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Why REXX and ooRexx?
● Human-centered language (simple syntax) 

– easy syntax and therefore quick to learn

● Powerful object-model
– All important concepts of the object-oriented paradigm available

● Scripting language
– Automation ("remote controlling") of applications and operating systems like 

Linux (D-Bus) or Windows (Windows Scripting Engine)
● BSF4ooRexx (Java-Bridge)

– All of Java immediately available camouflaged as ooRexx
● Easy entry into other programming languages (e.g.: Java, Python) 
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Resources
● Course materials

– Slides: http://wi.wu.ac.at/rgf/wu/lehre/autowin/material/foils 
– Exercises: http://wi.wu.ac.at/rgf/wu/lehre/autowin/material/exercises/  

● ooRexx 5 documentation
– https://sourceforge.net/projects/oorexx/files/oorexx-docs/5.0.0/rexxref.pdf

● Related seminar, diploma, bachelor and master theses
– https://wi.wu.ac.at/rgf/diplomarbeiten/ 

● Book 
– Flatscher R.G.: "Introduction to Rexx and ooRexx – From Rexx to Open Object 

Rexx (ooRexx)", facultas Management Book Service
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Getting ooRexx (as of 2024-08-04)
● Rexx Language Association (non-profit SIG): https://www.RexxLA.org

● Latest ooRexx (beta versions are usually stable, fully productive)
– Installation packages (needs administration rights)

● https://sourceforge.net/projects/oorexx/files/oorexx/
– Considerations:

● Operating System: Linux, MacOS or Windows
● Bitness: 32bit (Linux, Windows) or 64bit (Linux, MacOS, Windows)
● Architecture: x86, ARM, Apple M1, ...

● Resources at WU:
– Virtual PC labs: https://labconnect.wu.ac.at/ 
– FAQ: https://learn.wu.ac.at/open/distanzlehre/de/virtuellpc 
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History, 1

● 1979 – Mike F. Cowlishaw (IBM-Fellow)
– REXX: Acronym for "REstructured eXtended eXecutor"
– Human-centric successor of “EXEC” language on IBM mainframes
– Interactive (interpreter)
– Keywords are English, resulting code looks like pseudo-code!
– No reserved keywords unlike many other programming languages!

● 1987 – IBM’s System Application Architecture (SAA)
– Procedural script language for all IBM platforms
– Commercial and open source versions available for all operating systems

● 1996 – ANSI/INCITS "Programming Language – REXX" (INCITS 
274:1996[S2008])
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History, 2
● Since 1990s – Development of an object-oriented REXX

– Fully compatible with classic ("procedural") REXX but still with a simple syntax
– Internally fully object-oriented (classic REXX statements are transformed)
– Powerful object model (e.g. meta-classes, multiple inheritance)

● 1996 – Mike F. Cowlishaw development of NetREXX
– NetRexx-programs are translated into Java byte code
– Simpler programming of the Java VM (~30% less Code)
– IBM handed over source code to RexxLA (http://www.RexxLA.org/)

● June, 8th, 2011 opensource released by RexxLA

http://www.RexxLA.org/
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History, 3
● May 2004 – Negotiations about open-sourcing Object Rexx

– IBM: Manfred Schweizer, manager of IBM's REXX development team
– RexxLA: Pam Taylor (experienced commercial manager, USA), Mark Hessling 

(maintainer of Regina and author of numerous Rexx libraries, Australia), Rony G. 
Flatscher (MIS professor, Austria/Europe)

● October 2004 – Object REXX → "Open Object REXX" (ooRexx)
● April 2005 – RexxLA releases the opensource version of ooRexx
● ooRexx 5.0.0 released on 2022-12-23

– BSF4ooRexx850 a bridge between ooRexx and Java is available
– ooRexx 5.0.0 released, work on ooRexx 5.1.0 has started
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Basics
Minimal REXX-Program

/* a comment */
SAY "Hello, my beloved world"

Hello, my beloved world

Output:

Cf. rexxref.pdf (2.26. SAY)

● The Hello World program is a tradition that dates back to 1974.
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Basics
Notation of Program Text

● Upper or lowercase spelling irrelevant
– All characters of a statement will be translated into uppercase and executed

● Exception: Contents of a string remains unchanged
– Strings are delimited by apostrophes (') or by quotes (")

"Richard", 'Richard', "\{[]}\gulp!öäüß!{niX }"
● Multiple blank characters are reduced to one blank

– Example:
saY "\{[]}\gulp!öäüß!{niX }"  reverse(  Abc )

– Becomes:
SAY "\{[]}\gulp!öäüß!{niX }" REVERSE(ABC)
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Basics
Characters

● Characters outside of strings and comments must be from the 
following character set
– Blank
– a thru z
– A thru Z
– 0 thru 9
– Exclamation mark (!), backslash (\), question mark (?), equal sign (=), comma (,), 

minus (-), plus (+), dot (.), Slash (/), parentheses (()), square brackets ([]), 
asterisk (*), tilde (~), semicolon (;), colon (:) and underscore (_)

Cf. rexxref.pdf  (1.10. Structure and General Syntax)
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Basics
Variables

● Variables allow storing, changing, and retrieving strings with the help 
of a discretionary name called an identifier

A = "Hello, my beloved world"
a="Hello, my beloved variable"
A = a "- changed again."
say a

Output:
Hello, my beloved variable - changed again.

● Identifiers must begin with a letter, an exclamation mark, a question 
mark or an underline character, followed by one or more of these 
characters, digits, and dots.
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Basics
Constants

● Constants never get their values changed
● It is possible to use literals which are string constants appearing 

verbatim in an expression
– If one wishes to name constants, then there are a few possibilities available, e.g.

a) The constant value is assigned to a variable, the value of which never gets changed in 
the entire program (after all, it is a constant!)

b) In ooRexx use the ::constant name value directive

Cf. rexxref.pdf  (3.4. ::CONSTANT)

Pi = 3.14159
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Basics
Comments

● Comments may be nested and are allowed to span multiple lines.

● Line comments: at the end of a statement, comments follow after 
two consecutive dashes:

Cf. rexxref.pdf (1.10.3. Comments)

say 3 + 4 -- this yields "7"

7

Output:

say 3 + /* This /**/ is
      a /* nested 
           /* aha */ comment */ which spans

multiple lines */ 4

7

Output:
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Basics
Statements, 1

● Statements consist of all characters up to and including the semi-
colon (;)

● There may an arbitrary number of statements on a line
● If the semi-colon is missing, then the end of a statement is assumed 

by the end of a line

/* Some comment */
SAY "Hello, my dear world";

Hello, my dear world

Output:
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Basics
Statements, 2

● Statements may span multiple lines, but you need to indicate this 
with the continuation character
– A dash (-) or comma (,) as the very last character on the line

/* Some comment */
SAY "Hello," -

"my beloved world";

Hello, my beloved world

Output:
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Basics
Block

● A block is a statement, which may comprise an arbitrary number of 
statements

● A block starts with the keyword DO and ends with END

DO;
SAY "Hello," ;
SAY "world" ;

END;

DO
SAY "Hello,"
SAY "world"

END

Hello,
world

Output:
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Basics
Comparisons (test_expression), 1

● Two values (constant, variable, results of function calls) can be compared with the 
following (Infix) operators (Result: 0=false or 1=true)

=   equal
<> \=  unequal
<        smaller
<=   smaller or equal than
>  greater
>= greater or equal than

● Negation of Boolean (0=false, 1=true) values
\  Negator

Cf. rexxref.pdf  (1.11.2.3. Comparison)
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Basics
Comparisons (test_expression), 2

● Boolean values can be combined
&  "and" (true: if both arguments are true)
|  "or"  (true: if either argument is true)
&& "exclusive or" (true: if one argument is true and  

  the other is false)

● Boolean combinations can be evaluated in a specific order if 
enclosed in parentheses:

  0 & 1  | 1  
(0 & 1) | 1  

  0 & (1 | 1)  

Cf. rexxref.pdf  (1.11.2.4. Logical (Boolean))

Result: 1 (= true)
Result: 1 (= true)
Result: 0 (= false)
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Basics
Comparisons (test_expression), 3

a=1
b=2
x="Anton"
y=" Anton  "
If a = 1 then ...
If a = a then ...

If a >= b then ...

If x = y then ...
If x == y then ...

  a <= b & (a = 1 | b > a)
\(a <= b & (a = 1 | b > a))
\a

Result: 1 (= true)
Result: 1 (= true)

Result: 0 (= false)

Result: 1 (= true)
Result: 0 (= false)

Result: 1 (= true)
Result: 0 (= false)
Result: 0 (= false)
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Basics
Branch, 1

● A branch determines which statement (block) should be executed as a result of a 
comparison (of a Boolean value)

– IF test_expression=.true THEN statement;

● A branch can also determine what alternative statement (block) should be executed, 
in case the Boolean value is false

– IF test_expression=.true THEN statement; ELSE statement;

Cf. rexxref.pdf  (2.10. IF)

IF age < 19 THEN SAY "Young."

IF age < 19 THEN SAY "Young."
ELSE SAY "Old."

IF age < 1 THEN
DO

SAY "Hello,"
SAY "my beloved world"

END
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Basics
Branch, 2

● Multiple selections (SELECT) 
SELECT
   WHEN test_expression THEN statement;
   WHEN test_expression THEN statement;
      /* ... additional WHEN-statements */
   OTHERWISE statement;
END

Example:

Cf. rexxref.pdf  (2.27. SELECT)

SELECT
   WHEN age = 1   THEN SAY "Baby." ;
   WHEN age = 6   THEN SAY "Elementary school kid." ;
   WHEN age >= 10 THEN SAY "Big kid." ;
   OTHERWISE SAY "Unimportant." ;
END
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Basics
Repetition, 1

● A block can be executed repeatedly

Cf. rexxref.pdf  (2.4. DO)

DO 3
SAY "Aua!"
SAY "Oh!"

END

Aua!
Oh!
Aua!
Oh!
Aua!
Oh!

Output:
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Basics
Repetition, 2

● Using a variable to control the number of repetitions

a = 3
...
DO a

SAY "Aua!"; SAY "Oh!"
END

Aua!
Oh!
Aua!
Oh!
Aua!
Oh!

Output:

Cf. rexxref.pdf  (2.4. DO)
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Basics
Repetition, 3

Cf. rexxref.pdf  (2.4. DO)

● Repetition using a loop variable ("i" in this example)

DO i = 1 TO 3
SAY "Aua!"; SAY "Oh!" i

END

Aua!
Oh! 1
Aua!
Oh! 2
Aua!
Oh! 3

Output:
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Basics
Repetition, 4

Cf. rexxref.pdf  (2.4. DO)

● Repetition using a loop variable ("i" in this example)

DO i = 1 TO 3 BY 2
SAY "Aua!"; SAY "Oh!" i

END

Aua!
Oh! 1
Aua!
Oh! 3

Output:
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Basics
Repetition, 5

Cf. rexxref.pdf  (2.4. DO)

● Repetition using a control variable ("i" in this example)

DO i = 3.1 TO 5.7 BY 2.1
SAY "Aua!"; SAY "Oh!" i

END

Aua!
Oh! 3.1
Aua!
Oh! 5.2

Output:
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Basics
Repetition, 6

Cf. rexxref.pdf  (2.4. DO)

● Conditional repetition (evaluated at the beginning of the block)

i = 2
DO WHILE i < 3

SAY "Aua!";SAY "Oh!" i
i = i + 1

END

Aua!
Oh! 2

Output:
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Basics
Repetition, 7

Cf. rexxref.pdf (2.4. DO)

● Conditional repetition (evaluated at the beginning of the block)

i = 3
DO WHILE i < 3

SAY "Aua!";SAY "Oh!" i
i = i + 1

END

Output:

→ No output, because block is not executed!
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Basics
Repetition, 8

Cf. rexxref.pdf  (2.4. DO)

● Exit condition (evaluated at the end of the block)

i = 3
DO UNTIL i > 1

SAY "Aua!";SAY "Oh!" i
i = i + 1

END

Aua!
Oh! 3

Output:
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Basics
Execution, 1

/* */
 a = 3
 b = "4"
 say a  b
 say a b
 say a ||b
 say a + b

3 4
3 4
34
7

Output:
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Basics
Execution (Commands), 2

/* */
"del *.*"

/* */
ADDRESS SYSTEM "del *.*"

/* */
a = "del *.*"
a

/* */
a = "del *.*"
ADDRESS SYSTEM a

or:

or:

or:
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