
Vienna University of Economics and Business Welthandelsplatz 1, D2-C ▪ ▪ A-1020 Vienna Prof. Rony G. Flatscher

Department of Information Systems
and Operations Management

BSF4ooRexxooRexxREXX

Business Programming 1 Business Programming 2

Security,
Debugging

Commands,
APIs

Window-
Automatisation,
Web-Scripting

Graphical User
Interfaces (GUI),

Sockets,
...

Basics,
Parsing

Introduction to Machine Learning (ML)
Weka (Waikato Environment for Knowledge Analysis)

2 Prof. Rony G. Flatscher

Overview

● Introduction to machine learning (ML)
● Introduction to Weka (a powerful, complete Java infrastructure for ML)
● The Weka environment
● Weka resources (links to Weka, packages, tutorials, …)
● Nutshell examples for employing Weka for ML
● Roundup

3 Prof. Rony G. Flatscher

Machine Learning (ML), 1
Early History of Machine Learning (1940s-1990s)
● Origins

– 1940s–50s: Foundations in statistics, neuroscience, and computer science
– Alan Turing (1950): “Can machines think?”
– 1957: Frank Rosenblatt introduces the Perceptron (early neural network)

● Early Progress & Challenges
– 1960s–70s: Rule-based AI (artificial intelligence) and symbolic systems dominate
– 1980s: Revival of neural networks with backpropagation
– Late 1980s–90s: Limited data and computing power slow progress → “AI winters”

4 Prof. Rony G. Flatscher

Machine Learning (ML), 2
Modern Machine Learning (2000s–Present)
● Key Drivers

– Explosion of data (internet, sensors, mobile devices)
– Advances in computing power (GPUs, cloud computing)
– Improved algorithms and optimization techniques

● Major Breakthroughs
– 2006–2012: Deep learning resurgence
– 2012: AlexNet revolutionizes image recognition
– 2010s–Present:

● Applications in vision, speech, natural language processing (NLP), medicine, and autonomous
systems

● Rise of foundation models and large-scale neural networks

● Today
– ML is a core technology behind search engines, recommendations, generative AI, and

scientific discovery

5 Prof. Rony G. Flatscher

Machine Learning (ML), 3

● What is Machine Learning ?
– A field of AI (artificial intelligence) where computers learn patterns from data

instead of being explicitly programmed
– Models improve their performance through experience (data)
– Used for tasks like prediction, classification, and decision-making

● Why use Machine Learning?
– Handles complex patterns that are hard to code manually
– Scales to large and growing datasets
– Adapts and improves as new data becomes available
– Enables practical applications such as:

● Recommendation systems
● Image and speech recognition
● Fraud detection and forecasting

6 Prof. Rony G. Flatscher

Machine Learning (ML), 4

● Building blocks
– Data

● Examples the system learns from
– Model

● Mathematical representation of patterns
– Training/learning

● Adjusting the model using data
– Prediction

● Applying learned patterns to new data

7 Prof. Rony G. Flatscher

Machine Learning (ML), 5

● Main types of machine learning
– Supervised Learning

● Uses labeled data
● Example: spam detection

– Unsupervised Learning
● No labels provided, find patterns
● Example: customer clustering

– Reinforcement Learning
● Learns by trial and error
● Example: game-playing AI

8 Prof. Rony G. Flatscher

Machine Learning (ML), 6

● Key Components & Challenges
– Data

● Text, logs, manuals, images, speech, movies, …
– Features and preparation

● Relevant information from data
– Model

● Algorithms and parameters
– Methods used to learn patterns (supervised, unsupervised, reinforcement, …)

– Predictions and decisions
● Apply model to data

– Evaluation
● Measuring accuracy and performance

Challenges: data quality, bias, overfitting, interpretability

9 Prof. Rony G. Flatscher

Machine Learning (ML), 7

Data
(text, images, speech, …)

Features & Preparation
(relevant information from data)

Model
algorithms & parameters

Predictions & Decisions

Evaluation & Metrics
accuracy, performance, reward

Supervised
labeled data

Unsupervised
find patterns

Reinforcement
rewards

10 Prof. Rony G. Flatscher

Weka, 1
Waikato Environment for Knowledge Analysis
● Weka (Waikato Environment for Knowledge Analysis) is an open-source

machine learning tool developed in New Zealand
– Created and maintained at the University of Waikato, New Zealand

● https://ml.cms.waikato.ac.nz/weka
– Java-based

● Java development started 1997
– In the 90's development started out with Tcl/Tk, C, …
– As of 2025/26 the release version of Weka is 3.8.6, released

https://waikato.github.io/weka-wiki/downloading_weka/
● Runs on Windows, macOS, and Linux

– Provides an easy-to-use graphical user interface (GUI)
– Supports classification, regression, clustering, and data visualization, …
– Widely used for teaching, research, and data mining

11 Prof. Rony G. Flatscher

Weka, 2
Core Interfaces
● Explorer (GUI)

– Main graphical user interface
– Used for data preprocessing, classification, regression, clustering, and visualization
– Step-by-step workflow for experimenting with datasets

● Knowledge Flow (GUI)
– Visual, pipeline-based interface
– Allows users to design machine learning workflows using connected components
– Useful for understanding data flow and automating experiments

● Experimenter (GUI)
– Designed for running and comparing multiple machine learning algorithms
– Supports statistical evaluation of results
– Useful for benchmarking and research experiments

●

12 Prof. Rony G. Flatscher

Weka, 3
Core Interfaces
● Workbench (GUI)

– Integrates multiple Weka tools in one environment
● Provides access to Explorer, Experimenter, and Knowledge Flow

– Ideal for advanced users managing multiple tasks

● Command-Line Interface (CLI)
– Enables scripting and automation
– Useful for large-scale experiments and batch processing

● Libraries & Algorithms (Java class libraries)
– Collection of machine learning algorithms (e.g., decision trees, Naïve Bayes, SVMs,

clustering methods)
– Tools for data preprocessing, feature selection, and evaluation
– ooRexx can be used as a tool and scripting language

13 Prof. Rony G. Flatscher

Weka, 4
GUI – Main Interface (Command: java -jar weka.jar)

14 Prof. Rony G. Flatscher

Weka, 5
GUI – Explorer

15 Prof. Rony G. Flatscher

Weka, 6
GUI – Experimenter

16 Prof. Rony G. Flatscher

Weka, 7
GUI – KnowledgeFlow

17 Prof. Rony G. Flatscher

Weka, 8
GUI – Workbench

18 Prof. Rony G. Flatscher

Weka, 9
GUI – SimpleCLI, 1

19 Prof. Rony G. Flatscher

Weka, 10
GUI – SimpleCLI, 2

20 Prof. Rony G. Flatscher

Weka's "hello world" Example "Iris"
● Dataset "Iris"

– Data in text file named iris.arff
– Instances: 150 flower samples
– Classes: 3 species — Iris setosa, Iris versicolor, Iris virginica (50 each)
– Attributes (numeric)

● Sepal length, sepal width, petal length, petal width
– Ideal for experimenting with classification algorithms, visualization, and evaluation

● Many classifiers achieve 95–100% accuracy
● Setosa is linearly separable; versicolor and virginica partially overlap

● Some tutorials relating to Iris
– https://deeplearning.cms.waikato.ac.nz/user-guide/getting-started/
– https://deeplearning.cms.waikato.ac.nz/examples/classifying-iris/
– https://machinelearningmastery.com/how-to-run-your-first-classifier-in-weka/
– https://www.geeksforgeeks.org/machine-learning/hierarchical-clustering-using-weka/

Iris setosa – Borsten-Schwertlilie (de)
Iris versicolor – Vielfarbige Schwertlilie (de)
Iris virginica – Blaue Sumpfschwertlilie (de)

Sepal – Kelchblatt (de)
Petal – Blütenblatt (de)

21 Prof. Rony G. Flatscher

Weka's "iris.arff", 1/2
$WEKA_HOME/data/iris.arff or $WEKA_HOME/packages/wekaDeeplearning4j/datasets/nominal/iris.arff

22 Prof. Rony G. Flatscher

Weka's "iris.arff", 2/2
$WEKA_HOME/data/iris.arff or $WEKA_HOME/packages/wekaDeeplearning4j/datasets/nominal/iris.arff

… cut … … cut …

23 Prof. Rony G. Flatscher

Weka Getting Started, GUI Example
https://deeplearning.cms.waikato.ac.nz/user-guide/getting-started/

24 Prof. Rony G. Flatscher

Weka Getting Started, Java Example
https://deeplearning.cms.waikato.ac.nz/user-guide/getting-started/#java

// https://deeplearning.cms.waikato.ac.nz/user-guide/getting-started/
import weka.classifiers.Evaluation;
import weka.classifiers.functions.Dl4jMlpClassifier;
import weka.core.Instances;

import java.io.FileReader;
import java.nio.file.Paths;
import java.util.Random;

public class TestWeka {
 public static void main(String[] args) throws Exception {
 Dl4jMlpClassifier clf = new Dl4jMlpClassifier();
 String irisPath = Paths.get(System.getenv("WEKA_HOME"),
 "packages", "wekaDeeplearning4j", "datasets",
 "nominal", "iris.arff").toString();
 Instances inst = new Instances(new FileReader(irisPath));
 inst.setClassIndex(inst.numAttributes() - 1);
 Evaluation ev = new Evaluation(inst);
 ev.crossValidateModel(clf, inst, 10, new Random(0));
 System.out.println(ev.toSummaryString());
 }
}

25 Prof. Rony G. Flatscher

Weka Getting Started, ooRexx Example
https://deeplearning.cms.waikato.ac.nz/user-guide/getting-started/#java

 -- load the classifier function
clf = .bsf~new("weka.classifiers.functions.Dl4jMlpClassifier")
 -- get path to WEKA home directory from enivronment, define path to data
 -- (forward slash works on Unix and on Windows)
irisPath = value("WEKA_HOME",,"environment")"/data/iris.arff"
 -- read Iris data
fReader = .bsf~new("java.io.FileReader",irisPath)
inst = .bsf~new("weka.core.Instances",fReader)
inst~setClassIndex(inst~numAttributes - 1)
 -- create evaluation for Iris data
ev = .bsf~new("weka.classifiers.Evaluation", inst)
 -- cross Validate
ev~crossValidateModel(clf, inst, 10, .bsf~new("java.util.Random",0))
 -- show summary as a string
say ev~toSummaryString

::requires "BSF.CLS" -- get ooRexx-Java bridge

26 Prof. Rony G. Flatscher

Weka Getting Started, ooRexx Example
Output of running the Java or ooRexx Program

27 Prof. Rony G. Flatscher

Weka – Nutshell Examples in ooRexx
● Based on a seminar paper with nutshell examples by the WU student

Jakov Pavic
– Useful resources homepage: https://wi.wu.ac.at/rgf/diplomarbeiten/#sem_202307_01

● Seminar paper with a brief, but very helpful introduction to Weka
https://wi.wu.ac.at/rgf/diplomarbeiten/Seminararbeiten/2023/202307_PavicJakov_WEKA.pdf

● Java nutshell examples:
https://wi.wu.ac.at/rgf/diplomarbeiten/Seminararbeiten/2023/202307_PavicJakov_WEKA-data.zip

● Weka, seminar paper, nutshell examples in
https://wi.wu.ac.at/rgf/wu/lehre/autojava/material/foils/370_Weka_20260122_rgf_WU.zip

– Includes updated weka.jar, seminar paper, all nutshell examples
– After downloading and unzipping study readme.txt

28 Prof. Rony G. Flatscher

Weka – setupWeka.cmd/setupWeka.sh
● Open a terminal, change into the unzipped folder and run

– Windows: setupWeka
– Unix: source sh ./setupWeka.sh
– To run the Weka GUI: java -jar weka.jar
– To run the ooRexx examples use the rexxjh.cmd/rexxj.sh launchers installed

with BSF4ooRexx (Java-ooRexx bridge), e.g.
● Windows: rexxjh WU\01_TestWeka\rxTestWeka.rxj
● Unix: rexxjh.sh WU/01_TestWeka/rxTestWeka.rxj

● The seminar paper and all its Java and corresponding ooRexx nutshell
examples can be found in subdirectory WU, subdirectories 01_TestWeka,
and 02_PavicJacov\nutshells_examples

29 Prof. Rony G. Flatscher

Weka – Process and Prepare Data
● It may be necessary to pre-process the data for various reasons
● In this example we use three different files with data

– One containing the initial data: housing.csv
– One containing two columns to be merged to the initial data:

housing_newColumns.arff
– One containing new data to be added: housing_newRows.csv

● We get various information from the data like mean and mode
● We filter rows by a certain price and remove duplicates
● We use a filter to add a new attribute (price_per_sqm)
● Show how to split the data into a training and testing section
● Save the prepared data as arff and as csv

30 Prof. Rony G. Flatscher

Weka – Process and Prepare Data
Initial Data

housing_new_columns.arffhousing.csv housing_newRows.csv

31 Prof. Rony G. Flatscher

Weka – Process and Prepare Data, 1/4
WU\02_PavicJacov\nutshells_examples\data_preparation\data_preparation.rxj

/* ooRexx version of "data_preparation.java" */
 -- abstract Java class, cannot be imported, hence bsf.loadClass
call bsf.loadClass "weka.filters.Filter", Filter
 -- import Java classes into ooRexx
 -- DataSource class is embedded in ConverterUtils
call bsf.import "weka.core.converters.ConverterUtils$DataSource", DataSource
call bsf.import "weka.core.Instances", Instances
call bsf.import "java.io.File", "ioFile"

-- IMPORTING + COMBINING DATA
housing = .DataSource~new("./housing.csv")~getDataSet
housing_newcol = .DataSource~new("./housing_newColumns.arff")~getDataSet
housing_new = .Instances~mergeInstances(housing,housing_newcol)
 -- get new rows and add them in a loop
housing_newrow = .DataSource~new("./housing_newRows.csv")~getDataSet
do i=0 to housing_newrow~numInstances-1
 housing_new~add(housing_newrow~instance(i))
end

-- UNDERSTANDING DATA
do i=0 to 4 -- show the first five instances
 say housing_new~get(i) ~toString
end
/* or iterating using ooRexx' loop...over
 loop data over housing_new for 5
 say data~toString
 end
*/

say housing_new~toSummaryString -- show summary of the data

say "housing_new:"
say housing_new~toString -- … continued …

32 Prof. Rony G. Flatscher

Weka – Process and Prepare Data, 2/4
WU\02_PavicJacov\nutshells_examples\data_preparation\data_preparation.rxj

say "housing_new~numAttributes:" housing_new~numAttributes
do i=0 to housing_new~numAttributes-1
 attr=housing_new~attribute(i)
end

do i=0 to housing_new~numAttributes-1 -- mean/mode for each attribute
 attr=housing_new~attribute(i)
 if attr~type = 0 then
 say "The mean of the" attr~name "attribute is:" housing_new~meanOrMode(i)
 else
 do
 index = format(housing_new~meanOrMode(i),,0) --get the index of the mode value
 say "The mode of the" attr~name "attribute is:" attr~value(index)
 end
end

numInst=housing_new~numInstances
do i=0 to housing_new~numAttributes-1 -- min/max for numeric attributes
 attr=housing_new~attribute(i)
 if attr~type = 0 then
 do
 say "The smallest value of the" attr~name "variable is:" housing_new~kthSmallestValue(i, 1)
 say "The biggest value of the" attr~name "variable is:" housing_new~kthSmallestValue(i, numInst)
 end
end

--SELECTING DATA
--Delete unnecessary Attribute (balcony_y/n)
housing_new~deleteAttributeAt(6) -- 0-based, hence 7th attribute

–... continued …

33 Prof. Rony G. Flatscher

Weka – Process and Prepare Data, 3/4
WU\02_PavicJacov\nutshells_examples\data_preparation\data_preparation.rxj

--Filter every value below 170000
filter_min = .bsf~new("weka.filters.unsupervised.instance.RemoveWithValues")
options = bsf.createJavaArrayOf("java.lang.String", /* column */ "-C", 5, /* smaller */ "-S", 170000)
filter_min~setOptions(options)
filter_min~setInputFormat(housing_new)
housing_expensive = .Filter~useFilter(housing_new, filter_min)

--CLEANING DATA
--Duplicate Detection
filter = .bsf~new("weka.filters.unsupervised.instance.RemoveDuplicates")
filter~setInputFormat(housing_expensive)
housing_nodup = .Filter~useFilter(housing_expensive, filter)

--Rename Attribute
housing_nodup~renameAttribute(5,"rooms") --rename column 5 to rooms

--Remove rows where attributes miss values
say "housing_nodup:"
say housing_nodup~toString
do i=housing_nodup~numInstances-1 to 0 by -1
 if housing_nodup~instance(i)~hasMissingValue then housing_nodup~remove(i)
end
say "(AFTER removing) housing_nodup:"
say housing_nodup~toString

--CREATE NEW DATA (create new column)
addExpressionFilter=.bsf~new("weka.filters.unsupervised.attribute.AddExpression")
addExpressionFilter~setExpression("a5 / a4") --how should the new column look like (fifth column divided by forth column)
addExpressionFilter~setName("price_per_sqrm") --set the name of the new column
addExpressionFilter~setInputFormat(housing_nodup) --set input for Filter (data set)
housing_prepared = .Filter~useFilter(housing_nodup, addExpressionFilter) --use the filter
–... continued …

34 Prof. Rony G. Flatscher

Weka – Process and Prepare Data, 4/4
WU\02_PavicJacov\nutshells_examples\data_preparation\data_preparation.rxj

--SPLITTING THE DATA
seed = 42 --set seed for randomization
random = .bsf~new("java.util.Random", seed)
trainPercentage = 80 --set percentage size of training data
housing~randomize(random) --randomize data with seed
trainSize = format(housing~numInstances * trainPercentage / 100, ,0) --calculate training data size
testSize = housing~numInstances - trainSize --calculate testing data size
trainData = .Instances~new(housing, 0, trainSize) --create training data
testData = .Instances~new(housing, trainSize, testSize) --create testing data

--SAVING DATA
sv_arff = .bsf~new("weka.core.converters.ArffSaver")
sv_arff~~setInstances(housing_prepared) ~~setFile(.ioFile~new("./housing_prepared.arff")) ~~writeBatch
sv_csv = .bsf~new("weka.core.converters.CSVSaver") --create saving instance
sv_csv~~setInstances(housing_prepared) ~~setFile(.ioFile~new("./housing_prepared.csv")) ~~writeBatch

::requires "BSF.CLS" -- get Java-ooRexx bridge

35 Prof. Rony G. Flatscher

Weka – Process and Prepare Data
Program Output 1/3

command: "java" org.rexxla.bsf.RexxDispatcher data_preparation.rxj
NOTE: Picked up JDK_JAVA_OPTIONS: --add-opens=java.base/java.lang=ALL-UNNAMED --add-opens=jdk.compiler/com.sun.tools.javac.processing=ALL-UNNAMED
Jän. 23, 2026 12:12:02 AM com.github.fommil.netlib.ARPACK <clinit>
WARNING: Failed to load implementation from: com.github.fommil.netlib.NativeSystemARPACK
Jän. 23, 2026 12:12:02 AM com.github.fommil.jni.JniLoader liberalLoad
INFO: successfully loaded C:\Users\ADMINI~1\AppData\Local\Temp\jniloader8408960900820874739netlib-native_ref-win-x86_64.dll
London,'United Kingdom',Apartment,?,200000,2,y
Paris,France,House,120,350000,4,n
Berlin,Germany,Apartment,60,150000,1,n
Madrid,Spain,Apartment,90,180000,3,y
Rome,Italy,House,150,400000,5,y
Relation Name: housing_housing_newColumns
Num Instances: 15
Num Attributes: 7

 Name Type Nom Int Real Missing Unique Dist
1 city Nom 100% 0% 0% 0 / 0% 5 / 33% 10
2 country Nom 100% 0% 0% 0 / 0% 5 / 33% 10
3 type Nom 93% 0% 0% 1 / 7% 0 / 0% 2
4 sqr_metre Num 0% 93% 0% 1 / 7% 12 / 80% 13
5 price Num 0% 100% 0% 0 / 0% 9 / 60% 12
6 ROOMS Num 0% 100% 0% 0 / 0% 3 / 20% 6
7 balcony_y/n Nom 100% 0% 0% 0 / 0% 0 / 0% 2

housing_new:
@relation housing_housing_newColumns

@attribute city {London,Paris,Berlin,Madrid,Rome,Amsterdam,Vienna,Athens,Stockholm,Dublin}
@attribute country {'United Kingdom',France,Germany,Spain,Italy,Netherlands,Austria,Greece,Sweden,Ireland}
@attribute type {Apartment,House}
@attribute sqr_metre numeric
@attribute price numeric
@attribute ROOMS numeric
@attribute balcony_y/n {y,n}

@data
London,'United Kingdom',Apartment,?,200000,2,y
Paris,France,House,120,350000,4,n
Berlin,Germany,Apartment,60,150000,1,n
Madrid,Spain,Apartment,90,180000,3,y

36 Prof. Rony G. Flatscher

Weka – Process and Prepare Data
Program Output 2/3

Rome,Italy,House,150,400000,5,y
Amsterdam,Netherlands,Apartment,70,250000,2,n
Vienna,Austria,House,110,300000,4,y
Athens,Greece,Apartment,75,160000,2,n
Stockholm,Sweden,Apartment,85,220000,3,y
Dublin,Ireland,House,130,380000,4,y
London,'United Kingdom',Apartment,120,350000,4,y
Paris,France,Apartment,160,420000,6,y
Berlin,Germany,House,65,180000,2,y
Madrid,Spain,House,95,200000,3,n
Rome,Italy,?,100,280000,4,n
housing_new~numAttributes: 7
The mode of the city attribute is: London
The mode of the country attribute is: United Kingdom
The mode of the type attribute is: Apartment
The mean of the sqr_metre attribute is: 102.14285714285714
The mean of the price attribute is: 268000.0
The mean of the ROOMS attribute is: 3.2666666666666666
The mode of the balcony_y/n attribute is: y
The smallest value of the sqr_metre variable is: 60.0
The biggest value of the sqr_metre variable is: 1.7976931348623157E308
The smallest value of the price variable is: 150000.0
The biggest value of the price variable is: 420000.0
The smallest value of the ROOMS variable is: 1.0
The biggest value of the ROOMS variable is: 6.0
housing_nodup:
@relation housing_housing_newColumns-weka.filters.unsupervised.instance.RemoveWithValues-S170000.0-C5-Lfirst-last-weka.filters.unsupervised.instance.RemoveDuplicates

@attribute city {London,Paris,Berlin,Madrid,Rome,Amsterdam,Vienna,Athens,Stockholm,Dublin}
@attribute country {'United Kingdom',France,Germany,Spain,Italy,Netherlands,Austria,Greece,Sweden,Ireland}
@attribute type {Apartment,House}
@attribute sqr_metre numeric
@attribute price numeric
@attribute rooms numeric

@data
London,'United Kingdom',Apartment,?,200000,2
Paris,France,House,120,350000,4
Madrid,Spain,Apartment,90,180000,3
Rome,Italy,House,150,400000,5

37 Prof. Rony G. Flatscher

Weka – Process and Prepare Data
Program Output 3/3

Amsterdam,Netherlands,Apartment,70,250000,2
Vienna,Austria,House,110,300000,4
Stockholm,Sweden,Apartment,85,220000,3
Dublin,Ireland,House,130,380000,4
London,'United Kingdom',Apartment,120,350000,4
Paris,France,Apartment,160,420000,6
Berlin,Germany,House,65,180000,2
Madrid,Spain,House,95,200000,3
Rome,Italy,?,100,280000,4
(AFTER removing) housing_nodup:
@relation housing_housing_newColumns-weka.filters.unsupervised.instance.RemoveWithValues-S170000.0-C5-Lfirst-last-weka.filters.unsupervised.instance.RemoveDuplicates

@attribute city {London,Paris,Berlin,Madrid,Rome,Amsterdam,Vienna,Athens,Stockholm,Dublin}
@attribute country {'United Kingdom',France,Germany,Spain,Italy,Netherlands,Austria,Greece,Sweden,Ireland}
@attribute type {Apartment,House}
@attribute sqr_metre numeric
@attribute price numeric
@attribute rooms numeric

@data
Paris,France,House,120,350000,4
Madrid,Spain,Apartment,90,180000,3
Rome,Italy,House,150,400000,5
Amsterdam,Netherlands,Apartment,70,250000,2
Vienna,Austria,House,110,300000,4
Stockholm,Sweden,Apartment,85,220000,3
Dublin,Ireland,House,130,380000,4
London,'United Kingdom',Apartment,120,350000,4
Paris,France,Apartment,160,420000,6
Berlin,Germany,House,65,180000,2
Madrid,Spain,House,95,200000,3

38 Prof. Rony G. Flatscher

Weka – Process and Prepare Data, 3
Prepared Data
housing_prepared.arff

housing_prepared.csv

39 Prof. Rony G. Flatscher

Weka – Linear Regression
● There is csv data (house_prices.csv) about square meters, bed rooms,

bath rooms and the price like this
SquareMeters,Bedrooms,Bathrooms,Price
139,3,2,250000
167,4,3,350000
111,2,1,180000
186,3,2,400000
204,4,3,380000
158,3,2,320000
130,2,1,220000
149,3,2,260000
177,4,3,410000
…

● Create a linear regression model and evaluate it

40 Prof. Rony G. Flatscher

Weka – Linear Regression
WU\02_PavicJacov\nutshells_examples\supervised_learning\linear_regression.rxj

-- DataSource class is embedded in ConverterUtils
call bsf.import "weka.core.converters.ConverterUtils$DataSource", DataSource
call bsf.import "weka.core.Instances", Instances

-- load packages
.bsf~new("weka.core.WekaPackageManager") ~loadPackages(.false) -- .false: quiet
-- import data set
weather = .DataSource~new("./house_prices.csv") ~getDataSet
-- shuffle and split between training and testing data
seed = 42
weather~randomize(.bsf~new("java.util.Random",seed))
trainPercentage = 80
trainSize = format(weather~numInstances * trainPercentage / 100,,0)
testSize = weather~numInstances - trainSize
trainData = .Instances~new(weather, 0, trainSize)
testData = .Instances~new(weather, trainSize, testSize)
-- Compute Decision Tree
lr = .bsf~new("weka.classifiers.functions.LinearRegression")
-- both, trainData and testData have the same structure (same attributes)
trainData~setClassIndex(trainData~numAttributes-1)
lr~buildClassifier(trainData) -- build the model
say lr~toString -- print out the result
-- Evaluate Model
eval = .bsf~new("weka.classifiers.Evaluation",trainData)
testData~setClassIndex(testData~numAttributes-1) -- set the dependant variable of the testing data (in this case the last column)
-- this version of evaluateModel expects three (!) arguments
noPredictions=bsf.createJavaArray("java.lang.Object",0) -- create a 0 capacity Java array
eval~evaluateModel(lr, testData, noPredictions) -- evaluate the model
say "=== toSummaryString ===" eval~toSummaryString

::requires "BSF.CLS" -- get Java-ooRexx bridge

41 Prof. Rony G. Flatscher

Weka – Linear Regression
Program Output

NOTE: Picked up JDK_JAVA_OPTIONS: --add-opens=java.base/java.lang=ALL-UNNAMED --add-opens=jdk.compiler/com.sun.tools.javac.processing=ALL-UNNAMED
Jän. 23, 2026 12:53:25 AM com.github.fommil.netlib.ARPACK <clinit>
WARNING: Failed to load implementation from: com.github.fommil.netlib.NativeSystemARPACK
Jän. 23, 2026 12:53:25 AM com.github.fommil.jni.JniLoader liberalLoad
INFO: successfully loaded C:\Users\ADMINI~1\AppData\Local\Temp\jniloader7451495622485683368netlib-native_ref-win-x86_64.dll
Jän. 23, 2026 12:53:26 AM com.github.fommil.netlib.BLAS <clinit>
WARNING: Failed to load implementation from: com.github.fommil.netlib.NativeSystemBLAS
Jän. 23, 2026 12:53:26 AM com.github.fommil.jni.JniLoader load
INFO: already loaded netlib-native_ref-win-x86_64.dll
Jän. 23, 2026 12:53:26 AM com.github.fommil.netlib.LAPACK <clinit>
WARNING: Failed to load implementation from: com.github.fommil.netlib.NativeSystemLAPACK
Jän. 23, 2026 12:53:26 AM com.github.fommil.jni.JniLoader load
INFO: already loaded netlib-native_ref-win-x86_64.dll

Linear Regression Model

Price =

 1138.9569 * SquareMeters +
 57701.7943 * Bathrooms +
 -1570.6529
=== toSummaryString ===
Correlation coefficient 0.9765
Mean absolute error 17253.4261
Root mean squared error 20315.711
Relative absolute error 21.1987 %
Root relative squared error 22.9693 %
Total Number of Instances 9

42 Prof. Rony G. Flatscher

Weka – Data Visualisation
● There is csv data (house_prices.csv) about square meters, bed rooms,

bath rooms and the price like this
SquareMeters,Bedrooms,Bathrooms,Price
139,3,2,250000
167,4,3,350000
111,2,1,180000
186,3,2,400000
204,4,3,380000
158,3,2,320000
130,2,1,220000
149,3,2,260000
177,4,3,410000
…

● Create a plot from the data and let the user interact with it

43 Prof. Rony G. Flatscher

Weka – Data Visualisation
WU\02_PavicJacov\nutshells_examples\data_visualization\data_visualization.rxj

-- DataSource class is embedded in ConverterUtils
call bsf.import "weka.core.converters.ConverterUtils$DataSource", DataSource
call bsf.import "weka.core.Instances", Instances
call bsf.import "javax.swing.JFrame", JFrame

-- load packages
.bsf~new("weka.core.WekaPackageManager") ~loadPackages(.false) -- .false: quiet
-- import data set
housing = .DataSource~new("./house_prices.csv") ~getDataSet
-- create plotdata2D instance with the data as input
plotData = .bsf~new("weka.gui.visualize.PlotData2D", housing) ~~setPlotName("DATA")
-- create the visualization panel
panel = .bsf~new("weka.gui.visualize.VisualizePanel") ~~addPlot(plotData)
-- create a JFrame to hold the visualization panel
frame = .JFrame~new("Data Visualization")
frame~setDefaultCloseOperation(.JFrame~EXIT_ON_CLOSE) -- make JFRAME closable
frame~setSize(1600, 1200)
frame~getContentPane~add(panel) -- add panel to contentPane
frame~~setVisible(.true) ~~toFront -- show
say "Hit enter to continue"
parse pull . -- otherwise ooRexx ends and Java with it

::requires "BSF.CLS" -- get Java-ooRexx bridge

44 Prof. Rony G. Flatscher

Weka – Data Visualization
house_prices.csv

45 Prof. Rony G. Flatscher

Weka – Applying Multiple Classifiers
● Applying multiple classifiers on weather data

– Show default values and the synopsis of all available options per classifier
– Show results for each classifier
– Classifiers

● J48 (decision tree)
● IBk (k-nearest neighbor)
● Logistic (logistic regression)
● Naive Bayes
● Random forest
● SMO (support vector machine)

● Hint: to get at the JavaDocs search with the needles "javadoc weka", e.g.,
javadoc weka Instances

46 Prof. Rony G. Flatscher

Weka – Applying Multiple Classifiers
Weather Data
Weather.nominal.arff

47 Prof. Rony G. Flatscher

Weka – Applying Multiple Classifiers 1/2
WU\02_PavicJacov\nutshells_examples\supervised_learning\classifyAndEvaluateWeather.rxj

-- DataSource is an inner (embedded class) of the ConverterUtils class
call bsf.import "weka.core.converters.ConverterUtils$DataSource", DataSource
call bsf.import "weka.core.Instances", Instances

-- load packages
.bsf~new("weka.core.WekaPackageManager") ~loadPackages(.false) -- .false: quiet

-- import weather data set
weather = .DataSource~new("./weather.nominal.arff") ~getDataSet
say "=== weather data ==="
say weather~toString
say
say "there are" pp(weather~numInstances) "instances"
seed = 0
weather~randomize(.bsf~new("java.util.Random",seed))

trainPercentage = 60
trainSize = format(weather~numInstances * trainPercentage / 100,,0)
testSize = weather~numInstances - trainSize
trainData = .Instances~new(weather, 0, trainSize)
testData = .Instances~new(weather, trainSize, testSize)

… continued …

48 Prof. Rony G. Flatscher

Weka – Applying Multiple Classifiers 2/2
WU\02_PavicJacov\nutshells_examples\supervised_learning\classifyAndEvaluateWeather.rxj

 -- array of classifiers to use … continued …
arrClz="weka.classifiers.trees.J48", - -- decision tree
 "weka.classifiers.lazy.IBk", - -- k-nearest neighbor
 "weka.classifiers.functions.Logistic", - -- logistic regression
 "weka.classifiers.bayes.NaiveBayes", - -- naive Bayes
 "weka.classifiers.trees.RandomForest", - -- random forest
 "weka.classifiers.functions.SMO" -- support vector machine
say "=== classifying and evaluation ==="
do counter c clz over arrClz -- iterate and apply classifiers
 className=clz~substr(clz~lastPos('.')+1)
 say "--- classifier #" c":" pp(className) "("clz")" "---"
 model = .bsf~new(clz) -- create instance, show options and synopsis
 say "using (default) options:" pp(.java.lang.String~join(" ",model~getOptions))
 do counter c2 option over model~listOptions
 say " #" c2~right(2)":" pp(option~name)":" pp(option~synopsis)
 end

 testData ~setClassIndex(testData~numAttributes-1) -- set the dependant variable
 trainData~setClassIndex(trainData~numAttributes-1)

 -- both, trainData and testData have the same structure (same attributes)
 model~buildClassifier(trainData) -- build the model
 say pp(model~toString) -- print out the result
 -- Evaluate Model
 eval = .bsf~new("weka.classifiers.Evaluation",trainData)
 -- this version of evaluateModel expects three (!) arguments
 noPredictions=bsf.createJavaArray("java.lang.Object",0) -- create an empty Java array
 eval~evaluateModel(model, testData, noPredictions) -- evaluate the model
 say "___ toSummaryString ___" eval~toSummaryString
 say eval~toMatrixString -- print out the confusion matrix
 say
end
::requires "BSF.CLS" -- get Java-ooRexx bridge

49 Prof. Rony G. Flatscher

Weka – Applying Multiple Classifiers
Program Output 1/8

NOTE: Picked up JDK_JAVA_OPTIONS: --add-opens=java.base/java.lang=ALL-UNNAMED --add-opens=jdk.compiler/com.sun.tools.javac.processing=ALL-UNNAMED
Jän. 25, 2026 8:35:54 PM com.github.fommil.netlib.ARPACK <clinit>
WARNING: Failed to load implementation from: com.github.fommil.netlib.NativeSystemARPACK
Jän. 25, 2026 8:35:55 PM com.github.fommil.jni.JniLoader liberalLoad
INFO: successfully loaded C:\Users\ADMINI~1\AppData\Local\Temp\jniloader13790026895714022094netlib-native_ref-win-x86_64.dll
=== weather data ===

@relation weather.symbolic

@attribute outlook {sunny,overcast,rainy}
@attribute temperature {hot,mild,cool}
@attribute humidity {high,normal}
@attribute windy {TRUE,FALSE}
@attribute play {yes,no}

@data
sunny,hot,high,FALSE,no
sunny,hot,high,TRUE,no
overcast,hot,high,FALSE,yes
rainy,mild,high,FALSE,yes
rainy,cool,normal,FALSE,yes
rainy,cool,normal,TRUE,no
overcast,cool,normal,TRUE,yes
sunny,mild,high,FALSE,no
sunny,cool,normal,FALSE,yes
rainy,mild,normal,FALSE,yes
sunny,mild,normal,TRUE,yes
overcast,mild,high,TRUE,yes
overcast,hot,normal,FALSE,yes
rainy,mild,high,TRUE,no

there are [14] instances

… continued …

50 Prof. Rony G. Flatscher

Weka – Applying Multiple Classifiers
Program Output 2/8

=== classifying and evaluation ===
--- classifier # 1: [J48] (weka.classifiers.trees.J48) ---
using (default) options: [-C 0.25 -M 2]
 # 1: [U]: [-U]
 # 2: [O]: [-O]
 # 3: [C]: [-C <pruning confidence>]
 # 4: [M]: [-M <minimum number of instances>]
 # 5: [R]: [-R]
 # 6: [N]: [-N <number of folds>]
 # 7: [B]: [-B]
 # 8: [S]: [-S]
 # 9: [L]: [-L]
 # 10: [A]: [-A]
 # 11: [J]: [-J]
 # 12: [Q]: [-Q <seed>]
 # 13: [-doNotMakeSplitPointActualValue]: [-doNotMakeSplitPointActualValue]
 # 14: [output-debug-info]: [-output-debug-info]
 # 15: [-do-not-check-capabilities]: [-do-not-check-capabilities]
 # 16: [num-decimal-places]: [-num-decimal-places]
 # 17: [batch-size]: [-batch-size]
[J48 pruned tree

: yes (8.0/2.0)

Number of Leaves : 1

Size of the tree : 1

… continued …

___ toSummaryString ___
Correctly Classified Instances 3 50 %
Incorrectly Classified Instances 3 50 %
Kappa statistic 0
Mean absolute error 0.5
Root mean squared error 0.559
Relative absolute error 100 %
Root relative squared error 103.8068 %
Total Number of Instances 6

=== Confusion Matrix ===

 a b <-- classified as
 3 0 | a = yes
 3 0 | b = no

… continued …

51 Prof. Rony G. Flatscher

Weka – Applying Multiple Classifiers
Program Output 3/8

--- classifier # 2: [IBk] (weka.classifiers.lazy.IBk) ---

using (default) options: [-K 1 -W 0 -A
weka.core.neighboursearch.LinearNNSearch -A "weka.core.EuclideanDistance -R
first-last"]
 # 1: [I]: [-I]
 # 2: [F]: [-F]
 # 3: [K]: [-K <number of neighbors>]
 # 4: [E]: [-E]
 # 5: [W]: [-W <window size>]
 # 6: [X]: [-X]
 # 7: [A]: [-A]
 # 8: [output-debug-info]: [-output-debug-info]
 # 9: [-do-not-check-capabilities]: [-do-not-check-capabilities]
 # 10: [num-decimal-places]: [-num-decimal-places]
 # 11: [batch-size]: [-batch-size]
[IB1 instance-based classifier
using 1 nearest neighbour(s) for classification
]
___ toSummaryString ___
Correctly Classified Instances 3 50 %
Incorrectly Classified Instances 3 50 %
Kappa statistic 0
Mean absolute error 0.5529
Root mean squared error 0.6703
Relative absolute error 110.582 %
Root relative squared error 124.471 %
Total Number of Instances 6

=== Confusion Matrix ===

 a b <-- classified as
 2 1 | a = yes
 2 1 | b = no

… continued on next page ….

52 Prof. Rony G. Flatscher

Weka – Applying Multiple Classifiers
Program Output 4/8

--- classifier # 3: [Logistic] (weka.classifiers.functions.Logistic) ---
using (default) options: [-R 1.0E-8 -M -1 -num-decimal-places 4]
 # 1: [C]: [-C]
 # 2: [S]: [-S]
 # 3: [R]: [-R <ridge>]
 # 4: [M]: [-M <number>]
 # 5: [output-debug-info]: [-output-debug-info]
 # 6: [-do-not-check-capabilities]: [-do-not-check-capabilities]
 # 7: [num-decimal-places]: [-num-decimal-places]
 # 8: [batch-size]: [-batch-size]
[Logistic Regression with ridge parameter of 1.0E-8
Coefficients...
 Class
Variable yes
==================================
outlook=sunny -21.3057
outlook=overcast 8.4056
outlook=rainy 14.5813
temperature=hot -29.2883
temperature=mild -5.264
temperature=cool 19.2828
humidity=normal 11.8799
windy=FALSE -8.4056
Intercept 20.758

Odds Ratios...
 Class
Variable yes
==================================
outlook=sunny 0
outlook=overcast 4471.9088
outlook=rainy 2150615.3441
temperature=hot 0
temperature=mild 0.0052

temperature=cool 236813942.4235
humidity=normal 144338.6099
windy=FALSE 0.0002
]

___ toSummaryString ___
Correctly Classified Instances 3 50 %
Incorrectly Classified Instances 3 50 %
Kappa statistic 0
Mean absolute error 0.506
Root mean squared error 0.7072
Relative absolute error 101.2007 %
Root relative squared error 131.3231 %
Total Number of Instances 6

=== Confusion Matrix ===

 a b <-- classified as
 2 1 | a = yes
 2 1 | b = no

… continued on next page …

53 Prof. Rony G. Flatscher

Weka – Applying Multiple Classifiers
Program Output 5/8

--- classifier # 4: [NaiveBayes] (weka.classifiers.bayes.NaiveBayes) ---
using (default) options: []
 # 1: [K]: [-K]
 # 2: [D]: [-D]
 # 3: [O]: [-O]
 # 4: [output-debug-info]: [-output-debug-info]
 # 5: [-do-not-check-capabilities]: [-do-not-check-capabilities]
 # 6: [num-decimal-places]: [-num-decimal-places]
 # 7: [batch-size]: [-batch-size]
[Naive Bayes Classifier

 Class
Attribute yes no
 (0.7) (0.3)
===========================
outlook
 sunny 2.0 3.0
 overcast 3.0 1.0
 rainy 4.0 1.0
 [total] 9.0 5.0

temperature
 hot 1.0 2.0
 mild 4.0 2.0
 cool 4.0 1.0
 [total] 9.0 5.0

humidity
 high 3.0 3.0
 normal 5.0 1.0
 [total] 8.0 4.0

temperature=cool 236813942.4235
humidity=normal 144338.6099windy
 TRUE 3.0 1.0
 FALSE 5.0 3.0
 [total] 8.0 4.0

]

___ toSummaryString ___
Correctly Classified Instances 3 50 %
Incorrectly Classified Instances 3 50 %
Kappa statistic 0
Mean absolute error 0.5261
Root mean squared error 0.6131
Relative absolute error 105.2207 %
Root relative squared error 113.8522 %
Total Number of Instances 6

=== Confusion Matrix ===

 a b <-- classified as
 2 1 | a = yes
 2 1 | b = no

… continued on next page …

54 Prof. Rony G. Flatscher

Weka – Applying Multiple Classifiers
Program Output 6/8

--- classifier # 5: [RandomForest] (weka.classifiers.trees.RandomForest) ---
using (default) options: [-P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1]
 # 1: [P]: [-P]
 # 2: [O]: [-O]
 # 3: [store-out-of-bag-predictions]: [-store-out-of-bag-predictions]
 # 4: [output-out-of-bag-complexity-statistics]: [-output-out-of-bag-
complexity-statistics]
 # 5: [print]: [-print]
 # 6: [attribute-importance]: [-attribute-importance]
 # 7: [I]: [-I <num>]
 # 8: [num-slots]: [-num-slots <num>]
 # 9: [K]: [-K <number of attributes>]
 # 10: [M]: [-M <minimum number of instances>]
 # 11: [V]: [-V <minimum variance for split>]
 # 12: [S]: [-S <num>]
 # 13: [depth]: [-depth <num>]
 # 14: [N]: [-N <num>]
 # 15: [U]: [-U]
 # 16: [B]: [-B]
 # 17: [output-debug-info]: [-output-debug-info]
 # 18: [-do-not-check-capabilities]: [-do-not-check-capabilities]
 # 19: [num-decimal-places]: [-num-decimal-places]
 # 20: [batch-size]: [-batch-size]
[RandomForest

Bagging with 100 iterations and base learner

weka.classifiers.trees.RandomTree -K 0 -M 1.0 -V 0.001 -S 1 -do-not-check-
capabilities]

___ toSummaryString ___
Correctly Classified Instances 3 50 %
Incorrectly Classified Instances 3 50 %
Kappa statistic 0

Mean absolute error 0.553
Root mean squared error 0.6447
Relative absolute error 110.6083 %
Root relative squared error 119.722 %
Total Number of Instances 6

=== Confusion Matrix ===

 a b <-- classified as
 2 1 | a = yes
 2 1 | b = no

… continued on next page …

55 Prof. Rony G. Flatscher

Weka – Applying Multiple Classifiers
Program Output 7/8

--- classifier # 6: [SMO] (weka.classifiers.functions.SMO) ---
using (default) options: [-C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K
weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007
-calibrator weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-
places 4]
 # 1: [no-checks]: [-no-checks]
 # 2: [C]: [-C <double>]
 # 3: [N]: [-N]
 # 4: [L]: [-L <double>]
 # 5: [P]: [-P <double>]
 # 6: [M]: [-M]
 # 7: [V]: [-V <double>]
 # 8: [W]: [-W <double>]
 # 9: [K]: [-K <classname and parameters>]
 # 10: [calibrator]: [-calibrator <scheme specification>]
 # 11: [output-debug-info]: [-output-debug-info]
 # 12: [-do-not-check-capabilities]: [-do-not-check-capabilities]
 # 13: [num-decimal-places]: [-num-decimal-places]
 # 14: [batch-size]: [-batch-size]
 # 15: []: [
Options specific to kernel
weka.classifiers.functions.supportVector.PolyKernel:]
 # 16: [E]: [-E <num>]
 # 17: [L]: [-L]
 # 18: [C]: [-C <num>]
 # 19: [output-debug-info]: [-output-debug-info]
 # 20: []: [
Options specific to calibrator weka.classifiers.functions.Logistic:]
 # 21: [C]: [-C]
 # 22: [S]: [-S]
 # 23: [R]: [-R <ridge>]
 # 24: [M]: [-M <number>]
 # 25: [output-debug-info]: [-output-debug-info]

 # 26: [-do-not-check-capabilities]: [-do-not-check-capabilities]
 # 27: [num-decimal-places]: [-num-decimal-places]
 # 28: [batch-size]: [-batch-size]
[SMO

Kernel used:
 Linear Kernel: K(x,y) = <x,y>

Classifier for classes: yes, no

BinarySMO

Machine linear: showing attribute weights, not support vectors.

 0.8998 * (normalized) outlook=sunny
 + -0.2996 * (normalized) outlook=overcast
 + -0.6002 * (normalized) outlook=rainy
 + 0.6002 * (normalized) temperature=hot
 + 0.1002 * (normalized) temperature=mild
 + -0.7004 * (normalized) temperature=cool
 + -0.7004 * (normalized) humidity=normal
 + 0.2996 * (normalized) windy=FALSE
 - 0.7996

Number of kernel evaluations: 28 (81.579% cached)

… continued on next page …

56 Prof. Rony G. Flatscher

Weka – Applying Multiple Classifiers
Program Output 8/8

___ toSummaryString ___
Correctly Classified Instances 4 66.6667 %
Incorrectly Classified Instances 2 33.3333 %
Kappa statistic 0.3333
Mean absolute error 0.3333
Root mean squared error 0.5774
Relative absolute error 66.6667 %
Root relative squared error 107.2113 %
Total Number of Instances 6

=== Confusion Matrix ===

 a b <-- classified as
 3 0 | a = yes
 2 1 | b = no

57 Prof. Rony G. Flatscher

Roundup
● Machine learning (ML) with Weka

– GUI
– Command line interface (CLI), scripts
– Huge Java class library related to all aspects of ML
– Weka can be used on Windows, Apple, Linux, and everywhere where Java exists
– Meant to be used with Java, however can be used by scripting languages as well

● The Java-ooRexx bridge BSF4ooRexx allows to use the Weka class library and its
numerouse packages

● Weka sample code demonstrates the use of scripting languages like Groovy or Jython (a
Java implementation of Python)

– A great tool to experiment, research, and teach machine learning …
… and it is free and open source!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

