Method names are character strings like

4

Data Abstraction

reverse. In the preceding example, sending the reverse message to the !iH object causes it to
run the reverse method. Most objects are capable of more than one action, and so have a number of
available methods.

The classes Rexx provides include their own predefined methods. The Message class, for example,
has completed, init, notify, result, send, and start methods. When you create your own
classes, you can write new methods for them in Rexx code. Much of the object programming in Rexx
is writing the code for the methods you create.

Rexx lets you send the same message to objects that are different:

Example 1.1. Methods

"1iH"~reverse -- Reverses the characters "!iH" to form "Hi!"
pen~reverse -- Reverses the direction of a plotter pen
ball~reverse -- Reverses the direction of a moving ball

As long as each object has its own reverse method, reverse runs even if the programming
implementation is different for each object. Each object knows only its own version of reverse. And
even though the objects are different, each reverses itself as dictated by its own code.

Although the !iH object's reverse code is different from the plotter pen's, the method name can
be the same because Rexx keeps track of the methods each object owns. You do not need to have
several message names like reverse_string, reverse_pen, reverse_ball. This keeps
method-naming schemes simple and makes complex programs easy to follow and modify.

1.6. Data Abstraction

The ability to create new, high-level data types and organize them into a meaningful class structure
is called data abstraction. Data abstraction is at the core of object-oriented programming. Once

you model objects with real-world properties from the basic data types, you can continue creating,
assembling, and combining them into increasingly complex objects. Then you can use these objects
as if they were part of the original programming language.

1.7. Classes and Instances

In Rexx, objects are organized into classes. Classes are like templates; they define the methods and
variables that a group of similar objects have in common and store them in one place.

If you write a program to manipulate some screen icons, for example, you might create an Icon class.
In that Icon class you can include all the icon objects with similar actions and characteristics:

Classes and Instances

Icon class

Windows system icon instance
shredder icon instance
information icon instance

Figure 1.5. A Simple Class

All the icon objects might use common methods like DRAW or ERASE. They might contain common
variables like position, color, or size. What makes each icon object different from one another is the
data assigned to its variables. For the Windows system icon, it might be position="20,20", while for the
shredder it is "20,30" and for information it is "20,40":

Icon class

Windows system icon instance
(position='20,20")

shredder icon instance
(position='20,30")

information icon instance
(position='20,40")

Figure 1.6. Icon Class

Objects that belong to a class are called instances of that class. As instances of the Icon class, the
Windows system icon, shredder icon, and information icon acquire the methods and variables of that
class. Instances behave as if they each had their own methods and variables of the same name.

All instances, however, have their own unique properties—the data associated with the variables.
Everything else can be stored at the class level.

Polymorphism

e

lcon class
(position=)

Windows system icon instance
('20,20"

shredder icon instance
('20,30"

information icon instance
('20,40"

Figure 1.7. Instances of the Icon Class

If you must update or change a particular method, you only have to change it at one place, at the class
level. This single update is then acquired by every new instance that uses the method.

A class that can create instances of an object is called an object class. The Icon class is an object
class you can use to create other objects with similar properties, such as an application icon or a

drives icon.

An object class is like a factory for producing instances of the objects.

1.8. Polymorphism

Polymorphism gives you a single interface to objects of different types. This example shows instances
of classes inheriting from the Collection class, all sharing a common method named put, but with a
different implementation each.

Example 1.2. Polymorphism

stem~put("value", "tail") -- sets a Stem tail to "value"
stringTable~put("value", "index") -- sets a StringTable "index" to "value"
array~put("value", 1) -- sets Array index 1 to "value"
set~put("value") -- makes "value" a member of the Set

The ability to hide the various implementations of a method while leaving the interface the same
illustrates polymorphism. On a higher level, polymorphism permits extensive code reuse.

1.9. Subclasses, Superclasses, and Inheritance

When you write your first object-oriented program, you do not have to begin your real-world modeling
from scratch. Rexx provides predefined classes and methods. From there you can create additional
classes and methods of your own, according to your needs.

Rexx classes are hierarchical. Any subclass (a class below another class in the hierarchy) inherits the
methods and variables of one or more superclasses (classes above a class in the hierarchy):

Structure and General Syntax

Superclass
|
I | |

Subclass Subclass Subclass

Figure 1.8. Superclass and Subclasses

You can add a class to an existing superclass. For example, you might add the Icon class to the
Screen-Object superclass:

Screen-Object class

Iconclass Window class Bitmap class

Figure 1.9. The Screen-Object Superclass

In this way, the subclass inherits additional methods from the superclass. A class can have more
than one superclass, for example, subclass Bitmap might have the superclasses Screen-Object and
Art-Object. Acquiring methods and variables from more than one superclass is known as multiple
inheritance:

Screen-Object Art-Object
|
|

lcon Window Bitmap

Figure 1.10. Multiple Inheritance

1.10. Structure and General Syntax

A Rexx program is built from a series of clauses that are composed of:

» Zero or more whitespace characters (blank or horizontal tabs) (which are ignored)

» A sequence of tokens (see Section 1.10.4, “Tokens”)

» Zero or more whitespace characters (again ignored)

* A semicolon (;) delimiter that the line end, certain keywords, or the colon (:) implies.

Conceptually, each clause is scanned from left to right before processing, and the tokens composing
it are identified. Instruction keywords are recognized at this stage, comments are removed, and
sequences of whitespace characters (except within literal strings) are converted to single blanks.
Whitespace characters adjacent to operator characters and special characters are also removed.

1.10.1. Characters

A character is a member of a defined set of elements that is used for the control or representation
of data. You can usually enter a character with a single keystroke. The coded representation of

a character is its representation in digital form. A character, the letter A, for example, differs from
its coded representation or encoding. Various coded character sets (such as ASCIl and EBCDIC)
use different encodings for the letter A (decimal values 65 and 193, respectively). This book uses

8

Whitespace

characters to convey meanings and not to imply a specific character code, except where otherwise
stated. The exceptions are certain built-in functions that convert between characters and their
representations. The functions C2D, C2X, D2C, X2C, and XRANGE depend on the character set
used.

A code page specifies the encodings for each character in a set. Be aware that:
« Some code pages do not contain all characters that Rexx defines as valid (for example, the logical
NOT character).

« Some characters that Rexx defines as valid have different encodings in different code pages, for
example the exclamation mark (!).

1.10.2. Whitespace
A whitespace character is one that the interpreter recognizes as a "blank" or "space" character. There

are two characters used by Rexx as whitespace that can be used interchangeably:

(blank)
A "blank" or "space" character. This is represented by '20'X in ASCII implementations.

(horizontal tab)
A "tab". This is represented by '09'X in ASCII implementations.

Horizontal tabs encountered in Rexx program source are converted into blanks, allowing tab
characters and blanks to be use interchangeably in source. Additionally, Rexx operations such as the
PARSE instruction or the SUBWORD() built-in function will also accept either blank or tab characters
as word delimiters.

1.10.3. Comments

A comment is a sequence of characters delimited by specific characters. It is ignored by the program
but acts as a separator. For example, a token containing one comment is treated as two tokens.

The interpreter recognizes the following types of comments:
* A line comment, where the comment is limited to one line
* The standard Rexx comment, where the comment can cover several lines

A line comment is started by two subsequent minus signs (--) and ends at the end of a line. Example:

"Fred"
"Don't Panic!"
'You shouldn''t' -- Same as "You shouldn't"

In this example, the language processor processes the statements from 'Fred' to 'You
shouldn''t"', ignores the words following the line comment, and continues to process the statement

A standard comment is a sequence of characters (on one or more lines) delimited by /* and */.
Within these delimiters any characters are allowed. Standard comments can contain other standard

9

Comments

comments, as long as each begins and ends with the necessary delimiters. They are called nested
comments. Standard comments can be anywhere and of any length.

/* This is an example of a valid Rexx comment */

Take special care when commenting out lines of code containing /* or */ as part of a literal string.
Consider the following program segment:

Example 1.3. Comments

o1 parse pull input

02 if substr(input,1,5) = "/*123"
03 then call process

04 dept = substr(input,32,5)

To comment out lines 2 and 3, the following change would be incorrect:

o1 parse pull input

02 /* if substr(input,1,5) = "/*123"
03 then call process

04 */ dept = substr(input,32,5)

This is incorrect because the language processor would interpret the /* that is part of the literal
string /*123 as the start of a nested standard comment. It would not process the rest of the program
because it would be looking for a matching standard comment end (*/).

You can avoid this type of problem by using concatenation for literal strings containing /* or */; line 2
would be:

if substr(input,1,5) = "/" || "*123"
You could comment out lines 2 and 3 correctly as follows:

Example 1.4. Comments

o1 parse pull input

02 /* if substr(input,1,5) = "/" || "*123"
03 then call process

04 */ dept = substr(input,32,5)

Both types of comments can be mixed and nested. However, when you nest the two types, the type of
comment that comes first takes precedence over the one nested. Here is an example:

Example 1.5. Comments

"Fred"

"Don't Panic!"

'You shouldn''t' /* Same as "You shouldn't"

" -- The null string */

In this example, the language processor ignores everything after 'You shouldn''t' up to the end
of the last line. In this case, the standard comment has precedence over the line comment.

10

Tokens

When nesting the two comment types, make sure that the start delimiter of the standard comment /*
is not in the line commented out with the line comment signs.

Example 1.6. Comments

"Fred"

"Don't Panic!"

'You shouldn''t' -- Same as /* "You shouldn't"
" The null string */

This example produces an error because the language processor ignores the start delimiter of the
standard comment, which is commented out using the line comment.

1.10.4. Tokens

A token is the unit of low-level syntax from which clauses are built. Programs written in Rexx are
composed of tokens. Tokens can be of any length, up to an implementation-restricted maximum. They
are separated by whitespace or comments, or by the nature of the tokens themselves. The classes of
tokens are:

Literal strings

» Hexadecimal strings
 Binary strings

* Symbols

* Numbers

Operator characters

» Special characters

1.10.4.1. Literal Strings

A literal string is a sequence including any characters except line-end and end-of-file characters, and
delimited by a single quotation mark (') or a double quotation mark ("). You use two consecutive
double quotation marks ("") to represent one double quotation mark (") within a literal string delimited
by double quotation marks. Similarly, you use two consecutive single quotation marks (' ') to
represent one single quotation mark (') within a string delimited by single quotation marks. A literal
string is a constant and its contents are never modified when it is processed. Literal strings must be
complete on a single line. This means that unmatched quotation marks can be detected on the line
where they occur.

A literal string with no characters (that is, a string of length 0) is called a null string.
These are valid strings:
Example 1.7. Valid strings

"Fred"
"Don't Panic!"

11

Tokens

'You shouldn''t' /* Same as "You shouldn't" */
e /* The null string */

A literal string has no upper bound on the number of characters, limited only by available memory.

Note that a string immediately followed by a left parenthesis is considered to be the name of a
function. If immediately followed by the symbol X or X, it is considered to be a hexadecimal string. If
followed immediately by the symbol B or b, it is considered to be a binary string.

1.10.4.2. Hexadecimal Strings

A hexadecimal string is a literal string, expressed using a hexadecimal notation of its encoding. It is
any sequence of zero or more hexadecimal digits (0-9, a-f, A-F), grouped in pairs. A single leading 0
is assumed, if necessary, at the beginning of the string to make an even number of hexadecimal digits.
The groups of digits are optionally separated by one or more whitespace characters, and the whole
sequence is delimited by single or double quotation marks and immediately followed by the symbol

x or X. Neither x nor X can be part of a longer symbol. The whitespace characters, which can only

be on byte boundaries (and not at the beginning or end of the string), are to improve readability. The
language processor ignores them.

A hexadecimal string is a literal string formed by packing the hexadecimal digits given. Packing
the hexadecimal digits removes whitespace and converts each pair of hexadecimal digits into its
equivalent character, for example, '41'x to A.

Hexadecimal strings let you include characters in a program even if you cannot directly enter the
characters themselves. These are valid hexadecimal strings:

Example 1.8. Valid hexadecimal strings

"ABCD"x
"1d ec f8"X
'1 d8'x

e

A hexadecimal string is not a representation of a number. It is an escape mechanism that lets

a user describe a character in terms of its encoding (and, therefore, is machine-dependent). In
ASCII, '20"'x is the encoding for a blank. In every case, a string of the form '.. ... 'xis an
alternative to a straightforward string. In ASCII '41'x and "A" are identical, as are '20'x and a
blank, and must be treated identically.

The packed length of a hexadecimal string (the string with whitespace removed) is unlimited.

1.10.4.3. Binary Strings

A binary string is a literal string, expressed using a binary representation of its encoding. It is any
sequence of zero or more binary digits (0 or 1) in groups of 8 (bytes) or 4 (nibbles). The first group
can have less than four digits; in this case, up to three 0 digits are assumed to the left of the first digit,

12

Tokens

making a total of four digits. The groups of digits are optionally separated by one or more whitespace
characters, and the whole sequence is delimited by matching single or double quotation marks and
immediately followed by the symbol b or B. Neither b nor B can be part of a longer symbol. The
whitespace characters, which can only be byte or nibble boundaries (and not at the beginning or end
of the string), are to improve readability. The language processor ignores them.

A binary string is a literal string formed by packing the binary digits given. If the number of binary
digits is not a multiple of 8, leading zeros are added on the left to make a multiple of 8 before packing.
Binary strings allow you to specify characters explicitly, bit by bit. These are valid binary strings:

Example 1.9. Valid binary strings

"11110000"b /* == "f@"x */
"101 1101"b /* == "5d"x */
'1'b /* == '00000001'b or '01'x */
"10000 10101010"b /* == "0001 0000 1010 1010"b */
"t J5 e */

The packed length of a binary-literal string is unlimited.

1.10.4.4. Symbols

Symbols are groups of characters, selected from the:
« English alphabetic characters (A-Z and a-z).
» Numeric characters (0-9)

» Characters . ! ? and underscore ().

Any lowercase alphabetic character in a symbol is translated to uppercase (that is, lowercase a-z to
uppercase A-Z) before use.

These are valid symbols:

Example 1.10. Valid symbols

Fred
Albert.Hall
WHERE?

If a symbol does not begin with a digit or a period, you can use it as a variable and can assign it a
value. If you have not assigned a value to it, its value is the characters of the symbol itself, translated
to uppercase (that is, lowercase a-z to uppercase A-Z). Symbols that begin with a number or a period
are constant symbols and cannot directly be assigned a value.

One other form of symbol is allowed to support the representation of numbers in exponential format.
The symbol starts with a digit (0-9) or a period, and it can end with the sequence E or e, followed
immediately by an optional sign (- or +), followed immediately by one or more digits (which cannot be
followed by any other symbol characters). The character sequence to the left of the "E" or "e" must be
a valid simple number, consisting only of digits or '.". There must be at least one digit and at most one
".". The sign in this context is part of the symbol and is not an operator.

13

Tokens

These are valid numbers in exponential notation:

Example 1.11. Valid exponential numbers

17.3E-12
.03e+9

These are not valid numbers in exponential notation, but rather multiple tokens with an operator
between:

Example 1.12. Invalid exponential numbers

.E-12 -- no digits
3ae+6 -- non-digit character
3..0e+9 -- more than one '.'

1.10.4.5. Numbers

Numbers are character strings consisting of one or more decimal digits, with an optional prefix of a
plus (+) or minus (-) sign, and optionally including a single period (.) that represents a decimal point.
A number can also have a power of 10 suffixed in conventional exponential notation: an E (uppercase
or lowercase), followed optionally by a plus or minus sign, then followed by one or more decimal digits
defining the power of 10. Whenever a character string is used as a number, rounding can occur to a
precision specified by the NUMERIC DIGITS instruction (the default is nine digits). See Chapter 10,
Numbers and Arithmetic for a full definition of numbers.

Numbers can have leading whitespace (before and after the sign) and trailing whitespace.
Whitespace characters cannot be embedded among the digits of a number or in the exponential part.
Note that a symbol or a literal string can be a number. A number cannot be the name of a variable.

These are valid numbers:

Example 1.13. Valid numbers

12

Il_17.9Il
127.0650
73e+128

"+ 7.9E5 "

You can specify numbers with or without quotation marks around them. Note that the sequence -17.9
(without quotation marks) in an expression is not simply a number. It is a minus operator (which can be
prefix minus if no term is to the left of it) followed by a positive number. The result of the operation is

a number, which might be rounded or reformatted into exponential form depending on the size of the
number and the current NUMERIC DIGITS setting.

A whole number is a number that has a no decimal part and that the language processor would not
usually express in exponential notation. That is, it has no more digits before the decimal point than the
current setting of NUMERIC DIGITS.

Implementation maximum: The exponent of a number expressed in exponential notation can have
up to nine digits.

14

Tokens

1.10.4.6. Operator Characters

The characters+ - \ / % * | & = = > <andthe sequences >= <= \> \< \= >< <> ==

\== // && || ** > A< A= A== >> << >>= \<< << \>> >> <<= indicate operations
(see Section 1.11.2, “Operators”). A few of these are also used in parsing templates, and the equal
sign and the sequences += -= *= /= %= //= ||= &= |= &&= **=are also used to indicate

assignment. Whitespace characters and standard Rexx comments adjacent to operator characters
and within operator character sequences are ignored. Therefore, the following are identical in
meaning:

Example 1.14. White space and numbers

345>=123

345 >=123

345 >= 123

345 > = 123

345 >/*not smaller*/ = 123

Some of these characters (and some special characters—see the next section) might not be available
in all character sets. In this case, appropriate translations can be used. In particular, the vertical bar (])
is often shown as a split vertical bar (}).

@e

The Rexx interpreter uses ASCII character 124 in the concatenation operator and as the logical
OR operator. Depending on the code page or keyboard for your particular country, ASCIl 124 can
be shown as a solid vertical bar (|) or a split vertical bar (}). The character on the screen might
not match the character engraved on the key. If you receive error 13, Invalid character in
program, on an instruction including a vertical bar character, make sure this character is ASCII
124.

Throughout the language, the NOT (=) character is synonymous with the backslash (\). You can use
the two characters interchangeably according to availability and personal preference.

The Rexx interpreter recognizes both ASCII character 170 ('AA'x) and ASCII character 172 (' AC' x)
for the logical NOT operator. Depending on your country, the = might not appear on your keyboard. If
the character is not available, you can use the backslash (\) in place of -.

1.10.4.7. Special Characters

The following characters, together with the operator characters, have special significance when found
outside of literal strings:

These characters constitute the set of special characters. They all act as token delimiters, and
whitespace characters (blank or horizontal tab) adjacent to any of these are removed. There is an
exception: a whitespace character adjacent to the outside of a parenthesis or bracket is deleted only

15

Implied Semicolons

if it is also adjacent to another special character (unless the character is a parenthesis or bracket and
the whitespace character is outside it, too). For example, the language processor does not remove the
blank in A (Z). This is a concatenation that is not equivalent to A(Z), a function call. The language
processor removes the blanks in (A) + (Z) because this is equivalentto (A)+(2).

1.10.4.8. Example
The following example shows how a clause is composed of tokens:

Example 1.15. Special characters

"REPEAT" A+ 3;

This example is composed of six tokens—a literal string ("REPEAT"), a blank operator, a symbol (A,
which can have an assigned value), an operator (+), a second symbol (3, which is a number and a
symbol), and the clause delimiter (;). The blanks between the A and the + and between the + and the
3 are removed. However, one of the blanks between the "REPEAT" and the A remains as an operator.
Thus, this clause is treated as though written:

"REPEAT" A+3;

1.10.5. Implied Semicolons

The last element in a clause is the semicolon (;) delimiter. The language processor implies the
semicolon at a line end, after certain keywords, and after a colon if it follows a single symbol. This
means that you need to include semicolons only when there is more than one clause on a line or to
end an instruction whose last character is a comma.

A line end usually marks the end of a clause and, thus, Rexx implies a semicolon at most end of lines.

However, there are the following exceptions:

* The line ends in the middle of a multi-line (/* ... */) comment. The clause continues on to the next
line.

» The last token was the continuation character (a comma or a minus sign) and the line does not end
in the middle of a comment. (Note that a comment is not a token.)

Rexx automatically implies semicolons after colons (when following a single symbol or literal string,
a label) and after certain keywords when they are in the correct context. The keywords that have
this effect are ELSE, OTHERWISE, and THEN. These special cases reduce typographical errors
significantly.

1.10.6. Continuations

One way to continue a clause on the next line is to use the comma or the minus sign (-), which is
referred to as the continuation character. The continuation character is functionally replaced by
a blank, and, thus, no semicolon is implied. One or more comments can follow the continuation
character before the end of the line.

The following example shows how to use the continuation character to continue a clause:

16

Terms, Expressions, and Operators

Example 1.16. Continuations

say "You can use a comma", -- this line is continued
"to continue this clause."

or

say "You can use a minus"- -- this line is continued
"to continue this clause."

1.11. Terms, Expressions, and Operators

Expressions in Rexx are a general mechanism for combining one or more pieces of data in various
ways to produce a result, usually different from the original data. All expressions evaluate to objects.

Everything in Rexx is an object. Rexx provides some objects, which are described in later sections.
You can also define and create objects that are useful in particular applications—for example, a menu
object for user interaction. See Section 1.3, “Modeling Objects” for more information.

1.11.1. Terms and Expressions

Terms are literal strings, symbols, message terms and sequences, Array terms, Variable Reference
terms, function calls, or subexpressions interspersed with zero or more operators that denote
operations to be carried out on terms.

Literal strings, which are delimited by quotation marks, are constants.

Symbols (no quotation marks) are translated to uppercase. A symbol that does not begin with a digit
or a period can be the name of a variable; in this case the value of that variable is used. A symbol
that begins with a period can identify an object that the current environment provides; in this case, that
object is used. Otherwise a symbol is treated as a constant string. A symbol can also be compound.

Message terms are described in Section 1.11.4, “Message Terms”, Message sequences are described
in Section 1.11.5, “Message Sequences”.

Array terms are described in Section 1.11.6, “Array Term”.
Variable Reference terms are described in Section 1.11.7, “Variable Reference Term”.

Function calls (see Chapter 7, Functions), which are of the following form:

bb—' symbolorstring(; : j @-N

expression

The symbolorstring is a symbol or literal string.

An expression consists of one or more terms. A subexpression is a term in an expression surrounded
with a left and a right parenthesis.

17

Operators

Evaluation of an expression is left to right, modified by parentheses and operator precedence in the
usual algebraic manner (see Section 1.11.3, “Parentheses and Operator Precedence”). Expressions
are wholly evaluated, unless an error occurs during evaluation.

As each term is used in an expression, it is evaluated as appropriate. The result is an object.
Consequently, the result of evaluating any expression is itself an object (such as a character string).

1.11.2. Operators

An operator is a representation of an operation, such as an addition, to be carried out on one or

two terms. Each operator, except for the prefix operators, acts on two terms, which can be symbols,
strings, function calls, message terms, intermediate results, or subexpressions. Each prefix operator
acts on the term or subexpression that follows it. Whitespace characters (and comments) adjacent
to operator characters have no effect on the operator; thus, operators constructed from more than
one character can have embedded whitespace and comments. In addition, one or more whitespace
characters, if they occur in expressions but are not adjacent to another operator, also act as an
operator. The language processor functionally translates operators into message terms. For dyadic
operators, which operate on two terms, the language processor sends the operator as a message to
the term on the left, passing the term on the right as an argument. For example, the sequence

say 1+2
is functionally equivalent to:

say 1~u+u(2)

The blank concatenation operator sends the message " " (a single blank), and the abuttal
concatenation operator sends the "™ message (a null string). When the - character is used in an
operator, it is changed to a \. That is, the operators == and \= both send the message \= to the target
object.

For an operator that works on a single term (for example, the prefix - and prefix + operators), Rexx
sends a message to the term, with no arguments. This means -z has the same effect as z~"-".

See Section 5.1.4.2, “Comparison Methods” for comparison operator methods of the Object class and
Section 5.1.7.18, "Arithmetic Methods” for arithmetic operator methods of the String class.

There are four types of operators:
» Concatenation

» Arithmetic
» Comparison

* Logical

1.11.2.1. String Concatenation

The concatenation operators combine two strings to form one string by appending the second string to
the right-hand end of the first string. The concatenation may occur with or without an intervening blank.
The concatenation operators are:

18

Operators

(blank) Concatenate terms with one blank in between
Il Concatenate without an intervening blank
(abuttal) Concatenate without an intervening blank

You can force concatenation without a blank by using the | | operator.

The abuttal operator is assumed between two terms that are not separated by another operator. This
can occur when two terms are syntactically distinct, such as a literal string and a symbol, or when they
are only separated by a comment.

Examples:

An example of syntactically distinct terms is: if Fred has the value 37.4, then Fred"%" evaluates to
37 .4%.

If the variable PETER has the value 1, then (Fred) (Peter) evaluates to 37.41.
The two adjoining strings, one hexadecimal and one literal, "4a 4b"x"LMN" evaluate to JKLMN.

In the case of
Fred/* The NOT operator precedes Peter. */-Peter

there is no abuttal operator implied, and the expression is not valid. However,
(Fred)/* The NOT operator precedes Peter. */(-Peter)

results in an abuttal, and evaluates to 37 . 40.

1.11.2.2. Arithmetic

You can combine character strings that are valid numbers (see Section 1.10.4.5, “Numbers”) using the
following arithmetic operators:

+ Add

- Subtract

* Multiply

/ Divide

% Integer divide (divide and return the integer part of the result)

1 Remainder (divide and return the remainder—not modulo, because the result can
be negative)

** Power (raise a number to a whole-number power)

Prefix - Same as the subtraction: @ - number

Prefix + Same as the addition: @ + number

See Chapter 10, Numbers and Arithmetic for details about precision, the format of valid numbers, and
the operation rules for arithmetic. Note that if an arithmetic result is shown in exponential notation, it is
likely that rounding has occurred.

19

Operators

1.11.2.3. Comparison

The comparison operators compare two terms and return the value 1 if the result of the comparison is
true, or 0 otherwise.

The strict comparison operators all have one of the characters defining the operator doubled. The

==, \==, and-== operators test for an exact match between two strings. The two strings must be
identical (character by character) and of the same length to be considered strictly equal. Similarly, the
strict comparison operators such as >> or << carry out a simple character-by-character comparison,
with no padding of either of the strings being compared. The comparison of the two strings is from left
to right. If one string is shorter than the other and is a leading substring of another, then it is smaller
than (less than) the other. The strict comparison operators also do not attempt to perform a numeric
comparison on the two operands.

For all other comparison operators, if both terms involved are numeric, a numeric comparison (see
Section 10.4, “Numeric Comparisons”) is effected. Otherwise, both terms are treated as character
strings, leading and trailing whitespace characters are ignored, and the shorter string is padded with
blanks on the right.

Character comparison and strict comparison operations are both case-sensitive, and the exact
collating order might depend on the character set used for the implementation. In an ASCII
environment, such as Windows and Unix-like systems, the ASCII character value of digits is lower
than that of the alphabetic characters, and that of lowercase alphabetic characters is higher than that
of uppercase alphabetic characters.

The comparison operators and operations are:

= True if the terms are equal (numerically or when padded)

\=, == True if the terms are not equal (inverse of =)
> Greater than

< Less than

>< Greater than or less than (same as not equal)
<> Greater than or less than (same as not equal)
>= Greater than or equal to

\<, =< Not less than

<= Less than or equal to

\>, > Not greater than

== True if terms are strictly equal (identical)

==, 0== True if the terms are not strictly equal (inverse of ==
>> Strictly greater than

<< Strictly less than

>>= Strictly greater than or equal to

\<<, o<< Strictly not less than

<<= Strictly less than or equal to

\>> —>> Strictly not greater than

20

Parentheses and Operator Precedence

@e

Throughout the language, the NOT (=) character is synonymous with the backslash(\). You
can use the two characters interchangeably, according to availability and personal preference.
The backslash can appear in the following operators: \ (prefix not),\=, \==, \<, \>, \<<, and
\>>,

1.11.2.4. Logical (Boolean)

A character string has the value false if it is ®, and true if it is 1. The logical operators take one or two
such values and return 0 or 1 as appropriate. Values other than © or 1 are not permitted.

& AND — returns 1 if both terms are true.

| Inclusive OR — returns 1 if either term or both terms are true.

&& Exclusive OR — returns 1 if either term, but not both terms, is true.
Prefix \, - Logical NOT— negates; 1 becomes 0, and @ becomes 1.

1.11.3. Parentheses and Operator Precedence

Expression evaluation is from left to right; parentheses and operator precedence modify this:

« When parentheses are encountered—other than those that identify the arguments on messages
(see Section 1.11.4, "Message Terms”) and function calls—the entire subexpression between the
parentheses is evaluated immediately when the term is required.

* When the sequence
terml operatorl term2 operator2 term3

is encountered, and operator2 has precedence over operator1, the subexpression (term2
operator2 term3) is evaluated first.

Note, however, that individual terms are evaluated from left to right in the expression (that is, as
soon as they are encountered). The precedence rules affect only the order of operations.

For example, * (multiply) has a higher priority than + (add), so 3+2*5 evaluates to 13 (rather than the
25 that would result if a strict left-to-right evaluation occurred). To force the addition to occur before the
multiplication, you could rewrite the expression as (3+2) *5. Adding the parentheses makes the first
three tokens a subexpression. Similarly, the expression -3**2 evaluates to 9 (instead of -9) because
the prefix minus operator has a higher priority than the power operator.

The order of precedence of the operators is (highest at the top):

~ ~~ (message send)

+ - =\ (prefix operators)
** (power)

* [% I (multiply and divide)
+ - (add and subtract)

21

Parentheses and Operator Precedence

(blank) || (abuttal) (concatenation with or without blank)
= > < (comparison operators, all with equal precedence)

== >> <

\>> >>

<< <<

>= >>=

<= <<=

& (and)

| && (or, exclusive or)

Suppose the symbol A is a variable whose value is 3, DAY is a variable whose value is Monday, and
other variables are uninitialized. Then:

Example 1.17. Arithmetic

A+5 -> "8"

A-4*%2 > n"_gn

A/2 -> "1.5"

0.5%*2 -> "0.25"

(A+1)>7 -> "o" /* that is, .false */
n II:IIII -> II1II /* that lS, .true */
R -> "o" /* that is, .false */
n Il\::ll n -> Il1ll

/* that is, .true */

(A+1)*3=12 -> g1 /* that is, .true */
"Q77">"11" -> " /* that is, .true */
"er7" >> "11" -> "o" /* that is, .false */
"abc" >> "ab" -> " /* that is, .true */
"abc" << "abd" -> " /* that is, .true */
"ab " << "abd" -> " /* that is, .true */
Today is Day -> "TODAY IS Monday"

"If it is" day -> "If it is Monday"

Substr(Day, 2, 3) -> "ond" /* Substr is a function */
Tt xx" " -> XXX

22

Message Terms

The Rexx order of precedence usually causes no difficulty because it is the same as in
conventional algebra and other computer languages. There are two differences from common
notations:

e The prefix minus operator always has a higher priority than the power operator.

» Power operators (like other operators) are evaluated from left to right.

For example:
-3%*2 = 9 /* not -9 */
-(2+1)**2 == 9 /* not -9 */
2%*2*%*3 == 64 /* not 256 */

1.11.4. Message Terms

You can include messages to objects in an expression wherever a term, such as a literal string, is
valid. A message can be sent to an object to perform an action, obtain a result, or both.

A message term can have one of the following forms:

receiver messagename m' i :)
B symbol expression
»»—{ receiver [(D_><

expression

The receiver is a term (see Section 1.11.1, “Terms and Expressions” for a definition of term). It
receives the message. The ~ or ~~ indicates sending a message. The messagename is a literal
string or a symbol that is taken as a constant. The expressions (separated by commas) between

the parentheses or brackets are the arguments for the message. The receiver and the argument
expressions can themselves include message terms. If the message has no arguments, you can omit
the parentheses.

The left parenthesis, if present, must immediately follow a token (messagename or symbol) with no
blank in between them. Otherwise, only the first part of the construct is recognized as a message term.
(A blank operator would be assumed at that point.) Only a comment (which has no effect) can appear
between a token and the left parenthesis.

You can use any humber of expressions, separated by commas. The expressions are evaluated from
left to right and form the arguments during the execution of the called method. Any ARG, PARSE
ARG, or USE ARG instruction or ARG() built-in function in the called method accesses these objects
while the called method is running. You can omit expressions, if appropriate, by including extra
commas.

The receiver object is evaluated, followed by one or more expression arguments. The message hame
(in uppercase) and the resulting argument objects are then sent to the receiver object. The receiver

23

Message Sequences

object selects a method to be run based on the message name, and runs the selected method with the
specified argument objects. The receiver eventually returns, allowing processing to continue.

If the message term uses ~, the receiver method must return a result object. This object is included
in the original expression as if the entire message term had been replaced by the name of a variable
whose value is the returned object.

For example, the message POS is valid for strings, and you could code:

c="escape"
a="Position of 'e' is:" c~pos("e",3)
/* would set A to "Position of 'e' is: 6" */

If the message term uses ~~, the receiver method need not return a result object. Any result object is
discarded, and the receiver object is included in the original expression in place of the message term.

For example, the messages INHERIT and SUBCLASS are valid for classes (see Section 5.1.1, “Class
Class (Metaclass)”) and, assuming the existence of the Persistent class, you could code:

account = .object~subclass("Account")~~inherit(.persistent)
/* would set ACCOUNT to the object returned by SUBCLASS, */
/* after sending that object the message INHERIT */

If the message term uses brackets, the message [] is sent to the receiver object. (The expressions
within the brackets are available to the receiver object as arguments.) The effect is the same as for the
corresponding ~ form of the message term. Thus, a[b] is the same as a~"[]" (b).

For example, the message [] is valid for arrays (see Section 5.3.6, “Array Class”) and you could
code:

Example 1.18. Arrays

a = .array~of(10,20)

say "Second item is" a[2] /* Same as: a~at(2) */
/* or a~"[]1"(2) */

/* Produces: "Second item is 20" */

A message can have a variable number of arguments. You need to specify only those required. For
example, "ESCAPE"~POS("E") returns 1.

A colon (:) and symbol can follow the message name. In this case, the symbol must be the name of a
variable (usually the special variable SUPER) or an environment symbol. The resulting value changes
the usual method selection. For more information, see Section 4.2.7, “Changing the Search Order for
Methods”.

1.11.5. Message Sequences

The ~ and ~~ forms of message terms differ only in their treatment of the result object. Using ~
returns the result of the method. Using ~~ returns the object that received the message. Here is an
example:

Example 1.19. Messages

/* Two ways to use the INSERT method to add items to a list */

24

Array Term

/* Using only ~ */

team = .list~of("Bob", "Mary")
team~insert("Jane")
team~insert("Joe")
team~insert("Steve")

say "First on the team is:" team~firstitem /* Bob */
say "Last on the team is:" team~lastitem /* Steve */
/* Do the same thing using ~~ */
team=.list~of("Bob", "Mary")

/* Because ~~ returns the receiver of the message */
/* each INSERT message following returns the list */
/* object (after inserting the argument value). */
team~~insert("Jane")~~insert("Joe")~~insert("Steve")

say "First on the team is:" team~firstitem /* Bob */
say "Last on the team is:" team~lastitem /* Steve */

Thus, you would use ~ when you want the returned result to be the receiver of the next message in

the sequence.

1.11.6. Array Term

As a convenience, Rexx allows a shortened syntax for creating arrays, called Array term, of the

following form:

Y

expression expression

Except for trailing commas, an Array term returns a newly created array, as if it had been created with
the message term rexx:Array~of(..). (An Array term will always return an instance of the Rexx-

defined Array class, even if a user-defined class named Array exists.)

Here are some examples:

Week = Ilmonll’ Iltuell’ "Wed", Ilthull’ Ilfrill’ "Sat", Ilsunll
say week~items "days" -- 7 days
say ("here", "we", "go")~makeString(, " ") -- here we go

is0639 = .Directory~of(("de", "Deutsch"), ("en", "English"), ("fr",

do list over .environment, .local

say list~items -- 65
end -- 10
say O~sendwith("MAX", (2, 3, 5, 7, 11, 13)) -- 13
sparse = ,,,0
say "size" sparse~size"," sparse~items "items" -- size 4, 1 items

"frangcais"))

If the array term has trailing commas, the returned array has a bigger size than what . Array~of(...)

would have returned:

say (1, , 3, ,)~size .Array~of(1, , 3, ,)~size --
say (,)~size .Array~of(,)~size --

In a context, where commas already have a different meaning, it may be necessary to put an Array

term between brackets. For example:

25

Variable Reference Term

call func "uno", 2, "tre" -- no Array term: three parms
call func ("uno", 2, "tre") -- Array term: one Array as parm

An Array term cannot return an array of size zero or one, although it can return an array with zero or
one items (but still of at least size two).

say (,)~items -- 0
say (,)~size -- 2

1.11.7. Variable Reference Term

A variable reference term represents a reference to a variable. Variable reference terms can be used
as arguments to subroutines, functions, methods, or routines, thus allowing the original variable to be
modified or created by the called Rexx code.

While subroutines, functions, methods, or routines can modify argument objects when accessed with
the USE ARG instruction without using a variable reference, changing the value of arguments to new
objects—like setting them to a new string, a new Array, or to .nil—can only be done using a variable
reference term.

Variable reference terms start with either of the two reference operators, > or <, followed by a simple
variable name or a stem variable name. Variable references to compound variables are not allowed.

Here is an example:

call dir >files, ".txt"
say files~items "files with extension .txt"

p:iroutine dir
use strict arg >array, extension = ""
array = .Array~new
do file over .File~new(".")~list
if file~caselessEndsWith(extension) then
array~append(file)
end

Variable reference arguments and USE ARG names must match. They must either be both simple
variable references, or both stem references. USE ARG variable references can never be optional, a
default value is not allowed.

1.12. Clauses and Instructions

Clauses can be subdivided into the following types:
* Null Clauses,

» Directives,

* Labels,

* Instructions,

» Assignments,

» Message Instructions,

» Keyword Instructions, and

* Commands.

1.12.1. Null Clauses

26

Directives

A clause consisting only of whitespace characters, comments, or both is a null clause. It is completely
ignored.

@

A null clause is not an instruction; for example, putting an extra semicolon after the THEN or
ELSE in an IF instruction is not equivalent to using a dummy instruction (as it would be in the C
language). The NOP instruction is provided for this purpose.

1.12.2. Directives

A clause that begins with two colons is a directive. Directives are nonexecutable code and can start
in any column. They divide a program into separate executable units (methods and routines) and
supply information about the program or its executable units. Directives perform various functions,
such as creating new Rexx classes (::CLASS directive) or defining a method (::METHOD directive).
See Chapter 3, Directives for more information about directives.

1.12.3. Labels

A clause that consists of a single symbol or string followed by a colon is a label. The colon in this
context implies a semicolon (clause separator), so no semicolon is required.

The label's name is taken from the string or symbol part of the label. If the label uses a symbol for the
name, the label's name is in uppercase. If a label uses a string, the name can contain mixed-case
characters.

Labels identify the targets of CALL instructions, SIGNAL instructions, and internal function calls. Label
searches for CALL, SIGNAL, and internal function calls are case-sensitive. Label-search targets
specified as symbols cannot match labels with lowercase characters. Literal-string or computed-label
searches can locate labels with lowercase characters.

Labels can be any number of successive clauses. Several labels can precede other clauses. Labels
are treated as null clauses and can be traced selectively to aid debugging.

Duplicate labels are permitted, but control is only passed to the first of any duplicates in the main
program (prolog), a method, or a routine. The duplicate labels occurring later can be traced but cannot
be used as a target of a CALL, SIGNAL, or function invocation.

1.12.4. Instructions

An instruction consists of one or more clauses describing some course of action for the language
processor to take. Instructions can be assignments, message instructions, keyword instructions, or
commands.

1.12.5. Assignments

A single clause of the form symbol=expression is an instruction known as an assignment. An
assignment gives a (new) value to a variable. See Section 1.13, “Assignments and Symbols”.

27

Message Instructions

1.12.5.1. Extended Assignments

The character sequences +=, -=, *=, /=, %=, //=, ||=, &=, |=, &&=, and **=can be
used to create extended assignments. These sequences combine an operation with the assignment.
See Section 1.13.1, “Extended Assignments” for more details.

1.12.6. Message Instructions

A message instruction is a single clause in the form of a message term (see Section 1.11.4, “Message
Terms”) or in the form messageterm=expression. A message is sent to an object, which responds by
performing some action. See Section 1.15, “Message Instructions”.

1.12.7. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies the
instruction. Keyword instructions control, for example, the external interfaces and the flow of control.
Some keyword instructions can include nested instructions. In the following example, the DO construct
(DO, the group of instructions that follow it, and its associated END keyword) is considered a single
keyword instruction.

DO
instruction
instruction
instruction

END

A subkeyword is a keyword that is reserved within the context of a particular instruction, for example,
the symbols TO and WHILE in the DO instruction.

1.12.8. Commands

A command is a clause consisting of an expression only. The expression is evaluated and the result is
passed as a command string to an external environment.

1.13. Assignments and Symbols

A variable is an object whose value can change during the running of a Rexx program. The process
of changing the value of a variable is called assigning a new value to it. The value of a variable is a
single object. Note that an object can be composed of other objects, such as an array or directory
object.

You can assign a new value to a variable with the ARG, PARSE, PULL, or USE instructions, or
the VALUE built-in function, but the most common way of changing the value of a variable is the
assignment instruction itself. Any clause in the form

symbol= expression;

is taken to be an assignment. The result of expression becomes the new value of the variable named
by the symbol to the left of the equal sign.

28

Extended Assignments

Example:

/* Next line gives FRED the value "Frederic" */
Fred="Frederic"

The symbol naming the variable cannot begin with a digit (0-9) or a period.

You can use a symbol in an expression even if you have not assigned a value to it, because a symbol
has a defined value at all times. A variable to which you have not assigned a value is uninitialized.
Its value is the characters of the symbol itself, translated to uppercase (that is, lowercase a-z to
uppercase A-Z). However, if it is a compound symbol (described in Section 1.13.5, “Compound
Symbols”), its value is the derived name of the symbol.

Example 1.20. Derived symbol names

/* If Freda has not yet been assigned a value, */
/* then next line gives FRED the value "FREDA" */
Fred=Freda

The meaning of a symbol in Rexx varies according to its context. As a term in an expression, a symbol
belongs to one of the following groups: constant symbols, simple symbols, compound symbols,
environment symbols, and stems. Constant symbols cannot be assigned new values. You can use
simple symbols for variables where the name corresponds to a single value. You can use compound
symbols and stems for more complex collections of variables although the collection classes might be
preferable in many cases. See Section 5.3.2, “Collection Class”.

Notes:

1. When the ARG, PARSE, PULL, or USE instruction, the VALUE built-in function, or the variable
pool interface changes a variable, the effect is identical to an assignment.

2. Any clause that starts with a symbol and whose second token is (or starts with) an equal sign (=)
is an assignment, rather than an expression (or a keyword instruction). This is not a restriction,
because you can ensure that the clause is processed as a command, such as by putting a null
string before the first name, or by enclosing the expression in parentheses.

If you unintentionally use a Rexx keyword as the variable name in an assignment, this should
not cause confusion. For example, the following clause is an assignment, not an ADDRESS
instruction:

Address="10 Downing Street";

3. You can use the VAR function to test whether a symbol has been assigned a value. In addition,
you can set NOVALUE to trap the use of any uninitialized variables (except when they are tails in
compound variables or stem variables, which are always initialized with a Stem object when first
used.)

1.13.1. Extended Assignments

The character sequences +=, -=, *=, /=, %=, //=, ||=, &=, |=, &&=, and **=can be
used to create extended assignment instructions. An extended assignment combines a non-prefix
operator with an assignment where the term on the left side of the assignment is also used as the left
term of the operator. For example,

29

Constant Symbols

a +=1

is exactly equivalent to the instruction

Extended assignments are processed identically to the longer form of the instruction.

1.13.2. Constant Symbols

A constant symbol starts with a digit (0-9) or a period.

You cannot change the value of a constant symbol. It is simply the string consisting of the characters
of the symbol (that is, with any lowercase alphabetic characters translated to uppercase).

These are constant symbols:

Example 1.21. Constants

77

827.53

.12345

12e5 /* Same as 12E5 */
3D

17E-3

Constant symbols, where the first character is a period, which have at least one other character, and
which are not a valid Rexx humber, are environment symbols and may have a value other than the
symbol name.

1.13.3. Simple Symbols

A simple symbol does not contain any periods and does not start with a digit (0-9).

By default, its value is the characters of the symbol (that is, translated to uppercase). If the symbol has
been assigned a value, it names a variable and its value is the value of that variable.

These are simple symbols:

Example 1.22. Simple symbols

FRED
Whatagoodidea? /* Same as WHATAGOODIDEA? */
?12

1.13.4. Stems

A stem is a symbol that contains a single period as the last character of the name. It cannot start with
a digit.

These are stems:

30

Stems

Example 1.23. Stems

FRED.
A.

The value of a stem is always a Stem object (see Section 5.3.16, “Stem Class” for details). The stem
variable's Stem object is automatically created the first time you use the stem variable or a compound
variable containing the stem variable name. The Stem object's assigned name is the name of the
stem variable (with the characters translated to uppercase). If the stem variable has been assigned

a value, or the Stem object has been given a default value, the assigned name overrides the default
stem name. A reference to a stem variable will return the associated Stem object.

When a stem is the target of an assignment, the action taken depends on the value being assigned.
If the new value is a Stem object, the new Stem object will replace the Stem object that is currently
associated with the stem variable. This can result in multiple stem variables referring to the same
Stem object, effectively creating a variable alias.

Example 1.24. Stems

hole. = "empty"

hole.19 = "full"

say hole.1 hole.mouse hole.19

/* Says "empty empty full" */

hole2. = hole. /* copies reference to hole. stem to hole2. */

say hole2.1 hole2.mouse hole2.19

/* Also says "empty empty full" */

If the new value is not a Stem object, a new Stem object is created and assigned to the stem variable,
replacing the Stem object currently associated with the stem variable.

The new value assigned to the stem variable is given to the new Stem object as a default value.
Following the assignment, a reference to any compound symbol with that stem variable returns the
new value until another value is assigned to the stem, the Stem object, or the individual compound
variable.

Example 1.25. Stems

hole. = "empty"

hole.19 = "full"

say hole.1 hole.mouse hole.19
/* says "empty empty full" */

Thus, you can initialize an entire collection of compound variables to the same value.

You can pass stem collections as function, subroutine, or method arguments.

Example 1.26. Stems

/* CALL RANDOMIZE count, stem. calls routine */

31

Stems

Randomize: Use Arg count, stem.
do i = 1 to count
stem.i = random(1,100)
end
return

The USE ARG instruction functions as an assignment instruction. The variable STEM. in the example
above is functionally equivalent to:

stem. = arg(2)

USE ARG must be used to access the stem variable as a collection. PARSE and PARSE ARG
will force the stem to be a string value.

Stems can also be returned as function, subroutine, or method results. The resulting return value is
the Stem object associated with the stem variable.

Example 1.27. Stems

/* RANDOMIZE(count) calls routine */
Randomize: Use Arg count
do i = 1 to count
stem.i = random(1,100)
end
return stem.

When a stem. variable is used in an expression context, the stem variable reference returns the
associated Stem object. The Stem object will forward many object messages to its default value. For
example, the STRING method will return the Stem object's default value's string representation:

Example 1.28. Stems

total. = 0
say total. /* says "o" */

The [] method with no arguments will return the currently associated default value. variables can
always be obtained by using the stem. However, this is not the same as using a compound variable
whose derived name is the null string.

Example 1.29. Stems

total. = 0

null = ""

total.null = total.null + 5

say total.[] total.null /* says "O@ 5" */

32

Compound Symbols

You can use the DROP, EXPOSE, and PROCEDURE instructions to manipulate collections of
variables, referred to by their stems. DROP FRED. assigns a new Stem object to the specified stem.
EXPOSE FRED. and PROCEDURE EXPOSE FRED. expose all possible variables with that stem.

The DO instruction can also iterate over all of the values assigned to a stem variable.

1.13.5. Compound Symbols

A compound symbol contains at least one period and two other characters. It cannot start with a digit
or a period, and if there is only one period it cannot be the last character.

The name begins with a stem (that part of the symbol up to and including the first period) and is
followed by a tail consisting of one or more name parts (delimited by periods) that are constant
symbols, simple symbols, or null. Note that you cannot use constant symbols with embedded signs
(for example, 12.3E+5) after a stem; in this case the whole symbol would not be valid.

These are compound symbols:

Example 1.30. Compound symbols

FRED.3
Array.I.J
AMESSY. .0One.2.

Before the symbol is used, that is, at the time of reference, the language processor substitutes in the
compound symbol the character string values of any simple symbols in the tail (I, 3, and One in the
examples), thus generating a new, derived tail. The value of a compound symbol is, by default, it's the
name of the Stem object associated with the stem variable concatenated to the derived tail or, if it has
been used as the target of an assignment, the value of Stem element named by the derived tail.

The substitution in the symbol permits arbitrary indexing (subscripting) of collections of variables that
have a common stem. Note that the values substituted can contain any characters (including periods
and blanks). Substitution is done only once.

More formally, the derived hame of a compound variable that is referenced by the symbol

s0.s1.s2. --- .sn
is given by
do.vli.v2. --- .vn

where d0 is the name of the Stem object associated with the stem variable s@ and v1 to vn are the
values of the constant or simple symbols s1 through sn. Any of the symbols s1 to snh can be null.
The values v1 to vn can also be null and can contain any characters (including periods). Lowercase
characters are not translated to uppercase, blanks are not removed, and periods have no special
significance. There is no limit on the length of the evaluated name.

Some examples of simple and compound symbols follow in the form of a small extract from a Rexx
program:

Example 1.31. Compound symbols

a=3 /* assigns "3" to the variable A */

33

Environment Symbols

z=4 /* 4" to z 27
c="Fred" /* "Fred" to C */
a.z="Fred" /* "Fred" to A.4 */
a.fred=5 /* "g" to A.FRED */
a.c="Bill" /* "Bill" to A.Fred */
c.c=a.fred /* "s" to C.Fred */
y.a.z="Annie" /* "Annie" to Y.3.4 */
say a z ¢ a.a a.z a.c c.a a.fred y.a.4

/* displays the string: */

/* "3 4 Fred A.3 Fred Bill C.3 5 Annie" */

You can use compound symbols to set up arrays and lists of variables in which the subscript is not
necessarily numeric, thus offering a great scope for the creative programmer. A useful application is to
set up an array in which the subscripts are taken from the value of one or more variables, producing a
form of associative memory (content-addressable).

1.13.5.1. Evaluated Compound Variables

The value of a stem variable is always a Stem object (see Section 5.3.16, “Stem Class” for details).
A Stem object is a type of collection that supports the [] and []= methods used by other collection
classes. The [] method provides an alternate means of accessing compound variables that also
allows embedded subexpressions.

Tails for compound variables are normally specified by symbols separated by periods. An alternative
is to specify the tail as a bracketed list of expressions separated by commas. The expressions are
evaluated to character strings. These are concatenated with intervening periods and the resulting
string is used as tail. This notation can be used in assignments to compound variables as well as
when referencing them. Examples:

Example 1.32. Evaluated compound variables

a.[1+2,3+4]=17 -- assigns A.3.7

Say a.3.7 -- = 17

vi='1+2"'

v2="'3+4"

a.vl.v2=18 -- tail used: '1+2.3+4'
Say a.['1+2','3+4'] -- => 18

Parse vValue '1 2 3' With . a.[1,1+1]

Say a.1.2 -- = 2

1.13.6. Environment Symbols

An environment symbol starts with a period and has at least one other character. The symbol may
not be a valid Rexx number. By default the value of an environment symbol is the string consisting of
the characters of the symbol (translated to uppercase). If the symbol identifies an object in the current
environment, its value is the mapped object.

These are environment symbols:

Example 1.33. Environment symbols

.method // A reference to the Rexx Method class
.true // The Rexx "true" object. Has the value "1"
.Xyz // Normally the value .XYZ

34

Namespaces

.3DGlasses // Normally the value .3DGLASSES

When you use an environment symbol, the language processor performs a series of searches to see if
the environment symbol has an assigned value. The search locations and their ordering are:
1. Constants .true, .false and .nil.

2. The list of classes declared on ::CLASS directives within the current program package or added to
the current package using the addClass method.

3. The list of public classes declared on ::CLASS directives of other files included with a
’REQUIRES directive or added to the current Package instance using the addPackage method.

4. The list of public Rexx supplied classes in the REXX package, like Object, String, or Array.

5. The package local environment directory specific to the current package. You can access the
package local environment directory through the Package /ocal method.

6. The local environment directory specific to the current interpreter instance. The local environment
includes instance-specific objects such as the .INPUT and .OUTPUT objects. You can directly
access the local environment directory by using the .LOCAL environment symbol.

7. The global environment directory. The global environment includes Rexx supplied objects like
.endofline or the .RexxInfo object. You can directly access the global environment by using the
.ENVIRONMENT environment symbol. Entries in the global environment directory can also be
accessed via the VALUE built-in function by using a null string for the selector argument.

8. Rexx defined symbols. Other simple environment symbols are reserved for use by Rexx built-
in environment objects. The currently defined built-in objects are .RS, .LINE, .METHODS,
.ROUTINES, .RESOURCES, and .CONTEXT.

If an entry is not found for an environment symbol, then the default character string value is used.

@e

You can place entries in both the . LOCAL and the . ENVIRONMENT directories for programs to
use. To avoid conflicts with future Rexx defined entries, it is recommended that the entries that
you place in either directory include at least one period in the entry name, for example:

/* establish settings directory */
.local~setentry("MyProgram.settings", .directory~new)

1.14. Namespaces

Namespaces can be used to differentiate between classes or routines of the same name, having been
loaded through ::REQUIRES directives.

Using ::REQUIRES with the NAMESPACE option allows to tag a loaded file with a namespace name,
which in turn can be used to qualify references to classes or routines within that namespace to
explicitly identify a specific class or routine. A special reserved namespace "REXX" will allow to always
access the Rexx-provided classes.

35

Message Instructions

Examples:
Example 1.34. Namespaces

-- disambiguate between two classes with same name
say .number~id -- The Real Number class
say natural:number~id -- The Natural Number class

-- use reserved namespace "REXX" to get Rexx-defined .Array
-- not :class array as defined below
say rexx:array~of(2, 3, 5, 7)~items -- 4

-- call ::routine verify, not built-in function
call natural:verify(17)

-- use natural:number as a message target
say natural:number~subclass("Integer") -- The Integer class

-- subclass natural:number, not ::class number as defined below
::class rationalNumber subclass natural:number

-- class "number"; same name as a class in 'number.cls'
::class number

::method id class

return "The Real Number class"

-- class "Array"; same name as Rexx-defined
::class array

::requires 'number.cls' namespace natural

Example 1.35. number.cls

::class number public
::method id class
return "The Natural Number class"

::routine verify public
return arg(1) >= 0 & arg(1l)~dataType("W")

1.15. Message Instructions

You can send a message to an object to perform an action, obtain a result, or both. You use a
message instruction if the main purpose of the message is to perform an action. You use a message
term if the main purpose of the message is to obtain a result.

A message instruction is a clause of the form:

messageterm <
= expression

If there is only a messageterm, the message is sent in exactly the same way as for a message term. If
the message vields a result object, it is assigned to the sender's special variable RESULT. If you use
the ~~ form of message term, the receiver object is used as the result. If there is no result object, the
variable RESULT is dropped (becomes uninitialized). A message term using ~~ is sometimes referred
to as a cascading message.

36

Commands to External Environments

Example 1.36. Message instructions

mytable~add("John",123)

This sends the message ADD to the object MYTABLE. The ADD method need not return a result. If
ADD returns a result, the result is assigned to the variable RESULT.

The equal sign (=) sets a value. If =expression follows the message term, a message is sent to the
receiver object with an = concatenated to the end of the message name. The result of evaluating the
expression is passed as the first argument of the message.

Example 1.37. Message instructions

person~age = 39 /* Same as person~"AGE="(39) */
table[i] = 5 /* Same as table~"[]="(5,1) */

The expressions are evaluated in the order in which the arguments are passed to the method.
That is, the language processor evaluates the =expression first. Then it evaluates the argument
expressions within any [] pairs from left to right.

The extended assignment form may also be used with message terms.

Example 1.38. Message instructions

table[i] += 1 -- Same as table[i] = table[i] + 1

See Section 1.13.1, “Extended Assignments” for more details

1.16. Commands to External Environments
Issuing commands to the surrounding environment is an integral part of Rexx.

1.16.1. Environment

The base system for the language processor is assumed to include at least one environment for
processing commands. An environment is selected by default on entry to a Rexx program. You can
change the environment by using the ADDRESS instruction. You can find out the name of the current
environment by using the ADDRESS built-in function. The underlying operating system defines
environments external to the Rexx program. The environments selected depend on the caller. The
default environment is CMD on Windows and sh on Unix-like systems . There are three aliases for the
default environment, "" (null string), COMMAND and SYSTEM. These environments execute commands
through the standard command interpreter or system shell, which is cmd . exe on Windows and sh
on Unix-like systems . On Unix-like systems alternate environments bsh, bash, csh, ksh, tcsh, and
zsh are available, which allow execution of commands through a shell named like the environment, if
such a shell is installed on the system.

An additional environment PATH—available on both Windows and Unix-like systems—provides an
alternative to command interpreter- / shell-based environments. It executes commands directly,
without the need for a command interpreter or shell by searching the environment variable PATH

37

Commands

to locate the command. Note that this environment does not provide shell or command interpreter
features such as internal commands, redirection, piping, environment variable substitution or wildcard
expansion.

If called from an editor that accepts subcommands from the language processor, the default
environment can be that editor.

A Rexx program can issue commands—called subcommands—to other application programs. For
example, a Rexx program written for a text editor can inspect a file being edited, issue subcommands
to make changes, test return codes to check that the subcommands have been processed as
expected, and display messages to the user when appropriate.

An application that uses Rexx as a macro language must register its environment with the Rexx
language processor. See the Open Object Rexx: Application Programming Interfaces for a discussion
of this mechanism.

1.16.2. Commands

To send a command to the currently addressed environment, use a clause of the form:
expression;

The expression (which must not be an expression that forms a valid message instruction) is evaluated,
resulting in a character string value (which can be the null string), which is then prepared as
appropriate and submitted to the environment specified by the current ADDRESS setting.

The environment then processes the command and returns control to the language processor after
setting a return code. A return code is a string, typically a number, that returns some information about
the command processed. A return code usually indicates if a command was successful but can also
represent other information. The language processor places this return code in the Rexx special
variable RC.

In addition to setting a return code, the underlying system can also indicate to the language processor
if an error or failure occurred. An error is a condition raised by a command to which a program that
uses that command can respond. For example, a locate command to an editing system might report
requested string not found as an error. A failure is a condition raised by a command to which
a program that uses that command cannot respond, for example, a command that is not executable or
cannot be found.

Errors and failures in commands can affect Rexx processing if a condition trap for ERROR or
FAILURE is ON (see Chapter 11, Conditions and Condition Traps). They can also cause the
command to be traced if TRACE E or TRACE F is set. TRACE Normal is the same as TRACE F and is
the default—see Section 2.29, “TRACE".

The .RS environment symbol can also be used to detect command failures and errors. When the
command environment indicates that a command failure has occurred, the Rexx environment
symbol .RS has the value -1. When a command error occurs, .RS has a value of 1. If the command
did not have a FAILURE or ERROR condition, .RS is 0.

Here is an example of submitting a command. Where the default environment is Windows, the
sequence:

Example 1.39. Commands

fname = "CHESHIRE"

38

Commands

exten = "CAT"
"TYPE" fname"."exten

would result in passing the string TYPE CHESHIRE.CAT to the command processor, CMD.EXE. The
simpler expression:

Example 1.40. Commands

"TYPE CHESHIRE.CAT"

has the same effect.

On return, the return code placed in RC will have the value 0 if the file CHESHIRE.CAT were typed, or
a nonzero value if the file could not be found in the current directory.

Remember that the expression is evaluated before it is passed to the environment. Constant
portions of the command should be specified as literal strings.

Example 1.41. Commands — Windows

delete "*".1lst /* not "multiplied by" */
var.003 = anyvalue

type "var.003" /* not a compound symbol */
w = any

dir"/w" /* not "divided by ANY" */

Example 1.42. Commands — Linux

rm "*". 1st /* not "multiplied by" */
var.003 = anyvalue

cat "var.003" /* not a compound symbol */
w = any

1s "/w" /* not "divided by ANY" */

Enclosing an entire message instruction in parentheses causes the message result to be used as a
command. Any clause that is a message instruction is not treated as a command. Thus, for example,
the clause

myfile~linein

causes the returned line to be assigned to the variable RESULT, not to be used as a command to an
external environment, while

(myfile~linein)

39

Using Rexx on Windows and Unix-like systems

would submit the return value from the linein method as a command to the external environment.
1.17. Using Rexx on Windows and Unix-like systems

1.17.1. Calling other Rexx scripts

Rexx programs can call other Rexx programs as external functions or subroutines with the CALL
instruction.

If a program is called with the CALL instruction, the program runs in the same process as the

calling program. If you call another program by a Rexx command, the program is executed in a new
process and therefore does not share .environment, .local, or the Windows or Unix-like systems shell
environment.

Example 1.43. Calling other Rexx scripts

call "other.REX" /* runs in the same process */
"rexx other.REX" /* runs in a new child process */
"start rexx other.REX" /* runs in a new detached process */

When Rexx programs call other Rexx programs as commands, the return code of the command is
the exit value of the called program provided that this value is a whole number in the range -32768 to
32767. Otherwise, the exit value is ignored and the called program is given a return code of 0.

1.17.2. Shebang support

Rexx supports shebangs, also called hashbangs, as the first line of a Rexx program on both Unix-like
and Windows systems.

Typically, shebangs are found on Unix-like systems to identify the script language with which to run
a script. On these systems, to run a script as a Rexx program, depending on where the interpreter is
installed, the shebang would be something like #! /usr/bin/rexx.

With several Unix-like systems changing the standard installation location away from /usr/bin
(including macOS), a new convention is used for the sample programs, which works if the Rexx
interpreter is anywhere on the path. This convention uses the env command in the shebang, like this:
#!1/usr/bin/env rexx. This has the advantage that it is portable, and will use the first occurrence
of rexx that is found on $PATH.

On a Windows system, Rexx will simply ignore the first line of a Rexx program, if it starts with the
character sequence "#!".

1.17.3. Line-end characters

Windows and Unix-like systems use different characters to indicate a line-break (ending one line
and starting a new one) in a text file. While Windows uses the two-character sequence '0d 0a'x
(carriage-return, line-feed), Unix-like systems use the character '0a'x (line-feed) as a line-end
indicator.

Rexx supports both line-end indicators on each platform, both for the Rexx program itself, and for
data manipulated with e. g. built-in functions LINES, LINEIN, Stream methods lines, lineln, arrayin,

40

End-of-file character

String method makeArray, or MutableBuffer method makeArray. This means, when moving
from one platform to another, typically there should be no line-end conversions necessary for Rexx
programs or data read by these programs.

Note that you cannot include line-end characters '0d'x or '0a'x in a literal string.

1.17.4. End-of-file character

Traditionally Windows used a special character '1a'x (end-of-file) to signify the end of a text file.
Although today use of this special end-of-file character has become less common, some editors may
still append it to the end of a text file. Unix-like systems do not use a special end-of-file character in
text files.

Rexx will honor the end-of-file character '1a'x within a Rexx program source file on both Windows
and Unix-like platforms. It will not scan the source file beyond any end-of-file character it finds. This
means, that a character '1a'x cannot be directly used within a Rexx program source file, for example
within a literal string or a comment.

41

Chapter 2.

Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies the
instruction. Some keyword instructions affect the flow of control, while others provide services to the
programmer. Some keyword instructions, like DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals denote keywords or
subkeywords. Other words, such as expression, denote a collection of tokens as defined previously.
Note, however, that the keywords and subkeywords are not case-dependent. The symbols if, If,
and iF all have the same effect. A clause requires a semicolon (;) as a terminating delimiter unless
the end of a line implies it.

A keyword instruction is recognized only if its keyword is the first token in a clause and if the second
token does not start with an equal (=) character (implying an assignment) or a colon (implying a label).
The keywords ELSE, END, OTHERWISE, THEN, and WHEN are treated in the same way. Note that
any clause that starts with a keyword defined by Rexx cannot be a command. Therefore,

arg(fred) rest

is an ARG keyword instruction, not a command that starts with a call to the ARG built-in function.

A syntax error results if the keywords are not in their correct positions in a DO, IF, or SELECT
instruction. The keyword THEN is also recognized in the body of an IF or WHEN clause. In other
contexts, keywords are not reserved and can be used as labels or as the names of variables (though
this is generally not recommended).

Subkeywords are reserved within the clauses of individual instructions. For example, the symbols
VALUE and WITH are subkeywords in the ADDRESS and PARSE instructions, respectively. For
details, see the description of each instruction.

Whitespace characters (blanks or horizontal tabs) adjacent to keywords separate the keyword from
the subsequent token. One or more whitespace characters following VALUE are required to separate
the expression from the subkeyword in the example following:

ADDRESS VALUE expression

However, no whitespace character is required after the VALUE subkeyword in the following example,
although it would improve readability:

ADDRESS VALUE"ENVIR"||number

2.1. ADDRESS

bb—' ADDRESS ; f::
environment
~— expression WITH - fragment

< a env_expression

WITH:

42

ADDRESS

WITH INPUT NORMAL) 7 j)

STEM stem
STREAM stream
USING expr

NORMAL

l OUTPUT '
ERROR

(sTEM)— stem

N

'l STREAM stream
APPEND

USING expr

ADDRESS permanently changes the destination or 1/O redirection of commands, or temporarily
changes the destination and sends a command with optional 1/0O redirection of standard input,
standard output, and standard error from or to Rexx objects.

Commands are strings sent to an external environment. You can send commands by specifying
clauses consisting of only an expression or by using the ADDRESS instruction. (See Section 1.16,
“Commands to External Environments”.)

To send a single command to a specified environment, code an environment, a literal string or a
single symbol, which is taken to be a constant, followed by an expression. The environment name
is the name of an external procedure or process that can process commands. The expression is
evaluated to produce a character string value, and this string is routed to the environment to be
processed as a command. After execution of the command, environment is set back to its original
state, thus temporarily changing the destination for a single command. The special variable RC and
the environment symbol .RS are set and errors and failures in commands processed in this way are
trapped or traced.

The following evironments are available in coRexx:

sh (Unix-like systems only)
This is the default environment on Unix-like systems. It uses sh as a shell program to execute the
command. All shell features such as redirection or piping can be used.

bsh, bash, csh, ksh, tcsh, zsh (Unix-like systems only)
These environments use alternate Unix-like system shells bsh, bash, csh, ksh, tcsh, or zsh
to execute the command. If the appropriate shell is not installed on the system, executing a
command in any of these enviroments will raise a failure.

cmd (Windows only)
This is the default environment on Windows systems. It uses cmd . exe as a command interpreter
to execute the command. Command interpreter features such as internal commands, redirection
or piping can be used.

command, system, ""
These environment names are synonyms for the default environments sh on Unix-like systems
and cmd on Windows.

path
This environment executes commands directly, without using an intermediate command interpreter
or shell program. It searches the environment variable PATH to locate the command to execute.

43

ADDRESS

No shell features such as internal commands, redirection, piping or environment variable
substitution are available.

The WITH subkeyword sets a command's I/O redirection. STDIN input can be redirected from a Rexx
object to the command, and STDOUT and STDERR output from the command can be redirected to a
Rexx object.

I/O redirection is permanent when specified on an ADDRESS instruction without a command,

and temporary if a command is specified. Any permanent I/O redirection is associated with the
environment name and will be saved and restored across function and subroutine calls. For
permanent I/O redirections, any redirection objects or expressions are not evaluated at the time the
ADDRESS instruction is processed. Each time a command is sent to this environment, these objects
and expressions will be evaluated in the then current variable context.

WITH INPUT
redirects data from a stem, a stream, or other Rexx object to the command's input.

If option NORMAL is specified, the command's standard input will be used.

If option STEM is specified, stem must be a stem variable, where stem. 0 specifies the number of
input lines, and each stem.i (with i from 1 through stem . 0) specifies an input line.

If option STREAM is specified, stream must be a literal string, a constant symbol, or an expression
enclosed in parentheses that evaluates to a string which is used as the stream name. Input lines
for the command are read from stream using the 1ineIn method.

If option USING is specified, expr must be a literal string, a constant symbol, or an expression
enclosed in parentheses that evaluates to a String, a Stem object, an InputStream, a Monitor or
a File object, or an Array object or any other object that supports a makeArray method (e. g.

a RexxQueue object). If the resulting object is a String, the command will receive a single input
line, if it is a Stem, an InputStream, a Monitor, or a File object, input is redirected as described for
options STEM and STREAM. If the resulting object is an Array object, all Array items are converted
to strings and are sent to the command as input lines. Empty array items are ignored.

WITH OUTPUT and WITH ERROR
redirect a command's standard output or error output to a stem, a stream, or other Rexx objects.

If option NORMAL is specified, the command's default output destination, or default error
destination is used.

If option STEM is specified, stem must be a stem variable. If REPLACE is specified together with
STEM, the number of output lines is stored in stem.® and individual lines are stored as stem.i,
with j running from 1 through stem. 0. REPLACE is the default. If APPEND is specified with STEM,
individual lines are stored as stem.i, with i starting at the value of the existing stem. 0 plus 1. The
initial stem . @ value is then incremented by the total number of output lines for the command.

If option STREAM is specified, stream must be a literal string, a constant symbol, or an expression
enclosed in parentheses that evaluates to a string which is used as the stream name. Output or
error lines from the command are written to the stream with the 1ineOut method. If REPLACE

is specified with STREAM, stream is truncated to zero length before any output lines are written.
REPLACE is the default. If APPEND is specified with STREAM, output lines are appended to stream.

If option USING is specified, expr must be a constant symbol, or an expression enclosed in
parentheses that evaluates to a Stem object, an OutputStream, a Monitor, a RexxQueue, a File
object, or an OrderedCollection object. If the resulting object is a Stem or a File object, output
lines are written as described for options STEM and STREAM. If it is an OutputStream or a Monitor
object, output lines are always appended to the stream; neither REPLACE nor APPEND can be

44

ADDRESS

specified in this case. If the object is a RexxQueue, method queue is used for each output line.
Neither REPLACE nor APPEND can be specified for a RexxQueue. If the resulting object is an
OrderedCollection object and REPLACE is specified, the collection is emptied using method emtpy
before any output lines are added to the collection using method append. REPLACE is the default.
If APPEND is specified, output lines are appended to the existing collection using method append.

Notes:
1. Specifying one of the INPUT, OUTPUT, or ERROR subkeywords more than once is an error.

2. If an input source object and an output or error target object is the same, Rexx uses appropriate
read and write buffering to make sure results are correct.

3. If the standard output target and the standard error target object is the same object, Rexx will send
interleaved output and error lines to the target.

Example 2.1. Instructions — ADDRESS

ADDRESS "CMD" 'dir "\Program Files"' -- Windows

ADDRESS "sh" "1s /usr/bin" -- Unix-like system

address "" "cat" with input using "single line" -- Unix-like system: "single line"
address "" "ver" with output stem v.; say v.2 -- "Microsoft Windows ..."

address "" with input using (a) output using (a)

a=4,2,3,1

"SOrt"

say a~toString(, " ") -- 1234

If you specify only environment, a lasting change of destination occurs: all commands (see
Section 1.16.2, "“Commands”) that follow are routed to the specified command environment, until the
next ADDRESS instruction is processed. The previously selected environment is saved.

Assume that the environment for a Windows text editor is registered by the name EDIT:

Example 2.2. Instructions — ADDRESS environments

address CMD

"DIR C:\AUTOEXEC.BAT"

if rc=0 then "COPY C:\AUTOEXEC.BAT C:*.TMP"
address EDIT

Subsequent commands are passed to the editor until the next ADDRESS instruction.

Similarly, you can use the VALUE form to make a lasting change to the environment. Here
env_expression, which can be a variable name, is evaluated, and the resulting character string value
forms the name of the environment. You can omit the subkeyword VALUE if env_expression does
not begin with a literal string or symbol, that is, if it starts with a special character such as an operator
character or parenthesis.

Example 2.3. Instructions — ADDRESS environments

ADDRESS ("ENVIR"||number) /* Same as ADDRESS VALUE "ENVIR"||number */

45

ARG

With no arguments, commands are routed back to the environment that was selected before the
previous change of the environment, and the current environment name is saved. After changing the
environment, repeated execution of ADDRESS alone, therefore, switches the command destination
between two environments. Using a null string for the environment name (") is the same as using the
default environment.

The two environment names are automatically saved across internal and external subroutine and
function calls. See the CALL instruction for more details.

The address setting is the currently selected environment name. You can retrieve the current address
setting by using the ADDRESS built-in function. The Open Object Rexx: Application Programming
Interfaces describes the creation of alternative subcommand environments.

2.2. ARG

ARG

template_list

ARG retrieves the argument strings provided to a program, internal routine, or method and assigns
them to variables. It is a short form of the instruction:

bb—(PARSE)—(UPPER)—(ARG

The template_list can be a single template or list of templates separated by commas. Each template
consists of one or more symbols separated by whitespace characters, patterns, or both.

template_list

The objects passed to the program, routine, or method are converted to string values and parsed into
variables according to the rules described in Chapter 9, Parsing.

The language processor converts the objects to strings and translates the strings to uppercase (that is,
lowercase a-z to uppercase A-Z) before processing them. Use the PARSE ARG instruction if you do
not want uppercase translation.

You can use the ARG and PARSE ARG instructions repeatedly on the same source objects (typically
with different templates). The source objects do not change.

Example 2.4. Instructions — ARG

/* String passed is "Easy Rider" */
Arg adjective noun .

/* Now: ADJECTIVE contains "EASY" */
/* NOUN contains "RIDER" */

If you expect more than one object to be available to the program or routine, you can use a comma in
the parsing template_list so each template is selected in turn.

Example 2.5. Instructions — ARG

/* Function is called by FRED("data X",1,5) */

46

CALL

Fred: Arg string, numl, num2

/* Now: STRING contains "DATA X" */

/* NUM1 contains "1" */

/* NUM2 contains "5" */
Notes:

1. The ARG built-in function can also retrieve or check the arguments.

2. The USE ARG instruction is an alternative way of retrieving arguments. USE ARG performs
a direct, one-to-one assignment of argument objects to Rexx variables. You should use this
when your program needs a direct reference to the argument object, without string conversion
or parsing. ARG and PARSE ARG produce string values from the argument objects, and the
language processor then parses the string values.

2.3. CALL

bb—(CALL name : : >«

L expression
(expr
CALL m ANY e <
L(NAME

trapname

ERROR o

HALT o

NOTREADY

USER usercondition |’

i

?O

s

CALL OFF ANY

\—' ERROR ; o
FAILURE
\—' HALT ; o

NOTREADY
{ USER)— usercondition

CALL calls a routine (if you specify name) or controls the trapping of certain conditions (if you specify
ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the
specified condition trap. ON turns on the specified condition trap. The usercondition is a single symbol
that is taken as a constant. The trapname is a symbol or string taken as a constant. All information on
condition traps is contained in Chapter 11, Conditions and Condition Traps.

47

CALL

To call a routine, specify name, which must be a literal string or symbol that is taken as a constant.
The routine called can be:

An internal routine
A subroutine that is in the same program as the CALL instruction or function call that calls it.
Internal routines are located using label instructions.

A built-in routine
A function that is defined as part of the Rexx language.

An external routine
A subroutine that is neither built-in nor a label within the same same program as the CALL
instruction call that invokes it. See Section 7.2.1, “Search Order” for details on the different types
of external routines.

If name is a literal string (that is, specified in quotation marks), the search for internal routines is
bypassed, and only a built-in function or an external routine is called. Note that built-in function
names are in uppercase. Therefore, a literal string call to a built-in function must also use uppercase
characters.

You can also specify (expr), any valid expression enclosed in parentheses. The expression is
evaluated before any of the argument expressions, and the value is the target of the CALL instruction.
The language processor does not translate the expression value into uppercase, so the evaluated
name must exactly match any label name or built-in function name. See Section 1.12.3, “Labels” for a
description of label names.

The called routine can optionally return a result. In this case, the CALL instruction is functionally
identical with the clause:

result = name —@ : : @—N

L expression

You can use any humber of expressions, separated by commas. The expressions are evaluated
from left to right and form the arguments during execution of the routine. Any ARG, PARSE ARG, or
USE ARG instruction or ARG built-in function in the called routine accesses these objects while the
called routine is running. You can omit expressions, if appropriate, by including extra commas.

The CALL then branches to the routine called name, using exactly the same mechanism as function
calls. See Chapter 7, Functions. The search order is as follows:

Internal routines
These are sequences of instructions inside the same program, starting at the label that matches
name in the CALL instruction. If you specify the routine name in quotation marks, then an internal
routine is not considered for that search order. The RETURN instruction completes the execution
of an internal routine.

Built-in routines
These are routines built into the language processor for providing various functions. They always
return an object that is the result of the routine. See Section 7.4, “Built-in Functions”.

48

CALL

You can call any built-in function as a subroutine. Any result is stored in RESULT. Simply
specify CALL, the function name (with no parenthesis) and any arguments, for example:

call length "string" /* Same as length("string") */
say result /* Produces: 6 */

External routines
Users can write or use routines that are external to the language processor and the calling
program. You can code an external routine in Rexx or in any language that supports the system-
dependent interfaces. If the CALL instruction calls an external routine written in Rexx as a
subroutine, you can retrieve any argument strings with the ARG, PARSE ARG, or USE ARG
instructions or the ARG built-in function.

For more information on the search order, see Section 7.2.1, “Search Order”.

During execution of an internal routine, all variables previously known are generally accessible.
However, the PROCEDURE instruction can set up a local variables environment to protect the
subroutine and caller from each other. The EXPOSE option on the PROCEDURE instruction can
expose selected variables to a routine.

Calling an external program or routine defined with a ::ROUTINE directive is similar to calling an
internal routine. The external routine, however, is an implicit PROCEDURE in that all the caller's
variables are always hidden. The status of internal values, for example NUMERIC settings, start with
their defaults (rather than inheriting those of the caller). In addition, you can use EXIT to return from
the routine.

When control reaches an internal routine, the line number of the CALL instruction is available in

the variable SIGL (in the caller's variable environment). This can be used as a debug aid because

it is possible to find out how control reached a routine. Note that if the internal routine uses the
PROCEDURE instruction, it needs to EXPOSE SIGL to get access to the line number of the CALL.

After the subroutine processed the RETURN instruction, control returns to the clause following the
original CALL. If the RETURN instruction specified an expression, the variable RESULT is set to the
value of that expression. Otherwise, the variable RESULT is dropped (becomes uninitialized).

An internal routine can include calls to other internal routines, as well as recursive calls to itself.

Example 2.6. Instructions — CALL

/* Recursive subroutine execution... */

arg z

call factorial z

say z"! =" result

exit

factorial: procedure /* Calculate factorial by */
arg n /* recursive invocation. */

if n=0 then return 1
call factorial n-1
return result * n

49

DO

During internal subroutine (and function) execution, all important pieces of information are
automatically saved and then restored upon return from the routine. These are:

* The status of loops and other structures: Executing a SIGNAL within a subroutine is safe
because loops and other structures that were active when the subroutine was called are not ended.
However, those currently active within the subroutine are ended.

» Trace action: After a subroutine is debugged, you can insert a TRACE Off at the beginning of it
without affecting the tracing of the caller. If you want to debug a subroutine, you can insert a TRACE
Results at the start and tracing is automatically restored to the conditions at entry (for example, Off)
upon return. Similarly, ? (interactive debug) is saved across routines.

* NUMERIC settings: The DIGITS, FUZZ, and FORM of arithmetic operations are saved and then
restored on return. A subroutine can, therefore, set the precision, for example, that it needs to use
without affecting the caller.

» ADDRESS settings: The current and previous destinations for commands, including any
associated 1/0O redirection configurations, are saved and then restored on return.

» Condition traps: CALL ON and SIGNAL ON are saved and then restored on return. This means
that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can be used in a subroutine without
affecting the conditions the caller set up.

» Condition information: This information describes the state and origin of the current trapped
condition. The CONDITION built-in function returns this information.

* .RS value: The value of the .RS environment symbol.

» Elapsed-time clocks: A subroutine inherits the elapsed-time clock (see Section 7.4.65, “TIME”)
from its caller, but because the time clock is saved across routine calls, a subroutine or internal
function can independently restart and use the clock without affecting its caller. For the same
reason, a clock started within an internal routine is not available to the caller.

2.4.DO

DO
L(LABEL name L(COUNTER ctr 1—< REPETITOR - fragment >—j
LOOP
1—< CONDITIONAL - fragment >—f

instruction

END

name

REPETITOR:

50

DO

»P»—<—1 controll = expri e e —pd
TO exprt BY exprb L(FOR exprf

control2 OVER collection o
L(FOR exprf |—
WITH INDEX index OVER supplier o
L(FOR)—

exprf

ITEM item

\—' FOREVER } o

exprr

CONDITIONAL:
WHILE exprw
UNTIL expru

DO groups instructions and optionally processes them repetitively. During repetitive execution, control
variables (control1, control2, index, or item) can be stepped through some range of values.

LOOP groups instructions and processes them repetitively. LOOP behaves identically to DO, except
for the simple LOOP ... END case, which is equivalent to DO FOREVER ... END.

Notes:

1.

The LABEL and COUNTER phrases can be in any order, if used. They must precede any repetitor
or conditional fragment.

The COUNTER phrase is only valid with a repetitive or conditional DO, it cannot be used on a
simple DO group.

control1, control2, index, item, and ctr must be symbols that are valid variable names.

The exprr, expri, exprb, exprt, and exprf options, if present, are any expressions that evaluate to a
number. The exprr and exprf options are further restricted to result in a positive whole number or
zero. If necessary, the numbers are rounded according to the setting of NUMERIC DIGITS.

The exprw or expru options, if present, can be any expression that evaluates to 1 or 0. This
includes the list form of a conditional expression, which is a list of expressions separated by ",".
The list of expressions is evaluated left-to-right. Each subexpression must evaluate to either 0 or
1. Evaluation will stop with the first @ result and 0@ will be returned as the condition result. If all of
the subexpressions evaluate to 1, then the condition result is also 1.

The TO, BY, and FOR phrases can be in any order, if used, and are evaluated in the order in
which they are written.

The INDEX and ITEM phrases can be in any order, if used. They cannot be used more than once.

51

DROP

8. The instruction can be any instruction, including assignments, commands, message instructions,
and keyword instructions (including any of the more complex constructs such as IF, SELECT, and
the DO or LOOP instruction itself).

9. The subkeywords WHILE, UNTIL, OVER, WITH, INDEX, and ITEM are reserved within a DO or
LOORP instruction in that they act as expression terminators for other keywords. Thus they cannot
be used as symbols in any of the expressions. Similarly, TO, BY, and FOR cannot be used in
expri, exprt, exprb, or exprf. FOREVER is also reserved, but only if it immediately follows the
keyword DO or LOOP and is not followed by an equal sign. However, parentheses around or
within an expression can prevent these keywords from terminating an expression. For example,

Example 2.7. Instructions — DO variable without parenthesis

do i = 1 while i < until
say 1
end

is considered a syntax error because of the variable named UNTIL. Using parentheses around the
expression allows the variable UNTIL to be used:

Example 2.8. Instructions — DO variable with parenthesis

do i = 1 while (i < until)
say i
end

10. The exprb option defaults to 1, if relevant.

11. The collection can be any expression that evaluates to an object that supports a makeArray
method. Array and List items return an array with the items in the appropriate order, as do
Streams. Tables, Stems, Directories, etc. are not ordered so the items get placed in the array in no
particular order.

12. The supplier can be any expression that evaluates to an object that supports a supplier
method.

For more information, refer to Appendix A, Using DO and LOOP.

2.5. DROP

DROP name
name)

DROP "unassigns" variables, that is, restores them to their original uninitialized state. If name is not
enclosed in parentheses, it identifies a variable you want to drop and must be a symbol that is a valid
variable name, separated from any other name by one or more whitespace characters or comments.

If parentheses enclose a single name, then its value is used as a subsidiary list of variables to drop.
Whitespace characters are not necessary inside or outside the parentheses, but you can add them if
desired. This subsidiary list must follow the same rules as the original list, that is, be valid character

52

EXIT

strings separated by whitespace, except that no parentheses are allowed. The list need not contain
any names—that is, it can be empty.

Variables are dropped from left to right. It is not an error to specify a name more than once or to

drop a variable that is not known. If an exposed variable is named (see Section 2.7, "EXPOSE” and
Section 2.19, "PROCEDURE"), then the original variable is dropped.

Example 2.9. Instructions — DROP

j=4
Drop a z.3 z.j

/* Drops the variables: A, Z.3, and Z.4 */
/* so that reference to them returns their names. */

Here, a variable name in parentheses is used as a subsidiary list.
Example 2.10. Instructions — DROP

mylist="c d e"

drop (mylist) f

/* Drops the variables C, D, E, and F */
/* Does not drop MYLIST */

Specifying a stem (that is, a symbol that contains only one period as the last character) assigns the
stem variable to a new, empty stem object.

Example:

Drop z.
/* Assigns stem variable z. to a new empty stem object */

2.6. EXIT

EXIT

expression

EXIT leaves a program unconditionally. Optionally, EXIT returns a result object to the caller. The
program is stopped immediately, even if an internal routine is being run. If no internal routine is active,
RETURN and EXIT are identical in their effect on the program running.

If you specify expression, it is evaluated and the object resulting from the evaluation is passed back to
the caller when the program stops.

Example 2.11. Instructions — EXIT

j=3
Exit j*4
/* Would exit with the string "12" */

53

EXPOSE

If you do not specify expression, no data is passed back to the caller. If the program was called as a
function, this is detected as an error.

You can also use EXIT within a method. The method is stopped immediately, and the result object, if
specified, is returned to the sender. If the method has previously issued a REPLY instruction, the EXIT
instruction must not include a result expression.

Notes:

1. If the program was called through a command interface, an attempt is made to convert the
returned value to a return code acceptable by the underlying operating system. The returned string
must be a whole number in the range -32768 to 32767. If the conversion fails, no error is raised,
and a return code of 0 is returned.

2. If you do not specify EXIT, EXIT is implied at the end of the program, but no result value is
returned.

3. On Unix-like systems the returned value is limited to a numerical value between 0 and 255.

2.7. EXPOSE

@ name
o name)

EXPOSE causes the object variables identified in name to be exposed to a method. References to
exposed variables, including assigning and dropping, access variables in the current object's variable
pool. (An object variable pool is a collection of variables that is associated with an object rather

than with any individual method.) Therefore, the values of existing variables are accessible, and any
changes are persistent even after RETURN or EXIT from the method.

Any changes a method makes to an object variable pool are immediately visible to any other methods
that share the same object variable scope. All other variables that a method uses are local to the
method and are dropped on RETURN or EXIT. If an EXPOSE instruction is included, it must be the
first instruction of the method.

If parentheses enclose a single name, then, after the variable name is exposed, the character string
value of name is immediately used as a subsidiary list of variables. Whitespace characters are not
necessary inside or outside the parentheses, but you can add them if desired. This subsidiary list
must follow the same rules as the original list, that is, valid variable names separated by whitespace
characters, except that no parentheses are allowed.

Variables are exposed in sequence from left to right. It is not an error to specify a name more than
once, or to specify a name that has not been used as a variable.

Example 2.12. Instructions — EXPOSE

/* Example of exposing object variables */

myobj = .myclass~new

myobj~c

myobj~d /* Would display "z is: 120" */
::class myclass /* The ::CLASS directive */
::method c /* The ::METHOD directive */

54

FORWARD

expose z
z = 100 /* Would assign 100 to the object variable z */
return

::method d
expose z
z=7+20 /* Would add 20 to the same object variable z */
say "Z is:" z
return

You can expose an entire collection of compound variables by specifying their stem in the variable list
or a subsidiary list. The variables are exposed for all operations.

Example 2.13. Instructions — EXPOSE

expose j k c. d.

/* This exposes "J", "K", and all variables whose */
/* name starts with "C." or "D." */
c.1="7." /* This sets "C.1" in the object */
/* variable pool, even if it did not */
/* previously exist. */

2.8. FORWARD

FORWARD
(J
CONTINUE ARGUMENTS

L |
L(MESSAGE exprm L(CLASS exprs TO exprt

You can specify the options in any order.

FORWARD forwards the message that caused the currently active method to begin running. The
FORWARD instruction can change parts of the forwarded message, such as the target object, the
message name, the arguments, and the superclass override.

If you specify the TO option, the language processor evaluates exprt to produce a new target object for
the forwarded message. The exprt is a literal string, a constant symbol, or an expression enclosed in
parentheses. If you do not specify the TO option, the initial value of the Rexx special variable SELF is
used.

If you specify the ARGUMENTS option, the language processor evaluates expra to produce an array
object that supplies the set of arguments for the forwarded message. The expra can be a literal string,

55

FORWARD

a constant symbol, or an expression enclosed in parentheses. The ARGUMENTS value must evaluate to
a Rexx array object.

If you specify the ARRAY option, each expri is an expression (use commas to separate the
expressions). The language processor evaluates the expression list to produce a set of arguments for
the forwarded message. It is an error to use both the ARRAY and the ARGUMENTS options on the same
FORWARD instruction.

If you specify neither ARGUMENTS nor ARRAY, the language processor uses the same arguments
specified on the original method call.

If you specify the MESSAGE option, the exprm is a literal string, a constant symbol, or an expression
enclosed in parentheses. If you specify an expression enclosed in parentheses, the language
processor evaluates the expression to obtain its value. The uppercase character string value of the
MESSAGE option is the name of the message that the FORWARD instruction issues.

If you do not specify MESSAGE, FORWARD uses the message name used to call the currently active
method.

If you specify the CLASS option, the exprs is a literal string, a constant symbol, or an expression
enclosed in parentheses. This is the class object used as a superclass specifier on the forwarded
message.

If you do not specify CLASS, the message is forwarded without a superclass override.

If you do not specify the CONTINUE option, the language processor immediately exits the current
method before forwarding the message. Results returned from the forwarded message are the return
value from the original message that called the active method (the caller of the method that issued
the FORWARD instruction). Any conditions the forwarded message raises are raised in the calling
program (without raising a condition in the method issuing the FORWARD instruction).

If you specify the CONTINUE option, the current method does not exit and continues with the next
instruction when the forwarded message completes. If the forwarded message returns a result, the
language processor assigns it to the special variable RESULT. If the message does not return a result,
the language processor drops (uninitializes) the variable RESULT.

The FORWARD instruction passes all or part of an existing message invocation to another method.
For example, the FORWARD instruction can forward a message to a different target object, using the
same message name and arguments.

Example 2.14. Instructions — FORWARD

::method substr
forward to (self~string) /* Forward to the string value */

You can use FORWARD in an UNKNOWN method to reissue to another object the message that the
UNKNOWN method traps.

Example 2.15. Instructions — FORWARD

::method unknown
use arg msg, args
/* Forward to the string value */
/* passing along the arguments */
forward to (self~string) message (msg) arguments (args)

56

GUARD

You can use FORWARD in a method to forward a message to a superclass's methods, passing the
same arguments. This is very common usage in object INIT methods.

Example 2.16. Instructions — FORWARD

::class savings subclass account

::method init
expose type penalty
forward class (super) continue /* Send to the superclass */
type = "Savings" /* Now complete initialization */
penalty = "1% for balance under 500"

In the preceding example, the CONTINUE option causes the FORWARD message to continue with the
next instruction, rather than exiting the Savings class INIT method.

2.9. GUARD

m & WHEN expression

GUARD controls a method's exclusive access to an object.

GUARD ON acquires for an active method exclusive use of its object variable pool. This prevents
other methods that also require exclusive use of the same variable pool from running on the same
object. If another method has already acquired exclusive access, the GUARD instruction causes the
issuing method to wait until the variable pool is available.

GUARD OFF releases exclusive use of the object variable pool. Other methods that require exclusive
use of the same variable pool can begin running.

If you specify WHEN, the method delays running until the expression evaluates to . true. If the
expression evaluates to . false, GUARD waits until another method assigns or drops an object
variable (that is, a variable named on an EXPOSE instruction) used in the WHEN expression. When
an object variable changes, GUARD reevaluates the WHEN expression. If the expression evaluates
to . true, the method resumes running. If the expression evaluates to . false, GUARD resumes
waiting.

The condition expression after a WHEN can also be a list of expressions which is evaluated left-to-
right. Each expression must evaluate to either . false or . true. Evaluation will stop with the first
.false result and . false will be returned as the condition result. If all of the expressions evaluate to
. true, then the condition result is also . true.

Example 2.17. Instructions — GUARD

::method c
expose y
if y>0 then
return 1
else
return 0
::method d

57

expose z
guard on when z>0

self~c /* Reevaluated when Z changes */
say "Method D"

If you specify WHEN and the method has exclusive access to the object's variable pool, then the
exclusive access is released while GUARD is waiting for an object variable to change. Exclusive
access is reacquired before the WHEN expression is evaluated. Once the WHEN expression
evaluates to . true, exclusive access is either retained (for GUARD ON WHEN) or released (for
GUARD OFF WHEN), and the method resumes running.

If the condition expression cannot be met, GUARD ON WHEN puts the program in a continuous
wait condition. This can occur in particular when several activities run concurrently. See
Section 12.4.3, “Guarded Methods” for more information.

2.10. IF

instruction |—---

expression

@ " instruction

IF conditionally processes an instruction or group of instructions depending on the evaluation of the
expression. The expression is evaluated and must result in @ or 1.

The instruction after the THEN is processed only if the result is . true. If you specify an ELSE, the
instruction after ELSE is processed only if the result of the evaluation is . false.

Example:

if answer="YES" then say "OK!"
else say "Why not?"

Remember that if the ELSE clause is on the same line as the last clause of the THEN part, you need a
semicolon before ELSE.

Example:

if answer="YES" then say "OK!"; else say "Why not?"

ELSE binds to the nearest IF at the same level. You can use the NOP instruction to eliminate errors
and possible confusion when IF constructs are nested, as in the following example.

58

INTERPRET

Example 2.18. Instructions — IF

If answer = "YES" Then
If name = "FRED" Then
say "OK, Fred."
Else
nop
Else
say "Why not?"

The expression may also be a list of expressions separated by ",". The list of expressions is evaluated
left-to-right. Each subexpression must evaluate to either @ or 1. Evaluation will stop with the first ©
result and © will be returned as the condition result. If all of the subexpressions evaluate to 1, then the
condition result is also 1.

Example 2.19. Instructions — IF

If answer~datatype('w'), answer//2 = 0 Then
say answer "is even"

Else
say answer "is odd"

The example above is not the same as using the following

Example 2.20. Instructions — IF

If answer~datatype('w') & answer//2 = 0 Then
say answer "is even"

Else
say answer "is odd"

The logical & operator will evaluate both terms of the operation, so the term "answer//2" will result in
a syntax error if answer is a non-numeric value. With the list conditional form, evaluation will stop with
the first . false result, so the "answer//2" term will not be evaluated if the datatype test returns 0.

Notes:

1. The instruction can be any assignment, message instruction, command, or keyword instruction,
including any of the more complex constructs such as DO, LOOP, SELECT, or the IF instruction
itself. A null clause is not an instruction, so putting an extra semicolon (or label) after THEN or
ELSE is not equivalent to putting a dummy instruction (as it would be in C). The NOP instruction is
provided for this purpose.

2. Except when within a bracketed subexpression, the symbol THEN cannot be used within
expression, because the keyword THEN is treated differently in that it need not start a clause.
This allows the expression on the IF clause to be ended by THEN, without a semicolon (;) being
required.

2.11. INTERPRET

bb—(INTERPRET expression

59

INTERPRET

INTERPRET processes instructions that have been built dynamically by evaluating expression.

The expression is evaluated to produce a character string, and is then processed (interpreted) just as
though the resulting string were a line inserted into the program and bracketed by a DO; and an END;.

Any instructions (including INTERPRET instructions) are allowed, but note that constructions such
as DO...END and SELECT...END must be complete. For example, a string of instructions being
interpreted cannot contain a LEAVE or ITERATE instruction (valid only within a repetitive loop) unless

it also contains the whole repetitive DO...END or LOOP...END construct.

A semicolon is implied at the end of the expression during execution, if one was not supplied.

Example 2.21. Instructions — INTERPRET

/* INTERPRET example */

data="FRED"

interpret data "= 4"

/* Builds the string "FRED = 4" and */
/* Processes: FRED = 4; 2/
/* Thus the variable FRED is set to "4" */

/* Another INTERPRET example */
data="do 3; say "Hello there!"; end"

interpret data

Notes:

1. Labels within the interpreted string are not permanent and are, therefore, an error.

/* Displays: */
/* Hello there! */
/* Hello there! */
/* Hello there! */

2. Executing the INTERPRET instruction with TRACE R or TRACE I can be helpful in interpreting the

results you get.

Example 2.22. Instructions — INTERPRET

/* Here is
Trace Int

a small Rexx program. */

name="Kitty"
indirect="name"
interpret 'say "Hello"' indirect'"!"'

When this is run, you get the following trace:

3 Kok
>L>
>>>

4 *-*
>L>
>>>

5 *_*
>L>
SV>
>0>
>L>
>0>
>>>

name="Kitty"
IIKittyll
IlKittyll
indirect="name"
Ilnamell
Ilnamell
interpret 'say "Hello"' indirect'"!M'
IISay IIHellOII n
INDIRECT => "name"
n n => "Say "Hello" namell
nn | nmn
mn :> "Say "Hello" namell ! mn
"Say "Hello" namell | nmn

60

ITERATE

5 *-* say "Hello" name"!"
>L> "Hello"
>V> NAME => "Kitty"

>0> " " => "Hello Kitty"
SEIL
>0> "" => "Hello Kitty!"

>>> "Hello Kitty!"
Hello Kitty!

Lines 3 and 4 set the variables used in line 5. Execution of line 5 then proceeds in two stages.
First the string to be interpreted is built up, using a literal string, a variable (INDIRECT), and
another literal string. The resulting pure character string is then interpreted, just as though it
were actually part of the original program. Because it is a new clause, it is traced as such (the
second * - * trace flag under line 5) and is then processed. Again a literal string is concatenated
to the value of a variable (NAME) and another literal, and the final result (Hello Kitty!) is then
displayed.

3. For many purposes, you can use the VALUE function instead of the INTERPRET instruction. The
following line could, therefore, have replaced line 5 in the previous example:

Example 2.23. Instructions — INTERPRET

say "Hello" value(indirect)"!"

INTERPRET is usually required only in special cases, such as when two or more statements are
to be interpreted together, or when an expression is to be evaluated dynamically.

4. You cannot use a directive within an INTERPRET instruction.

2.12. ITERATE

ITERATE

name

ITERATE alters the flow within a repetitive loop (that is, any DO construct other than that with a simple
DO or a LOOP instruction).

Execution of the group of instructions stops, and control is passed to the DO or LOOP instruction just
as though the END clause had been encountered. The control variable, if any, is incremented and
tested, as usual, and the group of instructions is processed again, unless the DO or LOOP instruction
ends the loop.

The name is a symbol, taken as a constant. If name is not specified, ITERATE continues with the
current repetitive loop. If name is specified, it must be the name of the control variable or the LABEL
name of a currently active loop, which can be the innermost, and this is the loop that is stepped. Any
active loops inside the one selected for iteration are ended (as though by a LEAVE instruction).

Example 2.24. Instructions — ITERATE

loop label MyLabelName i=1 to 4 /* label set to 'MYLABELNAME' */
if i=2 then iterate
say i

61

LEAVE

end myLabelName

/* Displays the numbers:
1
3
4

*/

Notes:

1. If specified, name must match the symbol naming the control variable or LABEL name in the DO
or LOOP clause in all respects except the case. No substitution for compound variables is carried
out when the comparison is made.

2. Aloop is active if it is currently being processed. If a subroutine is called, or an INTERPRET
instruction is processed, during the execution of a loop, the loop becomes inactive until the
subroutine has returned or the INTERPRET instruction has completed. ITERATE cannot be used
to continue with an inactive loop.

3. If more than one active loop uses the same name, ITERATE selects the innermost loop.

2.13. LEAVE

LEAVE

name

LEAVE causes an immediate exit from one or more repetitive loops or block instruction (simple DO or
SELECT).

Processing of the group of instructions is ended, and control is passed to the instruction following the
END clause, just as though the END clause had been encountered and the termination condition had
been met. However, on exit, the control variable, if any, contains the value it had when the LEAVE
instruction was processed.

The name is a symbol, taken as a constant. If name is not specified, LEAVE ends the innermost active
repetitive loop. If name is specified, it must be the name of the control variable or LABEL name of a
currently active LOOP, DO, or SELECT, which can be the innermost, and that block, and any active
block inside it, are then ended. Control then passes to the clause following the END that matches the
instruction of the selected block.

Example 2.25. Instructions — LEAVE

max=5
do label myDoBlock /* define a label 'MYDOBLOCK' */
loop i=1 to max /* label defaults to control variable 'I' */
if i = 2 then iterate i
if i = 4 then leave myDoBlock
say i
end i
end myDoBlock
say 'after looping' i 'times'
/* Displays the following
1
3
after looping 4 times
*/

62

LOOP

Notes:

1. |If specified, name must match the symbol naming the control variable or LABEL name in the DO,
LOOP, or SELECT clause in all respects except the case. No substitution for compound variables
is carried out when the comparison is made.

2. Aloop is active if it is currently being processed. If a subroutine is called, or an INTERPRET
instruction is processed, during execution of a loop, the loop becomes inactive until the subroutine
has returned or the INTERPRET instruction has completed. LEAVE cannot be used to end an
inactive block.

3. If more than one active block uses the same control variable, LEAVE selects the innermost block.

2.14. LOOP

DO
L(LABEL)— name

instruction

name

REPETITOR:

P~

control1

= expri

L(COUNTER)— ctr

l—< REPETITOR - fragment

J

1—< CONDITIONAL - fragment

control2

OVER)—

exprt

BY

exprb L(FOR

exprf

»d
74

\—' FOREVER i

—

collection
L(FOR exprf

J

INDEX

index

ITEM

item

OVER

supplier

(@

exprf

exprr

CONDITIONAL:

63

NOP

WHILE exprw

UNTIL expru

LOOP groups instructions and processes them repetitively.

LOOP behaves identically to DO, except for the simple LOOP ... END case, which is equivalent to DO
FOREVER ... END.

For details refer to Section 2.4, “DO”.
2.15. NOP

NOP is a dummy instruction that has no effect. It can be useful as the target of a THEN or ELSE
clause.

Example 2.26. Instructions — NOP

Select
when a=c then nop /* Do nothing */
when a>c then say "A > C"
otherwise say "A < C"

end

@roe

Putting an extra semicolon instead of the NOP would merely insert a null clause, which would

be ignored. The second WHEN clause would be seen as the first instruction expected after the
THEN, and would, therefore, be treated as a syntax error. NOP is a true instruction, however, and
is, therefore, a valid target for the THEN clause.

2.16. NUMERIC

64

NUMERIC

NUMERIC DIGITS) > S

expressionl

SCIENTIFIC)

ENGINEERING

< ~— expression2

expression3

NUMERIC changes the way in which a program carries out arithmetic operations. The options of this
instruction are described in detail in Chapter 10, Numbers and Arithmetic.

NUMERIC DIGITS
controls the precision to which arithmetic operations and built-in functions are evaluated. If you
omit expression1, the precision defaults to 9 digits, but can be overridden on a source-file basis
using the ::OPTIONS directive. Otherwise, the character string value result of expression1 must
evaluate to a positive whole number and must be larger than the current NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage available), but high
precisions are likely to require a great amount of processing time. It is recommended that you use
the default value whenever possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS built-in function.

NUMERIC FORM
controls the form of exponential notation for the result of arithmetic operations and built-in
functions. This can be either SCIENTIFIC (in which case only one, nonzero digit appears before
the decimal point) or ENGINEERING (in which case the power of 10 is always a multiple of 3).
The default is SCIENTIFIC, but can be overridden on a source-file basis using the ::OPTIONS
directive. The subkeywords SCIENTIFIC or ENGINEERING set the FORM directly, or it is
taken from the character string result of evaluating the expression (expression?2) that follows
VALUE. The result in this case must be either SCIENTIFIC or ENGINEERING. You can omit the
subkeyword VALUE if expression2 does not begin with a symbol or a literal string, that is, if it
starts with a special character, such as an operator character or parenthesis.

You can retrieve the current NUMERIC FORM setting with the FORM built-in function.

NUMERIC FUzZ
controls how many digits, at full precision, are ignored during a numeric comparison operation. If
you omit expression3, the default is 0 digits, but can be overridden on a source-file basis using the
;OPTIONS directive. Otherwise, the character string value result of expression3 must evaluate to
0 or a positive whole number rounded, if necessary, according to the current NUMERIC DIGITS
setting, and must be smaller than the current NUMERIC DIGITS setting.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the NUMERIC FUZZ
value during every numeric comparison. The numbers are subtracted under a precision of DIGITS
minus FUZZ digits during the comparison and are then compared with 0.

You can retrieve the current NUMERIC FUZZ setting with the FUZZ built-in function.

65

OPTIONS

@e

The three numeric settings are automatically saved across internal subroutine and function calls.
See the CALL instruction for more details.

2.17. OPTIONS

bb—[OPTIONS)— expression

—<

The OPTIONS instruction is used to pass special requests to the language processor.

The expression is evaluated, and individual words in the result that are meaningful to the language
processor will be obeyed. Options might control how the interpreter optimizes code, enforces
standards, enables implementation-dependent features, etc. Unrecognized words in the result are
ignored, since they are assumed to be instructions for a different language processor.

Open Object Rexx does not recognize any option keywords.

2.18. PARSE

J

UPPER CASELESS
' ' LINEIN o

<~ ARG -

PULL o

SOURCE o

VALUE WITH
u T
expression
VAR)— name o

VERSION -

L template_list J

HE

i

T

i

@

You can specify UPPER and CASELESS or LOWER and CASELESS in either order.

66

PARSE

PARSE assigns data from various sources to one or more variables according to the rules of parsing.
(See Chapter 9, Parsing.)

If you specify UPPER, the strings to be parsed are translated to uppercase before parsing. If you
specify LOWER, the strings are translated to lowercase. Otherwise no translation takes place.

If you specify CASELESS, character string matches during parsing are made independent of the case.
This means a letter in uppercase is equal to the same letter in lowercase.

The template_list can be a single template or list of templates separated by commas. Each template
consists of one or more symbols separated by whitespace, patterns, or both.

Each template is applied to a single source string. Specifying several templates is not a syntax error,
but only the PARSE ARG variant can supply more than one non-null source string. See Section 9.8.1,
“Parsing Several Strings” for information on parsing several source strings.

If you do not specify a template, no variables are set but the data is prepared for parsing, if necessary.
Thus for PARSE PULL, a data string is removed from the current data queue, for PARSE LINEIN (and
PARSE PULL if the queue is empty), a line is taken from the default input stream, and for PARSE
VALUE, expression is evaluated. For PARSE VAR, the specified variable is accessed. If it does not
have a value, the NOVALUE condition is raised, if it is enabled.

The following list describes the data for each variant of the PARSE instruction.

PARSE ARG
parses the strings passed to a program, routine, or method as input arguments. See the ARG
instruction for details and examples.

K

Parsing uses the string values of the argument objects. The USE ARG instruction provides
direct access to argument objects. You can also retrieve or check the argument objects to a
Rexx program, routine, or method with the ARG built-in function.

PARSE LINEIN
parses the next line of the default input stream. (See Chapter 14, Input and Output Streams for a
discussion of Rexx input and output.) PARSE LINEIN is a shorter form of the following instruction:

)b—(PARSE)—(VALUE H LINEIN() H WITH

template_list

If no line is available, program execution usually pauses until a line is complete. Use PARSE
LINEIN only when direct access to the character input stream is necessary. Use the PULL or
PARSE PULL instructions for the usual line-by-line dialog with the user to maintain generality.
PARSE LINEIN will not pull lines from the external data queue.

To check if any lines are available in the default input stream, use the LINES built-in function.

PARSE PULL
parses the next string of the external data queue. If the external data queue is empty, PARSE
PULL reads a line of the default input stream (the user's terminal), and the program pauses, if

67

PARSE

necessary, until a line is complete. You can add data to the head or tail of the queue by using

the PUSH and QUEUE instructions, respectively. You can find the number of lines currently in
the queue with the QUEUED buiilt-in function. The queue remains active as long as the language
processor is active. Other programs in the system can alter the queue and use it to communicate
with programs written in Rexx. See also the PULL instruction.

@roe

PULL and PARSE PULL read the current data queue. If the queue is empty, they read the
default input stream, .INPUT (typically, the keyboard).

PARSE SOURCE
parses data describing the source of the program, routine or method running.

The first two tokens of source string are the operating system name, followed by either COMMAND,
FUNCTION, SUBROUTINE, METHOD, or REQUIRES, depending on whether the program was called
as a host command, or from a function call in an expression, or using the CALL instruction, or as
a method of an object, or from a ::REQUIRES directive to run the prolog code. These two tokens
are followed by the path specification of the program, or the name given to a Package, Routine or
Method instance, or the string INSTORE when run via rexx -e.

The string might look like one of the following:

WindowsNT COMMAND C:\Program Files\ooRexx\rexxtry.rex
LINUX COMMAND /usr/local/bin/rexxtry.rex

PARSE VALUE
parses the data, a character string, that is the result of evaluating expression. If you specify no
expression, the null string is used. Note that WITH is a subkeyword in this context and cannot be
used as a symbol within expression.

Thus, for example:

PARSE VALUE time() WITH hours ":" mins ":" secs

gets the current time and splits it into its constituent parts.

PARSE VAR name
parses the character string value of the variable name. The name must be a symbol that is valid
as a variable name, which means it cannot start with a period or a digit. Note that the variable
name is not changed unless it appears in the template, so that, for example:

PARSE VAR string wordl string

removes the first word from string, puts it in the variable word1, and assigns the remainder back to
string.

PARSE UPPER VAR string wordl string

also translates the data from string to uppercase before it is parsed.

68

PROCEDURE

PARSE VERSION
parses information describing the language level and the date of the language processor. This
information consists of five blank-delimited words:
* The string REXX-00Rexx_5.0.0(MT)_64-bit, if using the ooRexx interpreter at version 5,
release 0, modification 0, and compiled for 64-bit addressing mode.

» The language level description, for example 6 .05 for ooRexx 5.0, or 6. 04 for ooRexx 4.2.

» Three tokens that describe the language processor release date in the same format as the
default for the DATE built-in function, for example, "1 Sep 2016".

2.19. PROCEDURE

bb—(PROCEDURE EXPOSE name
name)

PROCEDURE, within an internal routine (subroutine or function), protects the caller's variables by
making them unknown to the instructions that follow it. After a RETURN instruction is processed, the
original variable environment is restored and any variables used in the routine (that were not exposed)
are dropped. (An exposed variable is one belonging the caller of a routine that the PROCEDURE
instruction has exposed. When the routine refers to, or alters, the variable, the original (caller's) copy
of the variable is used.) An internal routine need not include a PROCEDURE instruction. In this case
the variables it is manipulating are those the caller owns. If the PROCEDURE instruction is used, it
must be the first instruction processed after the CALL or function invocation; that is, it must be the first
instruction following the label.

If you use the EXPOSE option, any variable specified by the name is exposed. Any reference to it
(including setting and dropping) is made to the variables environment the caller owns. Hence, the
values of existing variables are accessible, and any changes are persistent even on RETURN from
the routine. If the name is not enclosed in parentheses, it identifies a variable you want to expose
and must be a symbol that is a valid variable name, separated from any other name with one or more
whitespace characters.

If parentheses enclose a single name, then, after the variable name is exposed, the character string
value of name is immediately used as a subsidiary list of variables. Whitespace characters are not
necessary inside or outside the parentheses, but you can add them if desired. This subsidiary list
must follow the same rules as the original list, that is, valid variable names separated by whitespace
characters, except that no parentheses are allowed.

Variables are exposed from left to right. It is not an error to specify a name more than once, or to
specify a name that the caller has not used as a variable.

Any variables in the main program that are not exposed are still protected. Therefore, some of the
caller's variables can be made accessible and can be changed, or new variables can be created. All
these changes are visible to the caller upon RETURN from the routine.

Example 2.27. Instructions — PROCEDURE

/* This is the main Rexx program */
j=1; z.1="a"
call toft

69

PROCEDURE

say j km /* Displays "1 7 M" */

exit

/* This is a subroutine */

toft: procedure expose j k z.j
say j k z.j /* Displays "1 K a" */
k=7; m=3 /* Note: M is not exposed */
return

Note that if Z. J in the EXPOSE list is placed before J, the caller's value of J is not visible, so Z.1 is
not exposed.

The variables in a subsidiary list are also exposed from left to right.

Example 2.28. Instructions — PROCEDURE

/* This is the main Rexx program */
j=1;k=6;m=9

a :Ilj k mll

call test

exit

/* This is a subroutine */

test: procedure expose (a) /* Exposes A, J, K, and M */
say a j km /* Displays "j k m 1 6 9" */
return

You can use subsidiary lists to more easily expose a humber of variables at a time or, with the VALUE
built-in function, to manipulate dynamically named variables.

Example 2.29. Instructions — PROCEDURE

/* This is the main Rexx program */
c=11; d=12; e=13

Showlist="c d" /* but not E */

call Playvars

say cd e f /* Displays "11 New 13 9" */

exit

/* This is a subroutine */

Playvars: procedure expose (showlist) f
say word(showlist,2) /* Displays "d" */
say value(word(showlist,2),"New") /* Displays "12" and sets new value */
say value(word(showlist,2)) /* Displays "New" */
e=8 /* E is not exposed */
=9 /* F was explicitly exposed */
return

Specifying a stem as name exposes this stem and all possible compound variables whose names
begin with that stem.

Example 2.30. Instructions — PROCEDURE

/* This is the main Rexx program */
a.=11; i=13; j=15

i=1+1

C.5 = "FRED"

call lucky7

70

PULL

say a. a.1 1 j c. c.5
say "You should see 11 7 14 15 C. FRED"
exit

lucky7:Procedure Expose i j a. c.

/* This exposes I, J, and all variables whose */
/* names start with A. or C. */
A.1="7" /* This sets A.1 in the caller-'s */
/* environment, even if it did not */
/* previously exist. */
return

@

Variables can be exposed through several generations of routines if they are included in all
intermediate PROCEDURE instructions.

See the CALL instruction and Chapter 7, Functions for details and examples of how routines are
called.

2.20. PULL

PULL
template_list

PULL reads a string from the head of the external data queue or, if the external data queue is empty,
from the standard input stream (typically the keyboard). (See Chapter 14, Input and Output Streams
for a discussion of Rexx input and output.) It is a short form of the following instruction:

PP—(PARSE H (1] PPERH PULL)ﬁ“
template_list

The current head of the queue is read as one string. Without a template_list specified, no further
action is taken and the string is thus effectively discarded. The template_list can be a single template
or list of templates separated by commas, but PULL parses only one source string. Each template
consists of one or more symbols separated by whitespace, patterns, or both.

If you specify several comma-separated templates, variables in templates other than the first one are
assigned the null string. The string is translated to uppercase (that is, lowercase a-z to uppercase A-2Z)
and then parsed into variables according to the rules described in Chapter 9, Parsing. Use the PARSE
PULL instruction if you do not desire uppercase translation.

@roe

If the current data queue is empty, PULL reads from the standard input (typically, the keyboard). If
there is a PULL from the standard input, the program waits for keyboard input with no prompt.

71

PUSH

Example:

Say "Do you want to erase the file? Answer Yes or No:"
Pull answer .
if answer="NO" then say "The file will not be erased."

Here the dummy placeholder, a period (.), is used in the template to isolate the first word the user
enters.

If the external data queue is empty, a line is read from the default input stream and the program
pauses, if necessary, until a line is complete. (This is as though PARSE UPPER LINEIN had been
processed. For details see PARSE LINEIN

The QUEUED built-in function returns the number of lines currently in the external data queue.

2.21. PUSH

PUSH

expression

PUSH stacks the string resulting from the evaluation of expression LIFO (Last In, First Out) into the
external data queue. (See Chapter 14, Input and Output Streams for a discussion of Rexx input and
output.)

If you do not specify expression, a null string is stacked.

Example 2.31. Instructions — PUSH

a="Fred"
push /* Puts a null line onto the queue */
push a 2 /* Puts "Fred 2" onto the queue */

The QUEUED built-in function returns the number of lines currently in the external data queue.

2.22. QUEUE

QUEUE

expression

QUEUE appends the string resulting from expression to the tail of the external data queue. That is, it is
added FIFO (First In, First Out). (See Chapter 14, Input and Output Streams for a discussion of Rexx
input and output.)

If you do not specify expression, a null string is queued.

Example 2.32. Instructions — QUEUE

a="Toft"
queue a 2 /* Enqueues "Toft 2" */
queue /* Enqueues a null line behind the last */

72

RAISE

The QUEUED built-in function returns the number of lines currently in the external data queue.

2.23. RAISE

»—(RAISEHERROR)— errorcode —,—< OPTIONS - fragment)—N

FAILU RE)— failurecode |

T

HALT

U

LOSTDIGITS
NOMETHOD
NOSTRING
NOTREADY

NOVALUE

SYNTAX)— number
USER)— usercondition

PROPAGATE

i

L

L

OPTIONS:

ADDITIONAL)— L(DESCRIPTION)— exprd J

»h-
>

RETURN

You can specify the options ADDITIONAL, ARRAY, DESCRIPTION, RETURN, and EXIT in any
order. However, if you specify EXIT without expre or RETURN without exprr, it must appear last.

RAISE returns or exits from the currently running routine or method and raises a condition in the caller
(for a routine) or sender (for a method). See Chapter 11, Conditions and Condition Traps for details of

73

RAISE

the actions taken when conditions are raised. The RAISE instruction can raise all conditions that can
be trapped.

If the ERROR or FAILURE condition is raised, you must supply the associated return code as
errorcode or failurecode, respectively. These can be literal strings, constant symbols, or expressions
enclosed in parentheses. If you specify an expression enclosed in parentheses, a subexpression, the
language processor evaluates the expression to obtain its character string value.

If the SYNTAX condition is raised, you must supply the associated Rexx error number as number. This
error number can be either a Rexx major error code or a Rexx detailed error code in the form nn.nnn.
The number can be a literal string, a constant symbol, or an expression enclosed in parentheses. If
you specify an expression enclosed in parentheses, the language processor evaluates the expression
to obtain its character string value.

If a USER condition is raised, you must supply the associated user condition name as usercondition,
which must be a symbol that is taken as a constant.

If you specify the ADDITIONAL option, the language processor evaluates expra to produce an object
that supplies additional object information associated with the condition. The expra can be a literal
string, a constant symbol, or an expression enclosed in parentheses. The ADDITIONAL entry of the
condition object and the "A" option of the CONDITION built-in function return this additional object
information. For SYNTAX conditions, the ADDITIONAL value must evaluate to a single-dimensional
Array.

If you specify the ARRAY option, each expri is an expression (use commas to separate the
expressions). The language processor evaluates the expression list to produce an array object that
supplies additional object information associated with the condition. The ADDITIONAL entry of the
condition object and the "A" option of the CONDITION built-in function return this additional object
information as an array of values. It is an error to use both the ARRAY option and the ADDITIONAL
option on the same RAISE instruction.

The content of expra or expri is used as the contents of the secondary error message produced for a
condition.

If you specify neither ADDITIONAL nor ARRAY, there is no additional object information associated
with the condition.

If you specify the DESCRIPTION option, the exprd can be a literal string, a constant symbol, or

an expression enclosed in parentheses. If you specify an expression enclosed in parentheses,

the language processor evaluates the expression to obtain its character string value. This is the
description associated with the condition. The "D" option of the CONDITION built-in function and the
DESCRIPTION entry of the condition object return this string.

If you do not specify DESCRIPTION, the language processor uses a null string as the descriptive
string.

If you specify the RETURN or EXIT option, the language processor evaluates the expression exprr

or expre, respectively, to produce a result object that is passed back to the caller or sender as if

it were a RETURN or EXIT result. The expre or exprr is a literal string, a constant symbol, or an
expression enclosed in parentheses. If you specify an expression enclosed in parentheses, the
language processor evaluates the expression to obtain its character string value. If you do not specify
exprr or expre, no result is passed back to the caller or sender. In either case, the effect is the same
as that of the RETURN or EXIT instruction. The EXIT option is the default. Following the return or
exit, the appropriate action is taken in the caller or sender (see Section 11.1, “Action Taken when a
Condition Is Not Trapped”). If specified, the result value can be obtained from the RESULT entry of the
condition object.

74

REPLY

Example 2.33. Instructions — RAISE

raise syntax 40
raise syntax 40.12 array (1, number) /*

raise syntax (errnum)

raise user badvalue

/*

/*
/*
/*

Raises syntax error 40
Raises syntax error 40,

subcode 12

Passing two substitution values

Uses the value of the variable ERRNUM

as the syntax error number
Raises user condition BADVALUE

*/
*/
*/
*/
*/
*/

If you specify PROPAGATE, and there is a currently trapped condition, this condition is raised again
in the caller (for a routine) or sender (for a method). Any ADDITIONAL, DESCRIPTION, ARRAY,
RETURN, or EXIT information specified on the RAISE instruction replaces the corresponding values

for the currently trapped condition. A SYNTAX error occurs if no condition is currently trapped.

Example 2.34. Instructions — RAISE

signal on syntax

a = "XyZ"
c = at2

exit
syntax:

raise propagate

2.24. REPLY

REPLY

expression

/* Raises the SYNTAX condition

*/

/* Propagates SYNTAX information to caller */

REPLY sends an early reply from a method to its caller. The method issuing REPLY returns control,
and possibly a result, to its caller to the point from which the message was sent; meanwhile, the

method issuing REPLY continues running on a newly created thread.

If you specify expression, it is evaluated and the object resulting from the evaluation is passed back. If

you omit expression, no object is passed back.

Unlike RETURN or EXIT, the method issuing REPLY continues to run after the REPLY until it issues

an EXIT or RETURN instruction. The EXIT or RETURN must not specify a result expression.

Example 2.35. Instructions — REPLY

reply 42
call tidyup
return

Notes:

/*

Returns control and a result

*/

/* Can run in parallel with sender */

1. You can use REPLY only in a method.

2. A method can execute only one REPLY instruction.

75

RETURN

3. When the method issuing the REPLY instruction is the only active method on the current thread
with exclusive access to the object's variable pool, the method retains exclusive access on the
new thread. When other methods on the thread also have access, the method issuing the REPLY
releases its access and reacquires the access on the new thread. This might force the method to
wait until the original activity has released its access.

See Chapter 12, Concurrency for a complete description of concurrency.

2.25. RETURN

RETURN

expression

RETURN returns control, and possibly a result, from a Rexx program, method, or routine to the point
of its invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are identical in their effect
on the program that is run.

If called as a routine, expression (if any) is evaluated, control is passed back to the caller, and the
Rexx special variable RESULT is set to the value of expression. If you omit expression, the special
variable RESULT is dropped (becomes uninitialized). The various settings saved at the time of the
CALL (for example, tracing and addresses) are also restored.

If a function call is active, the action taken is identical, except that expression must be specified on
the RETURN instruction. The result of expression is then used in the original expression at the point
where the function was called. See Chapter 7, Functions for more details.

If a method is processed, the language processor evaluates expression (if any) and returns control to
the point from which the method's activating message was sent. If called as a term of an expression,
expression is required. If called as a message instruction, expression is optional and is assigned to the
Rexx special variable RESULT if a return expression is specified. If the method has previously issued
a REPLY instruction, the RETURN instruction must not include a result expression.

If a PROCEDURE instruction was processed within an internal subroutine or internal function, all
variables of the current generation are dropped (and those of the previous generation are exposed)
after expression is evaluated and before the result is used or assigned to RESULT.

@oe

If the RETURN statement causes the program to return to the operating system on a Unix-like
systems the value returned is limited to a numerical value between 0 and 255 (an unsigned byte).
If no expression is supplied then the default value returned to the operating system is zero.

2.26. SAY

SAY

expression

76

SELECT

SAY writes a line to the default output stream, which displays it to the user. However, the output
destination can depend on the implementation. See Chapter 14, Input and Output Streams for a
discussion of Rexx input and output. The string value of the expression result is written to the default
character output stream. The resulting string can be of any length. If you omit expression, the null
string is written.

The SAY instruction is a shorter form of the following instruction:

»—(CALL)—(LINEOUT ,

expression

except that:
» SAY does not affect the special variable RESULT.

 If you use SAY and omit expression, a null string is used.

* CALL LINEOUT can raise NOTREADY; SAY will not.

Example 2.36. Instructions — SAY

data=100
Say data "divided by 4 =>" data/4
/* Displays: "100 divided by 4 => 25" */

Notes:

1. Data from the SAY instruction is sent to the default output stream ((OUTPUT). However, the
standard rules for redirecting output apply to the SAY output.

2. The SAY instruction does not format data; the operating system and the hardware handle line
wrapping. However, formatting is accomplished, the output data remains a single logical line.

2.27. SELECT

SELECT »<
> (J
LABEL)— name CASE)— case_expression

WHEN expression instruction

instruction

»T OTHERWISE ; S 7~ (— >«

77

SELECT

END

name

SELECT conditionally calls one of several alternative instructions.

Evaluation of the expression list after a WHEN is as follows:

SELECT without CASE
The list of expressions after a WHEN is evaluated left-to-right. Each expression must evaluate
to either . false or . true. Evaluation will stop with the first . false result and . false will be
returned as the condition result.

If all of the expressions evaluate to . true, then the condition result is also . true.

SELECT CASE
The case_expression is evaluated only once, before the first WHEN instruction is processed. The
list of expressions after a WHEN is evaluated left-to-right. Each expression is compared to the
result of case_expression using "==". Evaluation will stop with the first . true result and . true
will be returned as the condition result.

If all comparisons evaluate to . false, then the condition result is also . false.

If the result from above is . true, the instruction following the associated THEN (which can be a
complex instruction such as IF, DO, LOOP, or SELECT) is processed and control is then passed to the
END. If the resultis . false, control is passed to the next WHEN clause.

If none of the WHEN results are . true, control is passed to the instructions, if any, after
OTHERWISE. In this situation, the absence of an OTHERWISE produces an error, however, you can
omit the instruction list that follows OTHERWISE.

Example 2.37. Instructions — SELECT

balance=100
check=50
balance = balance - check
Select
when balance > 0 then
say "Congratulations! You still have" balance "dollars left."
when balance = 0 then do
say "Warning, Balance is now zero! STOP all spending."
say "You cut it close this month! Hope you do not have any"
say '"checks left outstanding."
end
Otherwise do
say "You have just overdrawn your account."
say "Your balance now shows" balance "dollars."
say "Oops! Hope the bank does not close your account."
end
end /* Select */

Example 2.38. Instructions — SELECT

select
when answer~datatype('w'), answer//2 = 0 Then
say answer "is even"
when answer~datatype('w'), answer//2 = 1 Then
say answer "is odd"

78

SIGNAL

otherwise
say answer "is not a number"
end

The example above is not the same as using the following

select
when answer~datatype('w') & answer//2 = 0 Then
say answer "is even"
when answer~datatype('w') & answer//2 = 1 Then
say answer "is odd"
otherwise
say answer "is not a number"
end

The logical "&" operator will evaluate both terms of the operation, so the term "answer//2" will result
in a syntax error if answer is a non-numeric value. With the list conditional form, evaluation will stop
with the first . false result, so the "answer//2" term will not be evaluated if the datatype test returns
.false.

Example 2.39. Instructions — SELECT CASE

select case random(6)
when 1 then say "bad luck!"
when 5, 6 then say '"great!"
otherwise say "try again"
end

Notes:

1. The instruction can be any assignment, command, message instruction, or keyword instruction,
including any of the more complex constructs, such as DO, LOOP, IF, or the SELECT instruction
itself.

2. A null clause is not an instruction, so putting an extra semicolon (or label) after a THEN clause is
not equivalent to putting a dummy instruction. The NOP instruction is provided for this purpose.

3. Except when within a bracketed subexpression, the symbol THEN cannot be used within
expression, because the keyword THEN is treated differently in that it need not start a clause. This
allows the expression on the WHEN clause to be ended by the THEN without a semicolon (;).

2.28. SIGNAL

bb—(SIGNAL labelname

expression
VALUE

79

SIGNAL

~

SIGNAL ON ANY)
’ J
NAME trapname

ERROR

i

|

HALT

g

LOSTDIGITS
NOMETHOD
NOSTRING

NOTREADY

SYNTAX

{ USER usercondition
»—(SIGNAL)—(OFFHANY)—,-N

ERROR

i

L

I

HALT

U

LOSTDIGITS

NOMETHOD

NOSTRING

NOTREADY

NOVALUE

i

SYNTAX

L

USER usercondition

s

SIGNAL causes an unusual change in the flow of control (if you specify labelname or VALUE
expression), or controls the trapping of certain conditions (if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the
specified condition trap. ON turns on the specified condition trap. All information on condition traps is
contained in Chapter 11, Conditions and Condition Traps.

To change the flow of control, a label name is derived from labelname or taken from the character
string result of evaluating the expression after VALUE. The labelname you specify must be a literal
string or symbol that is taken as a constant. If you specify a symbol for labelname, the search looks
for a label with uppercase characters. If you specify a literal string, the search uses the literal string
directly. You can locate label names with lowercase letters only if you specify the label as a literal
string with the same case. Similarly, for SIGNAL VALUE, the lettercase of labelname must match

80

TRACE

exactly. You can omit the subkeyword VALUE if expression does not begin with a symbol or literal
string, that is, if it starts with a special character, such as an operator character or parenthesis. All
active pending DO, IF, SELECT, and INTERPRET instructions in the current routine are then ended
and cannot be resumed. Control is then passed to the first label in the program that matches the given
name, as though the search had started at the beginning of the program.

The labelname and usercondition are single symbols, which are taken as constants. The trapname is
a string or symbol taken as a constant.

Example 2.40. Instructions — SIGNAL

Signal fred; /* Transfer control to label FRED below */

Fred: say "Hi!"

If there are duplicates, control is always passed to the first occurrence of the label in the program.

When control reaches the specified label, the line number of the SIGNAL instruction is assigned to the
special variable SIGL. This can aid debugging because you can use SIGL to determine the source of
a transfer of control to a label.

2.29. TRACE

DD—'TRACEi\(j\ R

Intermediates

freenene

number o

string

symbol

{VALUE)— expression p———'

TRACE controls the tracing action (that is, how much is displayed to the user) during the processing
of a Rexx program. Tracing describes some or all of the clauses in a program, producing descriptions

81

Trace Alphabetic Character (Word) Options

of clauses as they are processed. TRACE is mainly used for debugging. Its syntax is more concise
than that of other Rexx instructions because TRACE is usually entered manually during interactive
debugging. (This is a form of tracing in which the user can interact with the language processor while
the program is running.)

@e

TRACE cannot be used in the Rexx macrospace.

If specified, the number must be a whole number.
The string or expression evaluates to:

e A numeric option
» One of the valid prefix or alphabetic character (word) options
e Null

The symbol is taken as a constant and is therefore:

» A numeric option
» One of the valid prefix or alphabetic character (word) options

The option that follows TRACE or the character string that is the result of evaluating expression
determines the tracing action. You can omit the subkeyword VALUE if expression does not begin
with a symbol or a literal string, that is, if it starts with a special character, such as an operator or
parenthesis.

2.29.1. Trace Alphabetic Character (Word) Options

Although you can enter the word in full, only the first capitalized letter is needed; all following
characters are ignored. That is why these are referred to as alphabetic character options.

TRACE actions correspond to the alphabetic character options as follows:

All
Traces (that is, displays) all clauses before execution.

Commands
Traces all commands before execution. If the command results in an error or failure, tracing also
displays the return code from the command.

Error
Traces any command resulting in an error or failure after execution, together with the return code
from the command.

Failure
Traces any command resulting in a failure after execution, together with the return code from the
command. This is the same as the Normal option.

82

Prefix Option

Intermediates
Traces all clauses before execution. Also traces intermediate results during the evaluation of
expressions and substituted names.

Labels
Traces method and routine invocations, internal subroutine calls, transfers of control because of
the SIGNAL instruction, and labels passed during program execution. This is especially useful with
debug mode, when the language processor pauses after each invocation or call.

Normal
Traces any failing command after execution, together with the return code from the command.
This is the default setting, if not overridden using the ::OPTIONS directive.

For the default Windows command processor, an attempt to enter an unknown command raises

a FAILURE condition. The CMD return code for an unknown command is 1. An attempt to enter a
command in an unknown command environment also raises a FAILURE condition; in such a case,
the variable RC is set to 30.

off
Traces nothing and resets the special prefix option (described later) to OFF.

Results
Traces all clauses before execution. Displays the final results (in contrast with Intermediates
option) of the expression evaluation. Also displays values assigned during PULL, ARG, PARSE,
and USE instructions. This setting is recommended for general debugging.

2.29.2. Prefix Option

The prefix ? is valid alone or with one of the alphabetic character options. You can specify the prefix
more than once, if desired. Each occurrence of a prefix on an instruction reverses the action of the
previous prefix. The prefix must immediately precede the option (no intervening whitespace).

The prefix ? controls interactive debugging. During normal execution, a TRACE option with a prefix
of ? causes interactive debugging to be switched on. (See Chapter 15, Debugging Aids for full details
of this facility.) When interactive debugging is on, interpretation pauses after most clauses that are
traced. For example, the instruction TRACE ?E makes the language processor pause for input after
executing any command that returns an error, that is, a nonzero return code or explicit setting of the
error condition by the command handler.

Any TRACE instructions in the program being traced are ignored to ensure that you are not taken out
of interactive debugging unexpectedly.

You can switch off interactive debugging in several ways:

» Entering TRACE O turns off all tracing.

» Entering TRACE with no options restores the defaults—it turns off interactive debugging but
continues tracing with TRACE Normal (which traces any failing command after execution).

» Entering TRACE ? turns off interactive debugging and continues tracing with the current option.

» Entering a TRACE instruction with a ? prefix before the option turns off interactive debugging and
continues tracing with the new option.

83

Numeric Options

Using the ? prefix, therefore, switches you in or out of interactive debugging. Because the language
processor ignores any further TRACE statements in your program after you are in interactive debug
mode, use CALL TRACE "?" to turn off interactive debugging.

2.29.3. Numeric Options

If interactive debugging is active and the option specified is a positive whole number (or an expression
that evaluates to a positive whole number), that number indicates the number of debug pauses to be
skipped. (See Chapter 15, Debugging Aids for further information.) However, if the option is a negative
whole number (or an expression that evaluates to a negative whole number), all tracing, including
debug pauses, is temporarily inhibited for the specified number of clauses. For example, TRACE -100
means that the next 100 clauses that would usually be traced are not displayed. After that, tracing
resumes as before.

2.29.4. Tracing Tips

« When a loop is traced, the DO clause itself is traced on every iteration of the loop.
* You can retrieve the trace actions currently in effect by using the TRACE built-in function.

» The trace output of commands traced before execution always contains the final value of the
command, that is, the string passed to the environment, and the clause generating it.

» Trace actions are automatically saved across subroutine, function, and method calls. See
Section 2.3, “CALL” for more details.

» For debugging multithreaded programs using the TRACE keyword statement and the TraceObject
class see *NEW* Debugging Multithreaded Programs.

One of the most common traces you will use is:

Example 2.41. Instructions — TRACE

TRACE ?R
/* Interactive debugging is switched on if it was off, */
/* and tracing results of expressions begins. */

2.29.5. *CHG* The Format of Trace Output

Every clause traced appears with automatic formatting (indentation) according to its logical depth
of nesting, for example. Results, if requested, are indented by two extra spaces and are enclosed in
double quotation marks so that leading and trailing whitespace characters are apparent. Any control
codes in the data encoding (ASCII values less than "20"x) are replaced by a question mark (?) to
avoid screen interference. Results other than strings appear in the string representation obtained by
sending them a STRING message. The resulting string is enclosed in parentheses. The line number
in the program precedes the first clause traced on any line. All lines displayed during tracing have a
three-character prefix to identify the type of data being traced. These can be:

*_ %

Identifies the source of a single clause, that is, the data actually in the program.

84

CHG The Format of Trace Output

+++
Identifies a trace message. This can be the nonzero return code from a command, the prompt
message when interactive debugging is entered, an indication of a syntax error when in interactive
debugging.

>I>
Identifies an entry to (invocation of) a routine or method. This trace entry will appear if tracing
is enabled using the ::OPTIONS directive using TRACE A, TRACE R, TRACE | or TRACE L. In
addition it will appear if the TRACE A, TRACE R, TRACE | or TRACE L keyword instruction is
the first statement in a routine or in a method (if the first instruction in a method is an EXPOSE
keyword instruction then it must be immediately followed by a TRACE A, TRACE R, TRACE | or
TRACE L keyword instruction in order to display this output).

<I< *NEW*
Identifies an exit (return) from an invocation of a routine or method. This trace entry will appear if
tracing with TRACE A, TRACE R, TRACE | or TRACE L is in effect.

>SK>
Identifies the result of a subkeyword value in a keyword instruction, like the TO subkeyword of a
DO or LOOP instruction, or the DIGITS subkeyword in a NUMERIC instruction.

>>>

Identifies the result of an expression (for TRACE R) or the value returned from a subroutine call, or
a value evaluated by execution of a DO loop.

>=>
Identifies a variable assignment or a message assignment result. The trace message includes
both the name of the assignment target and the assigned value. Assignment trace lines are
displayed by assignment instructions, variable assigned via PARSE, ARG, PULL, or USE ARG, as
well as control variable updates for DO and LOOP instructions.

>.>
Identifies the value assigned to a placeholder during parsing (see Section 9.1.2, “The Period as a
Placeholder™).

The following prefixes are used only if TRACE Intermediates is in effect:

>A>
Identifies a value used as a function, subroutine, or message argument.

>C>
The data traced is the original name of the compound variable and the name of a compound
variable, after the name has been replaced by the value of the variable but before the variable
is used. If no value was assigned to the variable, the trace shows the variable in uppercase
characters.

SE>
The data traced is the name and value of an environment symbol.

SF>
The data traced is the name and result of a function call.

>L>
The data traced is a literal (string, uninitialized variable, or constant symbol).

85

USE

>M>
The data traced is the name and result of an object message.

>N>
The data traced is the name and result of a namespace-prefixed symbol.

>0>
The data traced is the name and result of an operation on two terms.

>pP>
The data traced is the name and result of a prefix operation.

>R>
The data traced is the name of an argument variable and the name of the referenced variable.

SV>
The data traced is the name and contents of a variable.

@

The characters => indicate the value of a variable or the result of an operation.

The characters <= indicate a value assignment. The name to the left of the marker is the
assignment topic. The data to the right of the marker is the assigned value.

The character ? could indicate a non-printable character in the output.

If no option is specified on a TRACE instruction, or if the result of evaluating the expression is null, the
default tracing actions are restored. The defaults are TRACE N and interactive debugging (?) off.

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause in error is always traced.

2.30. USE

The USE instruction can be used to
« retrieve the argument objects by using USE ARG or USE STRICT ARG, or to
« define local variables in a method by using USE LOCAL.

2.30.1. USE ARG, USE STRICT ARG

’

- () & -

= expr

USE ARG retrieves the argument objects provided in a program, routine, function, or method and
assigns them to variables, variable references, or message term assignments.

86

USE ARG, USE STRICT ARG

Each name must be a valid variable name, a variable reference term, or an assignment message
term. The names are assigned from left to right. For each name you specify, the language processor
assigns it a corresponding argument from the program, routine, function, or method call. If there is no
corresponding argument, name is assigned the value of expr. If = expr is not specified for the given
argument, the variable name is dropped. If the assignment target is a variable reference term, the
corresponding argument must never be omitted. If the assignment target is a message term, no action
is taken for omitted arguments.

A USE ARG instruction can be processed repeatedly and it always accesses the same current
argument data.

If = expr is specified for an argument, the expression is evaluated to provide a default value for an
argument when the corresponding argument does not exist. The default expr must be a literal string,
a constant symbol, or an expression enclosed in parentheses. No default value is allowed for variable
reference terms.

The STRICT option imposes additional constraints on argument processing. The number of arguments
must match the number of names, otherwise an error is raised. An argument is considered optional if
expr has been specified for the argument.

An ellipsis (. . .) can be specified after the last variable in a USE STRICT ARG statement to indicate
that more arguments may follow. This allows defining a minimum number of arguments that must

be supplied or for which there are default values defined, which may optionally be followed by any
additional arguments.

Example 2.42. Instructions — USE

/* USE Example */
/* FRED("Ogof X",1,5) calls function */
Fred: use arg string, numil, num2

/* Now: STRING contains "Ogof X" */
/* NUM1 contains "1" */
/* NUM2 contains "5" */

/* Another example, shows how to pass non-string arguments with USE ARG */
/* Pass a stem and an array to a routine to modify one element of each */

stem.1 = "Value"

array = .array~of("Item")

say "Before subroutine:" stem.l1 array[1] /* Shows "Value Item" */
Call Change_First stem. , array

say "After subroutine:" stem.1 array[1] /* Shows "NewValue NewItem" */
Exit

Change_First: Procedure
Use Arg substem., subarray

substem.1 = "NewValue"
subarray[1] = "NewItem"
Return
/* USE STRICT Example */

/* FRED("Ogof X",1) calls function */
Fred: use strict arg string, numl, num2=4

/* Now: STRING contains "Ogof X" */
/* NUM1 contains "1" */
/* NUM2 contains "4" */

87

USE LOCAL

In the above example, a call to the function FRED may have either 2 or 3 arguments. The STRICT
keyword on the USE instruction will raise a syntax error for any other combination of arguments.

Example 2.43. Instructions — USE

call test "one"
call test "one", "two"

call test "one", "two", "three"
call test "one", , "three", "four", "five"
exit

test: procedure /* a minimum of one argument must be supplied */
use strict arg vi, v2="zwei",
say "There are ["arg()"] argument(s); vi,v2=["v1",6 "v2"]"
do i=3 to arg()
say " arg #" in:[uarg(i)u]n
end
say "--"
return

Output:

There are [1] argument(s); v1,v2=[one,zwei]

There are [2] argument(s); vi,v2=[one, two]

There are [3] argument(s); vi1,v2=[one, two]
arg # 3=[three]

There are [5] argument(s); vil,v2=[one,zwei]
arg # 3=[three]
arg # 4=[four]
arg # 5=[five]

The assignment targets may be any term that can be on the left side of an assignment statement.

Example 2.44. Instructions — USE

expose myArray myDirectory
use arg myArray[1], myDirectory~name

would be equivalent to

myArray[1] = arg(1)
myDirectory~name = arg(2)

You can retrieve or check the arguments by using the ARG built-in function. The ARG and PARSE
ARG instructions are alternative ways of retrieving arguments. ARG and PARSE ARG access the
string values of arguments. USE ARG performs a direct, one-to-one assignment of arguments. This
is preferable when you need direct access to an argument, without translation or parsing. USE ARG
also allows access to both string and non-string argument objects; ARG and PARSE ARG convert the
arguments to string values before parsing.

2.30.2. USE LOCAL

88

USE LOCAL

name

USE LOCAL

USE LOCAL defines local variables in a method.

Generally object variables must be specified in a method using EXPOSE, while all other variables
used in the method will become local variables. In contrast to this, USE LOCAL allows to explicitly
declare local variables, while all other variables not listed on the USE LOCAL instruction will
automatically become object variables.

Each name must be a valid variable name. if no name is specified, all variables will become object
variables.

If a USE LOCAL instruction is present, it must be the first instruction of the method.

Note that USE LOCAL will always keep Rexx special variables RC, RESULT, SIGL, SELF, and SUPER
as local variables.

Example 2.45. Instructions — USE LOCAL

::method init
USE LOCAL X y z -- only x, y, and z are local
-- all other become object variables

::method init
use local -- any variable is an object variable

89

Chapter 3.

Directives

A Rexx program contains one or more executable code units. Directive instructions separate these
executable units. A directive begins with a double colon (::) and is a nonexecutable instruction. For
example, it cannot appear in a string for the INTERPRET instruction to be interpreted. The first
directive instruction in a program marks the end of the main executable section of the program.

For a program containing directives, all directives are processed first to set up the program's classes,
methods, and routines. Then any program code in the main code unit (preceding the first directive) is
processed. This code can use any classes, methods, and routines that the directives established.

Supported directives are "ANNOTATE, ::ATTRIBUTE, ::CLASS, ::CONSTANT, ::METHOD,
::OPTIONS, ::REQUIRES, ::RESOURCE, and ::ROUTINE.

A directive requires a semicolon (;) as a terminating delimiter unless the end of a line implies it.

3.1. ::ANNOTATE

The ::ANNOTATE directive creates annotations to the package, its classes, methods, attributes,
constants, or routines.

bb—(::ANNOTATEHATTRIBUTE)— attribute ,1 (name value

{ CLASS class f|——

{ CONSTANT constant

L(METHOD method |——

{ROUTINE)— routine |——

The ::ANNOTATE directive can add metadata information (called "annotations") in the form of name/
value pairs to the current package, or any of its classes, methods, attributes, constants, and routines.

An annotation attribute, class, constant, method, and routine must be a valid class name, constant
name, method name, or routine name defined with its respective directive in the same source
program.

The annotation name must be a symbol that is taken as a constant; a literal string is not allowed. The
annotation value must be a single literal string, a symbol, or a valid number, optionally preceded by a
plus or minus sign, that is taken as a constant.

Example 3.1. ANNOTATE directive

::rannotate package author "B. Fox" -- annotate current package
::class command

;:attribute address
::rattribute command

::method init

90

“ATTRIBUTE

use strict arg command, address = ""
self~command = command
self~address = address

:rannotate class command languagelevel "6.05" -- annotate class COMMAND
::annotate attribute command os "unix windows mac" -- annotate attribute COMMAND
::rannotate method init version "100" maxParms 2 -- annotate method INIT

Notes:

1. Each ::ANNOTATE directive, except for ::ANNOTATE PACKAGE, must be placed after its
respective ::ATTRIBUTE, ::CLASS, ::CONSTANT, ::METHOD, or ::ROUTINE directive in the
sourcefile.

2. When annotating non-floating attributes, constants, or methods, the ::ANNOTATE directive must
precede any following ::CLASS directive.

3. An annotation for an attribute, a method, or a routine should be placed after any attribute/method/
routine code body, as ::ANNOTATE, like any other directive, will end the code body.

4. A subclass of an annotated class will not inherit any annotations of its superclass or mixinclass.

5. A copy of an annotated method, package, or routine object will keep any existing annotations.

6. The ::ANNOTATE directive cannot be used to annotate packages, classes, methods, attributes,
constants, and routines which are provided by Rexx or have been made available through
a ::REQUIRES directive.

7. Currently Rexx does not use or predefine any specific annotation names.

8. To query an annotation name/value pair, to get a list of all attached annotation name/value pairs,

or to add new or change existing annotations, use
 the Package methods annotation and annotations,

» the Class methods annotation and annotations,

» the Method methods annotation and annotations, or
» the Routine methods annotation and annotations.

3.2. ::ATTRIBUTE

The ::ATTRIBUTE directive creates attribute methods and defines the method properties.

»—(::ATTRIBUTE)— name

"

SET

. GUARDED '
UNGUARDED

PRIVATE

Il

ABSTRACT

DELEGATE delegatename

. UNPROTECTED '
PROTECTED

EXTERNAL spec

91

“ATTRIBUTE

The ::ATTRIBUTE directive creates accessor methods for object instance variables. An accessor
method allows an object instance variable to be retrieved or assigned a value. ::ATTRIBUTE can
create an attribute getter method, a setter method, or the getter/setter pair.

The name is a literal string or a symbol that is taken as a constant. The name must also be a valid
Rexx variable name. The ::ATTRIBUTE directive creates methods in the class specified in the most
recent ::CLASS directive. If no ::CLASS directive precedes an ::ATTRIBUTE directive, the attribute
methods are not associated with a class but are accessible to the main (executable) part of a program
through the .METHODS built-in object. Only one ::ATTRIBUTE directive can appear for any method
name not associated with a class.

If you do not specify either GET or SET, ::ATTRIBUTE will create two attribute methods with the names
name and name=. These are the methods for getting and setting an attribute. These generated
methods are equivalent to the following code sequences:

Example 3.2. ATTRIBUTE directive equivalent code

::method name -- attribute get method
expose name -- establish direct access to object variable (attribute)
use strict arg -- enforce zero parameters
return name -- return object variable's current value

::method "NAME=" -- attribute set method
expose name -- establish direct access to object variable (attribute)
use strict arg name -- retrieve argument and assign it to the object variable

Both methods will be created with the same method properties (for example, PRIVATE, GUARDED,
etc.). If GET or SET are not specified, the pair of methods will be automatically generated. In that case,
there is no method code body following the directive, so another directive (or the end of the program)
must follow the ::ATTRIBUTE directive.

If GET or SET is specified, only the single get or set attribute method is generated. Specifying separate
GET or SET ::ATTRIBUTE directives allows the methods to be created with different properties. For
example, the sequence:

::attribute name get
r:attribute name set private

will create a NAME method with PUBLIC access and a NAME= method with PRIVATE access.

The GET and SET options may also be used to override the default method body generated for the
attribute. This is frequently used so the SET attribute method can perform new value validation.

Example 3.3. ATTRIBUTE directive — get and set methods

::attribute size get
irattribute size set
expose size /* establish direct access to object variable (attribute) */
use arg value /* retrieve argument */
if datatype(value, "Whole") = .false | value < 0 then
raise syntax 93.906 array ("size", value)
size=value

If you specify the CLASS option, the created methods are class methods. See Chapter 4, Objects and
Classes. The attribute methods are associated with the class specified on the most recent ::CLASS
directive. The ::ATTRIBUTE must be preceded by a ::CLASS directive if CLASS is specified.

92

“ATTRIBUTE

If ABSTRACT is specified, then all created methods will be marked as ABSTRACT and will raise
an error if directly invoked. For ABSTRACT methods there is no method code body following the
directive, so another directive (or the end of the program) must follow the ::ATTRIBUTE directive.

If DELEGATE is specified, execution of get method name and set method name= (depending on
whether GET or SET or none of these two is specified on the ::ATTRIBUTE directive) is delegated to
object delegatename. It is a common design pattern to delegate method execution to an embedded
object. The directive for such a delegation

::attribute name delegate delegateName
is equivalent to the following code sequence:
Example 3.4. DELEGATE subkeyword equivalent code

::method name
expose delegateName
forward to(delegateName)

::method "NAME="
expose delegateName
forward to(delegateName)

If the EXTERNAL option is specified, then spec identifies a method in an external native library that
will be invoked as the named method. The spec is a literal string containing a series of whitespace-
delimited tokens defining the external method. The first token must be LIBRARY, which indicates the
method resides in a native library of the type allowed on a ::REQUIRES directive. The second token
must identify the name of the external library. The external library is located using platform-specific
mechanisms for loading libraries. For Unix-like systems, the library name is case-sensitive. The third
token is optional and specifies the name of the method within the library package. If not specified,
the ::METHOD name is used. The target package method name is case insensitive.

If the GET or SET option is not specified with the EXTERNAL option, then two method objects need to
be created. The target method name is appended to the string "GET" to derive the name of the getter
attribute method. To generate the setter attribute method, the name is appended to the string "SET".
If GET or SET is specified and the method name is not specified within spec, then the target library
method name is generated by concatenating name with "GET" or "SET" as appropriate. If the method
name is specified in spec and GET or SET is specified, the spec name will be used unchanged.

Example 3.5. ATTRIBUTE directive — naming the get and set methods

-- maps "NAME" method to "GETNAME and

- "NAME=" to "SETNAME"

:!ATTRIBUTE name EXTERNAL "LIBRARY mylib"

-- maps "ADDRESS" method to "GETADDRESS"

1 ATTRIBUTE address GET EXTERNAL "LIBRARY mylib"

-- maps "ADDRESS=" method to "setHomeAddress"

:!ATTRIBUTE address SET EXTERNAL "LIBRARY mylib setHomeAddress"

Notes:

1. You can specify all options in any order.

93

::CLASS

2. If you specify the PACKAGE option, the methods are created with a package-scope, if you specify
the PRIVATE option, the created methods are private methods. Package-scope and private
methods have restricted access rules on how they can be invoked. See Section 4.2.8, “Public,
Package-Scope, and Private Methods” for details of how these methods can be used. If you omit
the PACKAGE or PRIVATE option, or specify PUBLIC, the method is a public method that any
sender can activate.

3. Ifyou specify the UNGUARDED option, the methods can be called while other methods are active
on the same object. If you do not specify UNGUARDED, the method requires exclusive use of the
object variable pool; it can run only if no other method that requires exclusive use of the object
variable pool is active on the same object.

4. If you specify the PROTECTED option, the methods are protected methods. (See Chapter 13,
The Security Manager for more information.) If you omit the PROTECTED option or specify
UNPROTECTED, the methods are not protected.

5. ltis an error to specify ::ATTRIBUTE more than once within a class definition that creates a
duplicate get or set method.

3.3. ::CLASS

The ::CLASS directive causes the interpreter to create a Rexx class.

bb—(::CLASS classname
L(METACLASS)— metaclass I PRIVATE '

1 (INHERIT iclass
MIXINCLASS)— mclass \—| ABSTRACT '—/

SUBCLASS sclass

The ::CLASS directive creates a Rexx class hamed classname. The classname is a literal

string or symbol that is taken as a constant. The created class is available to programs through

the Rexx environment symbol .classname. The classname acquires all methods defined by
subsequent ::METHOD directives until the end of the program or another ::CLASS directive is found.
Only null clauses (comments or blank lines) can appear between a ::CLASS directive and any
following directive instruction or the end of the program. Only one ::CLASS directive can appear for
classname in a program.

If you specify the METACLASS option, the instance methods of the metaclass class become class
methods of the classname class. (See Chapter 4, Objects and Classes.) The metaclass and
classname are literal strings or symbols that are taken as constants. In the search order for methods,
the metaclass methods precede inherited class methods and follow any class methods defined

by ::METHOD directives with the CLASS option.

If you specify the PUBLIC option, the class is visible beyond its containing Rexx program to any other
program that references this program with a ::REQUIRES directive. If you do not specify the PUBLIC

option, the class is visible only within its containing Rexx program. All public classes defined within a

program are used before PUBLIC classes created with the same name.

94

::CLASS

If you specify the SUBCLASS option, the class becomes a subclass of the class sclass for inheritance
of instance and class methods. The sclass is a literal string or symbol that is taken as a constant.

If you specify the MIXINCLASS option, the class becomes a subclass of the class mclass for
inheritance of instance and class methods. You can add the new class instance and class methods
to existing classes by using the INHERIT option on a ::CLASS directive or by sending an INHERIT
message to an existing class. If you specify neither the SUBCLASS nor the MIXINCLASS option, the
class becomes a non-mixin subclass of the Object class.

If you specify the ABSTRACT option, the class will be marked as an abstract class. Trying to create an
instance of an abstract class will raise an error. Only subclasses of abstract classes will allow to create
instances from.

If you specify the INHERIT option, the class inherits instance methods and class methods from the
classes iclasses in their order of appearance (leftmost first). This is equivalent to sending a series of
inherit messages to the class object, with each inherit message (except the first) specifying the
preceding class in iclasses as the classpos argument. As with the inherit message, each of the
classes in iclasses must be a mixin class. The iclasses is a whitespace-separated list of literal strings
or symbols that are taken as constants. If you omit the INHERIT option, the class inherits only from
sclass.

Example 3.6. CLASS directive

::class rectangle

::method area /* defined for the RECTANGLE class */
expose width height
return width*height

::class triangle

::method area /* defined for the TRIANGLE class */
expose width height
return width*height/2

The ::CLASS directives in a program are processed in the order in which they appear. If a ::CLASS
directive has a dependency on ::CLASS directives that appear later in the program, processing of the
directive is deferred until all of the class's dependencies have been processed.

Example 3.7. CLASS directive deferred processing

::class savings subclass account /* requires the ACCOUNT class */
::method type

return "a Savings Account"
::class account

::method type
return "an Account"

The Savings class in the preceding example is not created until the Account class that appears later in
the program has been created.

Notes:

1. You can specify the options METACLASS, MIXINCLASS, SUBCLASS, and PUBLIC in any order.

2. If you specify INHERIT, it must be the last option.

95

:CONSTANT

3.4. ::CONSTANT

The ::CONSTANT directive creates methods that return constant values for a class and its instances.
bb—(::CONSTANT name

A :CONSTANT directive defines a method that returns a constant value. This is useful for creating
named constants associated with a class.

value

The name is a literal string or a symbol that is taken as a constant. A method of the given nhame

is created as both an instance method and a class method of the most recent ::CLASS directive.

A ::CLASS directive is not required before a ::CONSTANT directive. If no ::CLASS directive
precedes ::CONSTANT, a single "floating" constant method is created that is not associated with a
class but is accessible through the .METHODS built-in object. Only one ::CONSTANT directive can
appear for any method name not associated with a class.

The methods created by a ::CONSTANT directive are UNGUARDED and will have a return result that
is specified by value. If specified, the constant value must be a single literal string, a symbol that is
taken as a constant, or an expression enclosed in parentheses. Also permitted is the single character
"-"or "+" followed by a symbol that is a valid number. If value is omitted, the constant name will return
its value in uppercase.

Here are some examples of valid constants:

Example 3.8. CONSTANT examples

::class MathConstants public
::constant pi 3.14159265

::constant author "Isaac Asimov"
::constant absolute_zero -273.15
::constant e (rxcalcexp(1l))
::constant eSquare (self~e ** 2)
::constant primes (2, 3, 5, 7, 11, 13)

::class Search
;:constant caseless

rirequires rxmath library

A ::CONSTANT directive is a shorthand syntax for creating constants associated with a class. The
created name constant can be accessed using either the class object or an instance of the class itself.

Example 3.9. CONSTANT access examples

say "Pi is" .MathConstants~pi -- displays "Pi is 3.14159265"
instance = .MathConstants~new

say "Pi is" instance~pi -- also displays "Pi is 3.14159265"
say .Search~caseless -- "CASELESS"

::class MathConstants public
::constant pi 3.14159265

::class Search
::constant caseless

96

:METHOD

Notes:

1. Calculated ::CONSTANT directives (where value is an expression enclosed in parenthesis) can
reference any other constant ::CONSTANT directives (where value is omitted, a single literal
string, a symbol that is taken as a constant, or a valid number optionally preceded by "-" or "+").
For a calculated ::CONSTANT directive to reference another calculated :: CONSTANT directive,
the referenced directive must be defined earlier in order of appearance. Forward references to
calculated ::CONSTANT directives are not allowed.

2. For afloating ::CONSTANT directive the constant value must be a single literal string, or a symbol
that is taken as a constant. An expression enclosed in parentheses is not allowed.

3. A ::CONSTANT directive cannot have a method body.

3.5. ::METHOD

The ::METHOD directive creates a method object and defines the method attributes.

bb—(::METHOD)— methodname
- {(rmamire) =N
l PRIVATE l

I UNPROTECTED '
PROTECTED

A ::METHOD directive creates method objects that may be associated with a class instance.
The created method may be from Rexx code, mapped to method in an external native library, or
automatically generated. The type of method is determined by the combination of options specified.

I GUARDED '
UNGUARDED

ABSTRACT

DELEGATE)— delegatename

EXTERNAL spec

The methodname is a literal string or a symbol that is taken as a constant. The method is defined
as methodname in the class specified in the most recent ::CLASS directive. Only one ::METHOD
directive can appear for any methodname in a class.

A ::CLASS directive is not required before a ::METHOD directive. If no ::CLASS directive

precedes ::METHOD, the method is not associated with a class but is accessible to the main
(executable) part of a program through the .METHODS built-in object. Only one ::METHOD directive
can appear for any method name not associated with a class.

If you specify the CLASS option, the method is a class method. See Chapter 4, Objects and
Classes. The method is associated with the class specified on the most recent ::CLASS directive.
The ::METHOD directive must follow a ::CLASS directive when the CLASS option is used.

If ABSTRACT is specified, then the created method will be marked as an abstract method and will raise
an error if directly invoked. For abstract methods there is no method code body following the directive,
so another directive (or the end of the program) must follow the ::METHOD directive.

97

:METHOD

If ABSTRACT, ATTRIBUTE, or EXTERNAL is not specified, the ::METHOD directive starts a section of
method code which is ended by another directive or the end of the program. The ::METHOD is not
included in the source of the created METHOD object.

Example 3.10. METHOD examples

r = .rectangle~new(20,10)
say "Area is" r~area /* Produces "Area is 200" */

::class rectangle

::method area /* defined for the RECTANGLE class */
expose width height
return width*height

::method init
expose width height
use arg width, height

::method perimeter

expose width height
return (width+height)*2

If you specify the ATTRIBUTE option, method variable accessor methods are created. In addition to
generating a method named methodname, another method named methodname= is created. The
first method returns the value of object instance variable that matches the method name. The second
method assigns a new value to the object instance variable.

For example, the directive

::method name attribute

creates two methods, NAME and NAME=, equivalent to the following code sequences:

::method name -- attribute get method
expose name -- establish direct access to object variable (attribute)
use strict arg -- enforce zero parameters
return name -- return object variable's current value

::method "NAME=" -- attribute set method
expose hame -- establish direct access to object variable (attribute)
use strict arg name -- retrieve argument and assign it to the object variable

Using the ATTRIBUTE option is equivalent to using the ::ATTRIBUTE directive.

If you specify the ABSTRACT option, the method creates an ABSTRACT method placeholder.
ABSTRACT methods define a method that an implementing subclass is expected to provide a
concrete implementation for. Any attempt to invoke an ABSTRACT method directly will raise a
SYNTAX condition.

If DELEGATE is specified, execution of method name is delegated to object delegatename. It is a
common design pattern to delegate method execution to an embedded object. The directive for such a
delegation

::method name delegate delegateName

is equivalent to the following code sequence:

98

:METHOD

Example 3.11. DELEGATE subkeyword equivalent code

::method name
expose delegateName
forward to(delegateName)

If the EXTERNAL option is specified, then spec identifies a method in an external native library that
will be invoked as the named method. The spec is a literal string containing a series of whitespace
delimited tokens defining the external method. The first token must be LIBRARY, which indicates the
method resides in a native library of the type allowed on a ::REQUIRES directive. The second token
must identify the name of the external library. The external library is located using platform-specific
mechanisms for loading libraries. For Unix-like systems, the library name is case-sensitive. The third
token is optional and specifies the name of the method within the library package. If not specified,
the ::METHOD name is used. The target package method name is case insensitive.

Example 3.12. METHOD EXTERNAL examples

-- creates method INIT from method RegExp_Init in library rxregexp
::METHOD INIT EXTERNAL "LIBRARY rxregexp RegExp_Init"

-- creates method RegExp_Parse from library rxregexp
::METHOD RegExp_Parse EXTERNAL "LIBRARY rxregexp"

If the ATTRIBUTE option is specified with the EXTERNAL option, then two method objects need to be
created. The target method name is appended to the string "GET" to derive the name of the getter
attribute method. To generate the setter attribute method, the name is appended to the string "SET".

Example 3.13. METHOD EXTERNAL examples

-- maps "NAME" method to "GETNAME and
- "NAME=" to "SETNAME"
::METHOD name ATTRIBUTE EXTERNAL "LIBRARY mylib"

-- maps "ADDRESS" method to "GETMyAddress and
- "ADDRESS=" to "SETMyAddress"
::METHOD address ATTRIBUTE EXTERNAL "LIBRARY mylib MyAddress"

Notes:

1. You can specify all options in any order.

2. If you specify the PACKAGE option, the method is created with a package-scope, if you specify the
PRIVATE option, the created method is a private method. Package-scope and private methods
have restricted access rules on how they can be invoked. See Section 4.2.8, “Public, Package-
Scope, and Private Methods” for details of how these methods can be used. If you omit the
PACKAGE or PRIVATE option, or specify PUBLIC, the method is a public method that any sender
can activate.

3. Ifyou specify the UNGUARDED option, the method can be called while other methods are active
on the same object. If you do not specify UNGUARDED, the method requires exclusive use of the

99

::OPTIONS

object variable pool; it can run only if no other method that requires exclusive use of the object
variable pool is active on the same object.

4. If you specify the PROTECTED option, the method is a protected method. (See Chapter 13,
The Security Manager for more information.) If you omit the PROTECTED option or specify
UNPROTECTED, the method is not protected.

5. If you specify ATTRIBUTE, ABSTRACT, or EXTERNAL, another directive (or the end of the program)
must follow the ::METHOD directive.

6. Itis an error to specify ::METHOD more than once within the same class and use the same
methodname.

3.6. ::OPTIONS

The ::OPTIONS directive defines default values for numeric, trace, and other runtime settings for all
Rexx code contained within a package.

::OPTIONS DIGITS digits 7 j 4

;(FORM ENGINEERING
{ FUZZ)— fuzz o

CONDITION

ERROR

S

YNTAX

FAILURE

LOSTDIGITS

NOSTRING

NOTREADY

Igiagee

PROLOG o
NOPROLOG 1
L(TRACE trace o

N\ J

Any of the options may be specified on a single ::OPTIONS directive in any order. If an option is
specified more than once, the last specified value will the be one used. If more than one ::OPTIONS
directive appears in a source file, the options are processed in the order they appear and the effect is
accumulative. If a given option type is specified on more than one directive, the last specified will be
the value used.

The specified options will override the normal default settings for all Rexx code contained in the source
file. For example,

100

::OPTIONS

: :OPTIONS DIGITS 20

would direct that all method and routine code defined in this source package execute with an initial
NUMERIC DIGITS setting of 20 digits. The ::OPTIONS directive controls only the initial setting. A
method or routine may change the current setting with the NUMERIC DIGITS instruction as normal.
The values specified with ::OPTIONS only apply to code that appears in the same source file. It does
not apply to code in other source files that may reference or use this code. For example, a subclass of
a class defined in this source package will not inherit the ::OPTIONS settings if the subclass code is
located in a different source package.

The following options may be specified on an ::OPTIONS directive:

DIGITS

FORM

FuUzz

ALL

ERROR
FAILURE
LOSTDIGITS
NOSTRING
NOTREADY
NOVALUE

controls the precision to which arithmetic operations and built-in functions are
evaluated. The value digits must be a symbol or string that is a valid positive whole
number value and must be larger than the current FUZZ ::OPTIONS setting. The
package value can be retrieved using the Package class digits method.

There is no limit to the value for DIGITS (except the amount of storage available),
but high precisions are likely to require a great amount of processing time. It is
recommended that you use the default value whenever possible.

controls the form of exponential notation for the result of arithmetic operations and
built-in functions. This can be either SCIENTIFIC (in which case only one, nonzero
digit appears before the decimal point) or ENGINEERING (in which case the power
of 10 is always a multiple of 3). The default is SCIENTIFIC. The subkeywords
SCIENTIFIC or ENGINEERING must be specified as symbols. The package value
can be retrieved using the Package class form method.

controls how many digits, at full precision, are ignored during a numeric comparison
operation. The value fuzz must be a symbol or string that is a valid positive whole
number value and must be smaller than the current DIGIT ::OPTIONS setting. The
package value can be retrieved using the Package class fuzz method.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the
NUMERIC FUZZ value during every numeric comparison. The numbers are
subtracted under a precision of DIGITS minus FUZZ digits during the comparison
and are then compared with 0.

is a shortcut for all six ::OPTIONS condition directives ERROR, FAILURE,
LOSTDIGITS, NOSTRING, NOTREADY, and NOVALUE.

::OPTIONS ALL SYNTAX sets all six conditions to raise SYNTAX, while ::OPTIONS
ALL CONDITION sets all of them to their default state.

controls whether an ERROR, FAILURE, LOSTDIGITS, NOSTRING, NOTREADY,
or NOVALUE condition event raises its associated condition, or raises a SYNTAX
condition.

If ::OPTIONS condition CONDITION is in effect, which is the default, the condition
event raises its associated condition as usual. If ::OPTIONS condition SYNTAX is in
effect, a SYNTAX condition is raised instead.

To override an ::OPTIONS condition SYNTAX package default, you can use
SIGNAL ON condition, SIGNAL OFF condition, SIGNAL ON ANY, or SIGNAL OFF
ANY, to raise the associated condition, or raise no condition at all. For conditions
ERROR, FAILURE, and NOTREADY you can also use CALL ON condition, CALL OFF
condition, CALL ON ANY, or CALL OFF ANY, to raise the associated condition, or
raise no condition at all.

101

REQUIRES

PROLOG controls whether prolog code (any code in the source program that comes before
NOPROLOG the first directive) is run when another program requires it through a ::REQUIRES
directive.

If ::OPTIONS PROLOG is in effect, any prolog code is run as usual when the
source program is being required using a :REQUIRES directive. If ::OPTIONS
NOPROLOG is in effect, any prolog code is not run. The default is ::OPTIONS
PROLOG.

TRACE controls the tracing action (that is, how much is displayed to the user) during the
processing of all Rexx code contained in the package. Tracing describes some
or all of the clauses in a program, producing descriptions of clauses as they are
processed. TRACE is mainly used for debugging. The value trace must be one of
the prefix or alphabetic character (word) options valid for the TRACE instruction.
The package value can be retrieved using the Package class trace method.

3.7. ::REQUIRES

The ::REQUIRES directive specifies that the program requires access to the classes and objects of
the Rexx program programname.

bb—(:REQUIRES programname >«

LIBRARY\

NAMESPACE)— namespace

If the LIBRARY option is not specified, all public classes and routines defined in the named program
are made available to the executing program. The programname is a literal string or a symbol that is
taken as a constant. The string or symbol programname can be any string or symbol that is valid as

the target of a CALL instruction. The program programname is called as an external routine with no

arguments. The program is searched for using the external program search order.

If any Rexx code precedes the first directive in programname then that code is executed at the time
the ::REQUIRES is processed by the interpreter. This will be executed prior to executing the main
Rexx program in the file that specifies the ::REQUIRES statement.

If the LIBRARY option is specified, programname is the name of an external native library that is
required by this program. The library will be loaded using platform-specific mechanisms, which
generally means the library name is case sensitive. Any routines defined in the library will be made
available to all programs running in the process. If the native library cannot be loaded, the program will
not be permitted to run. All LIBRARY ::REQUIRES directives will be processed before ::REQUIRES for
Rexx programs, which will ensure that the native libraries are available to the initialization code of the
Rexx packages.

If the NAMESPACE option is specified, namespace must be a symbol that is taken as a constant; a
literal string is not allowed.

The NAMESPACE option attaches the qualifier namespace to the package loaded by the ::REQUIRES
directive. To distinguish public classes or public routines of the same name in different ::REQUIRES
files, use a namespace-qualified symbol of the form namespace : class or namespace : routine. For
details see Section 1.14, “Namespaces”.

::REQUIRES directives can be placed anywhere after the main section of code in the package. The
order of ::REQUIRES directives determines the search order for classes and routines defined in
the named programs and also the load order of the referenced files. Once a program is loaded by

102

'RESOURCE

a REQUIRES statement in a program, other references to that same program by ::REQUIRES
statements in other programs will resolve to the previously loaded program. The initialization code for
the ::REQUIRES file will only be executed on the first reference.

The following example illustrates that two programs, ProgramA and ProgramB, can both access
classes and routines that another program, ProgramC, contains. (The code at the beginning of
ProgramC runs prior to the start of the main Rexx program.)

/* ProgramA */ /* ProgramB *x/
::Requires 'ProgramC' ::Requires 'ProgramcC'
/* ProgramC *x/

*

The language processor uses local routine definitions within a program in preference to routines of
the same name accessed through ::REQUIRES directives. Local class definitions within a program
override classes of the same name in other programs accessed through ::REQUIRES directives.

Another directive, or the end of the program, must follow a ::REQUIRES directive. Only null clauses
can appear between them.

3.8. ::RESOURCE

The ::RESOURCE directive allows to include associated data directly in the program code.

bb—(::RESOURCE name >«
L(END)— delimiter

resource_data

::END

ignored_data —f

The ::RESOURCE directive allows to include lines of resource_data of almost arbitrary form directly
within the source program.

delimiter

The resource name must be a symbol or a literal string that is taken as a constant. The optional
resource end delimiter must be a symbol or a literal string that is taken as a constant. If delimiter is not
specified, it defaults to the string "::END".

103

:ROUTINE

Example 3.14. RESOURCE directive

::resource greyCat end "-"
La nuit, tous les chats sont gris

::resource "brown fox"
The quick brown fox jumps over the lazy dog
1 tEND
::resource nollop end ANONYMOUS
The wicked peon quivered,
then gazed balefully at the judges

who examined him.
ANONYMOUS TYPESETTER

Notes:

1. Specifying more than one ::RESOURCE directive with the same resource name is an error.

2. The terminating resource end delimiter must start in the first column and is case-sensitive. Any
text following on the same line as the terminating delimiter is ignored.

3. Although resource_data may include almost arbitrary data (including any Rexx code), it is not well-
suited for inclusion of binary data. Including special characters like line-end or end-of-file may
cause unwanted results.

4. Resource data is accessible through the .RESOURCES built-in object, and the Package class
methods resource and resources.

3.9. ::ROUTINE

The ::ROUTINE directive creates named routines within a program.

spec

bb—(::ROUTINE)— routinename J >«
. PRIVATE ' L(EXTERNAL
PUBLIC
The routinename is a literal string or a symbol that is taken as a constant. Only one ::ROUTINE
directive can appear for any routinename in a program.

If the EXTERNAL option is not specified, the ::ROUTINE directive starts a routine, which is ended by
another directive or the end of the program.

If you specify the PUBLIC option, the routine is visible beyond its containing Rexx program to any
other program that references this program with a ::REQUIRES directive. If you do not specify the
PUBLIC option, or specify the PRIVATE option, the routine is visible only within its containing Rexx
program.

Routines you define with the ::ROUTINE directive behave like external routines. In the search order for
routines, they follow internal routines and built-in functions but precede all other external routines.

104

:ROUTINE

Example 3.15. ROUTINE examples

::class c
::method a
call r "A" /* displays "In method A" */

::method b
call r "B" /* displays "In method B" */

riroutine r
use arg name
say "In method" name

If the EXTERNAL option is specified, then spec identifies a routine in an external native library that will
be defined as the named routine for this program. The spec is a literal string containing a series of
whitespace delimited tokens defining the external function. The first token identifies the type of native
routine to locate:

LIBRARY

Identifies a routine in an external native library of the type supported by the ::REQUIRES directive.
The second token must identify the name of the external library. The external library is located
using platform-specific mechanisms for loading libraries. For Unix-like systems, the library name is
case-sensitive. The third token is optional and specifies the name of the routine within the library
package. If not specified, the ::ROUTINE name is used. The routine name is not case sensitive.

REGISTERED

Identifies a routine in an older-style Rexx function package. The second token must identify the
name of the external library. The external library is located using platform-specific mechanisms
for loading libraries. For Unix-like systems, the library name is case-sensitive. The third token

is optional and specifies the name of the function within the library package. If not specified,

the ::ROUTINE name is used. Loading of the function will be attempted using the name as given
and as all uppercase. Using REGISTERED is the equivalent of loading an external function using
the RXFUNCADD built-in function.

Example 3.16. ROUTINE EXTERNAL examples

-- load a function from rxmath library

::routine RxCalcPi external "LIBRARY rxmath"

-- same function, but a different internal name

:iroutine Pi external "LIBRARY rxmath RxCalcPi"

-- same as call rxfuncadd "SQLLoadFuncs", "rexxsql", "SQLLoadFuncs"
::routine SQLLoadFuncs EXTERNAL "REGISTERED rexxsql SQLLoadFuncs"

Notes:

1.

It is an error to specify ::ROUTINE with the same routine name more than once in the same
program. It is not an error to have a local ::ROUTINE with the same name as another ::ROUTINE
in another program that the ::REQUIRES directive accesses. The language processor uses the
local ::ROUTINE definition in this case.

Calling an external Rexx program as a function is similar to calling an internal routine. For an
external routine, however, the caller's variables are hidden and the internal values (NUMERIC
settings, for example) start with their defaults.

105

:'ROUTINE

@e

If you specify the same ::ROUTINE routinename more than once in different programs, the last
one is used. Using more than one ::ROUTINE routinename in the same program produces an
error.

106

Chapter 4.

Objects and Classes

This chapter provides an overview of the Rexx class structure.

A Rexx object consists of object methods and object variables ("attributes"). Sending a message to
an object causes the object to perform some action; a method whose name matches the message
name defines the action that is performed. Only an object's methods can access the object variables
belonging to an object. EXPOSE instructions within an object's methods specify which object variables
the methods will use. Any variables not exposed are local to the method and are dropped on return
from a method.

You can create an object by sending a message to a class object—typically a "new" method. An object
created from a class is an instance of that class. The methods a class defines for its instances are
called the instance methods of that class. These are the object methods that are available for every
instance of the class. Classes can also define class methods, which are a class's own object methods.

@e

When referring to instance methods (for objects other than classes) or class methods (for
classes), this book uses the term methods when the meaning is clear from the context. When
referring to instance methods and class methods of classes, this book uses the qualified terms to
avoid possible confusion.

4.1. Types of Classes

There are four kinds of classes:

» Object classes
* Mixin classes

« Abstract classes
» Metaclasses

The following sections explain these.

4.1.1. Object Classes

An object class is a factory for producing objects. An object class creates objects (instances) and
provides methods that these objects can use. An object acquires the instance methods of the class to
which it belongs at the time of its creation. If a class gains additional methods, objects created before
the definition of these methods do not acquire the new or changed methods.

The instance variables within an object are created on demand whenever a method EXPOSEs an
object variable. The class creates the object instance, defines the methods the object has, and the
object instance completes the job of constructing the object.

The String class and the Array class are examples of object classes.

107

Mixin Classes

4.1.2. Mixin Classes

Classes can inherit from more than the single superclass from which they were created. This is called
multiple inheritance. Classes designed to add a set of instance and class methods to other classes are
called mixin classes, or simply mixins.

You can add mixin methods to an existing class by sending an INHERIT message or using the
INHERIT option on the ::CLASS directive. In either case, the class to be inherited must be a mixin.
During both class creation and multiple inheritance, subclasses inherit both class and instance
methods from their superclasses.

Mixins are always associated with a base class, which is the mixin's first non-mixin superclass. Any
subclass of the mixin's base class can (directly or indirectly) inherit a mixin; other classes cannot. For
example, a mixin class created as a subclass of the Array class can only be inherited by other Array
subclasses. Mixins that use the Object class as a base class can be inherited by any class.

To create a new mixin class, you send a MIXINCLASS message to an existing class or use
the ::CLASS directive with the MIXINCLASS option. A mixin class is also an object class and can
create instances of the class.

4.1.3. Abstract Classes

Abstract classes provide definitions for instance methods and class methods but are not intended
to create instances. Abstract classes often define the message interfaces that subclasses should
implement.

You create an abstract class by specifying the ABSTRACT subkeyword on the ::CLASS directive.
Trying to create an instance from an abstract class will result in an error.

It is possible to create abstract methods or attributes on a class. Abstract methods or attributes are
placeholders that subclasses are expected to override. Failing to provide a real method or attribute
implementation will result in an error when the abstract version is called.

4.1.4. Metaclasses

A metaclass is a class you can use to create another class. The Class class is the metaclass of all the
classes Rexx provides. This means that instances of .Class are themselves classes. The Class class
is like a factory for producing the factories that produce objects.

To change the behavior of an object that is an instance, you generally use subclassing. For example,
you can create Statarray, a subclass of the Array class. The statArray class can include a method for
computing a total of all the numeric elements of an array.

Example 4.1. Creating an array subclass

/* Creating an array subclass for statistics */
::class statArray subclass array public

::method init /* 1Initialize running total and forward to superclass */
expose total
total = 0
forward class (super)

108

Metaclasses

::method put /* Modify to increment running total */
expose total
use arg value
total = total + value /* Should verify that value is numeric!!! */
forward class (super)

::method "[]=" /* Modify to increment running total */
forward message "PUT"

::method remove /* Modify to decrement running total */
expose total
use arg index
forward message "AT" continue
total = total - result
forward class (super)

::method average /* Return the average of the array elements */
expose total
return total / self-~items

::method total /* Return the running total of the array elements */
expose total
return total

You can use this method on the individual array instances, so it is an instance method.

However, if you want to change the behavior of the factory producing the arrays, you need a new class
method. One way to do this is to use the ::METHOD directive with the CLASS option. Another way to
add a class method is to create a new metaclass that changes the behavior of the Statarray class. A
new metaclass is a subclass of .class.

You can use a metaclass by specifying it in a SUBCLASS or MIXINCLASS message or on a ::CLASS
directive with the METACLASS option.

If you are adding a highly specialized class method useful only for a particular class, use

the ::METHOD directive with the CLASS option. However, if you are adding a class method that would
be useful for many classes, such as an instance counter that counts how many instances a class
creates, you use a metaclass.

The following examples add a class method that keeps a running total of instances created. The first
version uses the ::METHOD directive with the CLASS option. The second version uses a metaclass.

Version 1

Example 4.2. Adding a CLASS method

/* Adding a class method using ::METHOD */

a = .point~new(1,1) /* Create some point instances */
say "Created point instance" a
b = .point~new(2,2) /* create another point instance */
say "Created point instance" b
c = .point~new(3,3) /* create another point instance */

say "Created point instance" c
/* ask the point class how many */
/* instances it has created */
say "The point class has created" .point~instances "instances."

109

Metaclasses

::class point public

::method init class

expose instanceCount
instanceCount = 0
forward class (super)

::method new class

expose instanceCount
instanceCount = instanceCount + 1
forward class (super)

::method instances class

expose instanceCount
return instanceCount

::method init

expose xVal yval
use arg xval, yval

::method string

expose xVal yval
return "("xval","yval")"

Version 2

/* Adding a class method using a metaclass

a = .point~new(1,1)

say "Created point instance" a

b = .point~new(2,2)

say "Created point instance" b

c = .point~new(3,3)

say "Created point instance" c
say "The point class has created"

::class InstanceCounter subclass class /*

::method init

expose instanceCount
instanceCount = 0
forward class (super)

::method new

expose instanceCount
instanceCount = instanceCount + 1
forward class (super)

::method instances
expose instanceCount
return instanceCount

::class point public metaclass InstanceCounter

::method init

expose xVal yval
use arg xVal, yval

::method string

expose xVal yval

/*

/*
/*

/*
/*
/*

/*

/*

/*

/*
/*

create Point class

Initialize instanceCount
Forward INIT to superclass

Creating a new instance
Bump the count
Forward NEW to superclass

Return the instance count

Set object variables

as passed on NEW

Use object variables
to return string value

*/

/* Create some point instance

*/

*/
*/

*/
*/
*/

*/

*/

*/

*/
*/

S

*/

/* ask the point class how many */

/* instances it has created

.point~instances "instances."

/* will count its instances

/*
/*

Initialize instanceCount
Forward INIT to superclass

/*
/*
/*

Creating a new instance
Bump the count
Forward NEW to superclass

/* Return the instance count

/*

*/

Create a new metaclass that */

*/

*/
*/

*/
*/
*/

*/

Create Point class */

/* using InstanceCounter metaclass

/* Set object variables
/* as passed on NEW

/* Use object variables

*/
*/

*/

*/

110

Creating and Using Classes and Methods

return "("xval", "yval")" /* to return string value */

4.2. Creating and Using Classes and Methods

You can define a class using either directives or messages.

To define a class using directives, you place a ::CLASS directive after the main part of your source
program:

::class "Account"

This creates an Account class that is a subclass of the Object class. Object is the default superclass
if one is not specified. See Section 5.1.4, “Object Class” for details. The string "Account” is a string
identifier for the new class. The string identifier is both the internal class name and the name of the
environment symbol used to locate your new class instance.

Now you can use ::METHOD directive to add methods to your new class. The ::METHOD directives
must immediately follow the ::CLASS directive that creates the class.

Example 4.3. Adding a method

::method type
return "an account"

::method "name="
expose name
use arg name

::method name

expose name
return name

This adds the methods TYPE, NAME, and NAME= to the Account class.
You can create a subclass of the Account class and define a method for it:
Example 4.4. Adding a method

::class "Savings" subclass account
::method type
return "a savings account"

Now you can create an instance of the Savings class with the new method and send TYPE, NAME,
and NAME= messages to that instance:

Example 4.5. Invoking a method

asav = .savings~new
say asav~type
asav~name = "John Smith"

The Account class methods NAME and NAME= create a pair of access methods to the account object
variable NAME. The following directive sequence creates the NAME and NAME= methods:

111

Using Classes

Example 4.6. Defining SET and GET methods

::method "name="
expose name
use arg name

::method name

expose hame
return name

You can replace this with a single ::ATTRIBUTE directive. For example, the directive
::attribute name

adds two methods, NAME and NAME-= to a class. These methods perform the same function as the
NAME and NAME= methods in the original example. The NAME method returns the current value of
the object variable NAME; the NAME= method assigns a new value to the object variable NAME.

In addition to defining operational methods and attribute methods, you can add "constant” methods to
a class using the ::CONSTANT directive. The ::CONSTANT directive will create both a class method
and an instance method to the class definition. The constant method will always return the same

constant value, and can be invoked by sending a message to either the class or an instance method.
For example, you might add the following constant to your Account class:

::constant checkingMinimum 200

This value can be retrieved using either of the following methods

Example 4.7. Retrieving method values

say .Account~checkingMinimum -- displays "200"
asave = .savings~new
say asave~checkingMinimum -- also displays "200"

4.2.1. Using Classes

When you create a new class, it is always a subclass of an existing class. You can create new classes
with the ::CLASS directive or by sending the SUBCLASS or MIXINCLASS message to an existing
class. If you specify neither the SUBCLASS nor the MIXINCLASS option on the ::CLASS directive, the
superclass for the new class is the Object class, and it is not a mixin class.

Example of creating a new class using a message:

persistence = .object~mixinclass("Persistence")
myarray=.array~subclass("myarray")~~inherit(persistence)

Example of creating a new class using the directive:

::class persistence mixinclass object
::class myarray subclass array inherit persistence

112

Scope

4.2.2. Scope

A scope refers to the methods and object variables defined for a single class (not including the
superclasses). Only methods defined in a particular scope can access the object variables within that
scope. This means that object variables in a subclass can have the same names as object variables
used by a superclass, because the variables are created at different scopes. The scope method of the
Method class returns the scope (a class object or .nil).

4.2.3. Defining Instance Methods with SETMETHOD or ENHANCED

In Rexx, methods are usually associated with instances using classes, but it is also possible to add
methods directly to an instance using the setMethod or enhanced method.

All subclasses of the Object class inherit SETMETHOD. You can use SETMETHOD to create one-

off objects, objects that must be absolutely unique so that a class that is capable of creating other
instances is not necessary. The Class class also provides an ENHANCED method that lets you create
new instances of a class with additional methods. The methods and the object variables defined on an
object with SETMETHOD or ENHANCED form a separate scope, like the scopes the class hierarchy
defines.

4.2.4. Method Names

A method name can be any string. When an object receives a message, the language processor
searches for a method whose name matches the message name in uppercase.

@e

The language processor also translates the specified name of all methods added to objects into
uppercase characters.

You must surround a method name with quotation marks when it contains characters that are not
allowed in a symbol (for example, the operator characters). The following example creates a new class
(the Cost class), defines a new method (%), creates an instance of the Cost class (mycost), and sends
a % message to mycost:

Example 4.8. Accessing a method

cost=.object~subclass("A cost")
cost~define("%", 'expose p; say "Enter a price."; pull p; say p*1.07;')
mycost=cost~new

mycost~"%" /* Produces: Enter a price. */
/* If the user specifies a price of 100, */
/* produces: 107.00 */

4.2.5. Default Search Order for Method Selection

The search order for a method name matching the message is for:

1. A method the object itself defines with setMethod or enhanced.

113

Defining an UNKNOWN Method

2. A method the object's class defines. (Note that an object acquires the instance methods of the
class to which it belongs at the time of its creation. If a class gains additional methods, objects
created before the definition of these methods do not acquire these methods.)

3. A method that a superclass of the object's class defines. This is also limited to methods that were
available when the object was created. The order of the inherit messages sent to an object's class
determines the search order of the superclass method definitions.

This search order places methods of a class before methods of its superclasses so that a class can
supplement or override inherited methods.

If the language processor does not find a match for the message name, the language processor
checks the object for a method name UNKNOWN. If it exists, the language processor calls the
UNKNOWN method and returns as the message result any result the UNKNOWN method returns.
The UNKNOWN method arguments are the original message name and a Rexx array containing the
original message arguments.

If the object does not have an UNKNOWN method, the language processor raises a NOMETHOD
condition. If there are no active traps for the NOMETHOD condition, a syntax error is raised.

4.2.6. Defining an UNKNOWN Method

When an object that receives a message does not have a matching message name, the language
processor checks if the object has a method named UNKNOWN. If the object has an UNKNOWN
method, the language processor calls UNKNOWN, passing two arguments. The first argument is the
name of the method that was not located. The second argument is an array containing the arguments
passed with the original message.

For example, the following UNKNOWN method will print out the name of the invoked method and then
invoke the same method on another object. This can be used track the messages that are sent to an
object:

Example 4.9. Defining an UNKNOWN method

::method unknown

expose target -- will receive all of the messages
use arg name, arguments

say name "invoked with" arguments~toString

-- send along the message with the original args
forward to(target) message(name) arguments(arguments)

4.2.7. Changing the Search Order for Methods

You can change the usual search order for methods by specifying a colon and a class symbol after the
message name. The class symbol can be a variable name or an environment symbol. It identifies the
class object to be used as the starting point for the method search.

The class object must be a superclass of the class defining the active method, or, if you used
setMethod to define the active method, the object's own class. The class symbol is usually the
special variable SUPER , but it can be any environment symbol or variable name whose value is a
valid class.

Suppose you create an Account class that is a subclass of the Object class, define a TYPE method
for the Account class, and create the Savings class that is a subclass of Account. You could define a
TYPE method for the Savings class as follows:

114

Public, Package-Scope, and Private Methods

savings~define("TYPE", 'return "a savings account"')
You could change the search order by using the following line:
savings~define("TYPE", 'return self~type:super "(savings)"')

This changes the search order so that the language processor searches for the TYPE method first
in the Account superclass (rather than in the Savings subclass). When you create an instance of the
Savings class (asav) and send a TYPE message to asav:

say asav~type

an account (savings) is displayed. The TYPE method of the Savings class calls the TYPE
method of the Account class, and adds the string (savings) to the results.

4.2.8. Public, Package-Scope, and Private Methods

A method can be public, package-scope, or private.
Any object can send a message that runs a public method.

A package-scope method can only be invoked from methods or routines defined in the same package
as the package-scope method.

A private method can only be invoked from specific calling contexts. These contexts are:

1. From within a method owned by the same class as the target. This is frequently the same object,
accessed via the special variable SELF. Private methods of an object can also be accessed from
other instances of the same class (or subclass instances).

2. From within a method defined at the same class scope as the method. For example:

Example 4.10. Referencing methods

::class Savings

::method newCheckingAccount CLASS
instance = self~new
instance~makeChecking
return instance

::method makeChecking private

expose checking
checking = .true

The newCheckingAccount CLASS method is able to invoke the makeChecking method because
the scope of the makeChecking method is .Savings.

3. From within an instance (or subclass instance) of a class to a private class method of its class. For
example:

Example 4.11. Referencing methods

::class Savings
::method init class

115

Initialization

expose counter
counter = 0

::method allocateAccountNumber private class
expose counter
counter = counter + 1
return counter

::method init
expose accountNumber
accountNumber = self~class~allocateAccountNumber

The instance init method of the Savings class is able to invoke the allocateAccountNumber private
method of the .Savings class object because it is owned by an instance of the .Savings class.

Private methods include methods at different scopes within the same object. This allows superclasses
to make methods available to their subclasses while hiding those methods from other objects.

A private method is like an internal subroutine. It shields the internal information of an object to
outsiders, but allowing objects to share information with each other and their defining classes.

4.2.9. Initialization

Any object requiring initialization at creation time must define an INIT method. If this method is
defined, the class object runs the INIT method after the object is created. If an object has more than
one INIT method (for example, it is defined in several classes), each INIT method must forward the
INIT message up the hierarchy to complete the object's initialization.

Example 4.12. Instance initialization

asav = .savings~new(1000.00, 6.25)
say asav~type
asav~name = "John Smith"

::class Account

::method INIT
expose balance
use arg balance

::method TYPE
return "an account"

::method name attribute
::class Savings subclass Account

::method INIT
expose interest_rate
use arg balance, interest_rate
self~init:super(balance)

::method type
return "a savings account"

The NEW method of the Savings class object creates a new Savings object and calls the INIT method
of the new object. The INIT method arguments are the arguments specified on the NEW method. In
the Savings INIT method, the line:

116

Object Destruction and Uninitialization

Example 4.13. Instance initialization

self~init:super(balance)

calls the INIT method of the Account class, using just the balance argument specified on the NEW
message.

4.2.10. Object Destruction and Uninitialization

Object destruction is implicit. When an object is no longer in use, Rexx automatically reclaims its
storage. If the object has allocated other system resources, you must release them at this time. (Rexx
cannot release these resources, because it is unaware that the object has allocated them.)

Similarly, other uninitialization processing may be needed, for example, by a message object holding
an unreported error. An object requiring uninitialization should define an UNINIT method. If this
method is defined, Rexx runs it before reclaiming the object's storage. If an object has more than
one UNINIT method (defined in several classes), each UNINIT method is responsible for sending the
UNINIT method up the object hierarchy.

4.2.11. Required String Values

Rexx requires a string value in a number of contexts within instructions and built-in function calls.
» DO statements containing exprr or exprf

» Substituted values in compound variable names

» Commands to external environments

* Commands and environment names on ADDRESS instructions

» Strings for ARG, PARSE, and PULL instructions to be parsed

« Parenthesized targets on CALL instructions

 Subsidiary variable lists on DROP, EXPOSE, and PROCEDURE instructions
* Instruction strings on INTERPRET instructions

* DIGITS, FORM, and FUZZ values on NUMERIC instructions

» Options strings on OPTIONS instructions

» Data queue strings on PUSH and QUEUE instructions

» Label names on SIGNAL VALUE instructions

» Trace settings on TRACE VALUE instructions

* Arguments to built-in functions

 Variable references in parsing templates

» Data for PUSH and QUEUE instructions to be processed

» Data for the SAY instruction to be displayed

117

Concurrency

» Rexx dyadic operators when the receiving object (the object to the left of the operator) is a string

If you supply an object other than a string in these contexts, by default the language processor
converts it to some string representation and uses this. However, the programmer can cause the
language processor to raise the NOSTRING condition when the supplied object does not have an
equivalent string value.

To obtain a string value, the language processor sends a request ("STRING") message to the
object. Strings and other objects that have string values return the appropriate string value for Rexx to
use. (This happens automatically for strings and for subclasses of the String class because they inherit
a suitable makeString method from the String class.) For this mechanism to work correctly, you must
provide a makeString method for any other objects with string values.

For other objects without string values (that is, without a makeString method), the action taken
depends on the setting of the NOSTRING condition trap. If the NOSTRING condition is being trapped
(see Chapter 11, Conditions and Condition Traps), the language processor raises the NOSTRING
condition. If the NOSTRING condition is not being trapped, the language processor sends a string
message to the object to obtain its readable string representation and uses this string.

Example 4.14. Comparing to the .nil object

d = .directory~new

say substr(d,5,7) /* Produces "rectory" from "a Directory" */
signal on nostring

say substr(d,5,7) /* Raises the NOSTRING condition */

say substr(d~string,3,6) /* Displays "Direct" */

For arguments to Rexx object methods, different rules apply.

For String arithmetic, comparison, and concatenation methods:
These methods always require a string argument, so first a request ("STRING") message is
sent to the argument object. If request returns . nil because the argument object does not have
a makeString method, and the NOSTRING condition is not being trapped, a string message is
sent to the object to obtain its string representation.

For all other methods:
When a method expects a string as an argument, the argument object is sent the
request ("STRING") message. If request returns .nil, the method raises an error.

4.2.12. Concurrency

Rexx supports concurrency, multiple methods running simultaneously on a single object. See
Chapter 12, Concurrency for a full description of concurrency.

4.3. Overview of Classes Provided by Rexx

This section gives a brief overview of the classes and methods Rexx defines.

4.3.1. The Class Hierarchy

Rexx provides the following classes belonging to the Object class.

The classes are in a class hierarchy with an inheriting class indented below its superclass or mixin
class. Classes inheriting from multiple mixin classes are only listed below one of these mixin classes.

Alarm class

118

The Class Hierarchy

AlarmNotification class
Buffer class
Class class
Collection class
MapCollection class
Bag class
Directory class
Properties class
IdentityTable class
Relation class
Set class
Stem class
StringTable class
TraceObject class
Table class
OrderedCollection class
Array class
List class
Queue class
CircularQueue class
SetCollection class
Comparable class
DateTime class
File class
String class
TimeSpan class
Comparator class
CaselessColumnComparator class
CaselessComparator class
CaselessDescendingComparator class
ColumnComparator class
DescendingComparator class
InvertingComparator class
NumericComparator class
InputStream class
InputOutputStream class
Stream class
MessageNotification class
Message class
Method class
Monitor class
MutableBuffer class
Object class
Orderable class
OutputStream class
Package class
Pointer class
RexxContext class
RexxInfo class
RexxQueue class
Routine class
StackFrame class
Supplier class
StreamSupplier class

119

Class Library Notes

Ticker class

Validate class
VariableReference class
WeakReference class

Note that there might also be other classes available, depending on the operating system. Additional
classes may be accessed by using an appropriate : : requires directive to load the class definitions.

4.3.2. Class Library Notes

The chapters that follow describe the classes and other objects that Rexx provides and their available
methods. Rexx provides the objects listed in these sections and they are generally available through
environment symbols.

Notes:

1.

In the method descriptions in the chapters that follow, methods that return a result begin with the
word "returns".

For [] and []= methods, the syntax diagrams include the index or indexes within the brackets.
These diagrams are intended to show how you can use these methods. For example, to set the
element (2, 3) of a multi-dimensional Array named matrix to 0, you would typically use the
syntax:

matrix[2, 3] = 0

rather than:

matrix~"[]="(0, 2, 3)

even though the latter is valid and equivalent. For more information, see Section 1.11.4, “Message
Terms” and Section 1.12.6, “Message Instructions”.

When the argument of a method must be a specific kind of object (such as array, class, method,
or string) the variable you specify must be of the same class as the required object or be able
to produce an object of the required kind in response to a conversion message. In particular,
subclasses are acceptable in place of superclasses (unless overridden in a way that changes
superclass behavior), because they inherit a suitable conversion method from their Rexx
superclass.

The isA method of the Object class can perform this validation.

120

Chapter 5.

Builtin Classes

This chapter describes all of the Rexx built-in classes.

Fundamental Classes
These classes are the fundamental building blocks for all other classes.
» Object and Class class,
» String Class,
» Method, Routine, and Package class, and
» Message class.

Stream Classes
This set of classes implements Rexx data streams. They consist of InputStream, OutputStream,
InputOutputStream, and Stream class.

Collection Classes
This set of classes implements object collections. It includes
e Ordered collections Array, List, Queue, and CircularQueue class,
» Map collections Directory, StringTable, Stem, Table, IdentityTable, Relation, and Properties
class, and
» Map/Set collections Bag and Set class.

Utility Classes

This set of classes consists of

* MutableBuffer Class,

 File Class,

» Date-, time-, and timing-related classes DateTime, TimeSpan, Alarm, Ticker, and the notification
classes AlarmNotification and MessageNotification,

« the synchronization classes EventSempahore and MutexSempahore,

e Comparable class and Orderable class,

 eight Comparator classes used for sorting (Caseless)Comparator,
(Caseless)ColumnComparator, (Caseless)DescendingComparator, InvertingComparator, and
NumericComparator, and

 other miscellaneous classes Buffer, Monitor, Pointer, RegularExpression, RexxContext,
RexxInfo, RexxQueue, StackFrame, StreamSupplier, Supplier, TraceObject, Validate,
VariableReference, and WeakReference.

5.1. Fundamental Classes

This section describes the Rexx fundamental classes.
* Object and Class class,

« String Class,

» Method, Routine, and Package class, and

* Message class.

5.1.1. Class Class (Metaclass)

The Class class is like a factory that produces the factories that produce objects. It is a subclass of the
Object class. The instance methods of the Class class are also the class methods of all classes.

Note that the copy method is forbidden for Class and all other class objects, and will result in an error.

121

Class Class (Metaclass)

Table 5.1. Class Class

Object
Methods inherited from the Object class

Class
Comparison Methods = == <> ><\=\==
activate id new
annotation inherit package
annotations isAbstract queryMixinClass
baseClass isMetaclass subclass
defaultName isSubclassOf subclasses
define metaClass superClass
defineMethods method superClasses
delete methods uninherit
enhanced mixinClass

5.1.1.1. Comparison Methods

»—(comparison_operator(argument)

Returns . true or .false, the result of performing a specified comparison operation.

For the Class class, if argument is the same class as the receiver class, the result is . true, otherwise
.false is returned.

The comparison operators you can use in a message are:

. true if the terms are the same class.

\=, ><, <>, \==
. true if the terms are not the same class (inverse of =).

5.1.1.2. activate

Completes initialization of a class object created from a ::CLASS directive. The activate method is
called after all classes in a package have been created and made available, but before the main
portion of the program starts to execute. Activate is called for each class in the package in their
construction order. The class object is fully constructed and capable of creating new instances of the
class. All other classes in the same package are also available, although other classes might not have
been activated yet. Because the INIT method is called early in the class construction process, only
limited class initialization is possible at that time. The activate method is the preferred method for
initializing a class object.

5.1.1.3. annotation

»—(annotation(name)

122

Class Class (Metaclass)

Returns the value of the annotation named name for this class. If no such annotation exists, .nil is
returned.

See also
* method annotations and
 ANNOTATE directive.

5.1.1.4. annotations

Returns a StringTable of all annotation name/value pairs for this class.

See also
* method annotation and
 “ANNOTATE directive.

5.1.1.5. baseClass

Returns the base class associated with the class. If the class is a mixin class, the base class is the first
superclass that is not also a mixin class. If the class is not a mixin class, the base class is the class
receiving the baseClass message.

5.1.1.6. defaultName

defaultName

Returns a short human-readable string representation of the class. The string returned is of the form
The id class

where id is the identifier assigned to the class when it was created.

Example 5.1. Class class — defaultName method

say .array~defaultName /* Displays "The Array class" */
say .account~defaultName /* Displays "The ACCOUNT class" */
say .savings~defaultName /* Displays "The Savings class" */

::class account /* Name is all upper case */
::class "Savings" /* String name is mixed case */

5.1.1.7. define

bb—(define(methodname @—N

’ method

123

Class Class (Metaclass)

Incorporates the method object method in the receiver class's collection of instance methods. The
method name methodname is translated to uppercase. Using the define method replaces any
existing definition for methodname in the receiver class.

If you omit method, the method name methodname is made unavailable for the receiver class.
Sending a message of that name to an instance of the class causes the unknown method (if any) to
be run.

The method argument can be a string containing a method source line instead of a method object.
Alternatively, you can pass an array of strings containing individual method lines. Either way, define
creates an equivalent method object.

Notes:
1. The classes Rexx provides do not permit changes or additions to their method definitions.

2. The define method is a protected method.

Example 5.2. Class class — define method

bank_account=.object~subclass("Account")
bank_account~define("TYPE", 'return "a bank account"')

5.1.1.8. defineMethods

bb—(defineMethods()— methods)

Incorporates all methods methods in the receiver class's collection of instance methods.

The methods is a collection whose indexes are the names of methods and whose items are method
objects (or strings or arrays of strings containing method code). The method names are translated to
uppercase. Any existing methods with the same method name in the receiver class are replaced.

If, for any item in methods, the method name is .nil, then a method of this name in the receiver class
is made unavailable.

See also method define.

Example 5.3. Class class — defineMethods method

before = .c~new
say before~a -- a-original

.c~defineMethods(.methods)
after = .c~new
say after~a after~b -- a-define b-define

::method a
return "a-define"
::method b
return "b-define"

::class ¢
::method a

124

Class Class (Metaclass)

return "a-original"

5.1.1.9. delete

bb—(delete(methodname)

Removes the receiver class's definition for the method name methodname. If the receiver class
defined methodname as unavailable with the define method, this definition is nullified. If the receiver
class had no definition for methodname, no action is taken.

Notes:
1. The classes Rexx provides do not permit changes or additions to their method definitions.

2. delete deletes only methods the target class defines. You cannot delete inherited methods the
target's superclasses define.

3. The delete method is a protected method.

Example 5.4. Class class — delete method

myclass=.object~subclass("Myclass") /* After creating a class */
myclass~define("TYPE", 'return "my class"') /* and defining a method */
myclass~delete("TYPE") /* this deletes the method */

5.1.1.10. enhanced

>>—(enhanced()— methods o J j @—N

argument

Returns an enhanced new instance of the receiver class, with object methods that are the instance
methods of the class, enhanced by the methods in the collection methods. The collection indexes are
the names of the enhancing methods, and the items are the method objects (or strings or arrays of
strings containing method code). You can use any collection that supports a supplier method.

enhanced sends an init message to the created object, passing the arguments specified on the
enhanced method.

See also method define.

Example 5.5. Class class — enhanced method

/* Set up rclass with class method or methods you want in your */
/* remote class */
rclassmeths = .directory~new

rclassmeths["DISPATCH"]=d_source /* d_source must have code for a */
/* DISPATCH method. */
/* The following sends init("Remote Class") to a new instance */

125

Class Class (Metaclass)

rclass=.class~enhanced(rclassmeths, "Remote Class")

5.1.1.11.id

Returns the class identity (instance) string. (This is the string that is an argument on the subclass
and mixinClass methods.) The string representations of the class and its instances contain the class
identity.

Example 5.6. Class class — id method

myobject=.object~subclass("my object") /* Creates a subclass */
say myobject~id /* Produces: "my object" */

5.1.1.12. inherit

classpos

bb—(inherit(classobj S @—N

Causes the receiver class to inherit the instance and class methods of the class object classobj. The
classpos is a class object that specifies the position of the new superclass in the list of superclasses.
(You can use the superClasses method to return the immediate superclasses.)

The new superclass is inserted in the search order after the specified class. If the classpos class is not
found in the set of superclasses, an error is raised. If you do not specify classpos, the new superclass
is added to the end of the superclasses list.

Inherited methods can take precedence only over methods defined at or above the base class of the
classobj in the class hierarchy. Any subsequent change to the instance methods of classobj takes
immediate effect for all the classes that inherit from it.

The new superclass classobj must be created with the MIXINCLASS option of the : : CLASS directive
or the mixinClass method and the base class of the classobj must be a direct superclass of the
receiver object. The receiver must not already descend from classobj in the class hierarchy and vice
versa.

The method search order of the receiver class after inherit is the same as before inherit, with
the addition of classobj and its superclasses (if not already present).

Notes:
1. You cannot change the classes that Rexx provides by sending inherit messages.

2. The inherit method is a protected method.

Example 5.7. Class class — inherit method

room~inherit(.location)

126

Class Class (Metaclass)

5.1.1.13. isAbstract

Returns . true if the receiving class is an abstract class, otherwise returns . false.

See also ABSTRACT option of the ::CLASS directive.

Example 5.8. Class class — isAbstract method

say .abs~isAbstract -- 1

::class abs abstract

5.1.1.14. isMetaclass

Returns . true if the receiving class is a metaclass, otherwise returns . false. The Class class is
the only metaclass that Rexx provides; any subclasses of the Class class are also metaclasses.

Example 5.9. Class class — isMetaclass method

do class
over .RexxInfo~package~classes~allItems~appendAll(.context~package~classes~allItems)
if class~isMetaclass then
say class~string": metaclass" -- The Class class: metaclass
-- The META class: metaclass
end

::class meta subclass class
::class other

5.1.1.15. isSubclassOf

bb—(isSubclassOf(class)

Returns . true if the object is a subclass of the specified class. Returns . false if the object is not a
subclass of the specified class. A class is a subclass of a class if the target class is the same as class
or if class is in the object's direct or mixin class inheritance chain. For example:

Example 5.10. Class class — isSubclassOf method

.String~isSubclassOf(.object) -> 1
.String~isSubclassOf(.mutablebuffer) -> 0

5.1.1.16. metaClass

127

Class Class (Metaclass)

Returns the receiver class's default metaclass. This is the class used to create subclasses of this
class when you send subclass or mixinClass messages (with no metaclass arguments). The instance
methods of the default metaclass are the class methods of the receiver class.

For more information about class methods, see Section 4.1.1, “Object Classes”. See also the
description of method subclass.

5.1.1.17. method

»—(method(methodname

Returns the method object for the receiver class's definition for the method name methodname. If the
receiver class defined methodname as unavailable, this method returns . nil. If the receiver class did
not define methodname, an error is raised.

Example 5.11. Class class — method method

/* Create and retrieve the method definition of a class */
myclass=.object~subclass("My class") /* Create a class */
mymethod=.method~new(" ","Say arg(1)") /* Create a method object */
myclass~define("ECHO", mymethod) /* Define it in the class */
method_source = myclass~method("ECHO")~source /* Extract it */
say method_source /* Says "an Array" */
say method_source[1] /* Shows the method source code */

5.1.1.18. methods

=) SR0n

class_object

Returns a Supplier object for all the instance methods of the receiving class and its superclasses, if
no argument is specified. In this case, the supplier's indexes may contain duplicate entries, if classes
override methods in superclasses.

If class_object is .nil, methods returns a Supplier object for only the instance methods of the
receiving class. If a class_object is specified, this method returns a Supplier object containing only the
instance methods that class_object defines.

The returned supplier's indexes are the method names and the supplier's items are their associated
Method objects. The Supplier enumerates all the names and methods existing at the time of the
supplier's creation.

Methods that have been hidden with a setMethod or define method are included with the
other methods that methods returns. The hidden methods have .nil for their associated
method.

128

Class Class (Metaclass)

Example 5.12. Class class — methods method

objsupp = .object~methods
do while objsupp~available

say objsupp~index -- displays all instance method
objsupp~next -- names of the Object class
end

5.1.1.19. mixinClass

>>—(mixinClass(classid —O @—N

metaclass o methods

Returns a new mixin subclass of the receiver class. You can use this method to create a new mixin
class that is a subclass of the superclass to which you send the message. The classid is a string that
identifies the new mixin subclass. You can use the id method to retrieve this string.

The metaclass is a class object. If you specify metaclass, the new subclass is an instance of
metaclass. (A metaclass is a class that you can use to create a class, that is, a class whose instances
are classes. The Class class and its subclasses are metaclasses.)

If you do not specify a metaclass, the new mixin subclass is an instance of the default metaclass of the
receiver class. For subclasses of the Object class, the default metaclass is the Class class.

The methods is a collection whose indexes are the hames of methods and whose items are method
objects (or strings or arrays of strings containing method code). If you specify methods, the new class
is enhanced with class methods from this collection. (The metaclass of the new class is not affected.)

The metaClass method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the receiver class, with the
addition of the new subclass at the start of the order.

Example 5.13. Class class — mixinClass method

buyable=.object~mixinClass("Buyable") /* New subclass is buyable */
/* Superclass is Object class */

5.1.1.20. new

- @0 L@

new()

Returns a new instance of the receiver class, whose object methods are the instance methods of
the class. This method initializes a new instance by running its init methods (see Section 4.2.9,
“Initialization”). new also sends an init message. If you specify args, new passes these arguments
on the init message.

129

Class Class (Metaclass)

Example 5.14. Class class — new method

/* new method example */

a = .account~new /* -> Object variable balance=0 */

y = .account~new(340.78) /* -> Object variable balance=340.78 */
/* plus free toaster oven */

::class account subclass object

::method init /* Report time each account created */

/* plus free toaster when more than $100 */
Expose balance
Arg opening_balance
Say "Creating" self-~objectName "at time" time()
If datatype(opening_balance, "N") then balance = opening_balance
else balance = 0
If balance > 100 then Say " You win a free toaster oven"

5.1.1.21. package

Returns the Package class instance that defined the receiving class. The package instance controls
and defines the search order for classes and routines referenced by the receiving class.

See also Package class.

Example 5.15. Class class — package method

say .Class~package~name -- REXX
say .other~package~name -- C:\ExampleClassPackage.rex

::class other

5.1.1.22. queryMixinClass

queryMixinClass

Returns . true if the class is a mixin class, or . false.

5.1.1.23. subclass

PP—(subclass(classid —O @—N

metaclass o methods

Returns a new subclass of the receiver class. You can use this method to create a new class that is a
subclass of the superclass to which you send the message. The classid is a string that identifies the
subclass. (You can use the id method to retrieve this string.)

The metaclass is a class object. If you specify metaclass, the new subclass is an instance of
metaclass. (A metaclass is a class that you can use to create a class, that is, a class whose instances
are classes. The Class class and its subclasses are metaclasses.)

130

Class Class (Metaclass)

If you do not specify a metaclass, the new subclass is an instance of the default metaclass of the
receiver class. For subclasses of the Object class, the default metaclass is the Class class.

The methods is a collection whose indexes are the nhames of methods and whose items are method
objects (or strings or arrays of strings containing method code). If you specify methods, the new class
is enhanced with class methods from this collection. (The metaclass of the new class is not affected.)

The metaclass method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the receiver class, with the
addition of the new subclass at the start of the order.

Example 5.16. Class class — subclass method

room=.object~subclass("Room") /* Superclass is .object */
/* Subclass is room */
/* Subclass identity is Room */

5.1.1.24. subclasses

Returns the immediate subclasses of the receiver class in the form of a single-dimensional Array of
the required size, in an unspecified order. (The program should not rely on any order.)

5.1.1.25. superClass

Returns the immediate superclass of the receiver class. The immediate superclass is the original class
used on a subclass or amixinClass method. For the Object Class, superClass returns .nil.

Example 5.17. Class class — superClass method

say .object~superclass -- displays "The NIL object"
say .class~superclass -- displays "The Object class"
say .set~superclass -- displays "The Table class"

5.1.1.26. superClasses

Returns the immediate superclasses of the receiver class in the form of a single-dimensional Array

of the required size. The immediate superclasses are the original class used on a subclass or a
mixinClass method, plus any additional superclasses defined with the inherit method. The array
is in the order in which the class has inherited the classes. The original class used on a subclass or
mixinClass method is the first item of the array.

131

Message Class

Example 5.18. Class class — superClasses method

z=.class~superClasses
/* To obtain the information this returns, you could use: */
do i over z
say i
end

5.1.1.27. uninherit

bb—(uninherit(classobj)

Nullifies the effect of any previous inherit message sent to the receiver for the class classobj.

@

You cannot change the classes that Rexx provides by sending uninherit messages.

Example 5.19. Class class — uninherit method

location=.object~mixinClass("Location")

room=.object~subclass("Room")~~inherit(location) /* Creates subclass */
/* and specifies inheritance */

room~uninherit(location)

5.1.2. Message Class

A message object provides for the deferred or asynchronous sending of a message. You can create
a message object by using the new (Class Method) method of the Message class or the start and
startWith methods of the Object class.

Table 5.2. Message Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ AlarmNotification (Mixin Class)

Methods inherited from the AlarmNotification class
cancel
triggered (Abstract method)

+ MessageNotification (Mixin Class)

Methods inherited from the MessageNotification class

132

Message Class

messageComplete (Abstract Method)

Message
new (Class Method)
arguments messageName start
completed notify startWith
errorCondition reply target
halt replyWith triggered
hasError result wait
hasResult send
messageComplete sendWith

5.1.2.1. new (Class Method)

bb—(new(target ’ messagename

argument

arguments

Initializes the message object for sending the message name messagename to object target.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search.

If you specify neither Individual nor Array, the message sent has no arguments.

If you specify the Individual or Array option, any remaining arguments are arguments for the
message. (You need to specify only the first letter; all characters following the first are ignored.)

Individual
If you specify this option, specifying argument is optional. Any arguments are passed as message
arguments to target in the order you specify them.

Array
If you specify this option, you must specify arguments, which is an Array object. The member
items of the array are passed to target as arguments. The first argument is at index 1, the
second argument at index 2, and so on. If you omitted any indexes when creating the array, the
corresponding message arguments are also omitted.

@

This method does not send the message messagename to object target. See methods
start/startWith , send /sendWith , and reply IreplyWith .

133

Message Class

5.1.2.2. arguments

Returns an array of argument objects used to invoke the message.

5.1.2.3. completed

Returns 1 if the message object has completed executing its message, or 0. You can use this method
to test for completion as an alternative to calling result and waiting for the message to complete.

5.1.2.4. errorCondition

Returns an error condition object from any execution error with the message object's message
invocation. If the message completed normally, or is still executing, errorCondition returns .nil.

5.1.2.5. halt

SCoR——R

description

Returns . true if it could raise the halt condition for the message the receiving message object is
currently executing. Returns . false if there is no message executing.

An optional string description can be supplied, which the halted message can retrieve by requesting
the "DESCRIPTION" item of the CONDITION built-in function or the Condition Object.

Example 5.20. Message class — halt method

dog = .WatchDog~new(1) -- watchdog with 1 sec time-out
say dog~watchTask(.task~new~start("runsLong", 0.5))
say dog~watchTask(.task~new~start("runsLong", 1.5))

::class Task

-- a long-running task that we may want to terminate early
::method runsLong
use strict arg seconds
signal on halt
do s = 0 to seconds by 0.1 -- split SysSleep to enable halting
call SysSleep 0.1 -- do "hard work"
end
return "task finished"

halt:
return condition("DESCRIPTION") -- return description from halt()

::class Watchdog inherit AlarmNotification

134

Message Class

-- sets a time-out, after which a running task will be halted
::method init

expose timeOut
use strict arg timeOut

watches over a task, halting it if it runs too long

::method watchTask

expose timeOut

use strict arg message

-- we set an Alarm for 'timeOut' seconds, which, upon triggering

-- will call method triggered(), passing this Alarm object as an argument
-- (this is why we inherit from AlarmNotification)

-- we also attach 'message' to enable triggered() to halt the task

alarm = .Alarm~new(timeOut, self, message)

-- now we just wait for 'message' to finish; either normally, or halted
msgResult = message~result

alarm~cancel -- cancel alarm; may still be active
return msgResult

::method triggered unguarded

expose timeOut

-- our watchTask Alarm has triggered

-- this means that the task has run too long

use arg alarm

message = alarm~attachment -- message is our attachment
message~halt("task took longer than" timeOut "sec")

will output

task finished
task took longer than 1 sec

5.1.2.6. hasError

Returns 1 if the message object's message was terminated with an error condition. Returns 0 if the
message has not completed or completed without error.

5.1.2.7. hasResult

Returns . true if the message object has completed executing its message, and the message
has returned a result. Returns . false if the message object has not yet completed executing its
message, or the message hasn't returned a result.

See also method result.

5.1.2.8. messageComplete

.

geComplete() @—N

source

135

Message Class

This method implements the MessageNotification interface. It will be called whenever a message
completes processing, for which notification was requested by using the notify method with a message
object as the notification target.

As a result of receiving such a natification, messageComplete will send the receiving message to
start processing. Any source argument will be ignored.

See also class MessageNotification.
Example 5.21. Message class — messageComplete method

msg = .Message~new(.Array~new(1000)~fill(0)~allIndexes, "sort")
msg~notify(.Message~new(.stdout, "say", "I", "sorting complete"))
msg~notify(.Message~new(.r~new, "items", "I", msg))

msg~start

say "processing continues"

riclass r

::method items

use strict arg m

say m~target~items "items sorted"

will output

processing continues
sorting complete
1000 items sorted

5.1.2.9. messageName

messageName

Returns the message name of the receiving message object.

5.1.2.10. notify

bb—(notify()— target)

Requests notification about the completion of processing of the message.

The notification target must be an object that implements the MessageNotification interface. Upon
completion of message processing, target will be sent a messageComplete message, with the
completed Message object as argument source.

Any number of notifications can be requested for a message.
To retrieve the result of the completed message, use method result.
See also class MessageNotification.

Example 5.22. Message class — notify method

msg = .Message~new(.Array~new(1000)~fill(0@)~allIndexes, "sort")

136

Message Class

msg~notify(.Sorter~new)
msg~start
say "processing continues"
::class Sorter inherit MessageNotification
::method messageComplete
use strict arg message

say message~target~items "items sorted"

will output

processing continues
1000 items sorted

5.1.2.11. reply

(=) J(@ Jj@*‘

target argument

Returns and sends a copy of the message to start processing, while the sender also continues
processing.

As this method, other than the similar method start, starts a copy of the message, it can be called
mutiple times with the same receiving message.

If target is specified, the message is sent to target and both the receiving message and the message
copy are changed to use the new target. Otherwise the message is sent to the target the message
object provides.

If any arguments are specified, the message is sent with these arguments and both the receiving
message and the message copy are changed to use the new arguments. Otherwise the message is
sent with any arguments the message object provides.

This method returns as soon as possible and does not wait until message processing is complete.

The notify method can be used to request natification that message processing is complete. When
message processing is complete, the message object retains any result and holds it until requested
via the result method.

See also

* method replyWith ,

* methods start and startWith , and
* methods send and sendWith .

5.1.2.12. replyWith

bb—' replyWith()‘ ' arguments —@—N

target

Returns and sends a copy of the message with the specified arguments to start processing, while the
sender also continues processing.

137

Message Class

As this method, other than the similar method startWith , starts a copy of the message, it can be called
mutiple times with the same receiving message.

If target is specified, the message is sent to target and both the receiving message and the message
copy are changed to use the new target. Otherwise the message is sent to the target the message
object provides.

The arguments array items are used as message arguments and both the receiving message and the
message copy are changed to use these new arguments.

This method returns as soon as possible and does not wait until message processing is complete.

The notify method can be used to request naotification that message processing is complete. When
message processing is complete, the message object retains any result and holds it until requested
via the result method.

See also

» method reply ,

» methods start and startWith , and
» methods send and sendWith .

5.1.2.13. result

Returns the result of the message send or start. If message processing is not yet complete, this
method waits until it completes. If the message send or start raises an error condition, this method
also raises an error condition.

For an example see halt method example.

5.1.2.14. send
- () 0 L
target argument

Returns the result (if any) of sending the message.

If target is specified, the message is sent to target and the receiving message object is changed to use
the new target. Otherwise the message is sent to the target the message object provides.

If any arguments are specified, the message is sent with these arguments and the receiving message
object is changed to use the new arguments. Otherwise the message is sent with any arguments the
message object provides.

This method does not return until message processing is complete.

The notify method can be used to request notification that message processing is complete. When
message processing is complete, the message object retains any result and holds it until requested
via the result method.

See also
* method sendWith ,
* methods start and startWith , and

138

Message Class

» methods reply and replyWith .

5.1.2.15. sendWith

bb—' sendWith(J J O— arguments)

target

Returns the result (if any) of sending the message with the specified arguments.

If target is specified, the message is sent to target and the receiving message object is changed to use
the new target. Otherwise the message is sent to the target the message object provides.

The arguments array items are used as message arguments and the receiving message object is
changed to use these new arguments.

This method does not return until message processing is complete.

The notify method can be used to request notification that message processing is complete. When
message processing is complete, the message object retains any result and holds it until requested
via the result method.

See also

* method send ,

» methods start and startWith , and
» methods reply and replyWith .

5.1.2.16. start

D P S O

target argument

Sends the message to start processing, while the sender also continues processing.

If target is specified, the message is sent to target and the receiving message object is changed to use
the new target. Otherwise the message is sent to the target the message object provides.

If any arguments are specified, the message is sent with these arguments and the receiving message
object is changed to use the new arguments. Otherwise the message is sent with any arguments the
message object provides.

This method returns as soon as possible and does not wait until message processing is complete.

Note that once a message object has been started with either the start or the startWith
method, it can not be run with any of the send/sendwWith, start/startWith, reply/replyWith
methods again. A message object can be run multiple times with methods send/sendwith and
reply/replywith.

The notify method can be used to request notification that message processing is complete. When
message processing is complete, the message object retains any result and holds it until requested
via the result method.

See also
* method startWith ,
* methods send and sendWith , and

139

Message Class

» methods reply and replyWith .

Example 5.23. Message class - start method

ez=.testclass~new /* Creates a new instance of Testclass

/* Creates and starts message mymsg to send SHOWMSG to ez
mymsg=ez~start("SHOWMSG", "Hello, Ollie!",5)

/* Continue with main processing while SHOWMSG runs concurrently
do 5

say "Hello, Stan!"
end

/* Get final result of the SHOWMSG method from the mymsg message object
say mymsg-~result
say "Goodbye, Stan..."

exit
::class testclass public /* Directive defines Testclass
::method showmsg /* Directive creates new method SHOWMSG
use arg text,reps /* class Testclass
do reps
say text
end

reply "Bye Bye, Ollie..."
return

The following output is possible:

Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,

Bye Bye,
Goodbye, Stan...

Ollie!
Stan!
Ollie!
Stan!
Ollie!
Stan!
Ollie!
Stan!
Ollie!
Stan!

Ollie...

5.1.2.17. startWith

bb—' startWith(J

target

1

arguments

*/

*/

*/

*/

*/

*/
*/

Sends the message with the specified arguments to start processing, while the sender also continues
processing.

If target is specified, the message is sent to target and the receiving message object is changed to use
the new target. Otherwise the message is sent to the target the message object provides.

The arguments array items are used as message arguments and the receiving message object is

changed to use these new arguments.

This method returns as soon as possible and does not wait until message processing is complete.

Message Class

Note that once a message object has been started with either the start or the startWith
method, it can not be run with any of the send/sendwWith, start/startWith, reply/replyWith
methods again. A message object can be run multiple times with methods send/sendwith and
reply/replywith.

The notify method can be used to request naotification that message processing is complete. When
message processing is complete, the message object retains any result and holds it until requested
via the result method.

See also

* method start,

» methods send and sendWith , and
» methods reply and replyWith .

5.1.2.18. target

Returns the object that is the target of the invoked message.

5.1.2.19. triggered

>>—' triggered(J @—N

source

This method implements the AlarmNotification interface. It will be called whenever an Alarm or a
Ticker triggers, for which a Message object was set as notification target.

As a result of receiving such a notification, triggered will send the receiving message to start
processing. Any source argument will be ignored.

See also class AlarmNotification.
Example 5.24. Message class — triggered method

arg = .Array~new(1)

msg = .Message~new(.a~new, '"ring", "A", arg)

oneSecond = .Alarm~new(1, msg, arg)

arg~append(oneSecond)

-- oneSecond = .Alarm~new(1, .Message~new(.a~new, "ring", "I", alarm))
say "processing continues"

i:iclass a

::method ring

use strict arg alarm

say "alarm went off at" .DateTime~new

say "was scheduled for" alarm~scheduledTime

may output

processing continues
alarm went off at 2015-12-18T16:54:15.550000
was scheduled for 2015-12-18T16:54:15.545000

141

Method Class

5.1.2.20. wait

Waits until the message object has completed executing its message.

See also method completed.

5.1.3. Method Class

The Method class creates method objects from Rexx source code. It is a subclass of the Object class.

Table 5.3. Method Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Method
new (Class Method)
loadExternalMethod (Class Method)
newFile (Class Method)
annotation isPackage setPrivate
annotations isPrivate setProtected
isAbstract isProtected setSecurityManager
ISAttribute package setUnguarded
isConstant scope source
isGuarded setGuarded

5.1.3.1. new (Class Method)

context

bb—(new/(name ; source | @—N

Returns a new instance of the Method class, which is an executable representation of the code
contained in the source. The name is a string. The source can be a single string or an array of strings
containing individual method lines.

The context allows the created method to inherit class and routine lookup scope from another
source. If specified, context can be a Method object, a Routine object, a Package object, or the string
"PROGRAMSCOPE". PROGRAMSCOPE is the default, and specifies that the newly created method
will inherit the class and routine search scope from the caller of the new method.

5.1.3.2. newFile (Class Method)

»—(newFile(filename J @—N

; context

142

Method Class

Returns a new instance of the Method class, which is an executable representation of the code
contained in the file filename. Raises an error if the file flename cannot be read. The filename is a
string.

The context allows the created method to inherit class and routine lookup scope from another
source. If specified, context can be a Method object, a Routine object, a Package object, or the string
"PROGRAMSCOPE". PROGRAMSCOPE is the default, and specifies that the newly created method
will inherit the class and routine search scope from the caller of the newFile method.

5.1.3.3. loadExternalMethod (Class Method)

bb—(loadExternalMethod()— name P descriptor)

Resolves a native method in an external library package and returns a Method object instance that
can be used to call the external method. The descriptor is a string containing whitespace-delimited
tokens that identify the location of the native method. The first token identifies the type of native
function and must be LIBRARY. The second token must identify the name of the external library. The
external library is located using platform-specific mechanisms for loading libraries. For Unix-based
systems, the library name is case-sensitive. The third token is optional and specifies the name of
the method within the library package. If not specified, name is used. The method name is not case
sensitive. If the target method cannot be resolved, .nil is returned.

Example 5.25. Method class — loadExternalMethod method

method = .Method~loadExternalMethod("homeAddress=", "LIBRARY mylib setHomeAddress")

5.1.3.4. annotation

bb—(annotation()— name)

Returns the value of the annotation named name for this method. If no such annotation exists, .nil is
returned.

See also
* method annotations and
* ANNOTATE directive.

5.1.3.5. annotations

Returns a StringTable of all annotation name/value pairs for this method.

See also
* method annotation and
 “ANNOTATE directive.

5.1.3.6. isAbstract

143

Method Class

Returns . true if the method is an Abstract method, otherwise returns . false.

See also
» ABSTRACT option of the ::METHOD directive and
« ABSTRACT option of the ::ATTRIBUTE directive.

Example 5.26. Method class — isAbstract method

say .InputStream~method("lines")~isAbstract --1
say .Stream~method("lines")~isAbstract -- 0

5.1.3.7. isAttribute

Returns . true if the method is an Attribute method, otherwise returns . false.

See also ATTRIBUTE directive.

Example 5.27. Method class — isAttribute method

say .File~method("lastModified")~isAttribute -- 1
say .File~method("lastModified=")~isAttribute --1

5.1.3.8. isConstant

Returns . true if the method is a Constant method, otherwise returns . false.

See also ::CONSTANT directive.

Example 5.28. Method class — isConstant method

say .physics~method("c")~isConstant -- 1

::class physics
;:constant ¢ 299792458

5.1.3.9. isGuarded

Returns . true if the method is a Guarded method. Returns . false for Unguarded methods.

5.1.3.10. isPackage

144

Method Class

Returns . true if the method is a Package-scope method. Returns . false for Public methods or
Private methods. See Section 4.2.8, “Public, Package-Scope, and Private Methods” for details on
package-scope method restrictions.

See also method isPrivate.

5.1.3.11. isPrivate

Returns . true if the method is a Private method. Returns . false for Public methods or Package-
scope methods. See Section 4.2.8, “Public, Package-Scope, and Private Methods” for details on
private method restrictions.

See also method isPackage .

5.1.3.12. isProtected

isProtected

Returns . true if the method is a Protected method. Returns . false for unprotected methods.

5.1.3.13. package

Returns the Package class instance that defined the method instance. The package instance controls
and defines the search order for classes and routines referenced by the method code.

#

5.1.3.14. scope

Returns the defining class scope for a method. Returns . nil for any method not defined by a class
scope.

Example 5.29. Method class — scope method

scopes = .Stem~new
scopes[] = 0
loop with item method over .List~methods

scopes[method~scope] += 1 -- possible output:
end -- 27 methods from The List class
loop scope over scopes -- 19 methods from The Collection class

say scopes[scope] "methods from" scope -- 20 methods from The OrderedCollection class
end -- 31 methods from The Object class
.Method~new("any", "nop")~scope -- .nil
.methods["FLOAT"]~scope -- .nil

::method float

145

Method Class

5.1.3.15. setGuarded

Specifies that the method is a guarded method that requires exclusive access to its scope variable
pool to run. If the receiver is already guarded, a setGuarded message has no effect. Guarded is the
default state for method objects.

5.1.3.16. setPrivate

Specifies that a method is a private method. By default, method objects are created as public
methods. See Section 4.2.8, “Public, Package-Scope, and Private Methods” for details on private
method restrictions.

5.1.3.17. setProtected

setProtected

Specifies that a method is a protected method. Method objects are not protected by default. (See
Chapter 13, The Security Manager for details.)

5.1.3.18. setSecurityManager

PP—(setSecurityManager() @—N

security_manager_object

Replaces the existing security manager with the specified security_manager_object. If
security_manager_object is omitted, any existing security manager is removed.

5.1.3.19. setUnguarded

setUnguarded

Turns off the guard attribute of the method, allowing this method to run on an object even if another
method has acquired exclusive access to the scope variable pool. Methods are guarded by default.

A guarded method can be active for an object only when no other method requiring exclusive access
to the object's variable pool is active in the same object. This restriction does not apply if an object
sends itself a message to run a method and it already has exclusive use of the same object variable
pool. In this case, the method runs immediately regardless of its guarded state.

5.1.3.20. source

Returns the method source code as a single-dimensional Array of source lines. If the source code is
not available, source returns an array of zero items.

146

Object Class

5.1.4. Object Class

The Object class is the root of the class hierarchy. The instance methods of the Object class are,
therefore, available on all objects.

Table 5.4. Object Class

Class (Metaclass)

Methods inherited from the Class class

Object
new (Class Method)
Comparison Methods = == <> >< \=\==
Concatenation Methods (abuttal) || (blank)
class iSA sendWith
copy isinstanceOf setMethod (Private Method)
defaultName isNil start
hashCode objectName startWith
hasMethod objectName= string
identityHash request unsetMethod (Private Method)
instanceMethod run (Private Method)
instanceMethods send

5.1.4.1. new (Class Method)

Returns a new instance of the receiver class.

5.1.4.2. Comparison Methods

»—(comparison_operator(argument

Returns . true or . false, the result of performing a specified comparison operation.

For the Object class, if argument is the same object as the receiver object, the result is . true,
otherwise . false is returned. Subclasses may override this method to define equality using different
criteria. For example, the String class determines equality based on the value of the string data.

@roe

The MapCollection classes such as Table and Relation use the == operator combined with
the hashCode method to determine index and item equivalence. It is generally necessary for a
class to override both the hashCode method and the == operator method to maintain the contract
specified for the hashCode method.

The comparison operators you can use in a message are:

147

Object Class

. true if the terms are the same object.

\=, ><, <>, \==
. true if the terms are not the same object (inverse of =).

5.1.4.3. Concatenation Methods

bb—(concatenation_operator(argument)

Returns a new string that is the concatenation the of receiver object's string value with argument. (See
Section 1.11.2.1, “String Concatenation”.) The concatenation_operator can be:

concatenates without an intervening blank. The abuttal operator " is the null string. The language
processor uses the abuttal operator to concatenate two terms that another operator does not
separate.

concatenates without an intervening blank.

concatenates with one blank between the receiver object and the argument. (The operator " " is a
blank.)

5.1.4.4. class

Returns the class object that created the object instance.

5.1.4.5. copy

Returns a copy of the receiver object. The copied object has the same methods as the receiver object
and an equivalent set of object variables, with the same values.

Example 5.30. Object class — copy method

myarray=.array~of ("N",6"S", 6 "E", "W")
/* Copies array myarray to array directions */
directions=myarray~copy

148

Object Class

@e

The copy method is a “shallow copy”. Only the target object is copied. Additional objects
referenced by the target object are not copied. For example, copying an Array object instance
only copies the Array, it does not copy any of the objects stored in the Array.

5.1.4.6. defaultName

defaultname

Returns a short human-readable string representation of the object. The exact form of this
representation depends on the object and might not alone be sufficient to reconstruct the object. All
objects must be able to produce a short string representation of themselves in this way, even if the
object does not have a string value. See Section 4.2.11, “Required String Values” for more information.
defaultName returns a string that identifies the class of the object, for example, an Array or a
Directory.

See also methods objectName and string.

See objectName= for an example using defaultName.

5.1.4.7. hashCode

hashCode

Returns a string value that is used as a hash value for MapCollections such as Table, Relation, Set,
Bag, and Directory. MapCollections use this string value to hash an object for hash table-based
searches.

Object implementations are expected to abide by a general contract for hash code usage:

» Whenever hashCode is invoked on the same object more than once, hashCode must return the
same hashcode value, provided than none of the internal information the object uses for an "=="
comparison has changed.

« If two object instances compare equal using the "==" operator, the hashCode methods for both
object instances must return the same value.

« lItis not required that two object instances that compare unequal using "==" return different hash
code values.

» Returning a wide range of hash values will produce better performance when an object is used as
an index for a MapCollection. A return value of 4 string characters is recommended. The characters
in the hash value may be any characters from '00"'x to ' ff'x, inclusive.

5.1.4.8. hasMethod

»—(hasMethod(methodname)

149

Object Class

Returns . true if the receiver object has a method named methodname (translated to uppercase).
Otherwise, it returns . false.

@

The hasMethod method will return . true even if the target method is defined as private. A
private method has restricted access rules, so it's possible to receive an unknown method error
(error 97) when invoking methodname even if hasMethod indicates the method exists. See
Section 4.2.8, “Public, Package-Scope, and Private Methods” for private method restrictions.

5.1.4.9. identityHash

identityHash

Returns a unique identity number for the object. This number is guaranteed to be unique for the
receiver object until the object is garbage collected.

5.1.4.10. init

Performs any required object initialization. Subclasses of the Object class can override this method to
provide more specific initialization.

5.1.4.11. instanceMethod

bb—(instanceMethod(methodname —@—N

Returns the corresponding Method class instance if the methodname is a valid method of the class.
Otherwise it returns .nil.

5.1.4.12. instanceMethods

bb—' instanceMethods(J J @—N

class_object

Returns a Supplier object for all the object methods of the receiving object and its superclasses, if no
argument is specified. In this case, the supplier's indexes may contain duplicate entries, if classes
override methods in superclasses.

If a class_object is specified, instanceMethods returns a Supplier object for only the object methods
of the receiving object. If the receiving object object is not an instance of class_object, an empty
Supplier is returned.

The returned supplier's indexes are the method names and the supplier's items are their associated
Method objects. The Supplier enumerates all the names and methods existing at the time of the
supplier's creation.

150

Object Class

Methods that have been hidden with a setMethod or define method are included with the
other methods that instanceMethods returns. The hidden methods have .nil for their
associated method.

Example 5.31. Object class — instanceMethods method

-- list all class methods of .String only
say .String~instanceMethods(.String)~allIndexes --> CR,NEW, NL,NULL, TAB

-- count all class methods of .String and its superclasses
-- 4 .String class methods, 32 .0Object class methods, 34 .Class class methods
say .String~instanceMethods~allIndexes~items --> 70

-- count all instance methods of .String only
say ''~instanceMethods(.String)~allIndexes~items --> 116

-- count all instance methods of .String and its superclasses
say ''~instanceMethods~allIndexes~items --> 148

5.1.4.13. i

sA

()

class

This method is an alias of the is/instance Of method.

5.1.4.14. isinstanceOf

>>—[islnstance0f()— class

Returns . true if the object is an instance of the specified class, otherwise it returns . false, An
object is an instance of a class if the object is directly an instance of the specified class or if class is in
the object's direct or mixin class inheritance chain. For example:

Example 5.32. Object class — isIlnstanceOf method

"abc"~isInstanceOf(.string) -> 1
"abc"~isInstanceOf(.object) -> 1
"abc"~isInstanceOf (.mutablebuffer) -> 0

151

Object Class

5.1.4.15. isNil

Returns . true if the receiving object is the .nil object. Returns . false otherwise.

Example 5.33. Object class — isNil method

say .0Object~isNil -- 0
say .nil~isNil -- 1

5.1.4.16. objectName

objectName

Returns any name set on the receiver object using the objectName= method. If the receiver
object does not have a name, this method returns the result of the defaultName method. See
Section 4.2.11, “Required String Values” for more information. See the objectName= method for an

example using objectName.

5.1.4.17. objectName=

bb—(objectName=()— newname)

Sets the receiver object's name to the string newname.

Example 5.34. Object class — objectName= method

points=.array~of ("N",6 "S",6 "E", "W")

say points~objectName /* (no change yet) Says: "an Array"

*/

points~objectName=("compass") /* Changes obj name POINTS to '"compass"*/

say points~objectName /* Shows new obj name. Says:
say points~defaultName /* Default is still available.

/* Says "an Array"

say points /* Says string representation of

/* points "compass"

say points[3] /* Says: "E" Points is still an array

/* of 4 items

5.1.4.18. request

bb—(request(classid)

*/
*/
*/
*/
*/
*/
*/

Returns an object of the classid class, or .nil if the request cannot be satisfied.

This method first compares the identity of the object's class (see the id method of the Class

class) to classid. If they are the same, the receiver object is returned as the result. Otherwise,
request tries to obtain and return an object satisfying classid by sending the receiver object the
conversion message make with the string classid appended (converted to uppercase). For example,

152

Object Class

arequest("string") message causes a makeString message to be sent. If the object does not
have the required conversion method, request returns .nil.

The conversion methods cause objects to produce different representations of themselves.

The presence or absence of a conversion method defines an object's capability to produce the
corresponding representations. For example, lists can represent themselves as arrays, because they
have a makeArray method, but they cannot represent themselves as directories, because they do
not have a makeDirectory method. Any conversion method must return an object of the requested
class. For example, makeArray must return an array. The language processor uses the makeString
method to obtain string values in certain contexts; see Section 4.2.11, “Required String Values”.

5.1.4.19. run (Private Method)

)»—(run(method

argument

arguments

Runs method, which can be either

» a method object, or

* a string containing a method source line, or an Array of strings containing individual method source
lines (for these cases an equivalent method object is created).

The method has access to the object variables of the receiver object, as if the receiver object had
defined the method by using setMethod.

If you specify neither Individual nor Array, the method runs without arguments.

If you specify the Individual or Array option, any remaining arguments are arguments for the
method. (You need to specify only the first letter; all characters following the first character are
ignored.)

Individual
Passes any remaining arguments to the method as arguments in the order you specify them.

Array
Requires arguments, which is an Array object. The member items of the array are passed to the
method as arguments. The first argument is at index 1, the second argument at index 2, and so
on. If you omitted any indexes when creating the array, the corresponding arguments are omitted
when passing the arguments.

Notes:

1. The run method is a private method (see Section 4.2.8, “Public, Package-Scope, and Private
Methods”) with the additional restriction that it can only be called
» from an instance method of the receiving object itself, or
» from a class method in the receiving object's inheritance chain.

2. The run method is a protected method.

5.1.4.20. send

153

Object Class

>>—(send(messagename ' L j @—N

argument

Returns the result of invoking a method on the target object using the specified message name and
arguments. The send method allows methods to be invoked using dynamically constructed method
names.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search.

Any arguments are passed to the receiver as arguments for messagename in the order you specify
them.

Example 5.35. Object class — send method

world = .WorldObject~new

-- these calls are equivalent and produce "Hello World, I'm Fred!"
say world~hello("world", "Fred")

say world~send("HELLO", "world", "Fred")

::class WorldObject
::method hello
use strict arg place, name
return "Hello" place", I'm" name"!"

5.1.4.21. sendWith

bb—(sendWith()— messagename o arguments)

Returns the result of invoking a method on the target object using the specified message name and
arguments. The sendwith method allows methods to be invoked using dynamically constructed
method names and arguments.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search.

The arguments argument must be a single-dimensional Array instance. The values contained in
arguments are passed to the receiver as arguments for messagename in the order you specify them.

Example 5.36. Object class — sendWith method

world = .wWorldObject~new

-- these calls are equivalent and produce "Hello World, I'm Fred!"
say world~hello("world", "Fred")

say world~sendwith("HELLO", .Array~of("world", "Fred"))

::class WorldObject
::method hello
use strict arg place, name
return "Hello" place", I'm" name"!"

154

Object Class

5.1.4.22. setMethod (Private Method)

>>—(setMethod()— methodname f @—N
o method
.I "FLOAT" '
' "OBJECT"

Adds method to the receiver object's collection of object methods.

The methodname is the name of the new method. This name is translated to uppercase. If you
previously defined a method with the same name using setMethod, the new method replaces the
earlier one. If you omit method, setMethod makes the method name methodname unavailable for the
receiver object. In this case, sending a message of that name to the receiver object runs the unknown
method (if any).

The method can be either
« a method object, or

* a string containing a method source line, or an Array of strings containing individual method source
lines (for these cases an equivalent method object is created).

The third parameter is optional, and describes if the method that is attached to an object should have
OBJECT or FLOAT scope. FLOAT scope, which is the default, means that it shares the same scope
with methods that were defined outside of a class. OBJECT scope means it shares the scope with
other, potentially statically defined, methods of the object it is attached to.

Notes:

1. The setMethod method is a private method (see Section 4.2.8, “Public, Package-Scope, and
Private Methods”) with the additional restriction that it can only be called

« from an instance method of the receiving object itself, or
» from a class method in the receiving object's inheritance chain.

2. The setMethod method is a protected method.

5.1.4.23. start

bb—(start(messagename ’ j @—N

argument

Returns a message object and sends it a start message to start concurrent processing. The
object receiving the message messagename processes this message concurrently with the sender's
continued processing.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search.

Any arguments are passed to the receiver as arguments for messagename in the order you specify
them.

155

Object Class

When the receiver object has finished processing the message, the message object retains its result
and holds it until the sender requests it by sending a result message. For further details, see
Message class method start.

Example 5.37. Object class — start method

world = .WorldObject~new

-- these calls are equivalent and produce "Hello World, I'm Fred!"
msgl = world~start("HELLO", "world", "Fred")

msg2 = .message~new(world, "HELLO", "i", "world", "Fred")~~start
say msgl-~result

say msg2~result

::class WorldObject
::method hello
use strict arg place, name
return "Hello" place", I'm" name"!"

5.1.4.24. startWith

bb—(startWith()— messagename o arguments)

Returns a message object and sends it a start message to start concurrent processing. The
object receiving the message messagename processes this message concurrently with the sender's
continued processing.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search.

The arguments argument must be a single-dimensional Array instance. Any values contained in
arguments are passed to the receiver as arguments for messagename in the order you specify them.

When the receiver object has finished processing the message, the message object retains its result
and holds it until the sender requests it by sending a result message. For further details, see
Message class method start.

Example 5.38. Object class — startWith method

world = .WorldObject~new

-- these calls are equivalent and produce "Hello World, I'm Fred!"

msgl = world~startWith("HELLO", .Array~of("World", "Fred"))

msg2 = .message~new(world, "HELLO", "a", .Array~of("World", "Fred"))~~start
say msgl-~result

say msg2~result

::class WorldObject
::method hello

use strict arg place, name
return "Hello" place", I'm" name"!"

5.1.4.25. string

156

Package Class

Returns a human-readable string representation of the object. The exact form of this representation
depends on the object and might not alone be sufficient to reconstruct the object. All objects must be
able to produce a string representation of themselves in this way.

The object's string representation is obtained from the objectName method (which can in turn use the
defaultName method).

The distinction between this method, the makeString method (which obtains string values) and the
request method is important. All objects have a string method, which returns a string representation
(human-readable form) of the object. This form is useful in tracing and debugging. Only those objects
that have information with a meaningful string form have a makeString method to return this value.
For example, Directory objects have a readable string representation ("a Directory"), but no string
value, and, therefore, no makeString method.

Of the classes that Rexx provides, the Array Class, the CircularQueue Class, the DateTime Class,

the File Class, the MutableBuffer Class, the StackFrame Class, the String Class, and the TimeSpan
Class have a makeString method. Any subclasses of these classes inherit this method by default, so
these subclasses also have string values. Any other class can also provide a string value by defining a
makeString method.

5.1.4.26. unsetMethod (Private Method)

PP—(unsetMethod(methodname —@—N

Cancels the effect of all previous setMethods for method methodname. It also removes any method
methodname introduced with enhanced when the object was created. If the object has received no
setMethod method, no action is taken.

Notes:

1. The unsetMethod method is a private method (see Section 4.2.8, “Public, Package-Scope, and
Private Methods”) with the additional restriction that it can only be called
« from an instance method of the receiving object itself, or
» from a class method in the receiving object's inheritance chain.

2. The unsetMethod method is a protected method.

5.1.5. Package Class

The Package class contains the source code for a package of Rexx code. A package instance holds
all of the routines, classes, and methods created from a source code unit and also manages external
dependencies referenced by ::REQUIRES directives. The files loaded by ::REQUIRES are also
contained in Package class instances. It is a subclass of the Object class.

Table 5.5. Package Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Package

new (Class Method)

157

Package Class

addClass findPublicClass prolog
addPackage findPublicRoutine publicClasses
addPublicClass findRoutine publicRoutines
addPublicRoutine form resource
addRoutine fuzz resources
annotation importedClasses routines
annotations importedPackages setSecurityManager
classes importedRoutines source
definedMethods loadLibrary sourceLine
digits loadPackage sourceSize
findClass local trace
findNamespace name

findProgram namespaces

5.1.5.1. new (Class Method)

- ())

Returns a new instance of the package class, which is a representation of the code contained in

the source. The name is a string. The source can be a single string or an array of strings containing
individual method lines. If source isn't specified, name identifies a file that will be used as the package
source. The file is searched for using the external program search order.

name ;

source E context

The context allows the created package to inherit class and routine lookup scope from another source.
If specified, context can be a Method object, a Routine object, or a Package object. If not specified, the
newly created package will inherit the class and routine search scope from the caller of new method.

5.1.5.2. addClass

e

Adds the class object class to the available classes under the name name. This is added to the
package as a non-public class.

name o class)

5.1.5.3. addPackage

bb—(addPackage()— J @-N

Adds the package object package to the dependent packages. An optional string namespace may be
specified, which will allow to qualify references to classes or routines within package.

package

’ namespace

The added package is processed as if it had been added using a ::REQUIRES directive in the original
package source.

Example 5.39. Package class — addPackage method

.context~package~addPackage(.Package~new('winsystm.cls'),
say windows:virtualkeycodes~new~keyName(36) -- HOME

'windows')

158

Package Class

5.1.5.4. addPublicClass

bb—(addPublicClass()— name 0 class)

Adds the class object class to the available public classes under the name name. This is added to the
package as a public class.

5.1.5.5. addPublicRoutine

bb—(addPublicRoutine(name o routine)

Adds the routine object routine to the available routines under the name name. This is added to the
package as a public routine.

5.1.5.6. addRoutine

»—(addRoutine(name y routine

Adds the routine object routine to the available routines under the name name. This is added to the
package as a non-public routine.

5.1.5.7. annotation

»—(annotation(name —@—N

Returns the value of the annotation named name for this package. If no such annotation exists, .nil
is returned.

See also
* method annotations and
 ANNOTATE directive.

5.1.5.8. annotations

Returns a StringTable of all annotation name/value pairs for this package.

See also
* method annotation and
 ANNOTATE directive.

5.1.5.9. classes

Returns a StringTable containing all classes defined by this package.

See also methods publicClasses and importedClasses.

159

Package Class

5.1.5.10. definedMethods

definedMethods

Returns a StringTable containing all unattached methods defined by this package. This is the same
StringTable available to code within the package via the .METHODS environment symbol.

5.1.5.11. digits

Returns the initial NUMERIC DIGITS setting used for all Rexx code contained within the package. The
default value is 9. The ::OPTIONS directive can override the default value.

5.1.5.12. findClass

bb—(findCIass()— name)

Performs the standard environment symbol searches given name. The search is performed using
the same search mechanism used for environment symbols or class names specified on ::CLASS
directives. If the name is not found, .nil will be returned.

Note that the standard environment symbol search will return an object instance (and not a class)

when searching e. g. for "nil", "true", "

false", "endofline”, "RexxInfo", or objects in the .LOCAL directory.

See also method findPublicClass.
Example 5.40. Package class — findClass method

say .RexxInfo~package~findClass("Dummy") -- The NIL object
say .context~package~findClass("Dummy") -- The DUMMY class

::class Dummy

5.1.5.13. findNamespace

bb—(findNamespace()— name)

Returns the Package object that has been tagged with namespace name. Returns .nil if namespace
name does not exist.

See also method addPackage.

Example 5.41. Package class — findNamespace method

say .context~package~findNamespace("rexx") -- The REXX Package
say .context~package~findNamespace("windows") -- a Package

rirequires "winsystm.cls" namespace windows

160

Package Class

5.1.5.14. findProgram

bb—(findProgram()— name)

Locates program name using the target package context and returns the fully resolved filename. name
must be a string that specifies the filename or path to an external program. The program is searched
for using the external program search order.

Returns .n1il if name cannot be located.

Example 5.42. Package class — findProgram method

say .context~package~findProgram("mime.cls") -- e. g. C:\Program Files\ooRexx\mime.cls

5.1.5.15. findPublicClass

>>—(findPublicCIass(name —@—N

Returns the public class nhamed name. Returns . nil if no public class of the specified hame exists
within the scope of the receiving package.

See also method findClass.

Example 5.43. Package class — findPublicClass method

say .context~package~findPublicClass("String") -- The String class
say .context~package~findPublicClass("Dummy") -- The NIL object
say .context~package~findPublicClass("RexxInfo") -- The NIL object

::class Dummy -- private class

5.1.5.16. findPublicRoutine

bb—(findPuincRoutine()— name)

Returns the public routine named name. Returns .nil if no public routine of the specified name exists
within the scope of the receiving package.

See also methods publicRoutines and findRoutine.

Example 5.44. Package class — findPublicRoutine method

say .context~package~findPublicRoutine("Dummy")~source -- "nop"

::routine Dummy public
nop

5.1.5.17. findRoutine

161

Package Class

bb—(findRoutine()— name)

Searches for a routine within the package search order. This includes ::ROUTINE directives within
the package, public routines imported from other packages, or routines added using the addRoutine
method. The argument name must be a string object. If the name is not found, . nil will be returned.

5.1.5.18. form

Returns the initial NUMERIC FORM setting used for all Rexx code contained within the package. The
default value is SCIENTIFIC. The ::OPTIONS directive can override the default value.

5.1.5.19. fuzz

> {f) >

Returns the initial NUMERIC FUZZ setting used for all Rexx code contained within the package. The
default value is 0. The ::OPTIONS directive can override the default value.

5.1.5.20. importedClasses

importedClasses

Returns a StringTable containing all public classes imported from other packages.

See also methods classes and publicClasses.

5.1.5.21. importedPackages

bb—(importedPackages)—N

Returns an Array containing all packages imported by the target package.

5.1.5.22. importedRoutines

bb—' importedRoutines '—N

Returns a StringTable containing all public routines imported from other packages.

5.1.5.23. loadLibrary

bb—(loadLibrary(name)

Loads a native library package and adds it to the list of libraries loaded by the interpreter. The name
identifies a native external library file that will be located and loaded as if it had been named on

a ::REQUIRES LIBRARY directive. If the library is successfully loaded, loadLibrary will return

. true, otherwise it returns . false.

162

Package Class

5.1.5.24. loadPackage

bb—(loadPackage()— name @—N

’ source

Loads a package and adds it to the list of packages loaded by the package manager. If only name
is specified, name identifies a file that will be located and loaded as if it had been named on a
REQUIRES directive. The file is searched for using the external program search order.

If source is given, it must be an array of strings that is the source for the loaded package.

If a package name has already been loaded by the package manager, the previously loaded version
will be used.

The resolved package object will be added to the receiving package object's dependent packages.

5.1.5.25. local

Returns a Directory of objects local to the receiving package.

See also .LOCAL for a Directory of objects local to the interpreter instance.

5.1.5.26. name

Returns the string name of the package.

The package name may be

« the absolute path of the executing program,

« any name that was specified when creating an instance of a Package or Routine class,
» "REXX" for classes defined by Rexx, or

» "INSTORE" for code executed through the rexx -e command.

Example 5.45. Package class — name method

say .context~package~name -- e. g. C:\ExamplePackageName.rex
say .Class~package~name -- REXX

say .Routine~new("rtn", "return .context~package~name")[] -- rtn

say .Package~new("pkg", "")~name -- pkg

5.1.5.27. namespaces

Returns a StringTable of all namespaces defined in the target package.

See also method findNamespace.

163

Package Class

Example 5.46. Package class — namespaces method

say .context~package~namespaces~allIndexes -- WINDOWS

rirequires "winsystm.cls" namespace windows

5.1.5.28. prolog

Returns a routine object that represents the code of the target package that precedes any directives.

Example 5.47. Package class — prolog method

say .context~package~prolog~source -- "say .context~package~prolog~source"

::options noprolog

5.1.5.29. publicClasses

publicClasses

Returns a StringTable containing all public classes defined in this package.

See also methods findPublicClass and classes.

Example 5.48. Package class — publicClasses method

say .package~new("csvstream.cls")~publicClasses~allIndexes -- CSVSTREAM
say .context~package~publicClasses~allIndexes -- DUMMY
say .rexxinfo~package~publicClasses~items -- 56

::class dummy public

5.1.5.30. publicRoutines

Returns a StringTable containing all public routines defined in this package. The StringTable indexes
are the routine names, the StringTable values are individual routine objects.

See also method findPublicRoutine.

Example 5.49. Package class — publicRoutines method

say .package~new('"csvstream.cls")~publicRoutines~items -- ©
say .context~package~publicRoutines~allIndexes -- DUMMY
say .rexxinfo~package~publicRoutines~items -- 0

::routine dummy public

164

Package Class

5.1.5.31. resource

bb—(resource()— name)

Returns an Array of resources data lines a ::RESOURCE name directive in the target package
defines. Returns . nil, if no resource name exists.

See also
* method resources and

* 'RESOURCE directive.
Example 5.50. Package class — resource method

say .context~package~resource("GREYCAT")~makeString -- La nuit, tous les chats sont gris

riresource greyCat
La nuit, tous les chats sont gris
. :END

5.1.5.32. resources

Returns a StringTable of all data resources that ::RESOURCE directives in the target package define.
The StringTable indexes are the resource names, the StringTable values are arrays of individual
resource data lines.

See also
* method resource and

* “RESOURCE directive.
Example 5.51. Package class — resources method

say .context~package~resources~allIndexes -- "BROWN FOX"
- "GREYCAT"

iiresource greyCat

La nuit, tous les chats sont gris

1 tEND

::resource "brown fox"

The quick brown fox jumps over the lazy dog
1 tEND

5.1.5.33. routines

Returns a StringTable containing all routines defined in this package. The StringTable indexes are the
routine names, the StringTable values are individual routine objects.

165

Routine Class

5.1.5.34. setSecurityManager

bb—(setSecurityManager() @—N

security_manager_object

Replaces the existing security manager with the specified security_manager_object. If
security_manager_object is omitted, any existing security manager is removed.

5.1.5.35. source

#

Returns the package source code as a single-dimensional Array of source lines. If the source code is
not available, source returns an array of zero items.

5.1.5.36. sourceLine

(v} (1)

Returns the nth source line from the package source. If the source code is not available or the
indicated line does not exist, a null string is returned.

5.1.5.37. sourceSize

E

Returns the size of the source code for the package object. If the source code is not available, 0 is
returned.

5.1.5.38. trace

d

Returns the initial TRACE setting used for all Rexx code contained within the package. The default
value is Normal. The ::OPTIONS directive can override the default value.

5.1.6. Routine Class

The Routine class creates routine objects from Rexx source code. It is a subclass of the Object class.

Table 5.6. Routine Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Routine

166

Routine Class

new (Class Method)
loadExternalRoutine (Class method)
newFile (Class Method)

[l call setSecurityManager
annotation callwith source
annotations package

5.1.6.1. new (Class Method)

bb—(new()— name o source J @—N

’ context

Returns a new instance of the Routine class, which is an executable representation of the code
contained in the source. The name is a string. The source can be a single string or an array of strings
containing individual method lines.

The context allows the created routine to inherit class and routine lookup scope from another source.
If specified, context can be a Method object, a Routine object, a Package object, or the string
"PROGRAMSCOPE". PROGRAMSCORPE is the default, and specifies that the newly created routine
will inherit the class and routine search scope from the caller of the new method.

5.1.6.2. newFile (Class Method)

context

bb—(newfFile(filename < @—N

Returns a new instance of the Routine class, which is an executable representation of the code
contained in the file filename. The filename is a string.

The context allows the created routine to inherit class and routine lookup scope from another source.
If specified, context can be a Method object, a Routine object, a Package object, or the string
"PROGRAMSCOPE". PROGRAMSCOPE is the default, and specifies that the newly created routine
will inherit the class and routine search scope from the caller of the newFile method.

5.1.6.3. loadExternalRoutine (Class method)

bb—(loadExternalRoutine(name ' descriptor —@—N

Resolves a native routine in an external library package and returns a Routine object instance that

can be used to call the external routine. The descriptor is a string containing whitespace-delimited
tokens that identify the location of the native routine. The first token identifies the type of native routine
and must be LIBRARY. The second token must identify the name of the external library. The external
library is located using platform-specific mechanisms for loading libraries. For Unix-based systems, the
library name is case-sensitive. The third token is optional and specifies the name of the routine within
the library package. If not specified, name is used. The routine name is not case sensitive. If the target
routine cannot be resolved, .nil is returned.

Example 5.52. Routine class — loadExternalRoutine method

pi = .Routine~loadExternalRoutine("pi", "library rxmath rxcalcpi")

167

Routine Class

say pi~call(16) -- 3.141592653589793

5.1.6.4. []

-0 L@~

L argument

Calls the routine object using the provided arguments. The code in the routine object is called as if it
was an external routine call. The return value will be any value returned by the executed routine.

See also method call for which this method is a synonym.

5.1.6.5. annotation

>>—(annotation(name —@—N

Returns the value of the annotation named name for this routine. If no such annotation exists, .nil is
returned.

See also
* method annotations and
« “ANNOTATE directive.

5.1.6.6. annotations

Returns a StringTable of all annotation name/value pairs for this routine.

See also
* method annotation and
 ANNOTATE directive.

5.1.6.7. call

@) L@

call(}

argument

Calls the routine object using the provided arguments. The code in the routine object is called as if it
was an external routine call. The return value will be any value returned by the executed routine.

See also method [] for which this method is a synonym.

5.1.6.8. callWith

168

String Class

bb—(caIIWith()— array)

Calls the routine object using the arguments provided in array. Each element of array will be mapped
to its corresponding call argument. The code in the routine object is called as if it was an external
routine call. The return value will be any value returned by the executed routine.

5.1.6.9. package

Returns the Package class instance that defined the routine instance. The package instance controls
and defines the search order for classes and routines referenced by the routine code.

5.1.6.10. setSecurityManager

bb—(setSecurityManager() L @—N

security_manager_object

Replaces the existing security manager with the specified security_manager_object. If
security_manager_object is omitted, any existing security manager is removed.

5.1.6.11. source

Returns the routine source code as a single-dimensional Array of source lines. If the source code is
not available, source returns an array of zero items.

5.1.7. String Class

String objects represent character-string data values. A character string value can have any length
and contain any characters.

Table 5.7. String Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Comparable (Mixin Class)

Methods inherited from the Comparable class

compareTo

String
new (Class Method) digit (Class Method) punct (Class Method)
alnum (Class Method) graph (Class Method) space (Class Method)
alpha (Class Method) lower (Class Method) tab (Class Method)
blank (Class Method) nl (Class Method) upper (Class Method)
cntrl (Class Method) null (Class Method) xdigit (Class Method)

169

String Class

cr (Class Method) print (Class Method)

Arithmetic Methods + - *** [|| %

Comparison Methods = == < <= << <<= <> > >= >< >> >>= \= \== \< \<< \> \>>
Concatenation Methods (abuttal) || (blank)

Logical Methods \ & && |

[l compare modulo

? (inline if) compareTo overlay
abbrev contains pos

abs containsWord replaceAt
append copies reverse
b2x countStr right
bitAnd d2c round
bitOr azx sign
bitXor dataType space
c2d decodeBase64 startsWith
c2x delStr strip
caselessAbbrev delWord subChar
caselessChangeStr encodeBase64 substr
caselessCompare endsWith subWord
caselessCompareTo equals subWords
caselessContains floor translate
caselessContainsWord format trunc
caselessCountStr hashCode upper
caselessEndsWith insert verify
caselessEquals lastPos word
caselessLastPos left wordIndex
caselessMatch length wordLength
caselessMatchChar lower wordPos
caselessPos makeArray words
caselessStartsWith makeString x2b
caselessWordPos match x2c
ceiling matchChar x2d
center/centre max

changeStr min

5.1.7.1. new (Class Method)

»—(new(

stringvalue

-9~

Returns a new string object initialized with the characters in stringvalue.

5.1.7.2. alnum (Class Method)

Returns the string
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz, a character
sequence representing the POSIX character class name ALNUM (alphanumeric characters).

See also class methods alpha and digit.

String Class

5.1.7.3. alpha (Class Method)

Returns the string ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz, a character
sequence representing the POSIX character class name ALPHA (alphabetic characters).

See also class methods lower and upper.

5.1.7.4. blank (Class Method)

Returns the string '09 20'Xx, a character sequence representing the POSIX character class name
BLANK (tab and space character).

See also class method space.

5.1.7.5. cntrl (Class Method)

Returns the string '00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF 10 11 12 13
14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 7F'X, a character sequence representing the POSIX
character class name CNTRL (control characters).

See also class method print (Class Method).

5.1.7.6. cr (Class Method)

()

Returns the single character string for the carriage-return character, which has the value '0d'x.

5.1.7.7. digit (Class Method)

Returns the string 0123456789, a character sequence representing the POSIX character class name
DIGIT (digits).

See also class method xdigit.

5.1.7.8. graph (Class Method)

171

String Class

Returns the string 1"#$%&"' () *+, - . /0123456789 : ; <=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~_ "~ abcdefghijklmnopqrstuvwxyz{|}~, a character
sequence representing the POSIX character class name GRAPH (visible characters).

See also class method print.

5.1.7.9. lower (Class Method)

Returns the string abcdefghijklmnopqgrstuvwxyz, a character sequence representing the POSIX
character class name LOWER (lowercase letters).

See also class methods upper and alpha.

5.1.7.10. nl (Class Method)

()

Returns the single character string for the line-feed character, which has the value '0a'x.

5.1.7.11. null (Class Method)

:

Returns the single character string for the null character, which has the value '00'Xx.

5.1.7.12. print (Class Method)

Returns the string !"#$%&' () *+, -./0123456789: ; <=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]"_~ abcdefghijklmnopqrstuvwxyz{]|}~ (with a
leading space), a character sequence representing the POSIX character class name PRINT (visible
characters and space character).

See also class method graph.

5.1.7.13. punct (Class Method)

Returns the string "#$%&"' () *+, -./:;<=>?2@[\]"_"{| }~, a character sequence representing the
POSIX character class name PUNCT (punctuation characters).

172

String Class

5.1.7.14. space (Class Method)

Returns the string '09 GA 0B 0C 0D 20'Xx, a character sequence representing the POSIX
character class name SPACE (whitespace characters horizontal tab, line feed, vertical tab, form feed,
carriage return, and space).

See also class method blank.

5.1.7.15. tab (Class Method)

Returns the single character string for the tab character, which has the value '09'x.

5.1.7.16. upper (Class Method)

Returns the string ABCDEFGHIJKLMNOPQRSTUVWXYZ, a character sequence representing the POSIX
character class hame UPPER (uppercase letters).

See also class method lower.

5.1.7.17. xdigit (Class Method)

Returns the string 0123456789ABCDEFabcdef, a character sequence representing the POSIX
character class name XDIGIT (hexadecimal digits).

See also class method digit.

5.1.7.18. Arithmetic Methods
»»— arithmetic_operator argument

@

The syntax diagram above is for the non-prefix operators. For the prefix operators, omit the
parentheses and argument.

173

String Class

Returns the result of performing the specified arithmetic operation on the receiver object. The receiver
object and the argument must be valid numbers. The arithmetic_operator can be:

+

/
%
I

*%

Prefix -

Prefix +

Addition

Subtraction

Multiplication

Division

Integer division (divide and return the integer part of the result)

Remainder (divide and return the remainder—not modulo, because the result can
be negative)

Exponentiation (raise a number to a whole-number power)
Same as the subtraction: ® - number

Same as the addition: ® + number

See Chapter 10, Numbers and Arithmetic for details about precision, the format of valid numbers, and
the operation rules for arithmetic. Note that if an arithmetic result is shown in exponential notation, it
might have been rounded.

Example 5.53. String class — arithmetic methods

5+5 ->
8-5 ->
5*2 ->
6/2 ->
9//4 =
9%4 ->
2**3 ->
+5 =
_5 ->

B
[5)

O U oOoNRE WO

/* Prefix + */
/* Prefix - */

5.1.7.19. Comparison Methods

PP—(comparison_operator(argument —@—N

Returns . true or . false, the result of performing the specified comparison operation. The receiver
object and the argument are the terms compared. Both must be string objects. If argument is not a
string object, it is converted to its string representation for the comparison. The one exception is when
argument is .nil for the ==, \==, =, \=, ><, and <> operators. A string object will never compare
equal to .nil, even when the string matches the string value of .nil ("The NIL object"). As a result,
== will always return . false when compared to .nil and \== will always return . true. All of the
relational comparisons (for example, <, >, <=, etc.) will always return . false when compared to

.nil.

The comparison operators you can use in a message are:

\=, ><, <>

. true if the terms are equal (for example, numerically or when padded). . false if
argument is .nil.

. true if the terms are not equal (inverse of =). . true if argument is .nil.
Greater than. . false if argumentis .nil.

174

String Class

< Less than. . false if argumentis .nil.

>= Greater than or equal to. . false if argument is .nil.
\< Not less than. . false if argumentis .nil.

<= Less than or equal to. . false if argument is .nil.
\> Not greater than. . false if argumentis .nil.

Example 5.54. String class — comparison methods

5=5 -> 1 /* equal */
42\=41 -> 1 /* All of these are */
42><41 -> 1 /* "not equal" */
42<>41 -> 1
13>12 -> 1 /* Variations of */
12<13 -> 1 /* less than and */
13>=12 -> 1 /* greater than */
12\<13 -> 0
12<=13 -> 1
12\>13 -> 1

All strict comparison operations have one of the characters doubled that define the operator. The
== and \== operators check whether two strings match exactly. The two strings must be identical
(character by character) and of the same length to be considered strictly equal.

The strict comparison operators such as >> or << carry out a simple character-by-character
comparison. There is no padding of either of the strings being compared. The comparison of the two
strings is from left to right. If one string is shorter than and a leading substring of another, then it is
smaller than (less than) the other. The strict comparison operators do not attempt to perform a numeric
comparison on the two operands.

For all the other comparison operators, if both terms are numeric, the String class does a numeric
comparison (ignoring, for example, leading zeros—see Section 10.4, “Numeric Comparisons”).
Otherwise, it treats both terms as character strings, ignoring leading and trailing whitespace characters
and padding the shorter string on the right with blanks.

Character comparison and strict comparison operations are both case-sensitive, and for both the exact
collating order can depend on the character set. In an ASCII environment, the digits are lower than

the alphabetic characters, and lowercase alphabetic characters are higher than uppercase alphabetic
characters.

The strict comparison operators you can use in a message are:

== . true if terms are strictly equal (identical)
== . true if the terms are NOT strictly equal (inverse of ==

>> Strictly greater than

<< Strictly less than

>>= Strictly greater than or equal to
\<< Strictly NOT less than

<<= Strictly less than or equal to

175

String Class

\>> Strictly NOT greater than

Example 5.55. String class — comparison methods

"space'=="space" -> 1
"space"\==" space" -> 1
"space">>" space" -> 1
" space'<<"space" -> 1
"space">>=" space" -> 1
"space"\<<" space" -> 1
" space''<<="space" -> 1
" space"\>>"space" -> 1

5.1.7.20. Logical Methods

/*
/*
/*

/*
/*

»—(Iogical_operator()— argument

Strictly equal
Strictly not equal
Variations of

strictly greater
than and less than

For NOT (prefix \), omit the parentheses and argument.

*/
*/
*/

*/
*/

Returns . true or . false, the result of performing the specified logical operation. The receiver
object and the argument are character strings that evaluate to 1 or 0.

The logical_operator can be:

& AND (Returns 1 if both terms are . true.)

| Inclusive OR (Returns 1 if either term or both terms are true.)

&& Exclusive OR (Returns 1 if either term, but not both terms, is . true.)
Prefix \ Logical NOT (Negates; 1 becomes 0, and @ becomes 1.)

Example 5.56. String class — logical methods

1&0 -> 0]
1|0 -> 1
1&&0 -> 1
\1 -> 0]

5.1.7.21. Concatenation Methods

bb—(concatenation_operator()— argument

Concatenates the receiver object with argument. (See Section 1.11.2.1, “String Concatenation”.) The

concatenation_operator can be:

176

String Class

concatenates without an intervening blank. The abuttal operator "™ is the null string.
The language processor uses the abuttal to concatenate two terms that another
operator does not separate.

|l concatenates without an intervening blank.

" concatenates with one blank between the receiver object and the argument. (The
operator " " is a blank.)

Example 5.57. String class — concatenation methods

f = "abc"
fdef" -> "abcdef"
f || "def" -> “abcdef"
f "def" -> "abc def"

5.1.7.22. []

@])

0 length

If length is omitted, returns the character at position n of the receiving string. If n is larger than the
length of the receiving string, a null string is returned.

If length is specified, returns the substring of the receiving string starting at position n and of length
length. No padding occurs for any portion of the returned string not within the boundaries of the
receiving string.

The n must be a positive whole number, and, if specified, length must be a a non-negative whole
number.

See also methods subChar and substr.

Example 5.58. String class — [] method

"abC"[Z] . npn
"abc"[2,4] -- "pc"

5.1.7.23. ? (inline if)

2(first 0 second)

Returns first if the receiving string is . true, returns second if itis . false.

Example 5.59. String class — ? method

do apples = 0 to 2 -- 0 apples
say apples (apples = 1)~?("apple", "apples") -- 1 apple
end -- 2 apples

177

String Class

5.1.7.24. abbrev

bb—[abbrev()— info @—N
L@— length J

Returns 1 if info is equal to the leading characters of the receiving string and the length of info is not
less than length. Returns 0 if either of these conditions is not met.

If you specify length, it must be a positive whole number or zero. The default for length is the number
of characters in info.

Example 5.60. String class — abbrev method
"Print"~abbrev("Pri") -> 1
"PRINT"~abbrev("Pri") -> 0
"PRINT"~abbrev("PRI", 4) -> 0
"PRINT"~abbrev("PRY") -> 0
"PRINT"~abbrev("") -> 1
"PRINT"~abbrev("",1) -> 0

A null string always matches if a length of @, or the default, is used. This allows a default keyword
to be selected automatically if desired.

Example 5.61. String class — abbrev method

say "Enter option:"; pull option .

select /* keywordl is to be the default */
when "keywordl"~abbrev(option) then ...
when "keyword2"~abbrev(option) then ...

otherwise nop;
end;

5.1.7.25. abs

Returns the absolute value of the receiving string. The result has no sign and is formatted according to
the current NUMERIC settings.

Example 5.62. String class — abs method

12.3~abs -> 12.3
"-0.307"~abs -> 0.307

178

String Class

5.1.7.26. append

bb—(append()— string)

Returns a string consisting of string appended to the receiving string.

5.1.7.27. b2x

Returns a string, in character format, that represents the receiving binary string converted to
hexadecimal.

The receiving string is a string of binary (0@ or 1) digits. It can be of any length. It can optionally include
whitespace characters (at 4-digit boundaries only, not leading or trailing). These are to improve
readability and are ignored.

The returned string uses uppercase alphabetic characters for the values A-F and does not include
whitespace.

If the receiving binary string is a null string, b2x returns a null string. If the number of binary digits
in the receiving string is not a multiple of four, up to three 0 digits are added on the left before the
conversion to make a total that is a multiple of four.

Example 5.63. String class — b2x method

"11000011"~b2x -> R C3
"10111"~b2x -> "7
1101"~b2x > ngn

"1 1111 0000"~b2x -> "1FO"

You can combine b2x with the methods x2d and x2c to convert a binary number into other forms.

Example 5.64. String class — b2x method with x2d

"10111"~b2x~x2d -> "23" /* decimal 23 */

5.1.7.28. bitAnd

string 7 pad

el

Returns a string composed of the receiver string and the argument string logically ANDed together, bit
by bit. (The encodings of the strings are used in the logical operation.) The length of the result is the
length of the longer of the two strings. If you omit the pad character, the AND operation stops when the
shorter of the two strings is exhausted, and the unprocessed portion of the longer string is appended
to the partial result. If you provide pad, it extends the shorter of the two strings on the right before the
logical operation. The default for string is the zero-length (null) string.

179

String Class

Example 5.65. String class — bitand method

"12"x~bitAnd -> "121x

"73"x~bitAnd("27"x) -> "23"x
"13"x~bitAnd("5555"x) -> "1155"x
"13"x~bitAnd("5555"x, "74"x) -> "1154"x

"pQrs"~bitAnd(, "DF"x) -> "PQRS" /* ASCII */

5.1.7.29. bitOr

»_@L @—N
string pad

Returns a string composed of the receiver string and the argument string logically inclusive-ORed, bit
by bit. The encodings of the strings are used in the logical operation. The length of the result is the
length of the longer of the two strings. If you omit the pad character, the OR operation stops when the
shorter of the two strings is exhausted, and the unprocessed portion of the longer string is appended
to the partial result. If you provide pad, it extends the shorter of the two strings on the right before the
logical operation. The default for string is the zero-length (null) string.

Example 5.66. String class — bitor method

"12"x~bitOr -> "12"x
"15"x~bitOr("24"x) -> "35'"x

"15"x~bitOr ("2456"x) -> "3556"x

"15"x~bitOr ("2456"x, "FO"x) -> "35F6"x
"1111"x~bitOr(, "4D"x) -> "5D5D" X
"pQrS"~bitor(, "20"x) -> "pqrs" /* ASCII */

5.1.7.30. bitXor

string o pad

yalie

Returns a string composed of the receiver string and the argument string logically eXclusive-ORed,
bit by bit. The encodings of the strings are used in the logical operation. The length of the result is
the length of the longer of the two strings. If you omit the pad character, the XOR operation stops
when the shorter of the two strings is exhausted, and the unprocessed portion of the longer string is
appended to the partial result. If you provide pad, it extends the shorter of the two strings on the right
before carrying out the logical operation. The default for string is the zero-length (null) string.

Example 5.67. String class — bitxor method

"12"x~bitXor -> "12"x
"12"x~bitXor("22'"x) -> "30"X
"1211"x~bitXor ("22"x) -> "3011"x

180

String Class

"1111"x~bitXor ("444444"X) -> "555544"x
"1111"x~bitXor ("444444"X,"40"X) -> "555504"x
"1111"x~bitXor(, "4D"X) -> "5C5C"X

"C711"x~bitXor ("222222"x," ") -> "E53302"x /* ASCII */

5.1.7.31. c2d

Returns the decimal value of the binary representation of the receiving string. If the result cannot be
expressed as a whole number, an error results. That is, the result must not have more digits than the
current setting of NUMERIC DIGITS. If you specify n, it is the length of the returned result. If you do
not specify n, the receiving string is processed as an unsigned binary number. If the receiving string is
null, C2D returns 0.

Example 5.68. String class — c2d method

"09"X~c2d -> 9
"81"X~c2d -> 129
"FF81"X~c2d -> 65409
""~c2d -> 0
"a"~c2d -> 97 /* ASCII */

If you specify n, the receiving string is taken as a signed number expressed in n characters. The
number is positive if the leftmost bit is off, and negative if the leftmost bit is on. In both cases, it is
converted to a whole number, which can therefore be negative. The receiving string is padded on the
left with "00"x characters (hot "sign-extended"), or truncated on the left to n characters. This padding
or truncation is as though receiving_string~right(n, '00'x) had been processed. If nis 0,
c2d always returns 0.

Example 5.69. String class — c2d method

"81"X~c2d (1) -> -127
"g1"X~c2d(2) -> 129
"FE81"X~c2d(2) -> -127
"FE81"X~c2d(1) -> -127
"FE7F"X~c2d(1) -> 127
"FE81"X~c2d(2) -> -3967
"FE81"X~c2d(1) -> -127
"@E31"X~c2d(0) -> 0

5.1.7.32. c2x

()

Returns a string, in character format, that represents the receiving string converted to hexadecimal.
The returned string contains twice as many bytes as the receiving string. On an ASCII system,
sending a c2x message to the receiving string 1 returns 31 because "31"X is the ASCII representation
of 1.

181

String Class

The returned string has uppercase alphabetic characters for the values A-F and does not include
whitespace. The receiving string can be of any length. If the receiving string is null, c2x returns a null
string.

Example 5.70. String class — ¢2x method

"0123"X~c2x -> "0123" /* "30313233"X in ASCII */
"ZD8"~c2x -> "5A4438" /* "354134343338"X in ASCII */

5.1.7.33. caselessAbbrev

»—(caselessAbbrev(info @—N

o length

Returns 1 if info is equal to the leading characters of the receiving string and the length of info is not
less than length. Returns 0 if either of these conditions is not met. The characters are tested using a
caseless comparison.

If you specify length, it must be a positive whole number or zero. The default for length is the number
of characters in info.

Example 5.71. String class — caselessAbbrev method

"Print"~caselessAbbrev("Pri") -> 1
"PRINT"~caselessAbbrev("Pri") -> 1
"PRINT"~caselessAbbrev("PRI", 4) -> (0]
"PRINT"~caselessAbbrev("PRY") -> 0
"PRINT"~caselessAbbrev("") -> 1
"PRINT"~caselessAbbrev("",1) -> (0]

A null string always matches if a length of @, or the default, is used. This allows a default keyword
to be selected automatically if desired.

Example 5.72. String class — caselessAbbrev method

say "Enter option:"; parse pull option .

select /* keywordl is to be the default */
when "keywordl"~caselessAbbrev(option) then ...
when "keyword2"~caselessAbbrev(option) then ...

otherwise nop;
end;

182

String Class

5.1.7.34. caselessChangeStr

bb—(caselessChangeStr()— needle o newneedle @—N

, count

Returns a copy of the receiver object in which newneedle replaces occurrences of needle. If count is
not specified, all occurrences of needle are replaced. If count is specified, it must be a non-negative,
whole number that gives the maximum number of occurrences to be replaced. The needle searches
are performed using caseless comparisons.

Here are some examples:

Example 5.73. String class — caselessChangeStr method

"AbaAbb"~caselessChangeStr("A","") -> "bbb"
AbaBabAB~changeStr("ab", "xy") -> "Xyxyxyxy"
AbaBabAB~changeStr("ab", "xy",1) -> "xyaBabAB"

5.1.7.35. caselessCompare

pad

bb—(caselessCompare(string S @—N

Returns 0 if the argument string is identical to the receiving string using a caseless comparison.
Otherwise, returns the position of the first character that does not match. The shorter string is padded
on the right with pad if necessary. The default pad character is a blank.

Example 5.74. String class — caselessCompare method

"abc'"~caselessCompare("ABC") -> 0
"abc'"~caselessCompare("Ak") -> 2
"ab "~caselessCompare("AB") -> 0
"AB "~caselessCompare("ab"," ") -> 0
"ab "~caselessCompare("ab","x") -> 3
"abXX "~caselessCompare("ab","x") -> 5

5.1.7.36. caselessCompareTo

bb—(caselessCompareTo()— string o e @—N
o length

Performs a caseless sort comparison of the target string to the string argument. If the two strings are
equal, 0 is returned. If the target string is larger, 1 is returned. -1 if the string argument is the larger
string. The comparison is performed starting at character n for length characters in both strings. n
must be a positive whole number. If n is omitted, the comparison starts at the first character. length
must be a non-negative whole number. If omitted, the comparison will take place to the end of the
target string.

183

String Class

Example 5.75. String class — caselessCompareTo method

"abc"~caselessCompareTo("abc") -> 0
"b"~caselessCompareTo("a") -> 1
"a"~caselessCompareTo("b") -> -1
"abc"~caselessCompareTo("aBc") -> 0
"aBc"~caselessCompareTo("abc") -> 0

"000abcOOO"~caselessCompareTo(11labc111", 4, 3) -> 0

5.1.7.37. caselessContains

PP—(caselessContains(other —O @—N

start 0 length

Returns . true if the receiving string contains the other string. It returns . false if other is the null
string or is not found within the receiving string. The search is performed using caseless comparisons.

By default, the search starts at the first character of the receiving string and continues to the end. You
can override this by specifying start, the point at which the search starts, and length, the bounding limit
for the search.

If specified, start must be a positive whole number and length must be a non-negative whole number.

See also methods contains, caselessStartsWith, caselessEndsWith, and caselessPos.

Example 5.76. String class — caselessContains method

say "-abcdef-"~caselessContains("EF") -- 1
say "-abcdef-"~caselessContains("-", 2, 6) -- 0

5.1.7.38. caselessContainsWord

start

bb—(caselessContainsWord(phrase < @—N

Returns . true if phrase is found in the receiving string. Returns . false if phrase contains no
words or if phrase is not found. Word matches are made independent of case. Multiple whitespace
characters between words in either phrase or the receiving string are treated as a single blank for the
comparison, but, otherwise, the words must match, except for case.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be a positive whole number), the word at which the search is to be started.

See also methods containsWord and caselessWordPos (caselessContainsWord returns . false
exactly if caselessWordPos would have returned "0".)

Example 5.77. String class — caselessContainsWord method

good = "Now is the time for all good men"

184

String Class

good~caselessContainsWord("the") -- .true
good~caselessContainsWord("The") -- .true
good~caselessContainsWord("is the") -- .true
good~caselessContainsWord("is the ") -- .true
good~caselessContainsWord("is time") -- .false
good~caselessContainsWord("time") -- .true
good~caselessContainsWord("time", 5) -- .false

5.1.7.39. caselessCountStr

bb—(caselessCountStr(needle)

Returns a count of the occurrences of needle in the receiving string that do not overlap. All matches
are made using caseless comparisons.

Here are some examples:

Example 5.78. String class — caselessCountStr method

"aOAaOA"~caselessCountStr("a") -> 4
"JOkKke"~caselessCountStr("KK") -> 1

5.1.7.40. caselesseEndsWith

bb—(caselessEndsWith()— other)

Returns . true if the characters of the other match the characters at the end of the target string.
Returns . false if the characters are not a match, or if other is the null string. The match is made
using caseless comparisons.

The caselessEndsWith method is useful for efficient string parsing as it does not require new string
objects be extracted from the target string.

See also methods caselessStartsWith, endsWith, and caselessMatch.

5.1.7.41. caselessEquals

bb—(caselessEquals(other)

Returns . true if the target string is strictly equal to the other string, using a caseless comparison.
Returns . false if the two strings are not strictly equal.

Example 5.79. String class — caselessEquals method

"a"~caselessEquals("A") -> 1
"aa"~caselessEquals("A") -> 0]
"4"~caselessEquals("3") -> 0

185

String Class

5.1.7.42. caselessLastPos

bb—(caselessLastPos()— needle 7 @—N

start 7 length

Returns the position of the last occurrence of a string, needle, in the receiving string. It returns 0 if
needle is the null string or not found. By default, the search starts at the last character of the receiving
string and scans backward to the beginning of the string. You can override this by specifying start,

the point at which the backward scan starts and length, the range of characters to scan. The start
must be a positive whole number and defaults to receiving_string~length if larger than that
value or omitted. The length must be a non-negative whole number and defaults to start. The search is
performed using caseless comparisons.

See also methods /astPos, caselessPos, and pos.

Example 5.80. String class — caselessLastPos method

"abc def ghi'"~caselessLastPos(" ") -> 8
"abcdefghi"~caselessLastPos(" ") -> 0
"efgxyz'"~caselessLastPos("XY") -> 4
"abc def ghi'"~caselessLastPos(" ",7) -> 4
"abc def ghi"~caselesslLastPos(" ",7,3) -> 0

5.1.7.43. caselessMatch

bb—(caselessMatch(start o other o e @—N
o length

Returns . true if the characters of the other match the characters of the target string beginning at
position start. Returns . false if the characters are not a match. The matching is performed using
caseless comparisons. start must be a positive whole number.

If n is specified, the match will be performed starting with character n of other. The default value for n
is "1". n must be a positive whole number less than or equal to the length of other.

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of
other.

The caselessMatch method is useful for efficient string parsing as it does not require new string
objects be extracted from the target string.

Example 5.81. String class — caselessMatch method

"Saturday"~caselessMatch(6, "day") ->
"Saturday'"~caselessMatch(6, "DAY") ->
"Saturday"~caselessMatch(6, "SUNDAY", 4, 3) ->
"Saturday"~caselessMatch(6, "daytime", 1, 3) ->

[Y

186

String Class

5.1.7.44. caselessMatchChar

bb—(caselessMatchChar(chars)

Returns . true if the character at position n matches any character of the string chars. Returns
.false if the character does not match any of the characters in the reference set. The match is made
using caseless comparisons. The argument n must be a positive whole number.

Example 5.82. String class — caselessMatchChar method

"a+b"~caselessMatchChar (2, "+-*/") -> 1
"a+b"~caselessMatchChar(1, "+-*/") -> 0
"Friday'"~caselessMatchChar (3, "aeiou" -> 1
"FRIDAY"~caselessMatchChar (3, "aeiou") -> 1

5.1.7.45. caselessPos

bb—(caselessPos()— needle 7 @—N

start 7 length

Returns the position in the receiving string of another string, needle. It returns 0 if needle is the

null string or is not found or if start is greater than the length of the receiving string. The search is
performed using caseless comparisons. By default, the search starts at the first character of the
receiving string (that is, the value of start is 1), and continues to the end of the string. You can override
this by specifying start, the point at which the search starts, and length, the bounding limit for the
search. If specified, start must be a positive whole number and /length must be a non-negative whole
number.

See also methods pos and caselessLastPos.

Example 5.83. String class — caselessPos method

"Saturday'"~caselessPos("DAY") -> 6
"abc def ghi'"~caselessPos("x") -> (0]
"abc def ghi'"~caselessPos(" ") -> 4
"abc def ghi'"~caselessPos(" ",5) -> 8
"abc def ghi"~caselessPos(" ",5,3) -> 0]

5.1.7.46. caselessStartsWith

bb—(caselessStartsWith()— other)

Returns . true if the characters of the other match the characters at the start of the target string.
Returns . false if the characters are not a match, or if other is the null string. The match is made
using caseless comparisons.

The caselessStartsWith method is useful for efficient string parsing as it does not require new string
objects be extracted from the target string.

187

String Class

See also methods startsWith, caselessEndsWith, and caselessMatch.

5.1.7.47. caselessWordPos

start

bb—(caselessWordPos(phrase < @—N

Returns the word number of the first word of phrase found in the receiving string, or 0 if phrase
contains no words or if phrase is not found. Word matches are made independent of case. Several
whitespace characters between words in either phrase or the receiving string are treated as a single
blank for the comparison, but, otherwise, the words must match exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

Example 5.84. String class — caselessWordPos method

"now is the time'"~caselessWordPos("the") -> 3
"now is the time"~caselessWordPos("The") -> 3
"now is the time"~caselessWordPos("IS THE") -> 2
"now is the time'"~caselessWordPos("is the") -> 2
"now is the time"~caselessWordPos("is time ") -> 0
"To be or not to be'"~caselessWordPos("BE") -> 2
"To be or not to be'"~caselessWordPos("BE", 3) -> 6

5.1.7.48. ceiling

Returns the largest integer not less than the receiving string value. The receiving string is first rounded
according to standard Rexx rules, as though the operation receiving_string+0 had been carried
out. The ceiling is then calculated from that result and returned. The result is never in exponential
form. If there are no nonzero digits in the result, any minus sign is removed.

Example 5.85. String class — ceiling method

2~ceiling -> 2
'-2'~ceiling -> -2
12.3~ceiling -> 13
'-12.3'~ceiling -> -12
'-0.1"'~ceiling -> 0]

188

String Class

@e

The number is rounded according to the current setting of NUMERIC DIGITS if necessary, before
the method processes it.

5.1.7.49. center/centre

length @—N
o=

Returns a string of length length with the receiving string centered in it. The pad characters are added
as necessary to make up length. The length must be a positive whole number or zero. The default
pad character is blank. If the receiving string is longer than length, it is truncated at both ends to fit.

If an odd number of characters are truncated or added, the right-hand end loses or gains one more
character than the left-hand end.

@ve

To avoid errors because of the difference between British and American spellings, this method
can be called either center or centre.

center(

centre(

Example 5.86. String class — center method

abc~center(7) -> " ABC "
abc~CENTER(8,"-") -> "--ABC---"
"The blue sky"~centre(8) -> "e blue s"
"The blue sky"~centre(7) -> "e blue "

5.1.7.50. changeStr

A e

Returns a copy of the receiver object in which newneedle replaces occurrences of needle.

count

bb—[changeStr()— needle —@— newneedle <

If count is not specified, all occurrences of needle are replaced. If count is specified, it must be a non-
negative, whole number that gives the maximum number of occurrences to be replaced.

Here are some examples:

189

String Class

Example 5.87. String class — changeStr method

101100~changeStr("1","") -- "eee"
101100~changeStr("1", "X") oo "XOXX00"
101100~changeStr("1","X",1) -- "X01100"

-- a Quine: will print an exact copy of itself
-- (see https://en.wikipedia.org/wiki/Quine_%28computing%29)
r=";say'r=.'r'.'r~changeStr(.,'22'x,2)";say'r=""'r'""'r~changeStr(., '22'x,2)

5.1.7.51. compare

PP—(compare(string @—N

D pad

Returns 0 if the argument string is identical to the receiving string. Otherwise, returns the position of
the first character that does not match. The shorter string is padded on the right with pad if necessary.
The default pad character is a blank.

Example 5.88. String class — compare method

"abc"~compare("abc") -> (0]
"abc"~compare("ak") -> 2
"ab "~compare("ab") -> 0]
"ab "~compare("ab"," ") -> 0
"ab "~compare("ab","x") -> 3
"ab-- "~Compare("ab","—") -> 5

5.1.7.52. compareTo

P length

PP—(compareTo(string —O @—N
SHe

Performs a sort comparison of the target string to the string argument. If the two strings are equal,

0 is returned. If the target string is larger, 1 is returned. -1 if the string argument is the larger string.
The comparison is performed starting at character n for length characters in both strings. n must be
a positive whole number. If n is omitted, the comparison starts at the first character. length must be a
non-negative whole number. If omitted, the comparison will take place to the end of the target string.

Example 5.89. String class — compareTo method

"abc"~compareTo("abc") -> (0]
"b"~compareTo("a") -> 1
"a"~compareTo("b") -> -1
"abc"~compareTo("aBc") -> 1
"aBc"~compareTo("abc") -> -1

"000abcOOO"~compareTo(11liabc111", 4, 3) -> 0

190

String Class

5.1.7.53. contains

bb—(contains()— other P @—N

start 0 length

Returns . true if the receiving string contains the other string. It returns . false if other is the null
string or is not found within the receiving string.

By default, the search starts at the first character of the receiving string and continues to the end. You
can override this by specifying start, the point at which the search starts, and length, the bounding limit
for the search. If specified, start must be a positive whole number and length must be a non-negative
whole number.

See also

» method caselessContains,
* method startsWith,

* method endsWith, and

» method pos.

Example 5.90. String class — caselessContains method

say "-abcdef-"~contains("ef") B
say "-abcdef-"~contains("-", 2, 6) -- 0

5.1.7.54. containsWord

start

bb—(containsWord(phrase < @—N

Returns . true if phrase is found in the receiving string. Returns . false if phrase contains no

words or if phrase is not found. Multiple whitespace characters between words in either phrase or the
receiving string are treated as a single blank for the comparison, but, otherwise, the words must match
exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive whole number), the word at which the search is to be started.

See also
» method caselessContainsWord and
» method wordPos (containsWord returns . false exactly if wordPos would have returned "0".)

Example 5.91. String class — containsWord method

good = "Now is the time for all good men"

say good~containsWord("the") -- .true
say good~containsWord("The") -- .false
say good~containsWord("is the") -- .true
say good~containsWord("is the ") -- .true
say good~containsWord("is time") -- .false
say good~containsWord("time") -- .true
say good~containsWord("time", 5) -- .false

191

String Class

5.1.7.55. copies

Returns n concatenated copies of the receiving string. The n must be a positive whole number or zero.

Example 5.92. String class — copies method

"abc"~copies(3) -> "abcabcabc"
"abc"~copies(0) -> "

5.1.7.56. countStr

bb—(countStr(—@—N

Returns a count of the occurrences of needle in the receiving string that do not overlap.

needle

Here are some examples:

Example 5.93. String class — countStr method

"101101"~countStr("1") -> 4
"JOKKKO"~CountStr ("KK") -> 1

5.1.7.57. d2c

Returns a string, in character format, that is the ASCII representation of the receiving string, a decimal
number. If you specify n, it is the length of the final result in characters; leading blanks are added to
the returned string. The n must be a positive whole number or zero.

The receiving string must not have more digits than the current setting of NUMERIC DIGITS.

If you omit n, the receiving string must be a positive whole number or zero, and the result length is as
needed. Therefore, the returned result has no leading "00"x characters.

Example 5.94. String class — d2c method

"g5"~d2c -> mAn /* "41"x is an ASCII "A" x/
"65"~d2c (1) -> npn

Il65ll~d20(2) _> n AII

Il65ll__d2c(5) _> " All

"109"~d2c > e /* "6D"x is an ASCII "m" */
".109"~d2c(1) -> "o" /* "93"x is an ASCII "o" */

192

String Class

"76"~d2c(2) s> 0 LD /* "4C"x is an ASCII " L" */
Il_180|l~d2C(2) _> " Lll

5.1.7.58. d2x

Returns a string, in character format, that represents the receiving string, a decimal number converted
to hexadecimal. The returned string uses uppercase alphabetic characters for the values A-F and does
not include whitespace.

The receiving string must not have more digits than the current setting of NUMERIC DIGITS.
If you specify n, it is the length of the final result in characters. After conversion the returned string is
sign-extended to the required length. If the number is too big to fit into n characters, it is truncated on

the left. If you specify n, it must be a positive whole number or zero.

If you omit n, the receiving string must be a positive whole number or zero, and the returned result has
no leading zeros.

Example 5.95. String class — d2x method

"9""‘d2X _> Ilgll
"129"~d2X _> Il81ll
"129"~d2x(1) -> 9|0
"129"~d2x(2) -> ngqn
"129"~d2x(4) -> "0E81"
"257"~d2x(2) -> "e1"
"_127"~d2x(2) -> ngqn
"_127"~d2x(4) -> "FF81"
"12"~d2x(0) -> o

5.1.7.59. dataType

dataType()

type

Returns NUM if you specify no argument and the receiving string is a valid Rexx number that can be
added to O without error. It returns CHAR if the receiving string is not a valid number.

If you specify type, it returns . true if the receiving string matches the type. Otherwise, it returns

. False. If the receiving string is null, the method returns . false (except when the type is X or B, for
which dataType returns . true for a null string). The following are valid types. You need to specify
only the capitalized letter, or 9 for the 9Digits option. The language processor ignores all characters
following it.

Alphanumeric
returns . true if the receiving string contains only characters from the ranges a-z, A-Z, and 0-9.

193

String Class

Binary
returns . true if the receiving string contains only the characters 0 or 1, or whitespace.
Whitespace characters can appear only between groups of 4 binary characters. It also returns
. true if string is a null string, which is a valid binary string.

Internal whole number
returns . true if the receiving string is a Rexx whole number that built-in functions will accept.
Rexx built-in functions internally work with NUMERIC DIGITS 9 for 32-bit systems or NUMERIC
DIGITS 18 for 64-bit systems.

Lowercase
returns . true if the receiving string contains only characters from the range a-z.

Mixed case
returns . true if the receiving string contains only characters from the ranges a-z and A-Z.

Number
returns . true if receiving_string~dataType returns NUM.

logical
returns . true if the receiving string is exactly @ or 1. Otherwise it returns . false.

Symbol
returns . true if the receiving string is a valid symbol, that is, if SYMBOL (receiving_string) does
not return BAD. See also Section 1.10.4.4, “Symbols”. Note that both uppercase and lowercase
alphabetic characters are permitted.

Uppercase
returns . true if the receiving string contains only characters from the range A-Z.

Variable
returns . true if the receiving string could appear on the left-hand side of an assignment without
causing a SYNTAX condition.

Whole number
returns . true if the receiving string is a whole number under the current setting of NUMERIC
DIGITS.

heXadecimal
returns . true if the receiving string contains only characters from the ranges a-f, A-F, 0-9,
and whitespace characters (as long as whitespace characters appear only between pairs of
hexadecimal characters). Also returns . true if the receiving string is a null string.

9 Digits

returns . true if receiving_string~dataType("W") returns . true when NUMERIC DIGITS
is setto 9.

Example 5.96. String class — datatype method

" 12 "~dataType -> "NUM"
""~dataType -> "CHAR"
"123*"~dataType -> "CHAR"
"12.3"~dataType("N") -> 1
"12.3"~dataType("W") -> 0]

194

String Class

"Fred"~dataType("M") -> 1
""~dataType("M") > 0
"Fred"~dataType("L") -> 0]
"?20K"~dataType("s") -> 1
"BCd3"~dataType("X") -> 1
"BC d3"~dataType("X") -> 1
"1"~dataType("0") -> 1
"11"~dataType("0") -> 0

@

The dataType method tests the meaning or type of characters in a string, independent of the
encoding of those characters (for example, ASCII or EBCDIC).

5.1.7.60. decodeBase64

Returns a new string containing the decoded version of the base64 encoded receiving string. If the
receiving string is not in base64 format, an error results.

Example 5.97. String class — decodeBase64 method

"YWJjZGVm"~decodeBase64 -> "abcdef"

5.1.7.61. delStr

»>—{ delstr(i _f @—N
o length

Returns a copy of the receiving string after deleting the substring that begins at the nth character and
is of length characters. If n is omitted, it defaults to 1. If you omit length, or if length is greater than the
number of characters from n to the end of string, the method deletes the rest of string (including the
nth character). The length must be a positive whole number or zero. The n must be a positive whole
number. If n is greater than the length of the receiving string, the method returns the receiving string
unchanged.

Example 5.98. String class — delStr method

"abcd"~delStr(3) -> "ab"
"abcde"~delStr(3,2) -> "abe"
"abcde'"~delStr(6) -> "abcde"

195

String Class

5.1.7.62. delWord

:)

7 length

Returns a copy of the receiving string after deleting the substring that starts at the nth word and

is of length whitespace-delimited words. If you omit length, or if length is greater than the number

of words from n to the end of the receiving string, the method deletes the remaining words in the
receiving string (including the nth word). The length must be a positive whole number or zero. The

n must be a positive whole number. If n is greater than the number of words in the receiving string,
the method returns the receiving string unchanged. The string deleted includes any whitespace
characters following the final word involved but none of the whitespace characters preceding the first
word involved.

Example 5.99. String class — delWord method

"Now is the time"~delWord(2,2) -> "Now time"

"Now is the time "~delWord(3) -> "Now is "

"Now is the time"~delword(5) -> "Now is the time"
"Now 1is the time"~delword(3,1) -> "Now is time"

5.1.7.63. encodeBase64

encodeBase64

Returns a new string that is the base64 encoded version of the receiving string.

Example 5.100. String class — encodeBase64 method

"abcdef"~encodeBase64 -> "YwJjzGvm"

5.1.7.64. endsWith

bb—(endsWith(other)

Returns . true if the characters of the other match the characters at the end of the target string.
Returns . false if the characters are not a match, or if other is the null string.

The endsWith method is useful for efficient string parsing as it does not require new string objects be
extracted from the target string.

See also methods startsWith, caselessEndsWith, and match.

5.1.7.65. equals

bb—(equals(other)

196

String Class

Returns . true if the target string is strictly equal to the other string. Returns . false if the two strings
are not strictly equal. This is the same comparison performed by the "==" comparison method.

Example 5.101. String class — equals method

Il3ll~equals(ll3ll) -> 1
"33"~equals("3") -> 0]
Il4|l~equals(ll3ll) -> 0

5.1.7.66. floor

Returns the largest integer not greater than the receiving string value. The receiving string value is first
rounded according to standard Rexx rules, as though the operation receiving_string+0 had been
carried out. The floor is then calculated from that result and returned. The result is never in exponential
form. If there are no nonzero digits in the result, any minus sign is removed.

Example 5.102. String class — floor method

2~floor -> 2

'-2'~floor -> -2
12.3~floor -> 12
'-12.3'~floor -> -13

@roe

The number is rounded according to the current setting of NUMERIC DIGITS if necessary, before
the method processes it.

5.1.7.67. format

bb—' format(J J @

before

))
J u expp J expt J O—N

I

after

Returns a copy of the receiving string, a number, rounded and formatted.

The number is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. If you specify no arguments the result of the method
is the same as the result of this operation. If you specify any options, the number is formatted as
described in the following.

The before and after options describe how many characters are to be used for the integer and decimal
parts of the result. If you omit either or both of them, the number of characters for that part is as
needed.

197

String Class

If before is not large enough to contain the integer part of the number (plus the sign for a negative
number), an error results. If before is larger than needed for that part, the number is padded on the left
with blanks. If after is not the same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying @ causes the number to be rounded to an integer.

Example 5.103. String class — format method

"3"~format(4) -> " 3"
"1,.73"~format(4,0) -> o g0
"1.73"~format (4, 3) -> " 1.730"
"-.76"~format(4,1) -> " -0.8"
"3.03"~format(4) -> " 3.03"
" - 12.73"~format(,4) -> "-12.7300"
" - 12.73"~format -> "-12.73"
"0.000"~format -> "o"

expp and expt control the exponent part of the result, which, by default, is formatted according to the
current NUMERIC settings of DIGITS and FORM. expp sets the number of places for the exponent
part; the default is to use as many as needed (which can be zero). expt specifies when the exponential
expression is used. The default is the current setting of NUMERIC DIGITS.

If expp is O, the number is not an exponential expression. If expp is not large enough to contain the
exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or twice expt, respectively,
exponential notation is used. If expt is 0, exponential notation is always used unless the exponent
would be 0. (If expp is 0, this overrides a 0 value of expt.) If the exponent would be ® when a nonzero
expp is specified, then expp+2 blanks are supplied for the exponent part of the result. If the exponent
would be 0 and expp is not specified, the number is not an exponential expression.

Example 5.104. String class — format method

"12345.73"~format(, ,2,2) -> "1.234573E+04"
"12345.73"~format(,3, ,0) -> "1,235E+4"
"1,234573"~format(,3, ,0) -> "1,235"
"12345.73"~format(, ,3,6) -> "12345,73"
"1234567e5"~format(, 3,0) -> "123456700000.000"

5.1.7.68. hashCode

hashCode

Returns a string value that is used as a hash value for MapCollections such as Table, Relation,
Set, Bag, or Directory. The String hashCode method will return the same hash value for all pairs
of string instances for which the == operator is . true.

See also Object method hashCode for details.

5.1.7.69. insert

198

String Class

I

bb—(insert()— new , m) '—N
U length —f pad —f

Returns a copy of the receiver string with the string new, padded or truncated to length length, inserted
after the nth character. The default value for n is 8, which means insertion at the beginning of the
string. If specified, n and length must be positive whole numbers or zero. If n is greater than the length
of the receiving string, the string new is padded at the beginning. The default value for length is the
length of new. If length is less than the length of the string new, then insert truncates new to length
length. The default pad character is a blank.

Example 5.105. String class — insert method

"abc"~insert("123") -> "123abc"
"abcdef"~insert(" ", 3) -> "abc def"
"abc"~insert("123",5,6) -> "abc 123 "
"abc"~insert("123",5,6,"+") -> "abc++123+++"
"abc"~insert("123", ,5,"-") -> "123--abc"

5.1.7.70. lastPos

bb—(lastPos()— needle 7 J

start o length

yalie

Returns the position of the last occurrence of a string, needle, in the receiving string. It returns 0 if
needle is the null string or not found. By default, the search starts at the last character of the receiving
string and scans backward to the beginning of the string. You can override this by specifying start, the
point at which the backward scan starts and length, the range of characters to scan. The start must
be a positive whole number and defaults to receiving_string~length if larger than that value or
omitted. The length must be a non-negative whole number and defaults to start.

See also methods pos and caselessPos.

Example 5.106. String class — lastPos method

"abc def ghi"~lastPos(" ") -> 8
"abcdefghi"~lastPos(" ") -> 0
"efgxyz"~lastPos("xy") -> 4
"abc def ghi'"~lastPos(" ",7) -> 4
"abc def ghi"~lastPos(" ",7,3) -> 0

5.1.7.71. left

»—(left(length @—N

; pad

Returns a string of length length, containing the leftmost length characters of the receiving string. The
string returned is padded with pad characters (or truncated) on the right as needed. The default pad

199

String Class

character is a blank. The length must be a positive whole number or zero. The 1eft method is exactly
equivalent to substr(1, length, pad).

Example 5.107. String class — left method

"abc d"~left(8) -> "abc d "
"abc d"~left(8,".") -> "abc d..."
"abc def"~left(7) -> "abc de"

5.1.7.72. length

Returns the length of the receiving string.

Example 5.108. String class — length method

"abcdefgh"~length -> 8
"abc defg'"~length -> 8
""~length -> (0]

5.1.7.73. lower

lower(@—N
g lom=

Returns a new string with the characters of the target string beginning with character n for length
characters converted to lowercase. If n is specified, it must be a positive whole number. If n is not
specified, the case conversion will start with the first character. If length is specified, it must be a non-
negative whole number. If length is not specified, the default is to convert the remainder of the string.

Example 5.109. String class — lower method

"Albert Einstein"~lower -> "albert einstein"
"ABCDEF"~lower (4) -> "ABCdef"
"ABCDEF"~1lower (3, 2) -> "ABcdEF"

5.1.7.74. makeArray

o (zm) op

separator

This method returns an Array of the receiving string's strings substrings that were separated by the
separator string. separator may be any string, including the null string. If the null string is used, an

200

String Class

Array containing each character of the string is returned. If the target string starts with the separator,
the first Array item will be a null string. If the string ends with a separator, no extra null string item will
be added. If separator isn't specified, any line-end indicator is honored.

Example 5.110. String class — makeArray method

string = "hello".endofline"world".endofline"this is an array."
array = string~makeArray
say "the second line is:" array[2] /* world */

string = "hello*world*this is an array."
array = string~makeArray("*")
say "the third line is:" array[3] /* this is an array. */

string = "hello*world*this is an array.*"
array = string~makeArray("*") /* contains 3 items */

5.1.7.75. makeString

Returns a string with the same string value as the receiver object. If the receiver is an instance of a
subclass of the String class, this method returns an equivalent string object. If the receiver is a string
object (not an instance of a subclass of the String class), this method returns the receiver object. See
Section 4.2.11, “Required String Values”.

5.1.7.76. match

bb—(match()— start o other o @—N

Returns . true if the characters of the other match the characters of the target string beginning
at position start. Returns . false if the characters are not a match. start must be a positive whole
number.

If n is specified, the match will be performed starting with character n of other. The default value for n
is "1". n must be a positive whole number less than or equal to the length of other.

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of
other.

The match method is useful for efficient string parsing as it does not require new string objects be
extracted from the target string.

Example 5.111. String class — match method

"Saturday"~match(6, "day") ->
"Saturday"~match(6, "DAY") ->
"Saturday"~match(6, "Sunday", 4, 3) ->
"Saturday"~match(6, "daytime", 1, 3) ->

PR oR

201

String Class

5.1.7.77. matchChar

Returns . true if the character at position n matches any character of the string chars. Returns
.false if the character does not match any of the characters in the reference set. The argument n
must be a positive whole number.

Example 5.112. String class — matchChar method

"a+b"~matchChar(2, "+-*/") -> 1
"a+b"~matchChar (1, "+-*/") -> 0
"Friday"~matchChar (3, "aeiou") -> 1
"FRIDAY"~matchChar(3, "aeiou") -> 0

5.1.7.78. max

bb—(max(number

Returns the largest number from among the receiver and any arguments. The number that max
returns is formatted according to the current NUMERIC settings. You can specify any number of
numbers.

Example 5.113. String class — max method

12~max(6,7,9) -> 12

17.3~max(19,17.03) -> 19

"-7"~max("-3" "_4 3u) -> -3
, .

1~max(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21) -> 21

5.1.7.79. min

min(number

Returns the smallest number from among the receiver and any arguments. The number that min
returns is formatted according to the current NUMERIC settings. You can specify any number of
numbers.

Example 5.114. String class — min method

12~min(6,7,9) -> 6
17.3~min(19,17.03) -> 17.03

202

String Class

"—7""MIN("—3", ||_4.3||)

21~-min(20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1)

5.1.7.80. modulo

Returns the remainder after dividing the receiving string by n. The receiving string must be a whole
number and n must be a positive whole number. The returned remainder is always in the range 0

through n minus one.

If both the receiving string and n are non-negative whole numbers, the result is the same as the result

of the remainder (//) operation.

Example 5.115. String class — modulo method

say 10~modulo(3) -- 1
say (-10)~modulo(3) -- 2

5.1.7.81. overlay

bb—(overlay()— new o @

length —f

I

pad

yalie

Returns a copy of the receiving string, which, starting at the nth character, is overlaid with the string
new, padded or truncated to length length. The overlay can extend beyond the end of the receiving
string. If you specify length, it must be a positive whole number or zero. The default value for length
is the length of new. If n is greater than the length of the receiving string, padding is added before the
new string. The default pad character is a blank, and the default value for n is 1. If you specify n, it

must be a positive whole number.

Example 5.116. String class — overlay method

"abcdef"~overlay(" ", 3) -> "ab def"
"abcdef"~overlay(".",3,2) -> "ab. ef"
"abcd"~overlay("qq") -> "qqcd"
"abcd"~overlay("qq", 4) -> "abcqq"
"abc"~overlay("123",5,6,"+") -> "abc+123+++"
5.1.7.82. pos
Pb—(pos(needle —O
start o length

O

Returns the position in the receiving string of another string, needle. It returns 0 if needle is the null
string or is not found or if start is greater than the length of the receiving string. By default, the search
starts at the first character of the receiving string (that is, the value of start is 1), and continues to the
end of the string. You can override this by specifying start, the point at which the search starts, and

203

String Class

length, the bounding limit for the search. If specified, start must be a positive whole number and length
must be a non-negative whole number.

See also methods /astPos and caselessPos.

Example 5.117. String class — pos method

"Saturday"~pos("day") -> 6
"abc def ghi"~pos("x") -> 0]
"abc def ghi"~pos(" ") -> 4
"abc def ghi"~pos(" ",5) -> 8
"abc def ghi"~pos(" ",5,3) -> 0]

5.1.7.83. replaceAt

>>—(rephceAu

new

length

r

pad

O

Returns a copy of the receiving string, with the characters from the nth character for length characters
replaced with new. The replacement position and length can extend beyond the end of the receiving
string. The starting position, n, is required and must be a positive whole number. The length argument
is optional and must be a positive whole number or zero. If omitted, length defaults to the length of

new.

If n is greater than the length of the receiving string, padding is added before the new string. The
default pad character is a blank.

Example 5.118. String class — replaceAt method

"abcdef"~replaceAt(" ",3, 1) ->
"abcdef"~replaceAt(" ",3, 3) ->
"abc"~replaceAt("123",5,6,"+") ->

5.1.7.84. reverse

"ab def"
Ilab fll
"abc+123"

Returns a copy of the receiving string reversed.

Example 5.119. String class — reverse method

"ABc.'"~reverse
"XYZ "~reverse

5.1.7.85. right

-> n .CBA"
-> " zyx"

204

String Class

o) [-

v pad

Returns a string of length length containing the rightmost length characters of the receiving string. The
string returned is padded with pad characters, or truncated, on the left as needed. The default pad
character is a blank. The length must be a positive whole number or zero.

Example 5.120. String class — right method

"abc d"~right(8) -> " abc d"
"abc def'"~right(5) -> "c def"
"12"~right(5,"0") -> "00012"

5.1.7.86. round

Returns the nearest integer to the receiving string value. Half is always rounded away from zero.
The receiving string is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. The rounded value is then calculated from that result
and returned. The result is never in exponential form. If there are no nonzero digits in the result, any
minus sign is removed.

Example 5.121. String class — round method

2~round -> 2
'-2'~round -> -2
2.4~round -> 2
'-2.4"~round -> -2
2.5~round -> 3
'-2.5"~round -> -3
'-0.1"'~round -> 0

5.1.7.87. sign

Returns a number that indicates the sign of the receiving string, which is a number. The receiving
string is first rounded according to standard Rexx rules, as though the operation receiving_string
+0 had been carried out. It returns -1 if the receiving string is less than 0, 0 ifitis @, and 1 if it is
greater than 0.

Example 5.122. String class — sign method

"12.3"~sign -> 1
" -0.307"~sign -> -1

205

String Class

0.0~sign -> 0

5.1.7.88. space

SEgem Y

Returns a copy of receiving string, with n pad characters between each whitespace-delimited word.

If you specify n, it must be a positive whole number or zero. If it is 0, all whitespace characters are
removed. Leading and trailing whitespace characters are always removed. The default for n is 1, and
the default pad character is a blank.

Example 5.123. String class — space method

"abc def "~space -> "abc def"
" abc def'"~space(3) -> "abc def"
"abc def "~space(1) -> "abc def"
"abc def "~space(0) -> "abcdef"
"abc def '"~space(2,"+") -> "abc++def"

5.1.7.89. startsWith

»—(startsWith(other —@—N

Returns . true if the characters of the other match the characters at the start of the target string.
Returns . false if the characters are not a match, or if other is the null string.

The startsWith method is useful for efficient string parsing as it does not require new string objects be
extracted from the target string.

See also methods abbrev, caselessStartsWith, endsWith, and match.

5.1.7.90. strip

option 0 chars

Returns a copy of the receiving string with leading characters, trailing characters, or both, removed,
based on the option you specify. The following are valid options. (You need to specify only the first
capitalized letter; all characters following it are ignored.)

Both
Removes both leading and trailing characters. This is the default.

Leading
Removes leading characters.

Trailing
Removes trailing characters.

206

String Class

The chars specifies the set of characters to be removed, and the default is to remove all whitespace
characters (spaces and horizontal tabs). If chars is a null string, then no characters are removed.
Otherwise, any occurrences of the characters in chars will be removed.

Example 5.124. String class — strip method

" ab ¢ "~strip -> "ab c"

n ab C II___Strip(llLll) -> Ilab C n
" ab C I'NStrip("t") _> " ab C"
"12,7000"~strip(,0) -> "12.,7"
"0012.700"~strip(,0) -> "12,7"
"0012.000"~strip(,".0") -> n12"

5.1.7.91. subChar

Returns the n'th character of the receiving string. n must be a positive whole number. If n is greater
than the length of the receiving string then a zero-length string is returned.

See also methods [] and substr.

5.1.7.92. substr

D
L length L@— pad

Returns the substring of the receiving string that begins at the nth character and is of length
length, padded with pad if necessary. The n must be a positive whole number. If n is greater than
receiving_string~length, only pad characters are returned.

If you omit length, the rest of the string is returned. The default pad character is a blank.
See also methods [], subChar, left, and right.

In some situations the positional (numeric) patterns of Parsing templates are more convenient for
selecting substrings, in particular if you need to extract more than one substring from a string.

Example 5.125. String class — substr method

"abc"~substr(2) -> "bc"
"abc"~substr(2,4) -> "bc "
"abc"~substr(2,6,".") -> "bc...."

5.1.7.93. subWord

O e

7 length

207

String Class

Returns the substring of the receiving string that starts at the nth word and is up to length whitespace-
delimited words. The n must be a positive whole number. If you omit length, it defaults to the number
of remaining words in the receiving string. The returned string never has leading or trailing whitespace,
but includes all whitespace characters between the selected words.

Example 5.126. String class — subWord method

"Now is the time"~subWord(2,2) -> "is the"
"Now is the time"~subWord(3) -> "the time"
"Now is the time"~subWord(5) -> "

5.1.7.94. subWords

bb—' subWords(; J @—N
’ length

Returns an array containing all words within the substring of the receiving string that starts at the nth
word and is up to length whitespace-delimited words. The n must be a positive whole number. If you
omit n, it defaults to 1. If you omit length, it defaults to the number of remaining words in the receiving
string. The strings in the returned array never have leading or trailing whitespace.

Example 5.127. String class — subWords method

"Now is the time"~subWords -> .array~of("Now", "is", "the", "time")
"Now is the time"~subWords(2,2) -> .array~of("is", "the")

"Now is the time"~subWords(3) -> .array~of("the", "time")

"Now is the time"~subWords(5) -> .array~new(0)

The subWords method is useful for iterating over the individual words in a string.
Example 5.128. String class — subWords method

do word over source~subWords -- extract all of the words to loop over
say word
end

5.1.7.95. translate

> () ()
| D)
translate()
tableo tablei pad
®—N

0 length

o
o

208

String Class

Returns a copy of the receiving string with each character translated to another character or
unchanged. You can also use this method to reorder the characters in the output table. (See last
example)

The output table is tableo and the input translation table is tablei. translate searches tablei for each
character in the receiving string. If the character is found, the corresponding character in tableo is
used in the result string. If there are duplicates in tablei, the first (leftmost) occurrence is used. If the
character is not found, the original character in the receiving string is used. The result string is always
of the same length as the receiving string.

The tables can be of any length. If you specify neither translation table and omit pad, the receiving
string is translated to uppercase (that is, lowercase a-z to uppercase A-Z), but if you include pad the
entire string is translated to pad characters. tablei defaults to XRANGE ("00"x, "FF'"x), and tableo
defaults to the null string and is padded with pad or truncated as necessary. The default pad is a
blank.

n is the position of the first character of the translated range. The default starting position is 1. length
is the range of characters to be translated. If length is omitted, the remainder of the string from the
starting position to the end is used.

Example 5.129. String class — translate method

"abcdef"~translate -> "ABCDEF"
"abcdef"~translate(, , , 3, 2) -> "abCDef"
"abcdef"~translate("12", "ec") -> "ab2dif"
"abcdef'"~translate("12", "abcd", ".") -> "12..ef"
"APQRV"~translate(, "PR") -> "AQ V"
"APQRV"~translate(XRANGE("00"X, "Q")) -> "APQ "
"4123"~translate("abcd", "1234", , 2, 2) -> "4ab3"

"4123"~translate("abcd", "1234") -> "dabc"

The last example shows how to use the translate method to reorder the characters in a string.
In the example, the last character of any 4-character string specified as the first argument would
be moved to the beginning of the string.

5.1.7.96. trunc

Returns the integer part the receiving string, which is a number, and n decimal places. The default n

is @ and returns an integer with no decimal point. If you specify n, it must be a positive whole number
or zero. The receiving string is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. This number is then truncated to n decimal places

or trailing zeros are added if needed to reach the specified length. The result is never in exponential
form. If there are no nonzero digits in the result, any minus sign is removed.

209

String Class

Example 5.130. String class — trunc method

12.3~trunc -> 12

127.09782~trunc(3) -> 127.097
127.1~trunc(3) -> 127.100
127~trunc(2) -> 127.00

@e

The number is rounded according to the current setting of NUMERIC DIGITS if necessary, before
the method processes it.

5.1.7.97. upper

upper(@—N
=g o=

Returns a new string with the characters of the target string beginning with character n for length
characters converted to uppercase. If n is specified, it must be a positive whole number. If n is not
specified, the case conversion will start with the first character. If length is specified, it must be a non-
negative whole number. If length is not specified, the default is to convert the remainder of the string.

Example 5.131. String class — upper method

"Albert Einstein"~upper -> "ALBERT EINSTEIN"
"abcdef"~upper(4) -> "abcDEF"
"abcdef"~upper(3,2) -> "abCDef"

5.1.7.98. verify

bb—(verify(reference ’ C\' W @_N
start \—' '— length

option

Returns a number that, by default, indicates whether the receiving string is composed only of
characters from reference. It returns 0 if all characters in the receiving string are in reference or
returns the position of the first character in the receiving string not in reference.

The option can be either Nomatch (the default) or Match. (You need to specify only the first
capitalized and highlighted letter; all characters following the first character are ignored)

If you specify Match, the method returns the position of the first character in the receiving string that is
in reference, or returns 0 if none of the characters are found.

210

String Class

The default for start is 1. Thus, the search starts at the first character of the receiving string. You can
override this by specifying a different start point, which must be a positive whole number.

The default for length is the length of the string from start to the end of the string. Thus, the search
proceeds to the end of the receiving string. You can override this by specifying a different length, which
must be a non-negative whole number.

If the receiving string is null, the method returns 0, regardless of the value of the option. Similarly, if
start is greater than receiving_string~length, the method returns 0. If reference is null, the
method returns 0 if you specify Match. Otherwise, the method returns the start value.

Example 5.132. String class — verify method

"123"~verify("1234567890") -> 0
"173"~verify("1234567890") -> 2
"ABAT"~verify("1234567890") -> 1
"AB4T"~verify("1234567890","M") -> 3
"ABAT"~verify("1234567890", "N") -> 1
"1P3Q4"~verify("1234567890", ,3) -> 4
"123"~verify("",N,2) -> 2
"ABCDE"~verify("", ,3) -> 3
"AB3CD5"~verify("1234567890","M", 4) -> 6
"ABCDEF"~verify("ABC","N",2,3) -> 4
"ABCDEF"~verify("ADEF","M",2,3) -> 4

5.1.7.99. word

) (1)

Returns the nth whitespace-delimited word in the receiving string or the null string if the receiving
string has fewer than n words. The n must be a positive whole number. This method is exactly
equivalent to subWord(n, 1).

Example 5.133. String class — word method

"Now is the time"~word(3) -> "the"
"Now is the time"~word(5) -> n

5.1.7.100. wordIindex

() (]

Returns the position of the first character in the nth whitespace-delimited word in the receiving string. It
returns 0 if the receiving string has fewer than n words. The n must be a positive whole number.

Example 5.134. String class — wordIndex method

"Now is the time"~wordIndex(3) -> 8

211

String Class

"Now is the time"~wordIndex(6) -> 0

5.1.7.101. wordLength

wordLength(o

Returns the length of the nth whitespace-delimited word in the receiving string or 0 if the receiving
string has fewer than n words. The n must be a positive whole number.

Example 5.135. String class — wordLength method

"Now is the time"~wordLength(2) -> 2
"Now comes the time"~wordLength(2) -> 5
"Now is the time"~wordLength(6) -> 0]

5.1.7.102. wordPos

bb—(wordPos()— phrase J @—N

’ start

Returns the word number of the first word of phrase found in the receiving string, or 0 if phrase
contains no words or if phrase is not found. Several whitespace characters between words in either
phrase or the receiving string are treated as a single blank for the comparison, but, otherwise, the
words must match exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

Example 5.136. String class — wordPos method

"now is the time"~wordPos("the") -> 3
"now is the time"~wordPos("The") -> 0
"now is the time"~wordPos("is the") -> 2
"now is the time"~wordPos("is the") -> 2
"now 1is the time"~wordPos("is time ") -> 0
"To be or not to be"~wordPos("be") -> 2
"To be or not to be"~wordPos("be",3) -> 6

5.1.7.103. words

Returns the number of whitespace-delimited words in the receiving string.

212

String Class

Example 5.137. String class — words method

"Now is the time"~words -> 4
" "~words -> 0

5.1.7.104. x2b

Returns a string, in character format, that represents the receiving string, which is a string of
hexadecimal characters converted to binary. The receiving string can be of any length. Each
hexadecimal character is converted to a string of 4 binary digits. The receiving string can optionally
include whitespace characters (at byte boundaries only, not leading or trailing) to improve readability;
they are ignored.

The returned string has a length that is a multiple of four, and does not include any whitespace.

If the receiving string is null, the method returns a null string.

Example 5.138. String class — x2b method

"C3"~x2b -> "11000011"
"7"~x2b -> "e111"
"1 C1"~x2b -> "000111000001"

You can combine x2b with the methods d2x and c2x to convert numbers or character strings into
binary form.

Example 5.139. String class — x2b method with ¢2x

"C3"x~c2x~x2b -> "11000011"
"129"~d2x~x2b -> "10000001"
"12"~d2x~x2b -> "1100"

5.1.7.105. x2c¢c

- {z) >

Returns a string, in character format, that represents the receiving string, which is a hexadecimal
string converted to character. The returned string is half as many bytes as the receiving string. The
receiving string can be any length. If necessary, it is padded with a leading 0 to make an even number
of hexadecimal digits.

You can optionally include whitespace in the receiving string (at byte boundaries only, not leading or
trailing) to improve readability; they are ignored.

If the receiving string is null, the method returns a null string.

213

Stream Classes

Example 5.140. String class — x2c method

ASCII */
ASCII */

"4865 6¢c6C 6f"~x2C ->
"3732 73"~x2c ->

"Hello" /*
"728" /*

5.1.7.106. x2d

Returns the decimal representation of the receiving string, which is a string of hexadecimal characters.
If the result cannot be expressed as a whole number, an error results. That is, the result must not have
more digits than the current setting of NUMERIC DIGITS.

You can optionally include whitespace characters in the receiving string (at byte boundaries only, not
leading or trailing) to improve readability; they are ignored.

If the receiving string is null, the method returns 0.

If you do not specify n, the receiving string is processed as an unsigned binary number.

Example 5.141. String class — x2d method

"OE"~x2d -> 14

"81"~x2d -> 129

"F81"~x2d -> 3969

"FF81"~x2d -> 65409

"46 30"X~x2d -> 240 /* ASCII */
"66 30"X~x2d -> 240 /* ASCII */

If you specify n, the receiving string is taken as a signed number expressed in n hexadecimal digits. If
the leftmost bit is off, then the number is positive; otherwise, it is a negative number. In both cases it is
converted to a whole number, which can be negative. If n is 0, the method returns 0.

If necessary, the receiving string is padded on the left with @ characters (note, not "sign-extended"), or
truncated on the left to n characters.

Example 5.142. String class — x2d method

"g1"~x2d(2) -> -127
"81"~x2d(4) -> 129
"FO81"~x2d(4) -> -3967
"FE81"~x2d(3) -> 129
"FE81"~x2d(2) -> -127
"FE81"~x2d (1) -> 1
"0E31"~x2d(0) -> 0

5.2. Stream Classes

This section describes the Rexx classes which implement Rexx data streams: InputStream,
OutputStream, InputOutputStream, and Stream class.

214

InputOutputStream Class

5.2.1. InputOutputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.

Table 5.8. InputOutputStream Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ OutputStream (Mixin Class)

Methods inherited from the OutputStream class

arrayout close open
charin lineln position
charOut (Abstract Method) lineOut (Abstract Method)

chars lines

+ InputStream (Mixin Class)

Methods inherited from the InputStream class

arrayln close open
charln (Abstract Method) lineln (Abstract Method) position
charOut lineOut

chars (Abstract Method) lines (Abstract Method)

InputOutputStream (Mixin Class)

(no class or instance methods)

5.2.2. InputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.

Table 5.9. InputStream Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

InputStream (Mixin Class)

arrayin close open
charin (Abstract Method) lineln (Abstract Method) position
charOut lineOut

chars (Abstract Method) lines (Abstract Method)

5.2.2.1. arrayln

This method is a default arrayIn implementation using 1ineIn to fill the array.

215

OutputStream Class

5.2.2.2. charln (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.2.3. charOut

This is an unsupported operation for InputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.2.4. chars (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.2.5. close

This method is a NOP by default.

5.2.2.6. lineln (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.2.7. lineOut

This is an unsupported operation for InputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.2.8. lines (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.2.9. open

This method is a NOP method.

5.2.2.10. position

This method is an optionally supported operation. By default, it will cause syntax error 93.963 to be
raised.

5.2.3. OutputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.

216

OutputStream Class

Table 5.10. OutputStream Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

OutputStream (Mixin Class)

arrayOut close open
charln lineln position
charOut (Abstract Method) lineOut (Abstract Method)

chars lines

5.2.3.1. arrayOut

This method is a default arrayOut implementation that writes all lines to the stream using 1ineOut.

5.2.3.2. charln

This is an unsupported operation for OutputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.3.3. charOut (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.3.4. chars

This is an unsupported operation for OutputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.3.5. close

This method is a NOP by default.

5.2.3.6. lineln

This is an unsupported operation for OutputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.3.7. lineOut (Abstract Method)

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.3.8. lines

217

Stream Class

This is an unsupported operation for OutputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.3.9. open

This method is a NOP by default.

5.2.3.10. position

This method is an optionally supported operation. By default, it will cause syntax error 93.963 to be
raised.

5.2.4. Stream Class

A stream object allows external communication from Rexx. (See Chapter 14, Input and Output
Streams for a discussion of Rexx input and output.)

The Stream class is a subclass of the InputOutputStream class.

Table 5.11. Stream Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ OutputStream (Mixin Class)

Methods inherited from the OutputStream class

arrayOut close open
charln lineln position
charOut (Abstract Method) lineOut (Abstract Method)

chars lines

+ InputStream (Mixin Class)

Methods inherited from the InputStream class

arrayin close open
charln (Abstract Method) lineln (Abstract Method) position
charOut lineOut

chars (Abstract Method) lines (Abstract Method)

+ InputOutputStream (Mixin Class)

Methods inherited from the InputOutputStream class
(no class or instance methods)

Stream (Mixin Class)

new (Inherited Class Method)

arrayln flush qualify
arrayout init query
charln lineln say
charOut lineOut seek
chars lines state

218

Stream Class

close makeArray string
command open supplier
description position uninit

5.2.4.1. new (Inherited Class Method)

bb—(new(name

Initializes a stream object for stream name, but does not open the stream. Returns the new stream
object.

name can either be a string or a File object.

5.2.4.2. arrayin

bb—' arrayIn(J

Returns an Array that contains the data of the receiving Stream, starting from the current read
position. If LINES is specified, the Array items returned are the Stream'’s lines, that were separated
with any line-end indicator. LINES is the default. If CHARS is specified, the Array items returned are the
Stream's characters.

If you have used the charln method, the first line can be a partial line.

5.2.4.3. arrayOut

bb—(arrayout()— array @—N

Writes the data in array array to the stream. If LINES is specified, each element of the array is written
using lineOut. If CHARS is specified, each element is written using charOut. The default method is
LINES.

5.2.4.4. charin
>>—' charIn()) '—N
) start —f 0 length —f

Returns a string of up to length characters from the input stream. The stream advances the read
pointer by the number of characters read. If you omit length, it defaults to 1. If you specify start, this
positions the read pointer before reading. The start value must be a positive whole number within the
bounds of the stream. If the value is not a positive whole humber, a syntax condition is raised. When
the value is past the end of the stream, the empty string is returned and the NOTREADY condition is
raised. If the stream is not already open, the stream attempts to open for reading and writing. If that
fails, the stream opens for input only.

219

Stream Class

5.2.4.5. charOut

bb—' charout(j @—N

string o start

Returns the count of characters remaining after trying to write string to the output stream. The stream
also advances the write pointer.

The string can be the null string. In this case, charOut writes no characters to the stream and returns
0. If you omit string, charOut writes no characters to the stream and returns 0. The stream is also
closed.

If you specify start, this positions the write pointer before writing. If the stream is not already open, the
stream attempts to open for reading and writing. If that fails, the stream opens for for output only.

5.2.4.6. chars

Returns the total number of characters remaining in the input stream. The count includes any line
separator characters, if these are defined for the stream. For persistent streams the count is the
count of characters from the current read position. (See Chapter 14, Input and Output Streams for a
discussion of Rexx input and output.) The total number of characters remaining cannot be determined
for some streams (for example, STDIN or Windows/Unix-like system devices). For these streams, the
chars method returns 1 to indicate that data is present, or 0 if no data is present.

5.2.4.7. close

Closes the stream. close returns READY : if closing the stream is successful, or an appropriate error
message. If you have tried to close an unopened file, then the close method returns a null string ().

5.2.4.8. command

bb—(command()— stream_command)

Returns a string after performing the specified stream_command. The returned string depends on the
stream_command performed and can be the null string. Commands are available to:
* Open a stream for reading, writing, or both

» Close a stream at the end of an operation
* Move the line read or write position within a persistent stream (for example, a file)
+ Get information about a stream

If the method is unsuccessful, it returns an error message string in the same form that the description
method uses.

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value of ERRNO that is set whenever one of the file system primitives returns with a -1.

220

Stream Class

5.2.4.8.1. Command Strings
The argument stream_command can be any expression that evaluates to one of the following

command strings:
< OPTIONS - fragment)—,—@—N
& -
m REPlace

Open

i
!

REAd
\—' Close ; o
\—' Flush ; o
Seek ~ — offset o
m Read @

T

Query Datetime

1

S
.

Exists

Handle d

Slze o

STreamtype

Timestamp

¢ goe

OPTIONS:

»h »d

=n = J
L(REClength length
. SHARERead '

OPEN
Opens the stream object and returns READY : . (If unsuccessful, the previous information about
return codes applies.) The default for OPEN is to open the stream for both reading and writing

221

Stream Class

data, for example: 'OPEN BOTH'. To specify that the stream be only opened for input or output,
add READ or WRITE, to the command string.

The following is a description of the options for OPEN:

READ
Opens the stream only for reading.

WRITE
Opens the stream only for writing.

BOTH
Opens the stream for both reading and writing. (This is the default.) The stream maintains
separate read and write pointers.

APPEND

Positions the write pointer at the end of the stream. (This is the default.) The write pointer
cannot be moved anywhere within the extent of the file as it existed when the file was opened.

REPLACE
Sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED
Enables another process to work with the stream in a shared mode. This mode must be
compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by the
process that opened the stream.

SHAREREAD
Enables another process to read the stream in a shared mode.

SHAREWRITE
Enables another process to write the stream in a shared mode.

NOBUFFER
Turns off buffering of the stream. All data written to the stream is flushed immediately to the
operating system for writing. This option can have a severe impact on output performance.
Use it only when data integrity is a concern, or to force interleaved output to a stream to
appear in the exact order in which it was written.

BINARY
Opens the stream in binary mode. This means that /ine-end characters are ignored; they
are treated like any other byte of data. This is intended to process binary data using the line
operations.

@

Specifying the BINARY option for a stream that does not exist but is opened for writing
also requires the RECLENGTH option to be specified. Omitting the RECLENGTH option
in this case raises an error condition.

222

Stream Class

RECLENGTH length

Allows the specification of an exact length for each line in a stream. This allows line operations
on binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, as if you specified the
RECLENGTH option with a length equal to that of the file). The length must be 1 or greater.

Example 5.143. Stream command — OPEN option

stream~command("open")
stream~command("open write")
stream~command("open read")
stream~command("open read shared")

CLOSE

closes the stream object. The command method with the CLOSE option returns READY : if the
stream is successfully closed or an appropriate error message otherwise. If an attempt to close an
unopened file occurs, then the command method with the CLOSE option returns a null string (™).

FLUSH
forces any data currently buffered for writing to be written to this stream.

SEEK offset

sets the read or write position to a given number (offset) within a persistent stream. If the stream is

open for both reading and writing and you do not specify READ or WRITE, both the read and write
positions are set.

e

See Chapter 14, Input and Output Streams for a discussion of read and write positions in a
persistent stream.

To use this command, you must first open the stream (with the OPEN stream command described
previously or implicitly with an input or output operation). One of the following characters can
precede the offset number.

explicitly specifies the offset from the beginning of the stream. This is the default if you supply
no prefix. For example, an offset of 1 with the LINE option means the beginning of the stream.

specifies offset from the end of the stream.
specifies offset forward from the current read or write position.

specifies offset backward from the current read or write position.

223

Stream Class

The command method with the SEEK option returns the new position in the stream if the read or
write position is successfully located, or an appropriate error message.

The following is a description of the options for SEEK:

READ
specifies that this command sets the read position.

WRITE
specifies that this command sets the write position.

CHAR
specifies the positioning in terms of characters. This is the default.

LINE
specifies the positioning in terms of lines. For non-binary streams, this is potentially an
operation that can take a long time to complete because, in most cases, the file must be
scanned from the top to count the line-end characters. However, for binary streams with a
specified record length, the new resulting line number is simply multiplied by the record length
before character positioning. See Section 14.1.5, “Line versus Character Positioning” for a
detailed discussion of this issue.

K —

If you do line positioning in a file open only for writing, you receive an error message.

Example 5.144. Stream command — SEEK option

stream~command("seek =2 read")
stream~command("seek +15 read")
stream~command("seek -7 write line")
fromend = 125

stream~command("seek <"fromend "read")

POSITION
is a synonym for SEEK.

QUERY
Used with these QUERY stream_commands, the command method returns specific information
about a stream. Except for QUERY HANDLE and QUERY SEEK/POSITION, the stream returns
the query information even if the stream is not open. The stream returns the null string for
nonexistent streams.

QUERY DATETIME
Returns the date and time stamps of a stream in US format. For example:

Example 5.145. Stream command — QUERY DATETIME option

stream~command("query datetime")

224

Stream Class

A sample output might be:
11-12-15 03:29:12

QUERY EXISTS
Returns the full path specification of the stream object, if it exists, or a null string. For example:

Example 5.146. Stream command — QUERY EXISTS option

stream~command("query exists")

A sample output might be:
c:\data\file.txt

QUERY HANDLE
Returns the handle associated with the open stream.

Example 5.147. Stream command — QUERY HANDLE option

stream~command("query handle")

A sample output might be: 3

QUERY POSITION

Returns the current read or write position for the stream, as qualified by the following options:
READ

Returns the current read position.

WRITE
Returns the current write position.

e —

If the stream is open for both reading and writing, this returns the read position by default.
Otherwise, this returns the appropriate position by default.

CHAR
Returns the position in terms of characters. This is the default.

LINE
Returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete. This is because the language processor starts tracking the current line
number if not already doing so, and, thus, might require a scan of the stream from the top to

225

Stream Class

count the line-end characters. See Section 14.1.5, “Line versus Character Positioning” for a
detailed discussion of this issue.

Example 5.148. Stream command — QUERY POSITION WRITE option

stream~command("query position write")

A sample output might be:
247

SYS
Returns the operating system stream position in terms of characters.

QUERY SEEK
Is a synonym for QUERY POSITION.

QUERY SIZE
Returns the size, in bytes, of a persistent stream.

Example 5.149. Stream command — QUERY SIZE option

stream~command("query size")

A sample output might be:
1305

QUERY STREAMTYPE
Returns a string indicating whether the stream is PERSISTENT, TRANSIENT, or UNKNOWN.

QUERY TIMESTAMP
Returns the date and time stamps of a persistent stream in an international format. This is the
preferred method of getting date and time because it provides the full 4-digit year

Example 5.150. Stream command — QUERY TIMESTAMP option

stream~command("query timestamp")

A sample output might be:

2015-11-12 03:29:12

5.2.4.9. description

226

Stream Class

Returns a descriptive string associated with the current state of the stream. The description
method is identical to the state method except that the string that description returns is followed by
a colon and, if available, additional information about ERROR or NOTREADY states.

5.2.4.10. flush

Returns READY :. It forces the stream to write any buffered data to the output stream.

5.2.4.11. init

bb—(init(name)

Initializes a stream object defined by name.

name can either be a string or a File object.

5.2.4.12. lineln

() on
line count

Returns the next count lines. The count must be 0 or 1. The stream advances the read pointer. If

you omit count, it defaults to 1. A line number may be given to set the read position to the start of a
specified line. This line number must be positive and within the bounds of the stream, and must not be
specified for a transient stream. A value of 1 for line refers to the first line in the stream. If the stream is
not already open, then the interpreter tries to open the stream for reading and writing. If that fails, the
stream is opened for input only.

5.2.4.13. lineOut

»—| lineout()' L @—N
string L@— line

Returns 0 if successful in writing string to the output stream, or 1 if an error occurs while writing the
line. The stream advances the write pointer. If you specify line, this positions the write pointer before
writing. If you omit both string and line, the stream is closed. If the stream is not already open, the
stream attempts to open for reading and writing. If that fails, the stream is opened for output only.

5.2.4.14. lines

Returns the number of lines that are available for input if no option or option Count is specified. If the
stream has already been read with charin this can include an initial partial line. If no data remains,

227

Stream Class

lines returns 0. For persistent streams the count starts at the current read position. As such, 1lines
reports whether a read action of charin or lineln will succeed. Option Count is the default.

If option Normal is specified, 1ines returns . true if at least one line remains in the stream, or
.false if no lines remain.

lines("Count") determines the actual number of lines by scanning the stream starting at
the current position and counting the lines. For large streams, this can be a time-consuming
operation. Therefore, avoid the use of 1ines() or 1ines("Count") in the condition of a loop
reading a stream. It is recommended that you use 1ines("Normal") or the chars method
instead.

For an explanation of input and output, see Chapter 14, Input and Output Streams.

For a Queue instance, the inherited method 1ines returns the actual number of lines in the queue.

5.2.4.15. makeArray

bb—' keArray(J

Returns an Array that contains the data of the stream in line or character format, starting from the
current read position. The line format is the default.

If you have used the charin method, the first line can be a partial line.

5.2.4.16. open

bb—@ < OPTIONS - fragment

REAd

OPTIONS:

»h- »d
>

) (o) J
L(RECIength)— length
()

Opens the stream and returns READY : . If the method is unsuccessful, it returns an error message
string in the same form that the description method uses.

228

Stream Class

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value of ERRNO, which is set whenever one of the file system primitives returns with a -1.

By default, open opens the stream for both reading and writing data, for example: 'open BOTH'. To
specify that the stream be only opened for input or output, specify READ or WRITE.

The options for the open method are:

READ
Opens the stream for input only.

WRITE
Opens the stream for output only.

BOTH
Opens the stream for both input and output. (This is the default.) The stream maintains separate
read and write pointers.

APPEND
Positions the write pointer at the end of the stream. (This is the default.) The write pointer cannot
be moved anywhere within the extent of the file as it existed when the file was opened.

REPLACE
Sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED
Enables another process to work with the stream in a shared mode. This mode must be
compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by the
process that opened the stream.

SHAREREAD
Enables another process to read the stream in a shared mode.

SHAREWRITE
Enables another process to write the stream in a shared mode.

NOBUFFER
Turns off buffering of the stream. All data written to the stream is flushed immediately to the
operating system for writing. This option can have a severe impact on output performance. Use
it only when data integrity is a concern, or to force interleaved output to a stream to appear in the
exact order in which it was written.

BINARY
Opens the stream in binary mode. This means that line-end characters are ignored; they are
treated like any other byte of data. This is for processing binary record data using the line
operations.

229

Stream Class

e

Specifying the BINARY option for a stream that does not exist but is opened for writing also
requires the RECLENGTH option to be specified. Omitting the RECLENGTH option in this
case raises an error condition.

RECLENGTH length
Allows the specification of an exact length for each line in a stream. This allows line operations
on binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, as if you specified the
RECLENGTH option with a length equal to that of the file). The length must be 1 or greater.

Example 5.151. Stream object — OPEN method

stream~open
stream~open("write")
stream~open("read")

5.2.4.17. position

position(|— | offset @—N
== =i
(Ci)

CH6E

position is a synonym for seek.

5.2.4.18. qualify

Returns the stream's fully qualified name. The stream need not be open.

5.2.4.19. query

230

Stream Class

bb—(query(H Datetime)

\—' Slze ;

\—' STreamtype i

\—' Timestamp ;

Used with these options, query returns specific information about a stream. Except for HANDLE and
SEEK/POSITION, the stream returns the query information even if the stream is not open. A null string

is returned for nonexistent streams.

DATETIME

returns the date and time stamps of a persistent stream in US format.

Example 5.152. Stream object — QUERY method

stream~query("datetime")

A sample output might be:

11-12-15 03:29:12

EXISTS

returns the full path specification of the stream, if it exists, or a null string. For example:

Example 5.153. Stream object — QUERY method

stream~query("exists")

A sample output might be:

c:\data\file.txt

HANDLE

returns the handle associated with the open stream.

231

Stream Class

Example 5.154. Stream object — QUERY method

stream~query("handle")

A sample output might be:

POSITION
returns the current read or write position for the stream, as qualified by the following options:
READ
returns the current read position.

WRITE
returns the current write position.

K —

If the stream is open for both reading and writing, this returns the read position by default.
Otherwise, this returns the specified position.

CHAR
returns the position in terms of characters. This is the default.

LINE
returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete. This is because the language processor starts tracking the current line
number if not already doing so, and, thus, might require a scan of the stream from the top to
count the line-end characters. See Section 14.1.5, “Line versus Character Positioning” for a
detailed discussion of this issue.

Example 5.155. Stream object — QUERY method

stream~query("position write")

A sample output might be:
247

SYS
returns the operating system stream position in terms of characters.

SIZE
returns the size, in bytes, of a persistent stream.

232

Stream Class

Example 5.156. Stream object — QUERY method

stream~query("size"

A sample output might be:

1305

STREAMTYPE
returns a string indicating whether the stream object is PERSISTENT, TRANSIENT, or UNKNOWN.

TIMESTAMP
returns the date and time stamps of a persistent stream in an international format. This is the
preferred method of getting the date and time because it provides the full 4-digit year.

Example 5.157. Stream object — QUERY method

stream~query("timestamp")

A sample output might be:

2015-11-12 03:29:12

5.2.4.20. say
) T Q)
string

Returns 0 if successful in writing string to the output stream or 1 if an error occurs while writing the
line.

5.2.4.21. seek

offset (E)%b(
=S

B
I

Sets the read or write position to a given number (offset) within a persistent stream. If the stream is
open for both reading and writing and you do not specify READ or WRITE, both the read and write
positions are set.

233

Stream Class

@e

See Chapter 14, Input and Output Streams for a discussion of read and write positions in a
persistent stream.

To use this method, you must first open the stream object (with the open method or implicitly with an
input or output operation). One of the following characters can precede the offset number:

Explicitly specifies the offset from the beginning of the stream. This is the default if you supply no
prefix. For example, an offset of 1 means the beginning of the stream.

Specifies offset from the end of the stream.
Specifies offset forward from the current read or write position.

Specifies offset backward from the current read or write position.

The seek method returns the new position in the stream if the read or write position is successfully
located, or an appropriate error message.

The following is a description of the options for seek:

READ
specifies that the read position be set.

WRITE
specifies that the write position be set.

CHAR
specifies that positioning be done in terms of characters. This is the default.

LINE
specifies that the positioning be done in terms of lines. For non-binary streams, this is potentially
an operation that can take a long time to complete because, in most cases, the file must be
scanned from the top to count the line-end characters. However, for binary streams with a
specified record length, the new resulting line number is simply multiplied by the record length
before character positioning. See Section 14.1.5, “Line versus Character Positioning” for a detailed
discussion of this issue.

K

If you do line positioning in a file open only for writing, you receive an error message.

234

Stream Class

Example 5.158. Stream object — SEEK method

stream~seek("=2 read")
stream~seek("+15 read")
stream~seek("-7 write line")
fromend = 125
stream~seek("<"fromend read)

5.2.4.22. state

Returns a string indicating the current stream state.
The returned strings are as follows:

ERROR

The stream has been subject to an erroneous operation (possibly during input, output, or through
the various Stream methods). See Section 14.5, “Errors during Input and Output”. You might be
able to obtain additional information about the error with the description method.

NOTREADY

The stream is known to be in such a state that the usual input or output operations attempted upon
would raise the NOTREADY condition. (See Section 14.5, “Errors during Input and Output”.) For
example, a simple input stream can have a defined length. An attempt to read that stream (with
charin or lineln, perhaps) beyond that limit can make the stream unavailable until the stream has
been closed (for example, with the close method) and then reopened.

READY

The stream is known to be in such a state that the usual input or output operations might be
attempted. This is the usual state for a stream, although it does not guarantee that any particular
operation will succeed.

UNKNOWN

The state of the stream is unknown. This generally means that the stream is closed or has not yet
been opened.

5.2.4.23. string

Returns a string that indicates the name of the object the stream represents i.e. the name of the file.

5.2.4.24. supplier

Returns a StreamSupplier object for the stream containing the remaining stream lines and linenumber
positions for the stream.

235

Collection Classes

5.2.4.25. uninit

This method cleans up the object when it is garbage collected. It should not be invoked directly except
via an uninit method of a subclass of the Stream class.

If the Stream class is subclassed and the subclass provides an uninit method then that method
must invoke the superclass uninit method.

Example 5.159. Stream object — UNINIT method

::class CustomStream subclass Stream

::method uninit

/* the subclass instance cleanup code should be placed here */
super~uninit -- this should be the last action in the method
return

5.3. Collection Classes

A Collection is an object that contains a number of items, which can be any objects. Every item
stored in a Collection has an associated index that you can use to retrieve the item from the collection
with the at or [] methods.

Each Collection defines its own acceptable index types. Rexx provides the following Collection
classes:

Array Class
A sequenced collection of objects ordered by whole-number indexes.

Bag Class
A collection where the index and the item are the same object. Bag indexes can be any object and
each index can appear more than once.

CircularQueue Class
The CircularQueue class allows for storing objects in a circular queue of a predefined size.
Once the end of the queue has been reached, new item objects are inserted from the beginning,
replacing earlier entries. The collected objects can be processed in FIFO (first-in, first-out) or in a
stack-like LIFO (last-in, first-out) order.

Directory Class
A collection with character string indexes. Index comparisons are performed using the string ==
comparison method.

IdentityTable Class
A collection with indexes that can be any object. The IdentityTable class determines index item
matches by using an object identity comparison. With object identity matches, an index will only
match the same object instance. An identity table contains no duplicate indexes.

236

Organization of the Collection Classes

List Class
A sequenced collection that lets you add new items at any position in the sequence. A list
generates and returns an index value for each item placed in the list. The returned index remains
valid until the item is removed from the list.

Properties Class

A collection with character string indexes and values. Properties collections include support for
saving and loading from disk files.

Queue Class
A sequenced collection with the items ordered as a queue. You can remove items from the head
of the queue and add items at either its tail or its head. Queues index the items with whole-number
indexes, in the order in which the items would be removed. The current head of the queue has
index 1, the item after the head item has index 2, up to the number of items in the queue.

Relation Class
A collection with indexes that can be any object. A relation can contain duplicate indexes.

Set Class

A collection where the index and the item are the same object. Set indexes can be any object and
each index is unique.

Stem Class

A collection with character string indexes constructed from one or more string segments. Index
comparisons are performed using the string == comparison method.

StringTable Class
A collection with character string indexes. Index comparisons are performed using the string ==
comparison method.

Table Class
A collection with indexes that can be any object. A table contains no duplicate indexes.

5.3.1. Organization of the Collection Classes

The following shows the logical organization of the Collection Classes. This does not represent the
order that methods are inherited but rather the organization of the classes.

Collection Class

» MapCollection classes
Directory Class
IdentityTable Class
Properties Class
Relation Class
Stem Class
StringTable Class
Table Class

» OrderedCollection classes
Array Class
CircularQueue Class
List Class
Queue Class

237

Collection Class

» SetCollection classes
Bag Class
Set Class

5.3.2. Collection Class

The Collection class is a MIXIN class that defines the basic set of methods implemented by all
Collections. Many of the Collection class methods are abstract and must be implemented by the
inheriting subclasses.

Table 5.12. Collection Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

Collection (Mixin Class)

[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset

allindexes (Abstract Method) hasltem supplier

allltems (Abstract Method) index (Abstract Method) union

at (Abstract Method) intersection xor

difference items

disjoint makeArray

5.3.2.1. [] (Abstract Method)

index

Returns the item associated with the specified index or indexes. If the collection has no item
associated with the specified index or indexes, this method returns . nil. This is an abstract method
that must be implemented by a subclasses.

5.3.2.2. []= (Abstract Method)

r

[index 1 = value [«

Adds an item to the collection at the specified index. This is an abstract method that must be
implemented by subclasses.

5.3.2.3. allindexes (Abstract Method)

allIndexes

Returns an array of all indexes used by this collection. This is an abstract method that must be
implemented by subclasses.

238

Collection Class

5.3.2.4. allitems (Abstract Method)

Returns an array containing all items stored in the collection. This is an abstract method that must be
implemented by subclasses.

5.3.2.5. at (Abstract Method)

Returns the item associated with the specified index or indexes. If the collection has no item
associated with the specified index or indexes, this method returns . nil. This is an abstract method
that must be implemented by subclasses.

5.3.2.6. difference

bb—(difference()— argument)

Returns a new collection (of the same class as the receiver) containing only those items from

the receiver whose indexes the argument collection does not contain. The argument can be a
Collection object or any other object that supports a makeArray method. The argument must also
allow all of the index values in the receiver collection.

5.3.2.7. disjoint

bb—(disjoint(argument)

Returns . true if the receiver collection and argument collection do not have any items in common.
. false otherwise. The argument can be a Collection object or any other object that supports a
makeArray method. The argument must also allow all of the index values in the receiver collection.

5.3.2.8. equivalent

bb—(equivalent(argument —@—N

Returns . true if all indexes in the receiver collection are also contained in the argument collection
and both collections contain the same number of items; returns . false otherwise. The argument can
be a Collection object or any other object that supports a makeAr ray method. The argument must
also allow all of the index values in the receiver collection.

5.3.2.9. hasindex

)b—(hasIndex(index

239

Collection Class

Returns . true if the receiver collection contains an item associated with the specified index or
indexes. Returns . false otherwise.

5.3.2.10. hasltem

bb—(hasItem(item)

Returns . true if the collection contains the specified item at any index location. Returns . false
otherwise.

5.3.2.11. index (Abstract Method)

bb—(index()— item)

Returns the index associated with item. If item occurs more than once in the collection, the returned
index value is undetermined. This is an abstract method which must be implemented by a subclass of
this class.

5.3.2.12. intersection

bb—(intersection(argument

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver whose indexes are in both the receiver collection and the argument collection. The argument
can be a Collection object or any other object that supports a makeArray method. The argument
must also allow all of the index values in the receiver collection.

5.3.2.13. items

Returns the number of items in the collection.

5.3.2.14. makeArray

Returns a single-dimensional Array with the same number of items as the receiver object. Any index
with no associated item is omitted from the new array. Items in the new array will have the same order
as the source array.

5.3.2.15. put (Abstract Method)

Adds an item to the collection at the specified index. This is an abstract method that must be
implemented by a subclass of this class.

240

MapCollection Class

5.3.2.16. subset

bb—(subset()— argument)

Returns . true if all indexes in the receiver collection are also contained in the argument collection;
returns . false otherwise. The argument can be a Collection object or any other object that
supports a makeArray method. The argument must also allow all of the index values in the receiver
collection.

5.3.2.17. supplier

Returns a Supplier object for the collection. The supplier allows you to enumerate through the index/
item pairs for the collection. The supplier is created from a snapshot of the collection and is unaffected
by subsequent changes to the collection's contents.

5.3.2.18. union

bb—(union()— argument)

Returns a new collection of the same class as the receiver that contains all the items from the receiver
collection and selected items from the argument collection. This method includes an item from
argument in the new collection only if there is no item with the same associated index in the receiver
collection and the method has not already included an item with the same index. The order in which
this method selects items in argument is unspecified (the program should not rely on any order). The
argument can be a Collection object or any other object that supports a makeArray method. The
argument must also allow all of the index values in the receiver collection.

5.3.2.19. xor

>>—(xor()— argument)

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and the argument collection; all indexes that appear in both collections are removed. The
argument can be a Collection object or any other object that supports a makeArray method. The
argument must also allow all of the index values in the receiver collection.

5.3.3. MapCollection Class

The MapCollection class is a MIXIN class that defines the basic set of methods implemented by all
collections that create a mapping from an index object to a value.

This class is defined as a MIXIN class. The following classes inherit from MapCollection: Directory,
IdentityTable, Properties, Relation, Stem, StringTable, Table, and SetCollection classes Bag and
Set.

Table 5.13. MapCollection Class

Object

241

MapCollection Class

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

Methods inherited from the Collection class

[] (Abstract Method) equivalent put (Abstract Method)
[]= (Abstract Method) hasIndex subset

allindexes (Abstract Method) hasltem supplier

allltems (Abstract Method) index (Abstract Method) union

at (Abstract Method) intersection xor

difference items

disjoint makeArray

MapCollection (Mixin Class)

of (Class Method)

makeArray
putAll

5.3.3.1. of (Class Method)

Returns a newly created MapCollection object containing the specified index/item pairs. Each pair
must be a single-dimensional Array with exactly two items: the index as the first Array item, and the
value as the second item. The pairs are processed left-to-right and added to the MapCollection object.

Example 5.160. MapCollection class — of method

is0639 = .Directory~of(.Array~of("de", "Deutsch"), .Array~of("en",
"English"), .Array~of("fr", "français"))
say iso0639~allIndexes~makeString(, ", ") -- de, en, fr
say iso0639~alllItems~makeString(, ", ") -- Deutsch, English, français

-- using array notation
is0639 = .Directory~of(("de", "Deutsch"), ("en", "English"), ("fr", "français"))

5.3.3.2. makeArray

Returns a single-dimensional Array of the index values used by the receiver object. The index objects
will not be ordered in any predictable order.

5.3.3.3. putAll

»—(putAll(collection

242

OrderedCollection Class

Returns the receiving collection with all items in collection added to it. The collection argument can be
any object that supports a supplier method. Items from collection are added using the index values
returned by the supplier. The item indexes from the source collection must be strings. The items are
added in the order provided by the supplier object. If duplicate indexes exist in collection, the last item
provided by the supplier will overwrite previous items with the same index.

5.3.4. OrderedCollection Class

The OrderedCollection class is a MIXIN class that defines the basic set of methods implemented
by all collections that have an inherent index ordering.

This class is defined as a MIXIN class. The following classes inherit from OrderedCollection: Array,
CircularQueue, List, and Queue.

Table 5.14. OrderedCollection Class

Object

Methods inherited from the Object class

Class (Metaclass)

Methods inherited from the Class class

+ Collection (Mixin Class)

difference
disjoint

Methods inherited from the Collection class
[] (Abstract Method)

[]= (Abstract Method)
allindexes (Abstract Method) hasltem
allltems (Abstract Method)
at (Abstract Method)

equivalent
hasindex

index (Abstract Method)
intersection

items

makeArray

put (Abstract Method)
subset

supplier

union

xor

OrderedCollection (Mixin Class)

appendAll

difference

append (Abstract Method)
delete (Abstract Method)
first (Abstract Method)

firstitem (Abstract Method)
insert (Abstract Method)

intersection

last (Abstract Method)
lastitem (Abstract Method)
next (Abstract Method)
previous (Abstract Method)
section (Abstract Method)
sort

sortWith
stableSort
stableSortWith
subset

union

xor

5.3.4.1. append (Abstract Method)

bb—(append(

item)

Append an item to the end of the collection ordering. This is an abstract method that must be
implemented by a subclass of this class.

5.3.4.2. appendAll

»—(appendAII(

collection

208

243

OrderedCollection Class

Returns the receiving collection with all items in collection appended to the end of it. The collection
may be any object that implements an al1Items method.

5.3.4.3. delete (Abstract Method)

bb—(delete(index

Returns and deletes the member item with the specified index from the collection. If there is no item
with the specified index, .nil is returned and no item is deleted. All elements following the deleted
item will be moved up in the collection ordering and the size of the collection will be reduced by one
element. Depending on the nature of the collection, the indexes of the moved items may be modified
by the deletion.

5.3.4.4. difference

bb—(difference(argument)

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver that are not also contained in the argument collection. The argument can be a Collection
object or any other object that supports a makeArray method.

5.3.4.5. first (Abstract Method)

Returns the index of the first item in the collection order. Returns . nil if the collection is empty.

5.3.4.6. firstitem (Abstract Method)

Returns the first item in the collection order. Returns . nil if the collection is empty.

5.3.4.7. insert (Abstract Method)

bb—(insert(item @—N

) index

Returns a collection-supplied index for item item, which is added to the collection. The inserted item
follows an existing item with index index in the collection ordering. If index is .nil, item becomes the
first item in the ordered collection. If you omit index, the item becomes the last item in the collection.

Inserting an item in the collection at position index will cause the items in the collection after position
index to have their relative positions shifted by the collection object. Depending on the nature of the
collection, the index values for any items already in the collection may be modified by the insertion.

This is an abstract method that must be implemented by a subclass of this class.

244

OrderedCollection Class

5.3.4.8. intersection

bb—(intersection()— argument)

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver that are in both the receiver collection and the argument collection. The argument can be a
Collection object or any other object that supports a makeArray method.

5.3.4.9. last (Abstract Method)

Returns the index of the last item in the collection order. Returns . nil if the collection is empty.

5.3.4.10. lastitem (Abstract Method)

Returns the first item in the collection order. Returns .nil if the collection is empty.

5.3.4.11. next (Abstract Method)

Returns the index of the item that follows the collection item having index index or returns .nil if the
item having that index is last in the collection.

5.3.4.12. previous (Abstr