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Overview

● Introduction to machine learning (ML)
● Introduction to Weka (a powerful, complete Java infrastructure for ML)
● The Weka environment
● Weka resources (links to Weka, packages, tutorials, …) 
● Nutshell examples for employing Weka for ML
● Roundup
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Machine Learning (ML), 1
Early History of Machine Learning (1940s-1990s)
● Origins

– 1940s–50s: Foundations in statistics, neuroscience, and computer science
– Alan Turing (1950): “Can machines think?”
– 1957: Frank Rosenblatt introduces the Perceptron (early neural network)

● Early Progress & Challenges
– 1960s–70s: Rule-based AI (artificial intelligence) and symbolic systems dominate
– 1980s: Revival of neural networks with backpropagation
– Late 1980s–90s: Limited data and computing power slow progress → “AI winters”
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Machine Learning (ML), 2
Modern Machine Learning (2000s–Present)
● Key Drivers

– Explosion of data (internet, sensors, mobile devices)
– Advances in computing power (GPUs, cloud computing)
– Improved algorithms and optimization techniques

● Major Breakthroughs
– 2006–2012: Deep learning resurgence
– 2012: AlexNet revolutionizes image recognition
– 2010s–Present:

● Applications in vision, speech, natural language processing (NLP), medicine, and autonomous 
systems

● Rise of foundation models and large-scale neural networks

● Today
– ML is a core technology behind search engines, recommendations, generative AI, and 

scientific discovery
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Machine Learning (ML), 3

● What is Machine Learning ?
– A field of AI (artificial intelligence) where computers learn patterns from data 

instead of being explicitly programmed
– Models improve their performance through experience (data)
– Used for tasks like prediction, classification, and decision-making

● Why use Machine Learning?
– Handles complex patterns that are hard to code manually
– Scales to large and growing datasets
– Adapts and improves as new data becomes available
– Enables practical applications such as:

● Recommendation systems
● Image and speech recognition
● Fraud detection and forecasting
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Machine Learning (ML), 4

● Building blocks
– Data

● Examples the system learns from
– Model

● Mathematical representation of patterns
– Training/learning

● Adjusting the model using data
– Prediction

● Applying learned patterns to new data
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Machine Learning (ML), 5

● Main types of machine learning
– Supervised Learning

● Uses labeled data
● Example: spam detection

– Unsupervised Learning
● No labels provided, find patterns
● Example: customer clustering

– Reinforcement Learning
● Learns by trial and error
● Example: game-playing AI
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Machine Learning (ML), 6

● Key Components & Challenges
– Data

● Text, logs, manuals, images, speech, movies, …
– Features and preparation

● Relevant information from data 
– Model 

● Algorithms and parameters
– Methods used to learn patterns (supervised, unsupervised, reinforcement, … )

– Predictions and decisions
● Apply model to data

– Evaluation
● Measuring accuracy and performance

Challenges: data quality, bias, overfitting, interpretability
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Machine Learning (ML), 7

Data
(text, images, speech, …)

Features & Preparation
(relevant information from data)

Model
algorithms & parameters

Predictions & Decisions

Evaluation & Metrics
accuracy, performance, reward

Supervised
labeled data

Unsupervised
find patterns

Reinforcement
rewards
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Weka, 1
Waikato Environment for Knowledge Analysis
● Weka (Waikato Environment for Knowledge Analysis) is an open-source 

machine learning tool developed in New Zealand
– Created and maintained at the University of Waikato, New Zealand

● https://ml.cms.waikato.ac.nz/weka
– Java-based

● Java development started 1997
– In the 90's development started out with Tcl/Tk, C, … 
– As of 2025/26 the release version of Weka is 3.8.6, released 

https://waikato.github.io/weka-wiki/downloading_weka/
● Runs on Windows, macOS, and Linux

– Provides an easy-to-use graphical user interface (GUI)
– Supports classification, regression, clustering, and data visualization, … 
– Widely used for teaching, research, and data mining
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Weka, 2
Core Interfaces
● Explorer (GUI)

– Main graphical user interface
– Used for data preprocessing, classification, regression, clustering, and visualization
– Step-by-step workflow for experimenting with datasets

● Knowledge Flow (GUI)
– Visual, pipeline-based interface
– Allows users to design machine learning workflows using connected components
– Useful for understanding data flow and automating experiments

● Experimenter (GUI)
– Designed for running and comparing multiple machine learning algorithms
– Supports statistical evaluation of results
– Useful for benchmarking and research experiments

●
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Weka, 3
Core Interfaces
● Workbench (GUI)

– Integrates multiple Weka tools in one environment
● Provides access to Explorer, Experimenter, and Knowledge Flow

– Ideal for advanced users managing multiple tasks

● Command-Line Interface (CLI)
– Enables scripting and automation
– Useful for large-scale experiments and batch processing

● Libraries & Algorithms (Java class libraries)
– Collection of machine learning algorithms (e.g., decision trees, Naïve Bayes, SVMs, 

clustering methods)
– Tools for data preprocessing, feature selection, and evaluation
– ooRexx can be used as a tool and scripting language
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Weka, 4
GUI – Main Interface (Command: java -jar weka.jar)
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Weka, 5
GUI – Explorer
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Weka, 6
GUI – Experimenter
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Weka, 7
GUI – KnowledgeFlow
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Weka, 8
GUI – Workbench
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Weka, 9
GUI – SimpleCLI, 1
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Weka, 10
GUI – SimpleCLI, 2
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Weka's "hello world" Example "Iris"
● Dataset "Iris" 

– Data in text file named iris.arff 
– Instances: 150 flower samples
– Classes: 3 species — Iris setosa, Iris versicolor, Iris virginica (50 each)
– Attributes (numeric)

● Sepal length, sepal width, petal length, petal width
– Ideal for experimenting with classification algorithms, visualization, and evaluation

● Many classifiers achieve 95–100% accuracy
● Setosa is linearly separable; versicolor and virginica partially overlap

● Some tutorials relating to Iris
– https://deeplearning.cms.waikato.ac.nz/user-guide/getting-started/ 
– https://deeplearning.cms.waikato.ac.nz/examples/classifying-iris/  
– https://machinelearningmastery.com/how-to-run-your-first-classifier-in-weka/ 
– https://www.geeksforgeeks.org/machine-learning/hierarchical-clustering-using-weka/  

Iris setosa – Borsten-Schwertlilie (de)
Iris versicolor – Vielfarbige Schwertlilie (de)
Iris virginica – Blaue Sumpfschwertlilie (de)

Sepal – Kelchblatt (de)
Petal – Blütenblatt (de)
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Weka's "iris.arff", 1/2
$WEKA_HOME/data/iris.arff or $WEKA_HOME/packages/wekaDeeplearning4j/datasets/nominal/iris.arff
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Weka's "iris.arff", 2/2
$WEKA_HOME/data/iris.arff or $WEKA_HOME/packages/wekaDeeplearning4j/datasets/nominal/iris.arff

… cut … … cut …
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Weka Getting Started, GUI Example
https://deeplearning.cms.waikato.ac.nz/user-guide/getting-started/
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Weka Getting Started, Java Example
https://deeplearning.cms.waikato.ac.nz/user-guide/getting-started/#java

// https://deeplearning.cms.waikato.ac.nz/user-guide/getting-started/
import weka.classifiers.Evaluation;
import weka.classifiers.functions.Dl4jMlpClassifier;
import weka.core.Instances;

import java.io.FileReader;
import java.nio.file.Paths;
import java.util.Random;

public class TestWeka {
    public static void main(String[] args) throws Exception {
        Dl4jMlpClassifier clf = new Dl4jMlpClassifier();
        String irisPath = Paths.get(System.getenv("WEKA_HOME"),
                          "packages", "wekaDeeplearning4j", "datasets",
                          "nominal", "iris.arff").toString();
        Instances inst = new Instances(new FileReader(irisPath));
        inst.setClassIndex(inst.numAttributes() - 1);
        Evaluation ev = new Evaluation(inst);
        ev.crossValidateModel(clf, inst, 10, new Random(0));
        System.out.println(ev.toSummaryString());
    }
}
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Weka Getting Started, ooRexx Example
https://deeplearning.cms.waikato.ac.nz/user-guide/getting-started/#java

   -- load the classifier function
clf      = .bsf~new("weka.classifiers.functions.Dl4jMlpClassifier")
   -- get path to WEKA home directory from enivronment, define path to data
   -- (forward slash works on Unix and on Windows)
irisPath = value("WEKA_HOME",,"environment")"/data/iris.arff"
   -- read Iris data
fReader  = .bsf~new("java.io.FileReader",irisPath)
inst     = .bsf~new("weka.core.Instances",fReader)
inst~setClassIndex(inst~numAttributes - 1)
   -- create evaluation for Iris data
ev       = .bsf~new("weka.classifiers.Evaluation", inst)
   -- cross Validate
ev~crossValidateModel(clf, inst, 10, .bsf~new("java.util.Random",0))
   -- show summary as a string
say ev~toSummaryString

::requires "BSF.CLS" -- get ooRexx-Java bridge
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Weka Getting Started, ooRexx Example
Output of running the Java or ooRexx Program
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Weka – Nutshell Examples in ooRexx 
● Based on a seminar paper with nutshell examples by the WU student 

Jakov Pavic
– Useful resources homepage: https://wi.wu.ac.at/rgf/diplomarbeiten/#sem_202307_01   

● Seminar paper with a brief, but very helpful introduction to Weka
https://wi.wu.ac.at/rgf/diplomarbeiten/Seminararbeiten/2023/202307_PavicJakov_WEKA.pdf

● Java nutshell examples: 
https://wi.wu.ac.at/rgf/diplomarbeiten/Seminararbeiten/2023/202307_PavicJakov_WEKA-data.zip     

● Weka, seminar paper, nutshell examples in
https://wi.wu.ac.at/rgf/wu/lehre/autojava/material/foils/370_Weka_20260122_rgf_WU.zip 

– Includes updated weka.jar, seminar paper, all nutshell examples
– After downloading and unzipping study readme.txt   
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Weka –  setupWeka.cmd/setupWeka.sh
● Open a terminal, change into the unzipped folder and run

– Windows: setupWeka 
– Unix: source sh ./setupWeka.sh 
– To run the Weka GUI: java -jar weka.jar 
– To run the ooRexx examples use the rexxjh.cmd/rexxj.sh launchers installed 

with BSF4ooRexx (Java-ooRexx bridge), e.g.
● Windows: rexxjh WU\01_TestWeka\rxTestWeka.rxj
● Unix: rexxjh.sh WU/01_TestWeka/rxTestWeka.rxj 

● The seminar paper and all its Java and corresponding ooRexx nutshell 
examples can be found in subdirectory WU, subdirectories 01_TestWeka, 
and 02_PavicJacov\nutshells_examples
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Weka – Process and Prepare Data
● It may be necessary to pre-process the data for various reasons
● In this example we use three different files with data

– One containing the initial data: housing.csv 
– One containing two columns to be merged to the initial data: 

housing_newColumns.arff
– One containing new data to be added: housing_newRows.csv 

● We get various information from the data like mean and mode
● We filter rows by a certain price and remove duplicates
● We use a filter to add a new attribute (price_per_sqm)
● Show how to split the data into a training and testing section
● Save the prepared data as arff and as csv 
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Weka – Process and Prepare Data
Initial Data

housing_new_columns.arffhousing.csv housing_newRows.csv
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Weka – Process and Prepare Data, 1/4
WU\02_PavicJacov\nutshells_examples\data_preparation\data_preparation.rxj

/* ooRexx version of "data_preparation.java" */
   -- abstract Java class, cannot be imported, hence bsf.loadClass
call bsf.loadClass "weka.filters.Filter", Filter
   -- import Java classes into ooRexx
      -- DataSource class is embedded in ConverterUtils
call bsf.import "weka.core.converters.ConverterUtils$DataSource", DataSource
call bsf.import "weka.core.Instances", Instances
call bsf.import "java.io.File", "ioFile"

-- IMPORTING + COMBINING DATA
housing        = .DataSource~new("./housing.csv")~getDataSet
housing_newcol = .DataSource~new("./housing_newColumns.arff")~getDataSet
housing_new    = .Instances~mergeInstances(housing,housing_newcol)
   -- get new rows and add them in a loop
housing_newrow = .DataSource~new("./housing_newRows.csv")~getDataSet
do i=0 to housing_newrow~numInstances-1
   housing_new~add(housing_newrow~instance(i))
end

-- UNDERSTANDING DATA
do i=0 to 4 -- show the first five instances
   say housing_new~get(i) ~toString
end
/* or iterating using ooRexx' loop...over
   loop data over housing_new for 5
      say data~toString
   end
*/

say housing_new~toSummaryString  -- show summary of the data

say "housing_new:"
say housing_new~toString --  … continued … 
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Weka – Process and Prepare Data, 2/4
WU\02_PavicJacov\nutshells_examples\data_preparation\data_preparation.rxj

say "housing_new~numAttributes:" housing_new~numAttributes
do i=0 to housing_new~numAttributes-1
   attr=housing_new~attribute(i)
end

do i=0 to housing_new~numAttributes-1  -- mean/mode for each attribute
   attr=housing_new~attribute(i)
   if attr~type = 0 then
      say "The mean of the" attr~name "attribute is:" housing_new~meanOrMode(i)
   else
   do
      index = format(housing_new~meanOrMode(i),,0)  --get the index of the mode value
      say "The mode of the" attr~name "attribute is:" attr~value(index)
   end
end

numInst=housing_new~numInstances
do i=0 to housing_new~numAttributes-1  -- min/max for numeric attributes
   attr=housing_new~attribute(i)
   if attr~type = 0 then
   do
      say "The smallest value of the" attr~name "variable is:" housing_new~kthSmallestValue(i, 1)
      say "The biggest value of the"  attr~name "variable is:" housing_new~kthSmallestValue(i, numInst)
   end
end

--SELECTING DATA
--Delete unnecessary Attribute (balcony_y/n)
housing_new~deleteAttributeAt(6) -- 0-based, hence 7th attribute

–... continued … 
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Weka – Process and Prepare Data, 3/4
WU\02_PavicJacov\nutshells_examples\data_preparation\data_preparation.rxj

--Filter every value below 170000
filter_min = .bsf~new("weka.filters.unsupervised.instance.RemoveWithValues")
options = bsf.createJavaArrayOf("java.lang.String", /* column */ "-C", 5, /* smaller */ "-S", 170000)
filter_min~setOptions(options)
filter_min~setInputFormat(housing_new)
housing_expensive = .Filter~useFilter(housing_new, filter_min)

--CLEANING DATA
--Duplicate Detection
filter = .bsf~new("weka.filters.unsupervised.instance.RemoveDuplicates")
filter~setInputFormat(housing_expensive)
housing_nodup = .Filter~useFilter(housing_expensive, filter)

--Rename Attribute
housing_nodup~renameAttribute(5,"rooms")   --rename column 5 to rooms

--Remove rows where attributes miss values
say "housing_nodup:"
say housing_nodup~toString
do i=housing_nodup~numInstances-1 to 0 by -1
   if housing_nodup~instance(i)~hasMissingValue then housing_nodup~remove(i)
end
say "(AFTER removing) housing_nodup:"
say housing_nodup~toString

--CREATE NEW DATA (create new column)
addExpressionFilter=.bsf~new("weka.filters.unsupervised.attribute.AddExpression")
addExpressionFilter~setExpression("a5 / a4")       --how should the new column look like (fifth column divided by forth column)
addExpressionFilter~setName("price_per_sqrm")      --set the name of the new column
addExpressionFilter~setInputFormat(housing_nodup)  --set input for Filter (data set)
housing_prepared = .Filter~useFilter(housing_nodup, addExpressionFilter)   --use the filter
–... continued … 
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Weka – Process and Prepare Data, 4/4
WU\02_PavicJacov\nutshells_examples\data_preparation\data_preparation.rxj

--SPLITTING THE DATA
seed = 42   --set seed for randomization
random = .bsf~new("java.util.Random", seed)
trainPercentage = 80      --set percentage size of training data
housing~randomize(random) --randomize data with seed
trainSize = format(housing~numInstances * trainPercentage / 100, ,0)   --calculate training data size
testSize  = housing~numInstances - trainSize       --calculate testing data size
trainData = .Instances~new(housing, 0, trainSize)  --create training data
testData  = .Instances~new(housing, trainSize, testSize) --create testing data

--SAVING DATA
sv_arff = .bsf~new("weka.core.converters.ArffSaver")
sv_arff~~setInstances(housing_prepared) ~~setFile(.ioFile~new("./housing_prepared.arff")) ~~writeBatch
sv_csv = .bsf~new("weka.core.converters.CSVSaver")   --create saving instance
sv_csv~~setInstances(housing_prepared) ~~setFile(.ioFile~new("./housing_prepared.csv")) ~~writeBatch

::requires "BSF.CLS" -- get Java-ooRexx bridge 
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Weka – Process and Prepare Data
Program Output 1/3

command: "java"   org.rexxla.bsf.RexxDispatcher data_preparation.rxj
NOTE: Picked up JDK_JAVA_OPTIONS: --add-opens=java.base/java.lang=ALL-UNNAMED --add-opens=jdk.compiler/com.sun.tools.javac.processing=ALL-UNNAMED
Jän. 23, 2026 12:12:02 AM com.github.fommil.netlib.ARPACK <clinit>
WARNING: Failed to load implementation from: com.github.fommil.netlib.NativeSystemARPACK
Jän. 23, 2026 12:12:02 AM com.github.fommil.jni.JniLoader liberalLoad
INFO: successfully loaded C:\Users\ADMINI~1\AppData\Local\Temp\jniloader8408960900820874739netlib-native_ref-win-x86_64.dll
London,'United Kingdom',Apartment,?,200000,2,y
Paris,France,House,120,350000,4,n
Berlin,Germany,Apartment,60,150000,1,n
Madrid,Spain,Apartment,90,180000,3,y
Rome,Italy,House,150,400000,5,y
Relation Name:  housing_housing_newColumns
Num Instances:  15
Num Attributes: 7

     Name                      Type  Nom  Int Real     Missing      Unique  Dist
1 city                       Nom 100%   0%   0%     0 /  0%     5 / 33%    10 
2 country                    Nom 100%   0%   0%     0 /  0%     5 / 33%    10 
3 type                       Nom  93%   0%   0%     1 /  7%     0 /  0%     2 
4 sqr_metre                  Num   0%  93%   0%     1 /  7%    12 / 80%    13 
5 price                      Num   0% 100%   0%     0 /  0%     9 / 60%    12 
6 ROOMS                      Num   0% 100%   0%     0 /  0%     3 / 20%     6 
7 balcony_y/n                Nom 100%   0%   0%     0 /  0%     0 /  0%     2 

housing_new:
@relation housing_housing_newColumns

@attribute city {London,Paris,Berlin,Madrid,Rome,Amsterdam,Vienna,Athens,Stockholm,Dublin}
@attribute country {'United Kingdom',France,Germany,Spain,Italy,Netherlands,Austria,Greece,Sweden,Ireland}
@attribute type {Apartment,House}
@attribute sqr_metre numeric
@attribute price numeric
@attribute ROOMS numeric
@attribute balcony_y/n {y,n}

@data
London,'United Kingdom',Apartment,?,200000,2,y
Paris,France,House,120,350000,4,n
Berlin,Germany,Apartment,60,150000,1,n
Madrid,Spain,Apartment,90,180000,3,y
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Weka – Process and Prepare Data
Program Output 2/3

Rome,Italy,House,150,400000,5,y
Amsterdam,Netherlands,Apartment,70,250000,2,n
Vienna,Austria,House,110,300000,4,y
Athens,Greece,Apartment,75,160000,2,n
Stockholm,Sweden,Apartment,85,220000,3,y
Dublin,Ireland,House,130,380000,4,y
London,'United Kingdom',Apartment,120,350000,4,y
Paris,France,Apartment,160,420000,6,y
Berlin,Germany,House,65,180000,2,y
Madrid,Spain,House,95,200000,3,n
Rome,Italy,?,100,280000,4,n
housing_new~numAttributes: 7
The mode of the city attribute is: London
The mode of the country attribute is: United Kingdom
The mode of the type attribute is: Apartment
The mean of the sqr_metre attribute is: 102.14285714285714
The mean of the price attribute is: 268000.0
The mean of the ROOMS attribute is: 3.2666666666666666
The mode of the balcony_y/n attribute is: y
The smallest value of the sqr_metre variable is: 60.0
The biggest value of the sqr_metre variable is: 1.7976931348623157E308
The smallest value of the price variable is: 150000.0
The biggest value of the price variable is: 420000.0
The smallest value of the ROOMS variable is: 1.0
The biggest value of the ROOMS variable is: 6.0
housing_nodup:
@relation housing_housing_newColumns-weka.filters.unsupervised.instance.RemoveWithValues-S170000.0-C5-Lfirst-last-weka.filters.unsupervised.instance.RemoveDuplicates

@attribute city {London,Paris,Berlin,Madrid,Rome,Amsterdam,Vienna,Athens,Stockholm,Dublin}
@attribute country {'United Kingdom',France,Germany,Spain,Italy,Netherlands,Austria,Greece,Sweden,Ireland}
@attribute type {Apartment,House}
@attribute sqr_metre numeric
@attribute price numeric
@attribute rooms numeric

@data
London,'United Kingdom',Apartment,?,200000,2
Paris,France,House,120,350000,4
Madrid,Spain,Apartment,90,180000,3
Rome,Italy,House,150,400000,5
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Weka – Process and Prepare Data
Program Output 3/3

Amsterdam,Netherlands,Apartment,70,250000,2
Vienna,Austria,House,110,300000,4
Stockholm,Sweden,Apartment,85,220000,3
Dublin,Ireland,House,130,380000,4
London,'United Kingdom',Apartment,120,350000,4
Paris,France,Apartment,160,420000,6
Berlin,Germany,House,65,180000,2
Madrid,Spain,House,95,200000,3
Rome,Italy,?,100,280000,4
(AFTER removing) housing_nodup:
@relation housing_housing_newColumns-weka.filters.unsupervised.instance.RemoveWithValues-S170000.0-C5-Lfirst-last-weka.filters.unsupervised.instance.RemoveDuplicates

@attribute city {London,Paris,Berlin,Madrid,Rome,Amsterdam,Vienna,Athens,Stockholm,Dublin}
@attribute country {'United Kingdom',France,Germany,Spain,Italy,Netherlands,Austria,Greece,Sweden,Ireland}
@attribute type {Apartment,House}
@attribute sqr_metre numeric
@attribute price numeric
@attribute rooms numeric

@data
Paris,France,House,120,350000,4
Madrid,Spain,Apartment,90,180000,3
Rome,Italy,House,150,400000,5
Amsterdam,Netherlands,Apartment,70,250000,2
Vienna,Austria,House,110,300000,4
Stockholm,Sweden,Apartment,85,220000,3
Dublin,Ireland,House,130,380000,4
London,'United Kingdom',Apartment,120,350000,4
Paris,France,Apartment,160,420000,6
Berlin,Germany,House,65,180000,2
Madrid,Spain,House,95,200000,3
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Weka – Process and Prepare Data, 3
Prepared Data
housing_prepared.arff

housing_prepared.csv
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Weka – Linear Regression
● There is csv data (house_prices.csv) about square meters, bed rooms, 

bath rooms and the price like this
SquareMeters,Bedrooms,Bathrooms,Price
139,3,2,250000
167,4,3,350000
111,2,1,180000
186,3,2,400000
204,4,3,380000
158,3,2,320000
130,2,1,220000
149,3,2,260000
177,4,3,410000 
…

● Create a linear regression model and evaluate it
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Weka – Linear Regression
WU\02_PavicJacov\nutshells_examples\supervised_learning\linear_regression.rxj

-- DataSource class is embedded in ConverterUtils
call bsf.import "weka.core.converters.ConverterUtils$DataSource", DataSource
call bsf.import "weka.core.Instances", Instances

-- load packages
.bsf~new("weka.core.WekaPackageManager") ~loadPackages(.false) -- .false: quiet
-- import data set
weather = .DataSource~new("./house_prices.csv") ~getDataSet
-- shuffle and split between training and testing data
seed    = 42
weather~randomize( .bsf~new("java.util.Random",seed) )
trainPercentage = 80
trainSize = format(weather~numInstances * trainPercentage / 100,,0)
testSize  = weather~numInstances - trainSize
trainData = .Instances~new(weather, 0, trainSize)
testData  = .Instances~new(weather, trainSize, testSize)
-- Compute Decision Tree
lr = .bsf~new("weka.classifiers.functions.LinearRegression")
-- both, trainData and testData have the same structure (same attributes)
trainData~setClassIndex(trainData~numAttributes-1)
lr~buildClassifier(trainData)   -- build the model
say lr~toString                 -- print out the result
-- Evaluate Model
eval = .bsf~new("weka.classifiers.Evaluation",trainData)
testData~setClassIndex(testData~numAttributes-1)   -- set the dependant variable of the testing data (in this case the last column)
-- this version of evaluateModel expects three (!) arguments
noPredictions=bsf.createJavaArray("java.lang.Object",0)  -- create a 0 capacity Java array
eval~evaluateModel(lr, testData, noPredictions) -- evaluate the model
say "=== toSummaryString ===" eval~toSummaryString

::requires "BSF.CLS" -- get Java-ooRexx bridge
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Weka – Linear Regression
Program Output

NOTE: Picked up JDK_JAVA_OPTIONS: --add-opens=java.base/java.lang=ALL-UNNAMED --add-opens=jdk.compiler/com.sun.tools.javac.processing=ALL-UNNAMED
Jän. 23, 2026 12:53:25 AM com.github.fommil.netlib.ARPACK <clinit>
WARNING: Failed to load implementation from: com.github.fommil.netlib.NativeSystemARPACK
Jän. 23, 2026 12:53:25 AM com.github.fommil.jni.JniLoader liberalLoad
INFO: successfully loaded C:\Users\ADMINI~1\AppData\Local\Temp\jniloader7451495622485683368netlib-native_ref-win-x86_64.dll
Jän. 23, 2026 12:53:26 AM com.github.fommil.netlib.BLAS <clinit>
WARNING: Failed to load implementation from: com.github.fommil.netlib.NativeSystemBLAS
Jän. 23, 2026 12:53:26 AM com.github.fommil.jni.JniLoader load
INFO: already loaded netlib-native_ref-win-x86_64.dll
Jän. 23, 2026 12:53:26 AM com.github.fommil.netlib.LAPACK <clinit>
WARNING: Failed to load implementation from: com.github.fommil.netlib.NativeSystemLAPACK
Jän. 23, 2026 12:53:26 AM com.github.fommil.jni.JniLoader load
INFO: already loaded netlib-native_ref-win-x86_64.dll

Linear Regression Model

Price =

   1138.9569 * SquareMeters +
  57701.7943 * Bathrooms +
  -1570.6529
=== toSummaryString ===
Correlation coefficient                  0.9765
Mean absolute error                  17253.4261
Root mean squared error              20315.711
Relative absolute error                 21.1987 %
Root relative squared error             22.9693 %
Total Number of Instances                9
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Weka – Data Visualisation
● There is csv data (house_prices.csv) about square meters, bed rooms, 

bath rooms and the price like this
SquareMeters,Bedrooms,Bathrooms,Price
139,3,2,250000
167,4,3,350000
111,2,1,180000
186,3,2,400000
204,4,3,380000
158,3,2,320000
130,2,1,220000
149,3,2,260000
177,4,3,410000 
…

● Create a plot from the data and let the user interact with it
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Weka – Data Visualisation
WU\02_PavicJacov\nutshells_examples\data_visualization\data_visualization.rxj

-- DataSource class is embedded in ConverterUtils
call bsf.import "weka.core.converters.ConverterUtils$DataSource", DataSource
call bsf.import "weka.core.Instances", Instances
call bsf.import "javax.swing.JFrame", JFrame

-- load packages
.bsf~new("weka.core.WekaPackageManager") ~loadPackages(.false) -- .false: quiet
-- import data set
housing = .DataSource~new("./house_prices.csv") ~getDataSet
-- create plotdata2D instance with the data as input
plotData = .bsf~new("weka.gui.visualize.PlotData2D", housing) ~~setPlotName("DATA")
-- create the visualization panel
panel = .bsf~new("weka.gui.visualize.VisualizePanel") ~~addPlot(plotData)
-- create a JFrame to hold the visualization panel
frame = .JFrame~new("Data Visualization")
frame~setDefaultCloseOperation(.JFrame~EXIT_ON_CLOSE)   -- make JFRAME closable
frame~setSize(1600, 1200)
frame~getContentPane~add(panel)     -- add panel to contentPane
frame~~setVisible(.true) ~~toFront  -- show
say "Hit enter to continue"
parse pull .                        -- otherwise ooRexx ends and Java with it

::requires "BSF.CLS" -- get Java-ooRexx bridge
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Weka – Data Visualization
house_prices.csv



45 Prof. Rony G. Flatscher

Weka – Applying Multiple Classifiers
● Applying multiple classifiers on weather data

– Show default values and the synopsis of all available options per classifier
– Show results for each classifier
– Classifiers

● J48 (decision tree)
● IBk (k-nearest neighbor)
● Logistic (logistic regression)
● Naive Bayes 
● Random forest
● SMO (support vector machine)

● Hint: to get at the JavaDocs search with the needles "javadoc weka", e.g.,
javadoc weka Instances 
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Weka – Applying Multiple Classifiers
Weather Data
Weather.nominal.arff
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Weka – Applying Multiple Classifiers 1/2
WU\02_PavicJacov\nutshells_examples\supervised_learning\classifyAndEvaluateWeather.rxj

-- DataSource is an inner (embedded class) of the ConverterUtils class
call bsf.import "weka.core.converters.ConverterUtils$DataSource", DataSource
call bsf.import "weka.core.Instances", Instances

-- load packages
.bsf~new("weka.core.WekaPackageManager") ~loadPackages(.false) -- .false: quiet

-- import weather data set
weather = .DataSource~new("./weather.nominal.arff") ~getDataSet
say "=== weather data ==="
say weather~toString
say
say "there are" pp(weather~numInstances) "instances"
seed    = 0
weather~randomize( .bsf~new("java.util.Random",seed) )

trainPercentage = 60
trainSize = format(weather~numInstances * trainPercentage / 100,,0)
testSize  = weather~numInstances - trainSize
trainData = .Instances~new(weather, 0, trainSize)
testData  = .Instances~new(weather, trainSize, testSize)

… continued …   
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Weka – Applying Multiple Classifiers 2/2
WU\02_PavicJacov\nutshells_examples\supervised_learning\classifyAndEvaluateWeather.rxj

   -- array of classifiers to use    … continued … 
arrClz="weka.classifiers.trees.J48",            -  -- decision tree
       "weka.classifiers.lazy.IBk",             -  -- k-nearest neighbor
       "weka.classifiers.functions.Logistic",   -  -- logistic regression
       "weka.classifiers.bayes.NaiveBayes",     -  -- naive Bayes
       "weka.classifiers.trees.RandomForest",   -  -- random forest
       "weka.classifiers.functions.SMO"            -- support vector machine
say "=== classifying and evaluation ==="
do counter c clz over arrClz     -- iterate and apply classifiers
   className=clz~substr(clz~lastPos('.')+1)
   say "--- classifier #" c":" pp(className) "("clz")" "---"
   model = .bsf~new(clz)   -- create instance, show options and synopsis
   say "using (default) options:" pp(.java.lang.String~join(" ",model~getOptions))
   do counter c2 option over model~listOptions
      say "   #" c2~right(2)":" pp(option~name)":" pp(option~synopsis)
   end

   testData ~setClassIndex(testData~numAttributes-1)  -- set the dependant variable
   trainData~setClassIndex(trainData~numAttributes-1)

      -- both, trainData and testData have the same structure (same attributes)
   model~buildClassifier(trainData) -- build the model
   say pp(model~toString)           -- print out the result
      -- Evaluate Model
   eval = .bsf~new("weka.classifiers.Evaluation",trainData)
      -- this version of evaluateModel expects three (!) arguments
   noPredictions=bsf.createJavaArray("java.lang.Object",0)  -- create an empty Java array
   eval~evaluateModel(model, testData, noPredictions)       -- evaluate the model
   say "___ toSummaryString ___" eval~toSummaryString
   say eval~toMatrixString          -- print out the confusion matrix
   say
end
::requires "BSF.CLS" -- get Java-ooRexx bridge
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Weka – Applying Multiple Classifiers
Program Output 1/8

NOTE: Picked up JDK_JAVA_OPTIONS: --add-opens=java.base/java.lang=ALL-UNNAMED --add-opens=jdk.compiler/com.sun.tools.javac.processing=ALL-UNNAMED
Jän. 25, 2026 8:35:54 PM com.github.fommil.netlib.ARPACK <clinit>
WARNING: Failed to load implementation from: com.github.fommil.netlib.NativeSystemARPACK
Jän. 25, 2026 8:35:55 PM com.github.fommil.jni.JniLoader liberalLoad
INFO: successfully loaded C:\Users\ADMINI~1\AppData\Local\Temp\jniloader13790026895714022094netlib-native_ref-win-x86_64.dll
=== weather data ===

@relation weather.symbolic

@attribute outlook {sunny,overcast,rainy}
@attribute temperature {hot,mild,cool}
@attribute humidity {high,normal}
@attribute windy {TRUE,FALSE}
@attribute play {yes,no}

@data
sunny,hot,high,FALSE,no
sunny,hot,high,TRUE,no
overcast,hot,high,FALSE,yes
rainy,mild,high,FALSE,yes
rainy,cool,normal,FALSE,yes
rainy,cool,normal,TRUE,no
overcast,cool,normal,TRUE,yes
sunny,mild,high,FALSE,no
sunny,cool,normal,FALSE,yes
rainy,mild,normal,FALSE,yes
sunny,mild,normal,TRUE,yes
overcast,mild,high,TRUE,yes
overcast,hot,normal,FALSE,yes
rainy,mild,high,TRUE,no

there are [14] instances

… continued … 
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Weka – Applying Multiple Classifiers
Program Output 2/8

=== classifying and evaluation ===
--- classifier # 1: [J48] (weka.classifiers.trees.J48) ---
using (default) options: [-C 0.25 -M 2]
   #  1: [U]: [-U]
   #  2: [O]: [-O]
   #  3: [C]: [-C <pruning confidence>]
   #  4: [M]: [-M <minimum number of instances>]
   #  5: [R]: [-R]
   #  6: [N]: [-N <number of folds>]
   #  7: [B]: [-B]
   #  8: [S]: [-S]
   #  9: [L]: [-L]
   # 10: [A]: [-A]
   # 11: [J]: [-J]
   # 12: [Q]: [-Q <seed>]
   # 13: [-doNotMakeSplitPointActualValue]: [-doNotMakeSplitPointActualValue]
   # 14: [output-debug-info]: [-output-debug-info]
   # 15: [-do-not-check-capabilities]: [-do-not-check-capabilities]
   # 16: [num-decimal-places]: [-num-decimal-places]
   # 17: [batch-size]: [-batch-size]
[J48 pruned tree
------------------
: yes (8.0/2.0)

Number of Leaves  : 1

Size of the tree : 1

… continued … 

___ toSummaryString ___ 
Correctly Classified Instances           3               50      %
Incorrectly Classified Instances         3               50      %
Kappa statistic                          0     
Mean absolute error                      0.5   
Root mean squared error                  0.559 
Relative absolute error                100      %
Root relative squared error            103.8068 %
Total Number of Instances                6     

=== Confusion Matrix ===

 a b   <-- classified as
 3 0 | a = yes
 3 0 | b = no 

… continued … 
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Weka – Applying Multiple Classifiers
Program Output 3/8

--- classifier # 2: [IBk] (weka.classifiers.lazy.IBk) ---

using (default) options: [-K 1 -W 0 -A 
weka.core.neighboursearch.LinearNNSearch -A "weka.core.EuclideanDistance -R 
first-last"]
   #  1: [I]: [-I]
   #  2: [F]: [-F]
   #  3: [K]: [-K <number of neighbors>]
   #  4: [E]: [-E]
   #  5: [W]: [-W <window size>]
   #  6: [X]: [-X]
   #  7: [A]: [-A]
   #  8: [output-debug-info]: [-output-debug-info]
   #  9: [-do-not-check-capabilities]: [-do-not-check-capabilities]
   # 10: [num-decimal-places]: [-num-decimal-places]
   # 11: [batch-size]: [-batch-size]
[IB1 instance-based classifier
using 1 nearest neighbour(s) for classification
]
___ toSummaryString ___ 
Correctly Classified Instances           3               50      %
Incorrectly Classified Instances         3               50      %
Kappa statistic                          0     
Mean absolute error                      0.5529
Root mean squared error                  0.6703
Relative absolute error                110.582  %
Root relative squared error            124.471  %
Total Number of Instances                6     

=== Confusion Matrix ===

 a b   <-- classified as
 2 1 | a = yes
 2 1 | b = no

… continued on next page ….
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Weka – Applying Multiple Classifiers
Program Output 4/8

--- classifier # 3: [Logistic] (weka.classifiers.functions.Logistic) ---
using (default) options: [-R 1.0E-8 -M -1 -num-decimal-places 4]
   #  1: [C]: [-C]
   #  2: [S]: [-S]
   #  3: [R]: [-R <ridge>]
   #  4: [M]: [-M <number>]
   #  5: [output-debug-info]: [-output-debug-info]
   #  6: [-do-not-check-capabilities]: [-do-not-check-capabilities]
   #  7: [num-decimal-places]: [-num-decimal-places]
   #  8: [batch-size]: [-batch-size]
[Logistic Regression with ridge parameter of 1.0E-8
Coefficients...
                             Class
Variable                       yes
==================================
outlook=sunny             -21.3057
outlook=overcast            8.4056
outlook=rainy              14.5813
temperature=hot           -29.2883
temperature=mild            -5.264
temperature=cool           19.2828
humidity=normal            11.8799
windy=FALSE                -8.4056
Intercept                   20.758

Odds Ratios...
                             Class
Variable                       yes
==================================
outlook=sunny                    0
outlook=overcast         4471.9088
outlook=rainy         2150615.3441
temperature=hot                  0
temperature=mild            0.0052

temperature=cool    236813942.4235
humidity=normal        144338.6099
windy=FALSE                 0.0002
]

___ toSummaryString ___ 
Correctly Classified Instances           3               50      %
Incorrectly Classified Instances         3               50      %
Kappa statistic                          0     
Mean absolute error                      0.506 
Root mean squared error                  0.7072
Relative absolute error                101.2007 %
Root relative squared error            131.3231 %
Total Number of Instances                6     

=== Confusion Matrix ===

 a b   <-- classified as
 2 1 | a = yes
 2 1 | b = no

… continued on next page … 
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Weka – Applying Multiple Classifiers
Program Output 5/8

--- classifier # 4: [NaiveBayes] (weka.classifiers.bayes.NaiveBayes) ---
using (default) options: []
   #  1: [K]: [-K]
   #  2: [D]: [-D]
   #  3: [O]: [-O]
   #  4: [output-debug-info]: [-output-debug-info]
   #  5: [-do-not-check-capabilities]: [-do-not-check-capabilities]
   #  6: [num-decimal-places]: [-num-decimal-places]
   #  7: [batch-size]: [-batch-size]
[Naive Bayes Classifier

               Class
Attribute        yes    no
               (0.7) (0.3)
===========================
outlook
  sunny           2.0   3.0
  overcast        3.0   1.0
  rainy           4.0   1.0
  [total]         9.0   5.0

temperature
  hot             1.0   2.0
  mild            4.0   2.0
  cool            4.0   1.0
  [total]         9.0   5.0

humidity
  high            3.0   3.0
  normal          5.0   1.0
  [total]         8.0   4.0

temperature=cool    236813942.4235
humidity=normal        144338.6099windy
  TRUE            3.0   1.0
  FALSE           5.0   3.0
  [total]         8.0   4.0

]

___ toSummaryString ___ 
Correctly Classified Instances           3               50      %
Incorrectly Classified Instances         3               50      %
Kappa statistic                          0     
Mean absolute error                      0.5261
Root mean squared error                  0.6131
Relative absolute error                105.2207 %
Root relative squared error            113.8522 %
Total Number of Instances                6     

=== Confusion Matrix ===

 a b   <-- classified as
 2 1 | a = yes
 2 1 | b = no

… continued on next page … 
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Weka – Applying Multiple Classifiers
Program Output 6/8

--- classifier # 5: [RandomForest] (weka.classifiers.trees.RandomForest) ---
using (default) options: [-P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1]
   #  1: [P]: [-P]
   #  2: [O]: [-O]
   #  3: [store-out-of-bag-predictions]: [-store-out-of-bag-predictions]
   #  4: [output-out-of-bag-complexity-statistics]: [-output-out-of-bag-
complexity-statistics]
   #  5: [print]: [-print]
   #  6: [attribute-importance]: [-attribute-importance]
   #  7: [I]: [-I <num>]
   #  8: [num-slots]: [-num-slots <num>]
   #  9: [K]: [-K <number of attributes>]
   # 10: [M]: [-M <minimum number of instances>]
   # 11: [V]: [-V <minimum variance for split>]
   # 12: [S]: [-S <num>]
   # 13: [depth]: [-depth <num>]
   # 14: [N]: [-N <num>]
   # 15: [U]: [-U]
   # 16: [B]: [-B]
   # 17: [output-debug-info]: [-output-debug-info]
   # 18: [-do-not-check-capabilities]: [-do-not-check-capabilities]
   # 19: [num-decimal-places]: [-num-decimal-places]
   # 20: [batch-size]: [-batch-size]
[RandomForest

Bagging with 100 iterations and base learner

weka.classifiers.trees.RandomTree -K 0 -M 1.0 -V 0.001 -S 1 -do-not-check-
capabilities]

___ toSummaryString ___ 
Correctly Classified Instances           3               50      %
Incorrectly Classified Instances         3               50      %
Kappa statistic                          0     

Mean absolute error                      0.553 
Root mean squared error                  0.6447
Relative absolute error                110.6083 %
Root relative squared error            119.722  %
Total Number of Instances                6     

=== Confusion Matrix ===

 a b   <-- classified as
 2 1 | a = yes
 2 1 | b = no

… continued on next page … 
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Weka – Applying Multiple Classifiers
Program Output 7/8

--- classifier # 6: [SMO] (weka.classifiers.functions.SMO) ---
using (default) options: [-C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K 
weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007 
-calibrator weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-
places 4]
   #  1: [no-checks]: [-no-checks]
   #  2: [C]: [-C <double>]
   #  3: [N]: [-N]
   #  4: [L]: [-L <double>]
   #  5: [P]: [-P <double>]
   #  6: [M]: [-M]
   #  7: [V]: [-V <double>]
   #  8: [W]: [-W <double>]
   #  9: [K]: [-K <classname and parameters>]
   # 10: [calibrator]: [-calibrator <scheme specification>]
   # 11: [output-debug-info]: [-output-debug-info]
   # 12: [-do-not-check-capabilities]: [-do-not-check-capabilities]
   # 13: [num-decimal-places]: [-num-decimal-places]
   # 14: [batch-size]: [-batch-size]
   # 15: []: [
Options specific to kernel 
weka.classifiers.functions.supportVector.PolyKernel:]
   # 16: [E]: [-E <num>]
   # 17: [L]: [-L]
   # 18: [C]: [-C <num>]
   # 19: [output-debug-info]: [-output-debug-info]
   # 20: []: [
Options specific to calibrator weka.classifiers.functions.Logistic:]
   # 21: [C]: [-C]
   # 22: [S]: [-S]
   # 23: [R]: [-R <ridge>]
   # 24: [M]: [-M <number>]
   # 25: [output-debug-info]: [-output-debug-info]

   # 26: [-do-not-check-capabilities]: [-do-not-check-capabilities]
   # 27: [num-decimal-places]: [-num-decimal-places]
   # 28: [batch-size]: [-batch-size]
[SMO

Kernel used:
  Linear Kernel: K(x,y) = <x,y>

Classifier for classes: yes, no

BinarySMO

Machine linear: showing attribute weights, not support vectors.

         0.8998 * (normalized) outlook=sunny
 +      -0.2996 * (normalized) outlook=overcast
 +      -0.6002 * (normalized) outlook=rainy
 +       0.6002 * (normalized) temperature=hot
 +       0.1002 * (normalized) temperature=mild
 +      -0.7004 * (normalized) temperature=cool
 +      -0.7004 * (normalized) humidity=normal
 +       0.2996 * (normalized) windy=FALSE
 -       0.7996

Number of kernel evaluations: 28 (81.579% cached)

… continued on next page … 
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Weka – Applying Multiple Classifiers
Program Output 8/8

___ toSummaryString ___ 
Correctly Classified Instances           4               66.6667 %
Incorrectly Classified Instances         2               33.3333 %
Kappa statistic                          0.3333
Mean absolute error                      0.3333
Root mean squared error                  0.5774
Relative absolute error                 66.6667 %
Root relative squared error            107.2113 %
Total Number of Instances                6     

=== Confusion Matrix ===

 a b   <-- classified as
 3 0 | a = yes
 2 1 | b = no
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Roundup
● Machine learning (ML) with Weka

– GUI
– Command line interface (CLI), scripts
– Huge Java class library related to all aspects of ML
– Weka can be used on Windows, Apple, Linux, and everywhere where Java exists
– Meant to be used with Java, however can be used by scripting languages as well

● The Java-ooRexx bridge BSF4ooRexx allows to use the Weka class library and its 
numerouse packages

● Weka sample code demonstrates the use of scripting languages like Groovy or Jython (a 
Java implementation of Python)

– A great tool to experiment, research, and teach machine learning … 
… and it is free and open source!
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