
Vienna University of Economics and Business Welthandelsplatz 1, D2-C ▪ ▪ A-1020 Vienna Prof. Rony G. Flatscher

Department of Information Systems
and Operations Management

BSF4ooRexx

Procedural and Object-oriented Programming
Debugging, Multithreading, Security Manager, Off the Records

ooRexxREXX

Business Programming 1 Business Programming 2

Security,
Debugging

Commands,
APIs

Window-
Automatisation,
Web-Scripting

Graphical User
Interfaces (GUI),

Sockets,
...

Basics,
Parsing

2 Prof. Rony G. Flatscher

Changelog TW, 2022-04-01 (Satz 6)

● Changelog:
● p. 2-6 Text Anpassungen
● p.10f → Commands
● p. 14f changes to Titel, text & animations
● Still needs extensions with cUrl example
● Multithreading, Security Manger, OffTopics moved to 07
● Kommentare:
● p 9. sort_util.cmd kommt mir falsch vor
● Class Methods vs. Instance Methods, 1 vernünftig darzustellen finde ich sehr

schwer!

3 Prof. Rony G. Flatscher

Changelog TW, 2022-04-01 (Satz 7)

● Comment:
– Security Manager Example p.26f doesn’t exists any more

4 Prof. Rony G. Flatscher

Multithreading, 1
● Multithreading

– Parallel execution of different parts of an Object Rexx program
● Parallel execution of methods

– Multihreading between different objects: "inter-multithreading"
– Multithreading within one and the same object: "intra-multithreading"

● Possible Problems
– Accessing shared resources concurrently, e.g.

● Concurrent alteration of attributes,
● Concurrent alteration of files etc.

– "Deadlocks", e.g.
● Object 1 reserves: resource A and then B
● Object 2 reserves: resource B and then A

5 Prof. Rony G. Flatscher

Multithreading, 1
● Multithreading

– Parallel execution of different parts of an Object Rexx program
● Parallel execution of methods

– Multihreading between different objects: "inter-multithreading"
– Multithreading within one and the same object: "intra-multithreading"

● Possible Problems
– Accessing shared resources concurrently, e.g.

● Concurrent alteration of attributes,
● Concurrent alteration of files etc.

– "Deadlocks", e.g.
● Object 1 reserves: resource A and then B
● Object 2 reserves: resource B and then A

6 Prof. Rony G. Flatscher

Multithreading, 2
● Object Rexx default behaviour (continued)

– All methods are GUARDed by default, hence access to attributes is serialized
● Within a class by default only one method can be executed for one and the same object, as

that method gets exclusive access to the attributes, blocking all other methods of that
class

● Methods of one and the same object defined in different classes, are able to run
concurrently (intra-multithreading) as each of these methods accesses attributes at their
class level

● The keyword UNGUARD of a method directives allows that method to
run concurrently with any other method in that class for one and the
same object
– There is no exclusive access protection to the objects!
– May make sense, if attributes are not accessed at all or are not changed

Cf. rexxref.pdf (12.4. Using Additional Concurrency Mechanisms)

7 Prof. Rony G. Flatscher

Multithreading, 3
● Object Rexx default behaviour (continued)

– It is possible to determine at runtime whether methods are executed
concurrently with other methods of the same class for one and the same object

● REPLY statement of a method
– Same effect as the RETURN statement

● Calling program receives execution control (continues to run), but
● In addition the method continues to run (concurrently)!

● Optionally the REPLY statement may return a value to the calling program
– If a REPLY statement has a return value, then in that method a RETURN statement must not

supply a return value later on

Cf. rexxref.pdf (2.24. REPLY, 2.25. RETURN)

8 Prof. Rony G. Flatscher

Multithreading, 4
● It is possible to determine at runtime whether methods are allowed

to be executed concurrently with other methods of the same class for
one and the same object
– GUARD

● GUARD ON statement
– Exclusive access to the attributes is desired; if another method has already exclusive

access, then execution is halted until the other method releases it
● The GUARD OFF statement releases the exclusive access to the attributes

– Efficient safeguarding of "critical segments"
● Waiting for exclusive access can be made dependent on a given value appearing in

the attributes of the object
● Waiting for releasing the exclusive access can be made dependent on a given value

appearing in the attributes of the object

Cf. rexxref.pdf (12.4. Using Additional Concurrency Mechanisms)

9 Prof. Rony G. Flatscher

after testread
from_a 1
from_a 2
...
FROM_B 1
FROM_B 2
...

Output:

Multithreading, 5
REPLY

/* */
a=.x~new
b=.x~new
c=.x~new
fifo=.fifo~new /* FIFO-instance */
.local~repetitions = 500
a~testwrite(fifo, "from_a")
b~testwrite(fifo, "FROM_B")
c~testread(fifo)
say "after testread"

::class X
::method testwrite
 use arg fifo, msg1
 REPLY
 do i=1 to .repetitions
 fifo~write(msg1 i)
 end
::method testread
 use arg fifo
 REPLY
 do while fifo~items > 0
 i=fifo~read
 say i
 end

::class FIFO
::method init
 expose buffer
 buffer=.queue~new
::method write
 expose buffer
 use arg tmp
 buffer~queue(tmp)
::method read
 expose buffer
 return buffer~pull
::method items
 expose buffer
 return buffer~items

10 Prof. Rony G. Flatscher

Multithreading, 6
REPLY, GUARD ON|OFF

after testread
from_a 1
from_a 2
...
FROM_B 1
FROM_B 2
...

Output:

/* */
a=.x~new
b=.x~new
c=.x~new
fifo=.fifo~new /* FIFO-instance */
.local~repetitions = 500
a~testwrite(fifo, "from_a")
b~testwrite(fifo, "FROM_B")
c~testread(fifo)
say "after testread"

::class X
::method testwrite
 use arg fifo, msg1
 REPLY
 do i=1 to .repetitions
 fifo~write(msg1 i)
 end
::method testread
 use arg fifo
 REPLY
 do while fifo~items > 0
 i=fifo~read
 say i
 end

::class FIFO
::method init
 expose buffer lock
 buffer=.queue~new
 lock=.false
::method write UNGUARDED
 expose buffer lock
 GUARD ON WHEN lock=.false
 lock=.true
 GUARD OFF
 use arg tmp
 buffer~queue(tmp) /* queue item */
 GUARD ON
 lock=.false
::method read UNGUARDED
 expose buffer lock
 GUARD ON WHEN lock=.false
 lock=.true; GUARD OFF
 data=buffer~pull /* get item */
 GUARD ON; lock=.false
 return data
::method items
 expose buffer
 return buffer~items

11 Prof. Rony G. Flatscher

● Message class
– Two possibilities to dispatch messages

● SEND - synchronous execution
– Execution proceeds, after the message was completely carried out

● START - asynchronous execution (multithreading)
– Message is dispatched and causes the activation of the method
– Execution of the calling program proceeds concurrently

– Additional interesting methods in the Message class
● COMPLETED - indicates, whether an asynchronously excecuting method has

completed
● RESULT - waits for and returns the result of an asynchronously executing method
● NOTIFY - allows sending a message to an object to notify it that a message has

finished executing

Cf. rexxref.pdf (5.1.2. Message Class)

Multithreading, 7
Class MESSAGE

12 Prof. Rony G. Flatscher

after testread
from_a 1
from_a 2
...
FROM_B 1
FROM_B 2
...

Output:

Multithreading, 8
Using Class MESSAGE, no REPLY!

/* */
a=.x~new
b=.x~new
c=.x~new
fifo=.fifo~new /* FIFO-instance */
.local~repetitions = 500
.message~new(a, "testwrite", "I", fifo, "from_a")~start
.message~new(b, "testwrite", "I", fifo, "FROM_B")~start
.message~new(c, "testread", "I", fifo) ~start
say "after testread"

::class X
::method testwrite
 use arg fifo, msg1
 do i=1 to .repetitions
 fifo~write(msg1 i)
 end
::method testread
 use arg fifo
 do while fifo~items > 0
 i=fifo~read
 say i
 end

::class FIFO
::method init
 expose buffer
 buffer=.queue~new
::method write
 expose buffer
 use arg tmp
 buffer~queue(tmp)
::method read
 expose buffer
 return buffer~pull
::method items
 expose buffer
 return buffer~items

Cf. rexxref.pdf (5.1.2. Message Class)

13 Prof. Rony G. Flatscher

after testread
from_a 1
from_a 2
...
FROM_B 1
FROM_B 2
...

Output:

Multithreading, 9
Using OBJECT's START-method, no REPLY!

/* */
a=.x~new
b=.x~new
c=.x~new
fifo=.fifo~new /* FIFO-instance */
.local~repetitions = 500
a~start("testwrite", fifo, "from_a")
b~start("testwrite", fifo, "FROM_B")
c~start("testread", fifo)
say "after testread"

::class X
::method testwrite
 use arg fifo, msg1
 do i=1 to .repetitions
 fifo~write(msg1 i)
 end
::method testread
 use arg fifo
 do while fifo~items > 0
 i=fifo~read
 say i
 end

::class FIFO
::method init
 expose buffer
 buffer=.queue~new
::method write
 expose buffer
 use arg tmp
 buffer~queue(tmp)
::method read
 expose buffer
 return buffer~pull
::method items
 expose buffer
 return buffer~items

Cf. rexxref.pdf (5.1.2. Message Class)

14 Prof. Rony G. Flatscher

Multithreading, 10
● Executing threads concurrently

– How to determine whether all concurrently executing threads have stopped?

● Example class Waiter
– Simple class whose only instance method "wait" is to run in the background for

a random length of time
– Number of running threads is counted with a class attribute
– Class method "wait" blocks until counter drops to 0 and returns then to the

caller/invoker
– Original idea and code: cf. Ian Collier, news:comp.lang.rexx, 2004-11-09

15 Prof. Rony G. Flatscher

Multithreading, 11
Class WAITER, Waiting on Threads …

Waiting for counter to drop to 0...
All done
Waiter 5 waiting 4 seconds
Waiter 1 waiting 2 seconds
Waiter 3 waiting 5 seconds
Waiter 4 waiting 4 seconds
Waiter 2 waiting 1 seconds
Waiter 2 finished
Waiter 1 finished
Waiter 5 finished
Waiter 4 finished
Waiter 3 finished

Possible Output:w=.waiter~new -- create an instance
do i=1 to 5
 w~wait(i) -- invoke instance method
end
say "Waiting for counter to drop to 0..."
.waiter~wait -- invoke class method
say "All done"

/* Waiter */
::class waiter
::method init class -- class method
 expose counter
 counter=0 -- set initial value
::method up class -- class method
 expose counter
 counter=counter+1 -- increase counter
::method down class -- class method
 expose counter
 counter=counter-1 -- decrease counter
::method wait class -- class method
 expose counter
 -- wait until counter drops to 0
 guard on when counter=0
::method wait unguarded -- instance method
 a=random(1,6) -- get a number between 1 and 6
 reply -- now concurrency starts
 parse arg n -- get invocation number
 .waiter~up -- increase counter
 if n\='' then say 'Waiter' n 'waiting' a 'seconds'
 call syssleep a -- sleep a few seconds
 if n\='' then say 'Waiter' n 'finished'
 .waiter~down -- decrease counter

16 Prof. Rony G. Flatscher

Security Manager, 1
● Allows supervising and intercepting

– Access to the environment
● ADDRESS statement
● Messages to .local or .environment

– Invoking external programs, routines (procedures/functions)
● Invoking external programs or public routines with the CALL statement or with the

help of the ::REQUIRES directive
– Sending protected messages

● Keyword PROTECTED in the method directive, or
● Dynamically at runtime: sending the SETPROTECTED message to the method object

– Interaction with Stream objects, e.g. using the messages
● CHARIN, CHAROUT, CHARS, LINEIN, LINEOUT, LINES, STREAM

Cf. rexxref.pdf (13. The Security Manager)

17 Prof. Rony G. Flatscher

Security Manager, 2
● This allows to monitor (Object) Rexx programs and inhibit - direct or

indirect - access of the environment and external resources!
– Intercepted (function) calls or messages can

● be replaced by self defined routines or message routines
– "Invisible": the supervised program is not able to note that another routine

(function/procedure) got invoked or another message was sent in place of the original one!
● lead to a controlled access violation which tears down the supervised program
● be allowed to execute

Cf. rexxref.pdf (13. The Security Manager)

18 Prof. Rony G. Flatscher

Security Manager, 3
● Enables rather interesting applications

– Creation of execution profiles for (Object) Rexx programs
– Creation of company related and task centric supervised execution

environments (e.g. "sandbox") for (Object) Rexx programs
● Secured execution of (Object) Rexx programs, which stem from anonymous or

unsecure sources, e.g.
– "Roaming Agents", which are transmitted/distributed via the Internet

– Logging of routine (function/procedure) and/or message routine invocations,
which are regarded to be important

– …

Cf. rexxref.pdf (13. The Security Manager)

19 Prof. Rony G. Flatscher

Security Manager, 4
● Course of action

– The program wishing to employ the Security Manager creates a method object
by sending the NewFile message to the class METHOD, supplying the name of
the program to be supervised

– The method object gets assigned a supervisor object by sending it the
SetSecurityManager message, supplying the supervisor object

– After activating the method object, the runtime system's Security Manager
sends the supervisor object the following messages

● CALL, COMMAND, REQUIRES, LOCAL, ENVIRONMENT, STREAM, METHOD
– Every Security Manager message receives as an argument a directory object, which contains

supplemental information and which may be used to communicate with the Security
Manager

– Each method must return either 1 (supervisor program carried out the desired action
already) or 0 (carry out the desired action)

Cf. rexxref.pdf (13. The Security Manager)

20 Prof. Rony G. FlatscherCf. rexxref.pdf (13.1.1. Example)

/*===*/
/* Agent Sample, "agent1.cmd" */
/*===*/

 interpret 'echo Hello There'
 'dir foo.bar'
 call rxfuncadd sysloadfuncs, rexxutil, sysloadfuncs
 say result
 say syssleep(1)
 say linein('c:\config.sys')
 say .array
 .object~objectname
 ::requires agent2.cmd

Security Manager, 5
Client-Programm ("Agent1.cmd")

21 Prof. Rony G. Flatscher

● For the supervised program a method object is created using the NewFile message of the class
METHOD, which then gets an instance of the supervisor class "noWay" assigned to

● In this example the method object containing the supervised program will be activated (run) with the
help of an agent object, which gets the supervised method object assigned to under the name
"DISPATCH", hence sending that message to this one-off object runs the method

Security Manager, 6
Supervisor-Programm: "No Way!"

Cf. rexxref.pdf (13.1.1. Example)

/* parameter: filename of agent program */
 parse arg program -- parse name of file
 method = .method~newfile(program) –- create a method from the program in given file
 say "Calling program" program "with a closed cell manager:"
 pull
 method~setSecurityManager(.noWay~new) –- define which supervisor object to use
 agent = .agent~new(method) –- give instance the program to be supervised
 agent~dispatch -- invoke program
/*---*/
 ::CLASS Agent
 ::METHOD init /* Agent initialisation */
 use arg agentmethod
 self~setmethod('DISPATCH', agentmethod) /* method available with 'dispatch' */
/*---*/
 ::CLASS noWay –- a supervisor class using the security manager
 ::METHOD unknown /* everything trapped by unknown and everything is an error */
 raise syntax 98.948 array("You didn't say the magic word!")

22 Prof. Rony G. Flatscher

Security Manager, 7
Supervisor-Programm: "Dumper"

Cf. rexxref.pdf (13.1.1. Example)

/* parameter: filename of agent program */
 parse arg program
 method = .method~newfile(program) /* Read the agent program from file */
 say "Calling program" program "with an audit manager:"
 pull
 method~setSecurityManager(.Dumper~new(.output))
 agent = .agent~new(method)
 agent~dispatch
/*---*/
 ::CLASS Agent
 ::METHOD init /* Agent initialisation */
 use arg agentmethod
 self~setmethod('DISPATCH', agentmethod) /* method available with 'dispatch' */
/*---*/
 ::CLASS dumper

 ::METHOD init
 expose stream /* target stream for output */
 use arg stream /* hook up the output stream */

 ::METHOD unknown /* generic unknown method */
 expose stream /* need the global stream */
 use arg name, args /* get the message and arguments */
 /* write out the audit event */
 stream~lineout(time() date() 'Called for event' name)
 stream~lineout('Argments are:') /* write out the arguments */
 info = args[1] /* info directory is the first arg */
 do name over info /* dump the info directory */
 stream~lineout('Item' name':' info[name])
 end
 return 0 /* allow this to proceed */

23 Prof. Rony G. Flatscher

Security Manager, 8
Supervisor-Programm: "Replacer"

Cf. rexxref.pdf (13.1.1. Example)

::CLASS replacer SUBCLASS noWay /* inherit restrictive UNKNOWN method*/

 ::METHOD command /* issuing commands */
 use arg info /* access the directory */

 info~rc = 1234 /* set the command return code */
 info~failure = .true /* raise a FAILURE condition */
 return 1 /* return "handled" return value */
 ::METHOD call /* external function/routine call */
 use arg info /* access the directory */
 /* all results are the same */
 info~result = "uh, uh, uh...you didn't say the magic word"
 return 1 /* return "handled" return value */
 ::METHOD stream /* I/O function stream lookup */
 use arg info /* access the directory */
 /* replace with a different stream */
 info~stream = .stream~new('C:\OBJREXX\READ.ME')
 return 1 /* return "handled" return value */
 ::METHOD local /* .LOCAL variable lookup */
 /* no value returned at all */
 return 1 /* return "handled" return value */
 ::METHOD environment /* .ENVIRONMENT variable lookup */
 /* no value returned at all */
 return 1 /* return "handled" return value */
 ::METHOD method /* protected method invocation */
 use arg info /* access the directory */
 /* all results are the same */
 info~result = "uh, uh, uh...you didn't say the magic word"
 return 1 /* return "handled" return value */
 ::METHOD requires /* REQUIRES directive */
 use arg info /* access the directory */
 /* switch to load a different file */
 info~name = 'C:\OBJREXX\AGENT3.CMD'
 info~securitymanager = self /* load under this authority */
 return 1 /* return "handled" return value */

24 Prof. Rony G. Flatscher

● If a method cannot be found,
– then the UNKNOWN method is invoked, if defined in one of the searched classes

● The runtime system supplies two arguments
– Name of the message for which no method could be found
– An array object containing the supplied arguments to the message

– otherwise the runtime system raises the NOMETHOD exception
● If no exception handling is defined for this, the program will be aborted with the

message "object cannot understand message"

Cf. rexxref.pdf (4.2.6. Defining an UNKNOWN Method)

Off the Records, 1
UNKNOWN Method

/* A possible UNKNOWN method */
::METHOD UNKNOWN
 USE ARG meth_name, meth_args
 SAY "unknown method: ["meth_name"]“
 DO i=1 TO meth_args~items
 SAY " arg #" i": ["i"] value: ["meth_args[i]"]“
 END

25 Prof. Rony G. Flatscher

● "Redirection of messages"
– Changing the target object of the message (TO)
– Changing the starting class for searching for the method using one of the

available superclass objects (CLASS)
– Changing of the message name (MESSAGE)
– Forwards the accompanying arguments unchanged, except if

● ARGUMENT or
● ARRAY is given

– Returns afterwards to the original sender of the message, unless
● CONTINUE is given

Cf. rexxref.pdf (2.8. FORWARD)

Off the Records, 2
FORWARD Statement

26 Prof. Rony G. Flatscher

Metaclasses
● Metaclasses

– Object Rexx class Class and all of its subclasses, if any
– Allow maintaining the methods, instances of such a class should get assigned to

(Methods DEFINE, DELETE, METHOD, METHODS)
– Allows creating objects (instances) from a class (Method NEW)
– Instance of a metaclass is called "class object"
– It is always possible to get access to the class object which created an

instance/object by sending it the message "CLASS"
● Method CLASS defined in the root class "Object" will get invoked and will return the

appropriate class object

● "Class attributes" – Attributes of a metaclass
● "Class methods" – Methods of a metaclass

Cf. rexxref.pdf (4.1.4. Metaclasses)

27 Prof. Rony G. Flatscher

● Class methods
– Methods of a metaclass

● All methods of the Object Rexx class Class, e.g.
– ID, DEFINE, DELETE, METHODS

● All methods of the Object Rexx root class Object, e.g.
– STRING, HASMETHOD

● All methods, which are defined with a ::METHOD directive containing the keyword
CLASS are assigned to the class object

– The interpreter uses SETMETHOD from the Object Rexx root class Object
– Class methods can be invoked via the class object

● Each object can retrieve its own class object by sending itself the message Class and
thereafter sending the desired messages to the class object

Metaclasses
Class Methods, 1

28 Prof. Rony G. Flatscher

/**/
SAY COPIES("-", 50)
.Test~Hallo_1
SAY COPIES("-", 50)
o = .Test~New
o~Hallo_2
::CLASS Test
::METHOD Init CLASS
 SAY "New class [" || self~string || "] is being created..."
 self~init:super
::METHOD Hallo_1 CLASS
 SAY "Hallo, I am [" || self~string || "]..."
::METHOD Init
 SAY "New instance ["self~string"] is being created..."
 self~init:super
::METHOD Hallo_2
 SAY "Hallo, I am ["self~string"]..."

New class [The TEST class] is being created...
--
Hallo, I am [The TEST class]...
--
New instance [a TEST] is being created...
Hallo, I am [a TEST]...

Output:

Metaclasses
Class Methods, 2

29 Prof. Rony G. Flatscher

● Attributes of metaclasses
– Access like any other attributes

● Attribute methods
– Method directive with the key word ATTRIBUTE
– Allow getting and setting the value
– Using the EXPOSE statement as the first statement in a method

Metaclasses
Class Attribute, 1

30 Prof. Rony G. Flatscher

/**/
.Test ~~New ~~New ~~New ~~New ~~New ~~New
SAY "So far, there have been [".Test~Counter"] objects created."
o = .Test~New
SAY "So far, there have been ["o~class~Counter"] objects created."
SAY "class:" o~class~string", last instance was:" o~string

::CLASS Test
::METHOD Init CLASS
 self~Counter = 0
 self~init:super
::METHOD Counter ATTRIBUTE CLASS
::METHOD New CLASS
 EXPOSE Counter
 Counter = Counter + 1
 FORWARD CLASS (super)

So far, there have been [6] objects created.
So far, there have been [7] objects created.
class: The TEST class, last instance was: a TEST

Output:

Metaclasses
Class Attribute, 2

31 Prof. Rony G. Flatscher

Metaclass, 1
● If the runtime system (interpreter) finds a ::CLASS directive, it

creates an instance of type Class ("class object") for it
● If the runtime system (interpreter) finds a ::METHOD directive, it

creates an instance of type Method for it
– Method objects which are defined for instances of a class are called "instance

methods" and are stored in the class object with the help of its DEFINE method
● One can retrieve a supplier of all defined instance methods by sending the METHODS

message to the class object
– Method objects, which are meant for the class object itself (method directive

containing the keyword CLASS) are dubbed "class methods" and are attached to
the class object with the help of SETMETHOD which is defined in the Object
Rexx root class Object

Cf. rexxref.pdf (4.1.4. Metaclasses)

32 Prof. Rony G. Flatscher

Metaclass, 2
● Object Rexx programs can be devised, which create class objects and

method objects at runtime ("dynamic")
– Classes are represented as class objects (instances of the Object Rexx class

Class)
– Methods are represented as method objects (instances of the Object Rexx class

Method)
● Instance methods are stored with the class object using its DEFINE method (one

could remove an instance method from it with DELETE)
– One can retrieve a supplier of all defined instance methods by sending the METHODS

message to the class object
● Class methods can be directly assigned to class objects using SETMETHOD- defined

in the Object Rexx root class Object (one could remove a class method with
UNSETMETHOD)

Cf. rexxref.pdf (4.1.4. Metaclasses)

33 Prof. Rony G. Flatscher

Metaclass, 3
● The metaclass Class normal Object Rexx class

– Therefore it can be subclassed (specialized)
– All subclasses of Class are metaclasses themselves !
– Should a specialized metaclass be used for creating the class object, then

the ::CLASS directive must contain the keyword METACLASS followed by the
name of the desired metaclass

● The default is: METACLASS Class

● Sending a message by the name Class (available as method in the
root class Object) to an object will always return its class object
(instance of a metaclass)
– Hence all public methods of the metaclass are always available to an object via

its class object

Cf. rexxref.pdf (4.1.4. Metaclasses)

34 Prof. Rony G. Flatscher

SAY COPIES("-", 50)
.Test~Hallo_1
SAY COPIES("-", 50)
o = .Test~New
o~Hallo_2

::CLASS Test
::METHOD Init CLASS
 SAY "New class [" || self~string || "] is being created..."
 self~init:super
::METHOD Hallo_1 CLASS
 SAY "Hallo, I am [" || self~string || "]..."
::METHOD Init
 SAY "New instance ["self~string"] is being created..."
 self~init:super
::METHOD Hallo_2
 SAY "Hallo, I am ["self~string"]..."

New class [The TEST class] is being created...
--
Hallo, I am [The TEST class]...
--
New instance [a TEST] is being created...
Hallo, I am [a TEST]...

Output:

Class Methods vs. Instance Methods, 1
Creating the Class Object ".TEST"

 BASECLASS
 DEFAULTNAME
 DEFINE
 DELETE
 ENHANCED
 ID
 INHERIT
 INIT
 METACLASS
 METHOD
 METHODS
 MIXINCLASS
 NEW
 QUERYMIXINCLASS
 SUBCLASS
 SUBCLASSES
 SUPERCLASSES
 UNINHERIT
 INIT
 HALLO_1

.TEST [defined as: .class~new("TEST")]

o = .Test~New
INIT, HALLO_2

o1 = .Test~New
INIT, HALLO_2

o2 = .Test~New
INIT, HALLO_2

o3 = .Test~New
INIT, HALLO_2

Cf. rexxref.pdf (4.2. Creating and Using Classes and Methods)

35 Prof. Rony G. Flatscher

::CLASS Test -- class

::METHOD Init CLASS -- method #1
 SAY "New class [" || self~string || "] is being created..."
 self~init:super

::METHOD Hallo_1 CLASS -- method #2
 SAY "Hallo, I am [" || self~string || "]…"

::METHOD Init -- method #3
 SAY "New instance ["self~string"] is being created..."
 self~init:super

::METHOD Hallo_2 -- method #4
 SAY "Hallo, I am ["self~string"]...“

Class Methods vs. Instance Methods, 2
Creating the Class Object ".TEST"

.source~test=.class~new("TEST") -- class(object) erzeugen

meth1=.method~new("INIT", source1) -- create method #1
.test~setmethod("INIT", meth1) -- add to class object

meth2=.method~new("HALLO_1", source2) -- create method #2
.test~setmethod("HALLO_1", meth2) -- add to class object

meth3=.method~new("INIT", source3) -- create method #3
.test~define("INIT", meth3) -- define as instance method

meth4=.method~new("HALLO_2", source4) -- create method #4
.test~define("HALLO_2", meth4) -- define as instance method

Directives are encountered by
the runtime system (interpreter)

Directives are carried out by the
runtime system (interpreter)

Cf. rexxref.pdf (4.2. Creating and Using Classes and Methods)

36 Prof. Rony G. Flatscher

SAY COPIES("-", 50)
.Test~Hallo_1
SAY COPIES("-", 50)
o = .Test~New
o~Hallo_2

::CLASS Test
::METHOD Init CLASS
 SAY "New class [" || self~string || "] is being created..."
 self~init:super
::METHOD Hallo_1 CLASS
 SAY "Hallo, I am [" || self~string || "]..."
::METHOD Init
 SAY "New instance ["self~string"] is being created..."
 self~init:super
::METHOD Hallo_2
 SAY "Hallo, I am ["self~string"]..."

New class [The TEST class] is being created...
--
Hallo, I am [The TEST class]...
--
New instance [a TEST] is being created...
Hallo, I am [a TEST]...

Output:

Class Methods vs. Instance Methods, 3
Creating the Class Object ".TEST"

 BASECLASS
 DEFAULTNAME
 DEFINE
 DELETE
 ENHANCED
 ID
 INHERIT
 INIT
 METACLASS
 METHOD
 METHODS
 MIXINCLASS
 NEW
 QUERYMIXINCLASS
 SUBCLASS
 SUBCLASSES
 SUPERCLASSES
 UNINHERIT
 INIT
 HALLO_1

.TEST [.source~test= .class~new("TEST")]

o = .Test~New
INIT, HALLO_2

o1 = .Test~New
INIT, HALLO_2

o2 = .Test~New
INIT, HALLO_2

o3 = .Test~New
INIT, HALLO_2

37 Prof. Rony G. Flatscher

Defining Metaclasses, 1
● Some problems can be elegantly solved with the help of metaclasses

– Example: Singleton
● Ensure that there is only one instance created from a class !

● Creating objects is realized via the class object's NEW method
– Hence, if it was possible to check in the appropriate NEW method whether it already created

and returned an instance, then
● One can inhibit the creation of additional instances by inhibiting the forwarding of the NEW

message to the superclass, and
● It becomes possible to return the already created (single) instance instead, if it got stored in a

class attribute.

● For this purpose a metaclass Singleton shall be defined
– If one would need a class with this singleton behaviour, then it would be sufficient for it to

merely extend the ::CLASS directive with the metaclass keyword and indicate the desired
metaclass: METACLASS Singleton

Cf. rexxref.pdf (4.1.4. Metaclasses)

38 Prof. Rony G. Flatscher

● Object Rexx implementation of the metaclass Singleton
/**/
::CLASS Singleton SUBCLASS Class

::METHOD Init
 EXPOSE SingleInstance
 SingleInstance = .nil
 self~init:super

::METHOD New
 EXPOSE SingleInstance
 IF SingleInstance = .nil THEN
 DO
 FORWARD CLASS (super) CONTINUE
 SingleInstance = RESULT
 END
 RETURN SingleInstance

Defining Metaclasses, 2

39 Prof. Rony G. Flatscher

Defining Metaclasses, 3
● There is an abstract datatype defined for an Easter bunny

● Attribute: usageSite
● Methods: getting/setting values for the attribute usageSite

– As there is can be only one Easter bunny it must be made sure, that only one
instance can be created !

● Therefore the class object for EasterBunny should be created from the metaclass
Singleton, which makes sure that this behaviour is enforced

40 Prof. Rony G. Flatscher

/* EasterBunny */
a = .EasterBunny~new("Vienna, Austria")
b = .EasterBunny~new("Stumm im Zillertal")
SAY "a==b:" (a==b) "usageSite of b:" b~usageSite
::CLASS EasterBunny METACLASS Singleton
::METHOD usageSite ATTRIBUTE
::METHOD Init
 self~usageSite = ARG(1)
 SAY "Init-method: usageSite is:" self~usageSite
 self~init:super
::CLASS Singleton SUBCLASS Class
::METHOD Init
 EXPOSE SingleInstance
 SingleInstance = .nil
 self~init:super
::METHOD New
 EXPOSE SingleInstance
 IF SingleInstance = .nil THEN DO
 FORWARD CLASS(super) CONTINUE
 SingleInstance = RESULT
 END
 RETURN SingleInstance

Init-method: usageSite is: Vienna, Austria
a==b: 1 usageSite of b: Vienna, Austria

Defining Metaclasses, 4

Output:

41 Prof. Rony G. Flatscher

● In Example 2 there was a test class which counted the number of
created objects

● Define a metaclass Counter, which
– Counts how many objects have been created, and
– Which can be interrogated for the total of the created instances

::CLASS Counter SUBCLASS Class

::METHOD Init
 self~Counter = 0
 self~init:super

::METHOD Counter ATTRIBUTE

::METHOD New
 EXPOSE Counter
 Counter = Counter + 1
 FORWARD CLASS (super)

Defining Metaclasses, 5

42 Prof. Rony G. Flatscher

/**/
.Test ~~New ~~New ~~New ~~New ~~New ~~New
SAY "So far, there have been [".Test~Counter"] objects created."
o = .Test~New
SAY "So far, there have been ["o~class~Counter"] objects created."
SAY "class:" o~class~string", last instance was:" o~string

 ::CLASS Test METACLASS Counter

 ::CLASS Counter SUBCLASS Class
 ::METHOD Init
 self~Counter = 0
 self~init:super
 ::METHOD Counter ATTRIBUTE
 ::METHOD New
 EXPOSE Counter
 Counter = Counter + 1
 FORWARD CLASS (super)

So far, there have been [6] objects created.
So far, there have been [7] objects created.
class: The TEST class, last instance was: a TEST

Defining Metaclasses, 6

Output:

43 Prof. Rony G. Flatscher

"ENHANCED" Method of "CLASS", 1
● Sometimes there is a need to create an instance of a class, which

possesses all attributes and methods laid out in the class, but differs
slightly in a few methods
– Problem solution

● One needs to define a subclass implementing the different methods
● If there is a need to create many different objects, each differing slightly in a few

methods, then this approach may become a little cumbersome

● The ENHANCED method allows the creation of an instance from an
existing class which receives those methods which need to behave
differently
– Such objects are called "one-off objects"

Cf. rexxref.pdf (4.2.3. Defining Instance Methods…)

44 Prof. Rony G. Flatscher

"ENHANCED" Method of "CLASS", 2
● The class PERSON has an attribute Name and the methods your_name

and from_where which are language dependent, in addition to
numerous other methods
– The methods your_name and from_where shall be implemented in the national language

of the individual persons
● Default is the German language and the default country is Austria (Europe)

– "Ich heiße ..."
– "Ich komme aus Österreich."

● English persons
– "My name is ..."
– "I am from ..."

● Spanish persons
– "Mi nom es ..."
– "Soy de ..."

Cf. rexxref.pdf (4.2.3. Defining Instance Methods…)

45 Prof. Rony G. Flatscher

/**/
es = .directory~new
es ~your_name = "RETURN 'Mi nom es' self~Name'.'"
es ~from_where= "RETURN 'Soy de España.' "
en = .directory~new
en ~your_name = "RETURN 'My name is' self~Name'.'"
en ~from_where= "RETURN 'I am from America.'"
p1 = .Person~new("Hans")
p2 = .Person~enhanced(es, "Juan")
p3 = .Person~enhanced(en, "John")
SAY p1~your_name p1~from_where
SAY p2~your_name p2~from_where
SAY p3~your_name p3~from_where
::CLASS Person
::METHOD Name ATTRIBUTE
::METHOD Init
 self~Name = ARG(1)
::METHOD your_name
 RETURN "Ich heiße" self~Name"."
::METHOD from_where
 RETURN "Ich komme aus Österreich."

Ich heiße Hans. Ich komme aus Österreich.
Mi nom es Juan. Soy de España.
My name is John. I am from America.

"ENHANCED" Method of "CLASS", 3

Output:

46 Prof. Rony G. Flatscher

● Interpreter is started
● The Object Rexx environments .environment and .local are created
● The Rexx program given as argument

– Is checked for syntax errors
– Directives are carried out, the source directory is created

● ::REQUIRES loads the specified program, its syntax is checked and its directives are
carried out (a corresponding source directory is created), required program is
executed starting at the first line

● Class objects are created for the classes and are stored in the source directory
– Execution of the program starts at the first line

"The Big Picture"
Initializing Object Rexx

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

