
Vienna University of Economics and Business Welthandelsplatz 1, D2-C ▪ ▪ A-1020 Vienna Prof. Rony G. Flatscher

Department of Information Systems
and Operations Management

BSF4ooRexx

Procedural and Object-oriented Programming 5
Defining Classes ("CLASS" Directive), Defining Methods ("METHOD" Directive),

Object Rexx Classes

ooRexxREXX

Business Programming 1 Business Programming 2

Security,
Debugging

Commands,
APIs

Window-
Automatisation,
Web-Scripting

Graphical User
Interfaces (GUI),

Sockets,
...

Basics,
Parsing

2 Prof. Rony G. Flatscher

Abstract Datatype (ADT)
● Implementing an ADT schema with ooRexx

– ::CLASS directive
● Definition of attributes (fields) and therefore the internal datastructure

– ::ATTRIBUTE directive
– EXPOSE statement denoting attributes (fields) within method routines

● Definition of operations (method routines)
– ::METHOD directive

● Instances ("values", "objects") of datatypes ("classes", "types")
– Individual, unambiguously distinguishible instances of the same type
– Possess all the same attributes (constitute the datastructure as defined in the

class) and operations ("methods of the class")

Cf. rexxref.pdf (3.3. ::CLASS)

3 Prof. Rony G. Flatscher

Object Rexx Messages, 1
● Conceptually, objects are regarded to be living things in ooRexx with

which one communicates using messages! :)
– If an object receives a message (with or without arguments) it

● Searches for a method by the name of the received message in its class
– If found, it invokes the method, supplying the received message arguments, if any, and

returns any value the method may have returned
– If not found the object searches the class hierarchy to find and invoke the method as

described above
● If there is no method found by the object it will raise a runtime condition with the error

message "Object does not understand message" and the interpreter stops the
execution of the program

– A message consists at least of the receiving object, the message operator (~)
and the message name to be sent to the object, e.g.

object = .birthday~new

Cf. rexxref.pdf (1.11.4. Message Terms)

4 Prof. Rony G. Flatscher

Object Rexx Messages, 2
● Interaction (activating of methods) with objects (instances, values) is

only possible via messages
– Names of messages are the names of the methods, that the object must find

and invoke on behalf of the programmer
– Message operator ("twiddle") is the tilde character: ~

● "ABC"~REVERSE yields: CBA
– "Cascading" messages, two twiddles: ~~

● "ABC"~~REVERSE yields (attention!): ABC
● Sent messages activate the respective methods of the receiving object, upon return

the interpreter changes the result to be always the receiving object!
– Therefore multiple messages intended for the same object can be "cascaded" one after the

other ("cascading messages)
– Execution (resolution) of messages: from left to right

Cf. rexxref.pdf (1.11.4. Message Terms)

5 Prof. Rony G. Flatscher

Using of an Abstract Datatype (ADT), 1
● Object Rexx implementation of the ADT Birthday

/**/
g1 = .Birthday~New
g1~Date= "20320901"
g1~Time= "16:00"
g2=.Birthday~New~~"Date="("20360229")~~"Time="("19:19")
SAY g1~date g2~date g1~time g2~time

::CLASS Birthday
::ATTRIBUTE date
::ATTRIBUTE time

20320901 20360229 16:00 19:19

Output:

Cf. rexxref.pdf (1.11.4. Message Terms)

6 Prof. Rony G. Flatscher

Overview of Scopes
● Rexx und Object Rexx

– Standard scope
● Labels, variables

– Procedure scope
● Variables in internal routines (procedures/functions)

● Object Rexx
– Program scope

● Accessing local and public classes and routines of called/required programs
– Routine scope

● Standard+procedure+program scope
– Method scope

● Standard+procedure+program plus accessibility of attributes
– Methods assigned to a class: methods, which are defined for a class ("instance/object attributes")
– Floating methods: methods, that are defined before any class directive ("floating attributes")

7 Prof. Rony G. Flatscher

Creating Objects
● Creating (constructing) a new object (value, instance) can be done by

sending the NEW message to a class
– The NEW method will create the new object (instance, value) and will send it the

message INIT to allow it to initialise
● If the NEW message has arguments, they get forwarded with the INIT

message in the same order
– The NEW method returns the reference to the newly created object (instance,

value) as its result
● Hence, if we define an INIT method for a class, we can use it to initialise an object

immediately after it got created (constructed)
– The INIT method is therefore also called "constructor"
– Always invoke the INIT method of the superclass!

Cf. rexxref.pdf (4.2.9. Initialization)

8 Prof. Rony G. Flatscher

Abstract Datatype "Person", 1
Constructor: Method INIT

/**/
p1 = .Person~New("Albert","Einstein","45000")
p2 = .Person~New("Vera","Withanyname",25000)
SAY p1~firstName p1~familyName p1~salary p2~firstName
SAY p1~firstName p1~salary p1~~increaseSalary(10000)~salary
::CLASS Person
::METHOD INIT
 EXPOSE firstName familyName salary
 USE ARG firstName, familyName, salary
 self~init:super -- invoke constructor of superclass
::ATTRIBUTE firstName
::ATTRIBUTE familyName
::ATTRIBUTE salary
::METHOD increaseSalary
 EXPOSE salary
 USE ARG increase
 salary = salary + increase

Albert Einstein 45000 Vera
Albert 45000 55000

Output:

Cf. rexxref.pdf (4.2.9. Initialization)

9 Prof. Rony G. Flatscher

Deleting of Objects
● Objects are automatically deleted from the runtime system, if they are not

referenced anymore (becoming "garbage")
– If there is a method named UNINIT defined for a class, then this

method will be invoked, right before the unreferenced object gets
destructed by the garbage collector by sendig it the UNINIT message.

● The UNINIT method is therefore called "destructor"

Cf. rexxref.pdf (4.2.10. Object Destruction and Uninitialization)

10 Prof. Rony G. Flatscher

Abstract Datatype "Person"
Destructor: Method UNINIT

/**/
p1 = .Person~New("Albert","Einstein","45000")
p2 = .Person~New("Vera","Withanyname",25000)
SAY p1~firstName p1~familyName p1~salary p2~firstName
SAY p1~firstName p1~salary p1~~increaseSalary(10000)~salary
DROP p1; DROP p2; CALL SysSleep(15); SAY "Finish."
::CLASS Person
::METHOD INIT
 EXPOSE firstName familyName salary
 USE ARG firstName, familyName, salary
 self~init:super -- invoke constructor of superclass
::METHOD UNINIT
 EXPOSE firstName familyName salary
 SAY "Object: <"firstName familyName salary"> is about to be destroyed."
::ATTRIBUTE firstName
::ATTRIBUTE familyName
::ATTRIBUTE salary
::METHOD increaseSalary
 EXPOSE salary
 USE ARG increase
 salary = salary + increase

Albert Einstein 45000 Vera
Albert 45000 55000
Finish.
Object: <Vera Withanyname 25000> is about to be destroyed.
Object: <Albert Einstein 55000> is about to be destroyed.

Output:

Sequence can
be different on
different runs!

11 Prof. Rony G. Flatscher

Classification Tree, 1
● Generalization Hierarchy, "Classification Tree"

– Allows classification of instances (Objects), e.g. from biology
– Ordering of classes in superclasses and subclasses (schemata)

● Subordered classes ("subclasses") inherit all properties (attributes and methods) of
all superclasses up to and including the root class

● Subclasses specialize in one way or the other the superclass(es)
– "Defining of differences": simplifies the definition of subclasses

– Sometimes it may make sense, that a subclass specializes directly more than
one superclass at the same time ("multiple inheritance")

● Example: Classes representing landborne and waterborne animals, where there
exists a class "amphibians", which inherits directly from the landborne and
waterborne animals

12 Prof. Rony G. Flatscher

Classification Tree, 2
● Prefabricated "class tree"

– Root class of Object Rexx is named Object
– All user defined classes are assumed to specialize the class Object, if no

superclass is explicitly given
– Single and multiple inheritance possible

13 Prof. Rony G. Flatscher

Classification Tree: Search Order, 1
● Conceptually, the object receiving a message, starts searching for a

method by the name of the received message and if found invokes it
with the supplied arguments

● If such a method is not found in the class, from which the object is
created, then the search is continued in the direct superclass up to
and including the root class Object

● If the method is not even found in the root class Object, then an error
condition gets thrown ("Object does not understand message")
– If there is a method named UNKNOWN defined, then instead of creating an

exception the runtime system will invoke that method, supplying the name of
the unknown method and its arguments, if any were supplied with the message

14 Prof. Rony G. Flatscher

Classification Tree: Search Order, 2
● In method routines ooRexx sets the following two variables which

are therefore always available in methods
– super

● Always contains a reference to the immediate superclass
● Allows redirecting the search for methods to the immediate superclass

– self
● Always contains a reference to the object for which the method got invoked
● This way it becomes possible to send messages to the object from within a method

● super and self determine the class, where the search for methods
with the message name starts

15 Prof. Rony G. Flatscher

Example "Dog", 1
● Problem description

– "Special Interest Group (SIG) Dog Sanctuary"
● Normal dogs
● Little dogs
● Big dogs

– All dogs possess a name and are able to bark
● Normal dogs bark "Wuff Wuff"
● Little dogs bark "wuuf"
● Big dogs bark "WUFFF! WUFFF!! WUFFF!!!"

– Define appropriate classes taking advantage of inheritance (search order)

16 Prof. Rony G. Flatscher

Example "Dog", 2
● Definition of a class "LittleDog", which possesses all properties common to all little dogs

/**/
.Dog~NEW ~~"NAME="("Sweety") ~Bark
.BigDog~NEW ~~"NAME="("Grobian") ~Bark
.LittleDog~NEW ~~"NAME="("Arnie") ~Bark
::CLASS Dog SUBCLASS Object
::ATTRIBUTE Name
::METHOD Bark
 SAY self~Name":" "Wuff Wuff" "-" self
::CLASS BigDog SUBCLASS dog
::METHOD Bark
 SAY self~Name":" "WUFFF! WUFFF!! WUFFF!!!" "-" self
 self~bark:super
::CLASS "LittleDog" SUBCLASS dog
::METHOD Bark
 SAY self~Name":" "wuuf" "-" self

Sweety: Wuff Wuff - a DOG
Grobian: WUFFF! WUFFF!! WUFFF!!! - a BIGDOG
Grobian: Wuff Wuff - a BIGDOG
Arnie: wuuf - a LittleDog

Output:

Cf. rexxref.pdf (4.2.9. Initialization)

17 Prof. Rony G. Flatscher

Multithreading
● Multithreading

– Multiple parts of a program execute at the same time (in parallel)
– Possible problems

● Data integrity (Object integrity)
● Deadlocks

● Object Rexx
– Inter Object-Multithreading

● Different objects (even of one and the same class) are shielded from each other and
can be active at the same time

– Intra Object-Multithreading
● Within an instance (an object) multiple methods can execute at the same time, if they

are defined in different classes

18 Prof. Rony G. Flatscher

::CLASS Directive
● This directive causes the interpreter to create a class

– ::CLASS xyz
● A class with the name XYZ is created

● The following options are available for this directive
– PRIVATE, PUBLIC

● Optional, default value: PRIVATE
– SUBCLASS, MIXINCLASS

● Optional, default value: SUBCLASS Object
– METACLASS metaclass

● Optional, default value: METACLASS Class
– INHERIT

● Optional, allows indicating those classes which are inherited in addition: multiple
inheritance

Cf. rexxref.pdf (3.3. ::CLASS)

19 Prof. Rony G. Flatscher

::CLASS Directive, 1
Implementing "Vehicle", "RoadVehicle", "WaterVehicle"

Cf. rexxref.pdf (3.3. ::CLASS)

/**/
.RoadVehicle ~new("Truck") ~drive
.WaterVehicle ~new("Boat") ~swim

::CLASS Vehicle
::ATTRIBUTE name
::METHOD INIT
 self~name = ARG(1)

::CLASS RoadVehicle SUBCLASS Vehicle
::METHOD drive
 SAY self~name": 'I drive now...'"

::CLASS WaterVehicle SUBCLASS Vehicle
::METHOD swim
 SAY self~name": 'I swim now...'"

Truck: 'I drive now...'
Boat: 'I swim now...'

Output:

20 Prof. Rony G. Flatscher

::CLASS Directive, 2
Implementing "AmphibianVehicle" Using Multiple Inheritance

Cf. rexxref.pdf (3.3. ::CLASS)

/* Multiple Inheritance */
.RoadVehicle ~new("Truck") ~drive
.WaterVehicle ~new("Boat") ~swim
.AmphibianVehicle ~new("SwimCar") ~show_off

::CLASS Vehicle
::ATTRIBUTE name
::METHOD INIT
 self~name = ARG(1)
::METHOD tsk
 SAY self~name": 'tsk!'"

::CLASS RoadVehicle MIXINCLASS Vehicle
::METHOD drive
 SAY self~name": 'I drive now...'"

::CLASS WaterVehicle MIXINCLASS Vehicle
::METHOD swim
 SAY self~name": 'I swim now...'"

::CLASS AmphibianVehicle SUBCLASS RoadVehicle INHERIT WaterVehicle
::METHOD show_off
 self ~~drive ~~swim ~~tsk

Truck: 'I drive now...'
Boat: 'I swim now...'
SwimCar: 'I drive now...'
SwimCar: 'I swim now...'
SwimCar: 'tsk!'

Output:

21 Prof. Rony G. Flatscher

Vehicle

RoadVehicle WaterVehicle

AmphibianVehicle

MixinClass

::CLASS Directive, 3
AmphibianVehicle's Search Order Because of Using Multiple Inheritance

Cf. rexxref.pdf (3.3. ::CLASS)

subclass

inherit

BaseClass

MixinClass

22 Prof. Rony G. Flatscher

::METHOD Directive, 1
● This directive causes the interpreter to create a method

– ::Method mmm
● A method with the identifier "MMM" is created

● The following options are available for this directive
– ATTRIBUTE

● Optional, if supplied the interpreter creates two methods:
– A get ("getter") method "MMM" (returns the attribute's value) like this

– A set ("setter") method "MMM=" (sets the attribute's value to the supplied argument) like this

Cf. rexxref.pdf (3.5. ::METHOD)

::METHOD MMM /* name of get method "MMM" */
 EXPOSE MMM /* allow direct access to the attribute */
 RETURN MMM /* return the attribute's value */

::METHOD "MMM=" /* name of the set method "MMM=" */
 EXPOSE MMM /* allow direct access to the attribute */
 USE ARG MMM /* retrieve argument and assign it to the attribute */

23 Prof. Rony G. Flatscher

::METHOD Directive, 2
● The following options are available for this directive (continued)

– PRIVATE, PUBLIC
● Optional, default value: PUBLIC
● If set to PRIVATE then the message can only be sent as: self~mmm

– GUARDED, UNGUARDED
● Optional, default value: GUARDED
● Determines whether method can be run in parallel to other methods

– CLASS
● Optional, method is a class method

– PROTECTED, UNPROTECTED
● Optional, default value: UNPROTECTED
● If set to PROTECTED then access to this method can be supervised with the help of the Object Rexx

Security Manager

Cf. rexxref.pdf (3.2. ::ATTRIBUTE)

24 Prof. Rony G. Flatscher

::ATTRIBUTE Directive
● ::ATTRIBUTE mmm [GET|SET]

– This directive is equivalent to "::METHOD mmm ATTRIBUTE" and causes the
interpreter to create the following two methods by default:

● A getter method named "MMM" and
● A setter method named "MMM="

– If the option GET is given, then only the getter method gets created
– If the option SET is given, then only the setter method gets created

Cf. rexxref.pdf (3.2. ::ATTRIBUTE)

25 Prof. Rony G. Flatscher

::CONSTANT Directive
● ::CONSTANT NAME VALUE

– This directive creates a class and an instance method named NAME which
always returns VALUE

Cf. rexxref.pdf (3.4. ::CONSTANT)

say "pi:" .MyClass~pi "(from class)"
o=.MyClass~new
say "pi:" o~pi "(from instance)"

::CLASS MyClass
::CONSTANT pi 3.141592653589793238462643383279502884197

pi: 3.141592653589793238462643383279502884197 (from class)
pi: 3.141592653589793238462643383279502884197 (from instance)

Output:

26 Prof. Rony G. Flatscher

::RESOURCE Directive, 1
● ::RESOURCE NAME

– By default this directive needs as delimiter the string "::END" starting at the first
column of one of the following lines

● The end marker string can be changed using the END delimiter option of the
directive

– All lines between the start and the end of the directive will be stored in an array
– This array will be stored using NAME as its index in the .RESOURCES TextTable

● Fetching a resource in the program
– Send NAME as the message to the .RESOURCES TextTable

● Returns an array of text lines representing the named resource
– To turn an array back into a plain string, send the array the makeString or the toString

message
– The SAY keyword statement will automatically request the string representation

Cf. rexxref.pdf (3.8. ::RESOURCE)

27 Prof. Rony G. Flatscher

::RESOURCE Directive, 2
● The RESOURCE directive makes it easy to define and use multi line

strings
– No need to enquote and concatenate strings spanning multiple lines

● Resources can be used among other things for e.g.
– Multiline SQL queries
– XML/HTML chunks to serve client requests in web server applications
– Any kind of multiline text
– Base64 encoded binary data like pictures, sound, cryptographic keys, …

● Cf. the methods of the String class named encodeBase64 and decodeBase64

Cf. rexxref.pdf (3.8. ::RESOURCE)

28 Prof. Rony G. Flatscher

::RESOURCE Directive, 3

Cf. rexxref.pdf (3.8. ::RESOURCE)

say "resource named 'info':"
say .resources~info

::resource info

* *
* This is the secret: *
* *
* Eat an apple a day to keep the doctor away! ;) *
* *

::END

Output:
resource named 'info':

* *
* This is the secret: *
* *
* Eat an apple a day to keep the doctor away! ;) *
* *

29 Prof. Rony G. Flatscher

Fundamental Classes

Cf. rexxref.pdf (5. Builtin Classes)

Object

Class

Method

Message

String

Alarm

Monitor

Stem

Stream

MutableBuffer

Array

List

Queue

CircularQueue

Supplier

Directory

Relation

Bag

Table

Set

Classification Tree (ooRexx 3.1)
Fundamental Classes, 1

30 Prof. Rony G. Flatscher

● Object
– Methods and attributes are available to all instances (objects, values) of any

Rexx class
● Example: method INIT

– Constructor, initializes a newly created object

● Class
– Interpreter creates an instance of this class ("class object") for each ::CLASS

directive
● Example: method ID

– Returns the name (the "identification") of the class object
● Example: method NEW

– Creates a new instance (object, value) of the class, sends it the INIT message and returns it

Cf. rexxref.pdf (5.1.1. Class Class, 5.1.4. Object Class)

Classification Tree
Fundamental Classes, 2

31 Prof. Rony G. Flatscher

● Method
– Interpreter creates an instance of this class ("method object") for each

::METHOD directive
● Example: method SOURCE

– Returns the source code of the method, if available

● Message
– For each message at runtime the interpreter creates an instance of this class

("message object")
● Example: method SEND

– Sends (transmits, dispatches) the message to the object and waits until it got processed

Cf. rexxref.pdf (5.1.3. Method Class, 5.1.2. Message Class)

Classification Tree
Fundamental Classes, 3

32 Prof. Rony G. FlatscherCf. rexxref.pdf (5. Builtin Classes)

Object

Class

Method

Message

String

Alarm

Monitor

Stem

Stream

MutableBuffer

Array

List

Queue

CircularQueue

Supplier

Directory

Relation

Bag

Table

Set

Classification Tree (ooRexx 3.1)
Alarm Class, 1

33 Prof. Rony G. Flatscher

● Alarm
– Alarm objects allow dispatching messages at a later time

● Such messages are carried out in parallel to other activities in the Object Rexx
program ("multithreaded execution")

● Dispatch time can be given
– In hours, minutes, seconds starting from the time of initialization of the alarm object
– As date and time

– Example: method CANCEL
● Cancels an alarm object, the pending message will not be dispatched

Cf. rexxref.pdf (5.4.1. Alarm Class)

Classification Tree
Alarm Class, 2

34 Prof. Rony G. FlatscherCf. rexxref.pdf (5. Builtin Classes)

Object

Class

Method

Message

String

Alarm

Monitor

Stem

Stream

MutableBuffer

Array

List

Queue

CircularQueue

Supplier

Directory

Relation

Bag

Table

Set

Classification Tree (ooRexx 3.1)
Monitor Class, 1

35 Prof. Rony G. Flatscher

● Monitor
– Monitor objects allow the monitoring of messages sent to objects

● Example: method CURRENT
– Returns the currently monitored object

● Example: method DESTINATION
– Allows to change the destination of the monitor

– Hint: ooRexx uses monitors in its .local environment directory
● .input monitors .stdin, the ooRexx stdin stream object
● .output monitors .stdout, the ooRexx stdout stream object
● .error monitors .stderr, the ooRexx stderr stream object

Cf. rexxref.pdf (5.4.10. Monitor Class)

Classification Tree
Monitor Class, 2

36 Prof. Rony G. FlatscherCf. rexxref.pdf (5. Builtin Classes)

Object

Class

Method

Message

String

Alarm

Monitor

Stem

Stream

MutableBuffer

Array

List

Queue

CircularQueue

Supplier

Directory

Relation

Bag

Table

Set

Classification Tree (ooRexx 3.1)
“Classic Rexx” Classes, 1

37 Prof. Rony G. Flatscher

● String
– String objects possess all methods, which are the counterparts of all string

functions in classic Rexx
● Distinctive feature: string objects never change the value they were created with!

Cf. rexxref.pdf (5.1.7. String Class)

Classification Tree
“Classic Rexx” Classes, 2

a = .string~new("hallo") /* a new string object */
a = "hallo" /* a new string object with a value of "hallo" */
a = "aloha" /* a new string object with a value of "aloha" */
a = "aloha" /* a new string object with a value of "aloha" */

a = "a" || "b" /* a new string object with a value of "ab" */
a = a || "b" /* a new string object with a value of "abb" */

a = 1 + 3 /* a new string object with a value of "4" */
a = a + 3 /* a new string object with a value of "7" */

38 Prof. Rony G. Flatscher

● String
– String functions will be transformed "behind the curtain" by Object Rexx into the

appropriate object-oriented version, by sending the appropriate messages to
the string object!

● Example: method REVERSE
– Reverses the sequence of characters in a string

Cf. rexxref.pdf (5.1.7. String Class)

Classification Tree
“Classic Rexx” Classes, 3

SAY REVERSE("d:\path\datei.typ") /* function */
SAY "d:\path\datei.typ"~REVERSE /* message */

pyt.ietad\htap\:d
pyt.ietad\htap\:d

Output:

39 Prof. Rony G. Flatscher

● Stem
– Stem objects allow any string to be used as an index

● The stem of the identifier includes the first dot

Cf. rexxref.pdf (5.3.16. Stem Class)

Classification Tree
“Classic Rexx” Classes, 4

a.2 = "I am a.2"
SAY a.1.b "/and\" a.2

A.1.B /and\ I am a.2

a. = "no value"
a.2 = "I am a.2"
SAY a.1.b "/and\" a.2

no value /and\ I am a.2

a = .stem~new("no value") /* new stem object */
a[2] = "I am a.2"
SAY a[a.1.b] "/and\" a[2]

no valueno value /and\ I am a.2

40 Prof. Rony G. Flatscher

● Stem
– Stem objects allow the collection of arbitrary objects with the help of string

indices
● Example: methods [] and []=

Cf. rexxref.pdf (5.3.16. Stem Class)

Classification Tree
“Classic Rexx” Classes, 5

DROP a a. b b. /* Make sure that variables are deleted */
a = .stem~new("xyz")
a["holladi"] = "Entry for 'holla.di'"
b. = a /* two references to the same stem object! */
b.di.di.dumm = "Entry for 'DI.DI.DUMM'"
SAY "1:" a["holladi"] "/and\" a~"[]"("DI.DI.DUMM")
tmp1 = "holladi"; tmp2 = "DI.DI.DUMM"
SAY "2:" a.tmp1 "/and\" a.[tmp2]
SAY "3:" b.tmp1 "/and\" b.[tmp2]
SAY "4:" a a. a.Unknown b b. b.Unknown a[Unknown]

1: Entry for 'holla.di' /and\ Entry for 'DI.DI.DUMM'
2: A.holladi /and\ A.DI.DI.DUMM
3: Entry for 'holla.di' /and\ Entry for 'DI.DI.DUMM'
4: xyz A. A.UNKNOWN B xyz xyzUNKNOWN xyzUNKNOWN

Output:

41 Prof. Rony G. Flatscher

● Stream
– Stream objects allow working with files (and communication devices)

● Example: method NEW

– Allows working with the file test.dat by sending the stream object o the appropriate
messages, e.g. OPEN for opening, LINEIN (CHARIN) for reading from the file, LINEOUT
(CHAROUT) for writing to the file, CLOSE for closing

Cf. rexxref.pdf (5.2.4. Stream Class)

Classification Tree
“Classic Rexx” Classes, 6

o = .stream ~NEW("test.dat")

42 Prof. Rony G. FlatscherCf. rexxref.pdf (5. Builtin Classes)

Object

Class

Method

Message

String

Alarm

Monitor

Stem

Stream

MutableBuffer

Array

List

Queue

CircularQueue

Supplier

Directory

Relation

Bag

Table

Set

Classification Tree (ooRexx 3.1)
MutableBuffer Class, 1

43 Prof. Rony G. Flatscher

● MutableBuffer
– Class that allows to create a buffer from many little strings quickly

● Comparable to Java's StringBuffer or StringBuilder classes
– Example methods

● Method APPEND
– Appends a string chunk to the buffer

● Method STRING
– Renders the current buffer as a single string object and returns it

Cf. rexxref.pdf (5.4.11. MutableBuffer Class)

Classification Tree
MutableBuffer Class, 2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

