
Vienna University of Economics and Business Welthandelsplatz 1, D2-C ▪ ▪ A-1020 Vienna Prof. Rony G. Flatscher

Department of Information Systems
and Operations Management

BSF4ooRexx

Procedural and Object-oriented Programming 1
Overview, Statements, Comparisons, Branches, Repetition

ooRexxREXX

Business Programming 1 Business Programming 2

Security,
Debugging

Commands,
APIs

Window-
Automatisation,
Web-Scripting

Graphical User
Interfaces (GUI),

Sockets,
...

Basics,
Parsing

2 Prof. Rony G. Flatscher

Why REXX and ooRexx?
● Human-centered language (simple syntax)

– easy syntax and therefore quick to learn

● Powerful object-model
– All important concepts of the object-oriented paradigm available

● Scripting language
– Automation ("remote controlling") of applications and operating systems like

Linux (D-Bus) or Windows (Windows Scripting Engine)
● BSF4ooRexx (Java-Bridge)

– All of Java immediately available camouflaged as ooRexx
● Easy entry into other programming languages (e.g.: Java, Python)

3 Prof. Rony G. Flatscher

Resources
● Course materials

– Slides: http://wi.wu.ac.at/rgf/wu/lehre/autowin/material/foils
– Exercises: http://wi.wu.ac.at/rgf/wu/lehre/autowin/material/exercises/

● ooRexx 5 documentation
– https://sourceforge.net/projects/oorexx/files/oorexx-docs/5.0.0/rexxref.pdf

● Related seminar, diploma, bachelor and master theses
– https://wi.wu.ac.at/rgf/diplomarbeiten/

● Book
– Flatscher R.G.: "Introduction to Rexx and ooRexx – From Rexx to Open Object

Rexx (ooRexx)", facultas Management Book Service

4 Prof. Rony G. Flatscher

Getting ooRexx (as of 2024-08-04)
● Rexx Language Association (non-profit SIG): https://www.RexxLA.org

● Latest ooRexx (beta versions are usually stable, fully productive)
– Installation packages (needs administration rights)

● https://sourceforge.net/projects/oorexx/files/oorexx/
– Considerations:

● Operating System: Linux, MacOS or Windows
● Bitness: 32bit (Linux, Windows) or 64bit (Linux, MacOS, Windows)
● Architecture: x86, ARM, Apple M1, ...

● Resources at WU:
– Virtual PC labs: https://labconnect.wu.ac.at/
– FAQ: https://learn.wu.ac.at/open/distanzlehre/de/virtuellpc

5 Prof. Rony G. Flatscher

History, 1

● 1979 – Mike F. Cowlishaw (IBM-Fellow)
– REXX: Acronym for "REstructured eXtended eXecutor"
– Human-centric successor of “EXEC” language on IBM mainframes
– Interactive (interpreter)
– Keywords are English, resulting code looks like pseudo-code!
– No reserved keywords unlike many other programming languages!

● 1987 – IBM’s System Application Architecture (SAA)
– Procedural script language for all IBM platforms
– Commercial and open source versions available for all operating systems

● 1996 – ANSI/INCITS "Programming Language – REXX" (INCITS
274:1996[S2008])

6 Prof. Rony G. Flatscher

History, 2
● Since 1990s – Development of an object-oriented REXX

– Fully compatible with classic ("procedural") REXX but still with a simple syntax
– Internally fully object-oriented (classic REXX statements are transformed)
– Powerful object model (e.g. meta-classes, multiple inheritance)

● 1996 – Mike F. Cowlishaw development of NetREXX
– NetRexx-programs are translated into Java byte code
– Simpler programming of the Java VM (~30% less Code)
– IBM handed over source code to RexxLA (http://www.RexxLA.org/)

● June, 8th, 2011 opensource released by RexxLA

http://www.RexxLA.org/

7 Prof. Rony G. Flatscher

History, 3
● May 2004 – Negotiations about open-sourcing Object Rexx

– IBM: Manfred Schweizer, manager of IBM's REXX development team
– RexxLA: Pam Taylor (experienced commercial manager, USA), Mark Hessling

(maintainer of Regina and author of numerous Rexx libraries, Australia), Rony G.
Flatscher (MIS professor, Austria/Europe)

● October 2004 – Object REXX → "Open Object REXX" (ooRexx)
● April 2005 – RexxLA releases the opensource version of ooRexx
● ooRexx 5.0.0 released on 2022-12-23

– BSF4ooRexx850 a bridge between ooRexx and Java is available
– ooRexx 5.0.0 released, work on ooRexx 5.1.0 has started

8 Prof. Rony G. Flatscher

Basics
Minimal REXX-Program

/* a comment */
SAY "Hello, my beloved world"

Hello, my beloved world

Output:

Cf. rexxref.pdf (2.26. SAY)

● The Hello World program is a tradition that dates back to 1974.

9 Prof. Rony G. Flatscher

Basics
Notation of Program Text

● Upper or lowercase spelling irrelevant
– All characters of a statement will be translated into uppercase and executed

● Exception: Contents of a string remains unchanged
– Strings are delimited by apostrophes (') or by quotes (")

"Richard", 'Richard', "\{[]}\gulp!öäüß!{niX }"
● Multiple blank characters are reduced to one blank

– Example:
saY "\{[]}\gulp!öäüß!{niX }" reverse(Abc)

– Becomes:
SAY "\{[]}\gulp!öäüß!{niX }" REVERSE(ABC)

10 Prof. Rony G. Flatscher

Basics
Characters

● Characters outside of strings and comments must be from the
following character set
– Blank
– a thru z
– A thru Z
– 0 thru 9
– Exclamation mark (!), backslash (\), question mark (?), equal sign (=), comma (,),

minus (-), plus (+), dot (.), Slash (/), parentheses (()), square brackets ([]),
asterisk (*), tilde (~), semicolon (;), colon (:) and underscore (_)

Cf. rexxref.pdf (1.10. Structure and General Syntax)

11 Prof. Rony G. Flatscher

Basics
Variables

● Variables allow storing, changing, and retrieving strings with the help
of a discretionary name called an identifier

A = "Hello, my beloved world"
a="Hello, my beloved variable"
A = a "- changed again."
say a

Output:
Hello, my beloved variable - changed again.

● Identifiers must begin with a letter, an exclamation mark, a question
mark or an underline character, followed by one or more of these
characters, digits, and dots.

12 Prof. Rony G. Flatscher

Basics
Constants

● Constants never get their values changed
● It is possible to use literals which are string constants appearing

verbatim in an expression
– If one wishes to name constants, then there are a few possibilities available, e.g.

a) The constant value is assigned to a variable, the value of which never gets changed in
the entire program (after all, it is a constant!)

b) In ooRexx use the ::constant name value directive

Cf. rexxref.pdf (3.4. ::CONSTANT)

Pi = 3.14159

13 Prof. Rony G. Flatscher

Basics
Comments

● Comments may be nested and are allowed to span multiple lines.

● Line comments: at the end of a statement, comments follow after
two consecutive dashes:

Cf. rexxref.pdf (1.10.3. Comments)

say 3 + 4 -- this yields "7"

7

Output:

say 3 + /* This /**/ is
 a /* nested
 /* aha */ comment */ which spans

multiple lines */ 4

7

Output:

14 Prof. Rony G. Flatscher

Basics
Statements, 1

● Statements consist of all characters up to and including the semi-
colon (;)

● There may an arbitrary number of statements on a line
● If the semi-colon is missing, then the end of a statement is assumed

by the end of a line

/* Some comment */
SAY "Hello, my dear world";

Hello, my dear world

Output:

15 Prof. Rony G. Flatscher

Basics
Statements, 2

● Statements may span multiple lines, but you need to indicate this
with the continuation character
– A dash (-) or comma (,) as the very last character on the line

/* Some comment */
SAY "Hello," -

"my beloved world";

Hello, my beloved world

Output:

16 Prof. Rony G. Flatscher

Basics
Block

● A block is a statement, which may comprise an arbitrary number of
statements

● A block starts with the keyword DO and ends with END

DO;
SAY "Hello," ;
SAY "world" ;

END;

DO
SAY "Hello,"
SAY "world"

END

Hello,
world

Output:

17 Prof. Rony G. Flatscher

Basics
Comparisons (test_expression), 1

● Two values (constant, variable, results of function calls) can be compared with the
following (Infix) operators (Result: 0=false or 1=true)

= equal
<> \= unequal
< smaller
<= smaller or equal than
> greater
>= greater or equal than

● Negation of Boolean (0=false, 1=true) values
\ Negator

Cf. rexxref.pdf (1.11.2.3. Comparison)

18 Prof. Rony G. Flatscher

Basics
Comparisons (test_expression), 2

● Boolean values can be combined
& "and" (true: if both arguments are true)
| "or" (true: if either argument is true)
&& "exclusive or" (true: if one argument is true and

 the other is false)

● Boolean combinations can be evaluated in a specific order if
enclosed in parentheses:

 0 & 1 | 1
(0 & 1) | 1

 0 & (1 | 1)

Cf. rexxref.pdf (1.11.2.4. Logical (Boolean))

Result: 1 (= true)
Result: 1 (= true)
Result: 0 (= false)

19 Prof. Rony G. Flatscher

Basics
Comparisons (test_expression), 3

a=1
b=2
x="Anton"
y=" Anton "
If a = 1 then ...
If a = a then ...

If a >= b then ...

If x = y then ...
If x == y then ...

 a <= b & (a = 1 | b > a)
\(a <= b & (a = 1 | b > a))
\a

Result: 1 (= true)
Result: 1 (= true)

Result: 0 (= false)

Result: 1 (= true)
Result: 0 (= false)

Result: 1 (= true)
Result: 0 (= false)
Result: 0 (= false)

20 Prof. Rony G. Flatscher

Basics
Branch, 1

● A branch determines which statement (block) should be executed as a result of a
comparison (of a Boolean value)

– IF test_expression=.true THEN statement;

● A branch can also determine what alternative statement (block) should be executed,
in case the Boolean value is false

– IF test_expression=.true THEN statement; ELSE statement;

Cf. rexxref.pdf (2.10. IF)

IF age < 19 THEN SAY "Young."

IF age < 19 THEN SAY "Young."
ELSE SAY "Old."

IF age < 1 THEN
DO

SAY "Hello,"
SAY "my beloved world"

END

21 Prof. Rony G. Flatscher

Basics
Branch, 2

● Multiple selections (SELECT)
SELECT
 WHEN test_expression THEN statement;
 WHEN test_expression THEN statement;
 /* ... additional WHEN-statements */
 OTHERWISE statement;
END

Example:

Cf. rexxref.pdf (2.27. SELECT)

SELECT
 WHEN age = 1 THEN SAY "Baby." ;
 WHEN age = 6 THEN SAY "Elementary school kid." ;
 WHEN age >= 10 THEN SAY "Big kid." ;
 OTHERWISE SAY "Unimportant." ;
END

22 Prof. Rony G. Flatscher

Basics
Repetition, 1

● A block can be executed repeatedly

Cf. rexxref.pdf (2.4. DO)

DO 3
SAY "Aua!"
SAY "Oh!"

END

Aua!
Oh!
Aua!
Oh!
Aua!
Oh!

Output:

23 Prof. Rony G. Flatscher

Basics
Repetition, 2

● Using a variable to control the number of repetitions

a = 3
...
DO a

SAY "Aua!"; SAY "Oh!"
END

Aua!
Oh!
Aua!
Oh!
Aua!
Oh!

Output:

Cf. rexxref.pdf (2.4. DO)

24 Prof. Rony G. Flatscher

Basics
Repetition, 3

Cf. rexxref.pdf (2.4. DO)

● Repetition using a loop variable ("i" in this example)

DO i = 1 TO 3
SAY "Aua!"; SAY "Oh!" i

END

Aua!
Oh! 1
Aua!
Oh! 2
Aua!
Oh! 3

Output:

25 Prof. Rony G. Flatscher

Basics
Repetition, 4

Cf. rexxref.pdf (2.4. DO)

● Repetition using a loop variable ("i" in this example)

DO i = 1 TO 3 BY 2
SAY "Aua!"; SAY "Oh!" i

END

Aua!
Oh! 1
Aua!
Oh! 3

Output:

26 Prof. Rony G. Flatscher

Basics
Repetition, 5

Cf. rexxref.pdf (2.4. DO)

● Repetition using a control variable ("i" in this example)

DO i = 3.1 TO 5.7 BY 2.1
SAY "Aua!"; SAY "Oh!" i

END

Aua!
Oh! 3.1
Aua!
Oh! 5.2

Output:

27 Prof. Rony G. Flatscher

Basics
Repetition, 6

Cf. rexxref.pdf (2.4. DO)

● Conditional repetition (evaluated at the beginning of the block)

i = 2
DO WHILE i < 3

SAY "Aua!";SAY "Oh!" i
i = i + 1

END

Aua!
Oh! 2

Output:

28 Prof. Rony G. Flatscher

Basics
Repetition, 7

Cf. rexxref.pdf (2.4. DO)

● Conditional repetition (evaluated at the beginning of the block)

i = 3
DO WHILE i < 3

SAY "Aua!";SAY "Oh!" i
i = i + 1

END

Output:

→ No output, because block is not executed!

29 Prof. Rony G. Flatscher

Basics
Repetition, 8

Cf. rexxref.pdf (2.4. DO)

● Exit condition (evaluated at the end of the block)

i = 3
DO UNTIL i > 1

SAY "Aua!";SAY "Oh!" i
i = i + 1

END

Aua!
Oh! 3

Output:

30 Prof. Rony G. Flatscher

Basics
Execution, 1

/* */
 a = 3
 b = "4"
 say a b
 say a b
 say a ||b
 say a + b

3 4
3 4
34
7

Output:

31 Prof. Rony G. Flatscher

Basics
Execution (Commands), 2

/* */
"del *.*"

/* */
ADDRESS SYSTEM "del *.*"

/* */
a = "del *.*"
a

/* */
a = "del *.*"
ADDRESS SYSTEM a

or:

or:

or:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

