
Information and Software Technology 92 (2017) 49–74

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Reusable and generic design decisions for developing UML-based

domain-specific languages

Bernhard Hoisl a , Stefan Sobernig

a , ∗, Mark Strembeck

a , b , c

a Vienna University of Economics and Business (WU), Welthandelsplatz 1, 1020 Vienna, Austria
b Secure Business Austria (SBA) Research gGmbH, Favoritenstraße 16, 1040 Vienna, Austria
c Complexity Science Hub Vienna (CSH), Josefstädter Straße 39, 1080 Vienna, Austria

a r t i c l e i n f o

Article history:

Received 12 August 2016

Revised 12 July 2017

Accepted 13 July 2017

Available online 25 July 2017

Keywords:

Model-driven software development

Domain-specific language

Design decision

Design rationale

Unified modeling language

Survey

a b s t r a c t

Context: In recent years, UML-based domain-specific model languages (DSMLs) have become a popu-

lar option in model-driven development projects. However, making informed design decisions for such

DSMLs involves a large number of non-trivial and inter-related options. These options concern the

language-model specification, UML extension techniques, concrete-syntax language design, and modeling-

tool support.

Objective: In order to make the corresponding knowledge on design decisions reusable, proven design

rationale from existing DSML projects must be collected, systematized, and documented using an agreed

upon documentation format.

Method: We applied a sequential multi-method approach to identify and to document reusable design

decisions for UML-based DSMLs. The approach included a Web-based survey with 80 participants. More-

over, 80 DSML projects 1 , which have been identified through a prior systematic literature review, were

analyzed in detail in order to identify reusable design decisions for such DSMLs.

Results: We present insights on the current state of practice in documenting UML-based DSMLs (e.g., per-

ceived barriers, documentation techniques, reuse potential) and a publicly available collection of reusable

design decisions, including 35 decision options on different DSML development concerns (especially con-

cerning the language model, concrete-syntax language design, and modeling tools). The reusable design

decisions are documented using a structured documentation format (decision record).

Conclusion: Our results are both, scientifically relevant (e.g. for design-space analyses or for creating clas-

sification schemas for further research on UML-based DSML development) and important for actual soft-

ware engineering projects (e.g. by providing best-practice guidelines and pointers to common pitfalls).

© 2017 Elsevier B.V. All rights reserved.

1

i

f

d

I

a

a

d

(

a

a

t

a

r

t

F

fi

c

g

h

0

. Introduction

In model-driven development (MDD), a domain-specific model-

ng language (DSML) is a domain-specific language (DSL) for speci-

ying design-level and platform-independent concerns in the target

omain, rather than implementation-level concerns (see, e.g., [1]).

n this context, DSMLs typically provide (but are not limited to)

 graphical concrete syntax. A DSML is built on top of a tailored

bstract syntax (i.e. the core language model) which is typically

efined using metamodeling techniques. In addition to a DSML’s
∗ Corresponding author.

E-mail addresses: bernhard.hoisl@wu.ac.at (B. Hoisl), stefan.sobernig@wu.ac.at

S. Sobernig), mark.strembeck@wu.ac.at (M. Strembeck).
1 Note that it is pure coincidence that there were 80 participants in the survey

nd that 80 DSML projects were reviewed.

p

t

a

o

[

t

ttp://dx.doi.org/10.1016/j.infsof.2017.07.008

950-5849/© 2017 Elsevier B.V. All rights reserved.
bstract syntax (metamodel), DSML developers often use formal

extual specification techniques to express the DSML’s structural

nd behavioral semantics [2] . Once the abstract syntax and a cor-

esponding concrete syntax are specified, a DSML is typically in-

egrated into an MDD tool chain, such as the Eclipse Modeling

ramework (EMF).

In recent years, the development of DSMLs based on the Uni-

ed Modeling Language (UML [3]) and/or on the Meta Object Fa-

ility (MOF [4]) has become a popular choice among software en-

ineers: In a related survey, we found that more than 50% of the

articipating MDD researchers and practitioners have contributed

o at least one UML-based DSML between 20 0 0 and 2015 [5] . In

ddition to our own findings, the UML’s relevance for DSML devel-

pment is also reported in numerous other contributions (see, e.g.,

6–10]). On the one hand, this momentum is due to a general trend

owards the usage of DSLs in MDD [11] . On the other hand, the

http://dx.doi.org/10.1016/j.infsof.2017.07.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.07.008&domain=pdf
mailto:bernhard.hoisl@wu.ac.at
mailto:stefan.sobernig@wu.ac.at
mailto:mark.strembeck@wu.ac.at
http://dx.doi.org/10.1016/j.infsof.2017.07.008

50 B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74

c

k

S

c

w

i

i

i

[

[

s

w

r

c

C

t

c

F

i

d

f

fi

m

s

m

d

p

w

f

c

s

s

p

p

i

u

c

r

t

s

(

a

i

b

m

s

a

v

S

D

a

s

m

c

t

d

t

S

D

c

UML and the MOF provide native extension techniques for a) de-

veloping fully customized modeling languages (e.g., new diagram

types) and b) for adapting the UML to domain-specific purposes

while reusing UML features. Examples of such techniques include

UML profiles [9,12] , pruning/reduction [13] , metamodel slicing [14] ,

or package referencing and merging [15,16] . In this paper, we focus

on DSMLs that are based on and embedded into the UML.

Design Knowledge for Reuse. At the time of writing, experiences

and lessons learned from developing UML-based DSMLs in a dis-

ciplined manner are barely documented. Furthermore, even when

documented, the level of detail necessary to become useful to

other DSML developers is often missing. In recent years, different

research approaches and research methods have been applied to

collect, organize, and review current (best and worst) practices,

such as case studies (see, e.g., [10]), controlled experiments (see,

e.g., [17]), critical-analytical studies based on a reference theory

(see, e.g., [18]), and systematic literature reviews (SLRs; see, e.g.,

[19]). So far, these contributions focused on isolated elements of a

DSML design (e.g., on the concrete syntax for improving its cog-

nitive effectiveness or on patterns of structuring the abstract syn-

tax). However, design-decision making for DSML development in-

cludes multiple, interrelated decisions on language-model defini-

tion, constraint specification, concrete-syntax design, platform in-

tegration [20] , and adequate software tooling [21] . To be useful, a

design decision must be captured along with the rationale on why

this particular decision is important or meaningful. Rationale de-

tails include a) different solutions (so called decision options) that

should be considered before making a final design decision, b) the

decision-makers’ positive and negative assessments of the respec-

tive options given a set of corresponding DSML requirements (so

called decision drivers), and c) the positive and negative effects on

subsequent design-decision making (the decision consequences).

The lack of documented design-decision rationale in software

engineering is sometimes referred to as the capture problem of

design-rationale documentation [22,23] . An important barrier to

documenting design rationale (DR) in all necessary detail is the

considerable overhead of creating and maintaining DR documenta-

tion. For example, a study on capturing architectural design knowl-

edge quantified the time effort needed for a project including cap-

turing design rationale to be twice the time needed for a project

without that extra effort [24] . Other problems explored in the

research on documenting DR include the intrusiveness of docu-

mentation techniques, lack of incentives, and cognitive barriers in

software-design processes (see, e.g., [23,25,26]). As a consequence,

new DSML development projects cannot benefit from the expe-

riences gained in prior projects and valuable design knowledge

might be lost [27] .

In this context, two important objectives in software-

engineering research are to limit the effort for documenting

design decisions and to increase the quality of the documented

rationale [22,23,25] . To achieve these objectives, existing documen-

tation approaches distill common or reusable knowledge—similar

to software patterns [27] —from decisions made in actual devel-

opment projects to document and share proven solutions along

with their forces, consequences, and (alternative) solutions (see,

e.g., [28–31]). For developing DSLs (including DSMLs) prior work

has started by gathering DR and best practices. Results include

procedural models on systematic DSL development (see, e.g.,

[20,32]) as well as pattern collections (see, e.g., [33,34]). How-

ever, so far the empirical evidence gathered from corresponding

UML-related projects is limited to the UML core, for example as

reported in a review of 49 empirical studies [35] . Moreover, only

tentative results exist on applying DR and best practices in DSML

development projects (see, e.g., [36,37]). In this context, our work
omplements existing approaches by documenting reusable design

nowledge for developing UML-based DSMLs.

ynopsis. Our study for capturing reusable and generic design de-

isions includes three consecutive stages (see Fig. 1). In particular,

e started by documenting our own DSMLs, reviewed DR found

n the related work via backward snowballing, and conducted an

nitial pilot SLR (see [38,39]). The result of these preparatory stud-

es was a first revision of the catalog of reusable design decisions

40] . Next, we designed, conducted, and documented an SLR (see

21,41]) to arrive at a revised version of our decision catalog (post-

tudy revision [42]). Finally, we performed a Web-based survey

ith 80 MDD researchers and practitioners on documenting and

eusing DR. The survey’s main objective was to collect data to de-

ide on a design-decision documentation format (see [5,42]).

ontribution. The results of our Web-based survey show the po-

ential for DR reuse on UML-based DSMLs, as well as the per-

eived barriers for documenting DR in DSML development projects.

or example, missing standards or requirements for document-

ng design decisions, time and budget constraints, absence of

ocumentation-tool support, or the lack of prior design decisions

or reuse (see above). A majority of the survey participants con-

rmed the importance of using DR as part of DSML design docu-

entation. This importance extends to all forms of DR, whether

elf-documented (e.g. via DR documentation activities, such as

eeting/interview protocols, participant observations, or written

ocumentation) or reused from other sources (such as scientific

ublications, guidelines, or pattern collections).

In a long-term research effort of about three years [21,38,41] ,

e have collected, documented, and systematized design rationale

rom 80 UML-based DSMLs. The key result is a publicly available

atalog of reusable design decisions [42] . The decision catalog con-

ists of seven reusable design decisions (decision records), each de-

cribing a repeatedly observed decision context (e.g., a development

hase or certain technology choices), a repeatedly reported design

roblem regarding a DSML design element, as well as correspond-

ng design options to solve the problem. In total, the catalog doc-

ments 35 decision options. In addition, the reusable design de-

isions also report on the inter-dependencies between different

eusable decisions (e.g., between designing the abstract syntax and

he concrete syntax of a DSML).

The reusable decisions and their details are defined in a way

uch that they can be directly referenced from other documents

e.g., decision templates). This way, the design-decisions catalog

ims at providing a practical means for assisting DSML engineers

n reusing DR from prior projects and in documenting the rationale

ehind their own decision making.

This paper is accompanied by (publicly available) supplemental

aterial: (1) a detailed technical report on the survey design and

urvey results [5] , (2) a complete design-decisions catalog [42] , (3)

n earlier systematic literature review (SLR) which is documented

ia a prior publication [41] .

The remainder of this paper is structured as follows: In

ection 2 , we elaborate on DR documentation for UML-based

SMLs, on the content structure of the design-decisions catalog,

nd on the origins of the empirical data which entered the con-

truction of the catalog (survey, literature review). Section 3 gives a

otivating application example for the presented design-decisions

atalog. Section 4 is dedicated to a selective presentation of

he catalog’s contents, including design-decision options, decision

rivers, and associations between different decisions. The limita-

ions of our overall approach (esp. the survey) are discussed in

ection 5 . In Section 6 , we iterate over the requirements on DSML

R documentation as indicated by the survey. Related work is dis-

ussed in Section 7 before Section 8 concludes the paper.

B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74 51

Fig. 1. Overview of research stages for collecting, documenting, systematizing design rationale (DR) on UML-based DSMLs. In this paper, we report on the design and the

execution of the research activities at Stage 3 (web-based survey), as well as the corresponding research results: i) the survey and ii) the catalog of reusable design decisions.

2

2

g

o

c

D

p

[

d

F

w

g

fi

c

h

c

n

s

D

a

D

d

s

m

m

f

d

G

p

b

g

c

p

i

a

a

a

i

c

m

d

c

r

S

v

s

u

e

m

fi

p

t

p

p

1

g

S

p

P

t

t

l

2 Throughout the paper, we apply some notation conventions to refer to reusable

design decisions and their content items such as decision options. D i denotes a

reusable decision corresponding to some decision point i ; O i.j refers to decision op-

tion j at decision point i .
3 http://cruise.eecs.uottawa.ca/models2015/ ; last accessed: Feb 9, 2017.
. Background and preliminaries

.1. Documenting design rationale on DSMLs

A domain-specific language (DSL) is a tailor-made software lan-

uage for a (narrow) application domain. Thus, a DSL is based

n corresponding domain abstractions and provides at least one

oncrete syntax. A domain-specific modeling language (DSML) is a

SL that provides a graphical concrete syntax for the primary pur-

ose of diagrammatic modeling in a particular application domain

20,32] . A DSML is commonly deployed as part of a model-driven

evelopment (MDD) toolkit (e.g. as part of the Eclipse Modeling

ramework, EMF). For the scope of this paper, we look at DSMLs

hich are internal to or embedded into the Unified Modeling Lan-

uage version 2.x (UML 2.x [9,12,43]).

DR [22,23] on DSML development includes reasoning and justi-

cation of decisions made when designing, creating, and using the

ore artifacts of a DSML (e.g. the abstract and concrete syntax, be-

avior specification, metamodeling infrastructure, or the MDD tool

hain). Documenting DR explicitly aims at assisting software engi-

eers by providing and explaining past decisions (e.g. in a design-

pace analysis) and by improving the understanding of a particular

SML design choice during development and maintenance (e.g. as

 kind of design-process documentation).

For the purposes of this paper, we distinguish two kinds of

SML DR [27] : 1) DSML- specific DR reflects on the reasoning over

ifferent decision options during a particular design process for a

ingle DSML. Examples of such explicitly documented, specific DR

ay be found in artifacts created in source-configuration manage-

ent tools, development-issue trackers, and open-standards arti-

acts. 2) DSML- generic DR includes knowledge obtained through

eveloping multiple DSMLs, for one or several application domains.

eneric DR is commonly found only as implicit knowledge of ex-

erienced DSML engineers. For example, software patterns have

een used in software-language engineering to explicitly document

eneric DR (see, e.g., [33,44]).

In general, the DSML development process involves a number of

haracteristic development activities [20] . From a decision-making

erspective, each development activity also marks a decision point ,

.e. a point in time at which particular design-decisions must be

ddressed. In particular, this means that different design solutions

s well as their effects on subsequent design decisions have to be

ssessed. From the DR documentation perspective, a decision point

s a point in time for recording an on-going decision-making pro-
ess. In our study, DR on a given decision point is captured from

ultiple DSML projects and represented as a reusable option for

ecision making (see Section 2.2). 2 In particular, we consider seven

oncerns of UML-based DSML development and, therefore, seven

eusable decisions (D1–D7, hereafter; see Section 4).

urvey Design. In order to assess the importance of DR for the de-

elopment of DSMLs, we conducted a Web-based survey with re-

earchers and practitioners (see also Section 6) [5] . The target pop-

lation were peers in the field of designing and developing sci-

ntific/industry DSMLs. We applied a non-probabilistic sampling

ethod by contacting MDD researchers and practitioners identi-

ed via dedicated scientific venues (e.g. authors of research pa-

ers, program committee members of conferences, associate edi-

ors of journals) to take part in the survey (i.e. convenience sam-

ling [45]). Venues included premier outlets for researchers and

ractitioners in the field of MDD and DSMLs, such as, the ACM/IEEE

8th International Conference on Model Driven Engineering Lan-

uages and Systems (MoDELS) 3 or the International Journal on

oftware and Systems Modeling (SoSyM) 4 . The prospective partici-

ants were invited to take part in the Web-based survey via email.

rior to sending out the invitation emails, we pretested our ques-

ionnaire and adjusted the content as well as its length so that it

ook approx. 15–20 min for the participants to complete it.

The questionnaire was divided into four main parts:

1. An introductory text and an agreement concerning the partici-

pation in the survey;

2. Questions concerning the participants’ experiences with de-

veloping DSMLs (e.g. number of developed scientific/industry

DSMLs, job description while contributing to the DSMLs);

3. Questions about characteristics of the developed DSMLs (e.g.

application domains, metamodeling languages) and about as-

pects of documenting and using DR when developing these

DSMLs (e.g. DR documentation activities/barriers, DR reuse);

4. Demographic questions (e.g. country of residence);

Moreover, the participants were asked to indicate whether they

ike to receive a copy of the research report as well as their avail-
4 http://sosym.org/ ; last accessed: Feb 9, 2017.

http://cruise.eecs.uottawa.ca/models2015/
http://sosym.org/

52 B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74

b

(

p

i

D

t

2

t

t

i

v

s

t

o

p

i

c

n

f

s

a

o

2

t

a

l

o

h

n

c

e

f

t

w

b

u

[

e

l

F

b

c

c

S

c

a

l

t

(

t

a

m

s

d
ability for a possible follow-up survey. We also provided a text box

for additional (optional) feedback.

For the purposes of our study, we defined an industry DSML

as a language that has been developed as part of one or sev-

eral predominantly industry-driven software-development projects

with the primary aim to create or to improve a commercial soft-

ware product. In contrast, we defined a scientific DSML as a lan-

guage that has been developed as part of one or several predomi-

nantly research-driven software-development projects which result

in non-commercial software artifacts (e.g. research prototypes, ex-

periment materials). In this context, a research-driven software-

development project aims at exploring, collecting, systematizing,

and validating knowledge on software engineering, in general, and

DSML engineering, in particular. The survey especially targeted

practitioners developing (UML-based) industry DSMLs. In case par-

ticipants reported experience with industry DSMLs, we specifically

asked them to answer additional questions referring to industry

DSMLs [5] .

Demographics. We contacted 399 researchers and practitioners and

received 62 completed as well as 18 partially filled-out question-

naires (sample size: n = 80, including partial answers); the partici-

pants resided in 22 different countries (n = 62, because some par-

ticipants did not indicate their country of origin). This results in

a response rate (Response Rate2; RR2 [46]) of 20.1%. 5 Similar re-

sponse rates have been reported for related studies (see, e.g., [47]).

Regarding expertise, two thirds of the respondents (53/80) have

contributed to more than three DSML projects. In UML-based

projects, 40.5% (17/42) have contributed to more than three DSMLs.

This also reveals a considerable potential for reuse of DSML de-

sign decisions from past projects. 75% of the respondents (52/70)

have six or more years of experience (up to 29 years). More-

over, our participants gained experience in diverse roles (multi-

ple answers were allowed): 86.1% of the respondents worked in

a non-profit organization (e.g. publicly funded university), 36.1% in

a for-profit organization (e.g. private company), and 5.6% as free-

lancer/independent contractor (other employer: 4.2%). The job de-

scription for 76.4% of the participants included research aspects

(e.g. research associate), tertiary education (e.g. university lecturer)

for 37.5%, and software development (e.g. software architect, devel-

oper, tester) for 31.9% (other description: 5.6%). When the job de-

scription included software development, most of the participants

filled one or more of the following roles in software-development

projects involving DSMLs (in descending order): software archi-

tect/designer (87%), software developer/implementer (70%), project

manager (56.5%), system analyst/requirements specifier (34.8%).

General Findings. In total, our survey participants contributed to

365 industry (per-participant mean: 4.6, sd: 15.7) and to 390 sci-

entific (4.9/ 11.6) DSMLs (time frame: 1987–2015). Out of these, 67

(0.8/ 1.3) and 101 (1.3/ 2.1), respectively, were based on the UML.

Note that these are only coarse aggregates across the participants

which do not consider if different participants have been work-

ing on the same DSML projects – 52.5% of the respondents (42/80)

have contributed to at least one UML-based DSML, 40% (32/80) de-

veloped at least one UML-based DSML in an industrial setting.

The DSMLs created by our participants target diverse domains,

such as software development techniques (reported by 44.3% of

the participants; n = 70), embedded systems (38.6%), model verifi-

cation and validation (30%), or web applications (27.1%). Most of

the participants used Ecore (a technology projection of the EMOF

[4]) as metamodeling language to develop DSMLs (62.9%); followed
5 For the definition of partial answers as well as more details on the outcome

rates (e.g. response rate), please consult the survey report [5] .

d

c

y the MOF in versions 2.x (27.1%) and 1.4 (15.7%), respectively

 n = 70). These figures correspond to the result that 65.7% of the

articipants (n = 70) employed an Eclipse-based MDD tool chain to

ntegrate their DSMLs. All participants who developed UML-based

SMLs (n = 42) used UML in version 2.x [3] ; for example, 33.3% of

he participants adopted UML in version 2.0 and 23.8% in version

.4.1.

The majority of our participants (72.1%, sample size: n = 68, due

o partial answers) also believe that it is (extremely) important

o use DR as part of DSML design documentation (a finding that

s confirmed by related studies; see, e.g., [47]). Almost all sur-

ey participants (93.4%, n = 61) (re)used DR available from arbitrary

ources and documented in arbitrary formats (e.g. books, scien-

ific publications, case-study reports) for making design decisions

n at least one of their DSMLs. However, the participants also re-

orted a limited usage of DR that has been explicitly documented

n a generic and reusable form (e.g. pattern collections, design de-

isions). 6 For instance, only 59% of the participants (sample size:

 = 61) (re)used DR documented as design decisions (e.g. available

rom former projects), although 75% of them rated documented de-

ign decisions as being moderately to extremely useful (n = 36). The

bove reasons serve as a strong motivation for compiling a catalog

f generic, reusable design decisions.

.2. Structure of reusable design decisions

A reusable design decision documents two or more proven solu-

ions, i.e. solutions that have been successfully applied to a generic

nd recurring problem in DSML development. Moreover, the prob-

em described by a reusable decision must not only recur, i.e. be

bservable for many DSML development projects, but it must also

ave the quality of explicitly requiring a design-decision. However,

o generally accepted format and notation for reusable design de-

isions exist [48] . Thus, the format we use in our work is based on

xisting proposals and represents a simplified and common core

or documenting reusable design decisions, which can be extended

o include additional documentation elements if required.

To systematically arrive at a suitable documentation format,

e performed three steps: 1) We drafted a documentation format

ased on the state of the art in (architectural) design-decision doc-

mentation [4 8,4 9] and based on our DSML documentation needs

38] . 7 2) Based on the DR data obtained from a prior systematic lit-

rature review (see Section 2.3), we verified whether we could col-

ect and distill actual decision data to populate all decision details.

or example, stakeholder roles and decision-based actions cannot

e extracted using a literature review alone. 3) In order to in-

lude an external assessment, we collected expert opinions on de-

ision details deemed relevant for UML-based DSMLs ([5] ; see also

ection 2.1).

The survey data was used to confirm the importance of the

ontent elements included in reusable design decisions. For ex-

mple, we excluded the three elements that have been rated the

east important ones in our survey: viewpoints (rated important

o extremely important by 52.7%, sample size: n = 55), stakeholders

47.2%, n = 53), and status (32.1%, n = 53). This way, we arrived at

he format depicted on the left-hand side of Fig. 2 . This overview

lso highlights the ratings on each of the selected content ele-

ents, collected during step three (collection of expert opinions,

ee above).

The resulting documentation format for reusable decisions is

ivided into seven sections: Point, Problem, Driver, Consequence,
6 For a discussion on the relation between architectural patterns and design-

ecision documentation for the process of software engineering see [27] .
7 See Section 3 for an example of a decision instance and how decision instances

an reference reusable design decisions from the catalog.

B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74 53

Fig. 2. The left-hand side shows overview of the nine key concepts, their relationships, and their relative importance as rated by the survey participants (important to

extremely important) [5] . The right-hand side depicts a typical flow in design-decision making in a “language-model-driven” DSML development style [20] .

O

i

t

S

d

D

o

a

q

a

c

c

c

g

a

c

v

e

d

f

v

(

t

t

o

o

t

e

i

a

m

s

o

t

p

t

m

w

r

s

m

m

e

s

o

d

f

c

t

a

c

o

E

a

p

t

s

e

A

p

c

a

t

fi

W

2

e

t

t

D

E
ption, Application, and Sketch (see Fig. 2). In the following, we

ntroduce each section by referring to examples taken from an ac-

ual reusable design decision contained in our decision catalog (see

ection 4.4 for the details).

A reusable design decision first describes a recurring design-

ecision problem that has been repeatedly observed for several

SML development projects. Our survey confirmed the importance

f a problem section as 69.6% of the participants (56/80) rated it

s (extremely) important. An exemplary problem statement fre-

uently observed when deciding on the concrete-syntax style for

 DSML is: “In which representation should the domain modeler

reate models using the DSML?”.

This problem applies to a specific decision context . The decision

ontext is, for example, established by one of the decision points

haracteristic for DSML development (e.g., decision making on lan-

uage model, concrete syntax, and tooling). At each decision point,

 particular DSML design concern (e.g., language-model definition,

oncrete-syntax styles) must be tackled. The majority of our sur-

ey participants rated an explicit context section as important to

xtremely important (56.4%). Decision points (concerns) can be ad-

ressed in varying order, with different typical orders denoting dif-

erent DSML development styles used and the intention behind de-

eloping the DSML [20] . Besides, a particular metamodeling toolkit

e.g. MOF [4]), the application domain modeled by a DSML, and

he corresponding software platform can contribute to establishing

he decision context.

The main part of a reusable design decision is list of decision

ptions (rated important to extremely important by 53.7% (n = 54)

f the respondents). Decision options describe proven solutions to

he respective decision problem. For choosing a concrete-syntax, an

xemplary option is model annotation (O4.1 in Section 4.4), which

s about realizing a tailored concrete syntax by means of model

nnotations (e.g., via UML tags and structured comments). Further-

ore, a reusable decision includes arguments in favor or against

electing a particular option (or a combination of options) in terms

f decision drivers . Documenting drivers was considered important

o extremely important by 56.6% of the respondents. An exem-

lary driver relevant for adopting the model annotation option is

he cognitive expressiveness of the respective UML diagram ele-

ents. Drivers like these are likely to steer the DSML designer to-
ards a particular option or combination of options. Moreover, the

espective selection affects the solution space of subsequent deci-

ions. For example, they can set a new decision context.

To scaffold f ollow-up decision making, a reusable decision

akes the DSML designer aware of decision consequences . Docu-

enting such recurring consequences was deemed important to

xtremely important by 64.2% of the survey respondents. Deci-

ion consequences can include the need to evaluate other decision

ptions within the same reusable decision or in related reusable

ecisions, for example. However, consequences can also point to

ollow-up decision problems not covered by the design-decisions

atalog alone.

To provide evidence that the different decision options are

aken from observed practice, each reusable decision refers to ex-

mple projects that implemented the respective option or option

ombination. This element of description was supported by 64.3%

f the survey participants as important to extremely important.

ach reusable decision is completed by replicating a concrete re-

lization sketch of one decision option taken from an actual DSML

roject. Such sketches were rated important to extremely impor-

ant by 75.4% of the participants.

The documentation format described above is capable of de-

cribing recurring associations between decision options in sev-

ral ways (e.g., as decision drivers and decision consequences).

ssociation types documented in the literature are, for exam-

le, different types of causal sequences between decisions [50] . A

ausal sequence groups decisions (resp. decision options) which

re linked pairwise by depends-on, is-excluded-by, and/or rela-

ionships. Other relevant association types are: influences, re-

nedBy, decomposesInto, forces, isIncompatibleWith, isCompatible-

ith, and triggers [28] .

.3. Material corpus for recovering DSML design rationale

In our previous work [21,41,51] , we performed a systematic lit-

rature review (SLR) to collect and systematize a corpus of scien-

ific publications on UML-based DSMLs and their companion ma-

erial. This corpus contains 84 publications documenting 80 unique

SML designs, published in major MDD outlets (e.g. SoSyM, MoD-

LS). In addition, the SLR found 25 secondary studies on UML-

54 B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74

3

s

r

t

i

i

o

a

c

t

a

i

r

d

d

S

h

(

m

t

w

d

t

i

e

e

d

I

c

D

(

(

c

b

o

a

s

i

B

i

p

r

t

E

(

a

q

r

a

s

a

c

i

(
based DSML development (e.g. [52–54]). To compile the catalog of

design decisions (see Section 4), we performed a rigorous content

analysis on the corresponding papers. This way, we identified and

documented 35 reusable decision options for seven decision points

(D1–D7) (see Section 2.2). 8 In addition, the 80 DSMLs entered the

catalog in terms of applications and solution sketches. This paper

provides the first report on the resulting catalog of reusable design

decisions (publicly available from [42]). 9

2.4. Empirical evidence on DR reuse

Prior empirical research on DR reuse, involving software pat-

terns and reusable design decisions [55,56] , has reported first evi-

dence that it is possible to achieve the double objective of limiting

the effort for documenting design decisions and of increasing doc-

umentation quality at the same time.

In two controlled experiments involving 171 software-

architecture undergraduates, Lytra et al. [55] reported both an

increase in effectiveness and in efficiency of design-decision

making on two software architectures. In these experiments, the

participants made and documented architecture-level decisions on

predefined functional requirements for two software systems (an

order-management system and a learning-management system)

based on a design-documentation tool (CoCoADvISE) and collec-

tions of architectural patterns (16 and 40 pattern descriptions,

respectively). The experiment groups were additionally equipped

with five reusable architectural design-decision models which

provided scaffolding for decision making and pre-structured refer-

ences to the software-pattern descriptions. The experiment groups

took less working time and documented more decisions than the

control groups. Their decisions were also judged as being of higher

quality by software-architecture experts.

In a project including one experiment and its replication,

Heesch et al. [56] investigated the effect of software-pattern col-

lections as reference material for recovering design decisions from

a software architecture (JBoss J2EE application server). The ex-

periments involved 34 participants of mixed proficiency in soft-

ware patterns, with the experiment group being equipped with a

pattern catalog (on remoting patterns such as broker). The par-

ticipants documented the recovered decisions based on a prede-

fined documentation template. Heesch et al. collected data on the

number and the quality of recovered decisions, with quality be-

ing measured by ratings of independent software-architecture ex-

perts. Their findings indicate that the quality ratings obtained by

the experiment groups (who have been working with the pat-

tern catalog) were higher than those of the control groups. There

was no significant increase in the number of recovered decisions

though. However, the participants referencing the pattern catalog

were more homogeneous with respect to the number of recovered

decisions per participant.

Nevertheless, these findings do not originate from the field of

UML-based DSML development and they suffer from a couple of

limitations (e.g., missing third-party replications, emphasis on stu-

dent or novice subjects). Nevertheless, such first evidence provides

support for the basic claims regarding DR reuse (effort reduction,

quality increase). In addition, the reusable DR material used in

these experiments is comparable to our design-decision catalog.

Therefore, these empirical studies strongly motivated our work.
8 Note that there are actually 40 decision codes/numbers. Five of those

codes/numbers serve for coding pseudo-decision options; e.g., not taking any de-

cision. Depending on the analysis requirements, they are either ignored or included

as dedicated no-option codes.
9 With the SLR being prior work, full details on the process of conducting the SLR

are provided in earlier and companion publications (see [21,41,42]).

m

T

d

c

. Motivating example: DSML design-process documentation

Our catalog of reusable design decisions aims at collecting,

ystematizing, and documenting DSML design processes, compa-

able to the role of software patterns in documenting architec-

ural design decisions [27] . The process of making design decisions

s typically documented using structured text documents follow-

ng an agreed upon format (document templates; see [48] for an

verview). These structured text documents on design decisions

nd their details (alternatives, arguments) allow for referencing a

ollection of reusable and recurring design decisions. The objec-

ive is to reduce the time spent on these documentation tasks, by

voiding repetition. Consider an example taken from document-

ng PRDM [123 , 124]—a DSML developed in support of model-driven

ole engineering in a business process context. By following a

esign-decision excerpt from this DSML, we show an example for

esign-decision making by using the decision catalog.

elect Development Style. At the beginning of a DSL project, we

ave to decide on the development style for this project [20] . A

tailored) development style can accommodate domain require-

ents (e.g. direct access to domain experts) and requirements of

he overall software-development project (e.g. a software frame-

ork accessible via a DSML). For PRDM, a language-model-driven

evelopment style [20] was selected (see Fig. 2 , right-hand side). In

his style, the (core) language model drives the subsequent activ-

ties in the sense that a draft model is defined and implemented

arly. Subsequently, it is continuously refined over a number of it-

rations. Once selected, the development style determines the or-

er of subsequent decisions at specific decision points.

dentify Domain-specific Prototype Designs. Our design-decisions

atalog documents different application areas of the collected

SMLs, based on the 2012 ACM Computing Classification System

CCS) 10 . Each DSML is assigned to one or several application areas

ACM CCS codes). The most frequently assigned CCS codes in our

atalog, and relevant for PRDM, include security engineering (11),

usiness-process modeling (10), and access control (7) [42] . Based

n these categories, design-decision makers can approach the cat-

log content in two ways: a) by reviewing prior DSML projects as-

igned to one or more relevant categories and/or b) by identify-

ng so-called DSML prototype designs for the respective categories:

ecause reviewing prior DSMLs might incur substantial overhead

n early iterations (for PRDM, this would have meant reviewing

otentially 28 prior DSMLs), the catalog offers frequently recur-

ing combinations of decisions, so called prototype designs [57] . At

he time of writing, the catalog contained seven prototype designs.

ach prototype design is characteristic for a significant subgroup

consisting of at least three DSMLs 11) of the 80 DSMLs we ex-

mined in detail. Every prototype design includes the most fre-

uently adopted design decisions (decision combinations) for these

epresentative subgroups. Each of the seven prototype designs is

lso linked to the corresponding ACM CCS codes. This way, deci-

ion makers can consider a prototype design for given application

reas, rather than having to review prior DSMLs. For PRDM, the

orresponding prototype design is the combination of the follow-

ng decision options: informal textual description (O1.1), profile

re-)/definition (O2.2), constraint-language expression (O3.1),

odel annotation (O4.1), and diagram symbol reuse (O4.6; see

able 1 for a brief description). This combination of decisions was

ocumented for 26 out of 80 DSMLs in the catalog.
10 http://www.acm.org/about/class ; last accessed: Feb 9, 2017.
11 Here, we adopt a commonly followed rule of thumb from the software-pattern

ommunity. This rule mandates that a software-pattern description must provide at

least three known uses of the pattern in existing software systems (see, e.g., [58]).

http://www.acm.org/about/class

B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74 55

Table 1

Thumbnail descriptions of selected (7 out of 35 total) decision options relevant for the discussion in Sections 2 and 3 . See Section 4 for complete and comprehensive

descriptions (incl. option details, decision drivers, and consequences).

Problem statement Options (selected)

D1 How should the domain (or domain fragment) be described? O1.1 informal textual description

Use informal text to identify and to describe domain abstractions and their

relationships (e.g. domain-vision statements, domain-distillation lists).

D2 In which UML-compliant way should the domain concepts be

formalized?

O2.2 profile re-/definition

Implement the language model by creating (or by adapting existing) UML

profiles (i.e. �profile � packages containing stereotype definitions).

O2.3 metamodel extension

Implement the language model by creating one or several metamodel

extensions (i.e. �metamodel � packages containing new metaclasses and

associations).

O2.4 metamodel modification

Implement the language model by creating one or several metamodel

extensions (i.e. �metamodel � packages containing redefining metaclasses

and associations).

D3 Do we have to define constraints over the language model(s)?

If so, how should these constraints be expressed?

O3.1 constraint-language expression

Make language-model constraints explicit using a constraint-expression

language (e.g. OCL, EVL).

D4 In which representation should the domain modeler create

models using the DSML?

O4.1 model annotation

Attach UML comments as concrete-syntax cues to a UML model, containing

complementary domain information such as keywords and narrative

statements.

O4.6 diagram symbol reuse

Reuse built-in UML diagram symbols without modification.

Table 2

An exemplary documented design decision named UMLIntegration for the DSML PRDM [123 , 124] based on the document template from [49] . Decision options of the

catalog (i.e. O2.2, O2.3, and O2.4) are referred to using the �see � tag in the Decision and the Alternatives sections. Drivers and consequences available from the catalog are

referenced using �see � in the Arguments section.

Name UMLIntegration

Current version 3 (MS2 �Snapshot �)

Current state �Approved �
Decision group None

Problem/issue In which UML-compliant way should the domain concepts be formalized?

Decision We opt for a combined strategy: First, a UML/BusinessActivities metamodel extension (�see � O2.3) is created. The reuse of

UML-based structural and behavioral features (duty associations to UML operations and properties) makes a slight modification of the

UML metamodel necessary (�see � O2.4). To bind standard UML metamodel elements (e.g. actions) to the extended duty-aware

metamodel (e.g. as compensation actions), an auxiliary UML profile providing stereotypes to UML metaclasses is defined (�see �
O2.2).

Alternatives Use either a UML profile (�see � O2.2) or a UML metamodel extension/modification (�see � O2.3 and �see � O2.4) alone.

Arguments There is a limited overlap between the constructed language model (i.e. the domain concepts) and existing, standard UML metamodel

elements (�see � Domain space). While, for example, concepts such as roles, subjects, and duties under different views (e.g.

transition system for duty states, duty hierarchies) are not directly reflected in the UML metamodel, compensation actions for

neglected duties can be modeled using standard UML actions. In addition, the BusinessActivities framework, as the basis for the DSML,

deploys a UML metamodel extension. Compliance with the framework and its UML compatibility levels is a firm requirement. The

integration into standard UML modeling tools is not a critical factor (�see � Tool integration).
Related decisions • This decision is �caused by � DomainModel

• This decision is �caused by � ExtendBusinessActivitiesFramework
Related requirements Portability , MultipleViews , ProcessFlowMetaphor
Related artifacts [42]

History

Stakeholder Action Status Iteration

S. Schefer-Wenzl

�Developer � �Propose � �Tentative � MS1

S. Schefer-Wenzl

�Developer � �Validate � �Decided � MS1

M. Strembeck

�Domain expert � �Confirm � �Approved � MS2

N

a

t

e

e

t

E

p

c

U

i

t

c

(
avigate Decision Associations. Starting from a prototype design,

dditional decisions will follow from the project-specific con-

ext and from unique project requirements. As for PRDM, for

xample, an earlier decision was to implement the DSML by

xtending the existing BusinessActivities framework [59] and

he corresponding metamodel (see the decision reference

xtendBusinessActivitiesFramework in Table 2). This
rompted PRDM to be realized as a metamodel extension (O2.3)

ombined with a metamodel modification (O2.4), adding to the

ML profile (O2.2). Based on adopted decision options (either

nspired by the prototype design or by project-specific factors),

he DSML developer can study typical associations between de-

ision options. For instance, for PRDM decision option profile

re-)/definition (O2.2), decision makers will find the association

56 B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74

Fig . 3. The problem statements leading to the seven DSML design-decisions we identified (D1–D7). The circles attached to each decision document the number of decision-

options (without pseudo options), the number of occurrences of these options in the reviewed 80 DSML designs (absolute frequency), and the number of DSMLs choosing

at least one of these options.

n

s

4

fi

g

o

m

m

d

m

s

s

o

i

o

i

t

c

fi

c

t

4

m

d

u

e

d

a

a
“constrained UML profiles” in our decision catalog. 12 This associ-

ation provides rationale for capturing additional language-model

constraints using OCL expressions (O3.1).

Document Design Decisions with Reuse. Table 2 shows an example

of a structured document used to capture one particular decision

on PRDM. The corresponding template [49] structures the docu-

ment into predefined sections (e.g. name, status, problem state-

ment, arguments leading to a decision). In order to annotate deci-

sion details within unstructured text fragments, dedicated mark-up

elements (�... �) are provided. This way, the decision document

and text elements in the document can be tagged to indicate a

particular iteration in the decision-making process, the state of the

decision, or stakeholder roles, for example.

Empirical work on generic design knowledge suggests that the

effort of specifying such a decision document can be reduced by

referencing reusable and generic decisions (see Section 2.4). In par-

ticular, such references allow for focusing on describing additional,

DSML-specific decision knowledge only, rather than repeating what

is described in the decisions catalog. A complete process docu-

mentation of a DSML design consists of a collection of such deci-

sion documents, which are interconnected by different relationship

types (e.g. �caused by �).

4. A catalog of design decisions for UML-based DSMLs

As mentioned above, we identified, described, and collected

data on 35 decision options at seven different design-decision

points (D1–D7, hereafter, see Fig. 3). In this section, we present

an overview of these reusable design decisions. Further details

are provided in the publicly available decision catalog [42] . Note

that the following overview is limited to decision options, deci-

sion drivers, and decision associations that we found for at least

one DSML and that are also found in secondary studies on system-

atic DSML development. Decision details such as context, conse-

quences, and applications are not reproduced in a structured man-
12 The complete reusable decision on language-model formalization (D2) from

[42] , pp. 16–19, containing O2.2–O2.4 is available as an appendix to this paper.

t

o

m
er (as in the catalog), but they are blended with the overview

ections.

.1. Language-model definition (D1)

One recurring design decision is whether or not one should de-

ne a platform-independent language model [20] . In general, a lan-

uage model (also: abstract syntax) acts as a structured description

f the captured domain (or domain fragments) and provides a do-

ain definition, the domain vocabulary, as well as a catalog of do-

ain abstractions and abstraction relations. It is platform indepen-

ent in the sense of being independent from a particular imple-

entation technique or software platform. In certain development

tyles, this can be the first decision point (see [20]). A prerequi-

ite for defining a generic language model is a systematic analysis

f the target domain. The process of analyzing the target domain

ncludes collecting and evaluating relevant information (e.g., based

n literature reviews, expert interviews, scenario descriptions, ex-

sting software systems) which provide input to generate a struc-

ured and technology-neutral description of the domain. The main

hallenge is how to document and how to organize the identi-

ed domain abstractions in order to arrive at a comprehensive and

omprehensible language model. Figure 4 summarizes the key de-

ails of this decision point (D1).

.1.1. Options

Domain abstractions are the basic building blocks of a language

odel and can be described using narrative as well as textual or

iagrammatic specification formalisms.

Informal textual descriptions (O1.1) are primarily textual artifacts

sed to identify/define domain abstractions in an informal way;

.g., domain-vision (scoping) statements in narrative prose text,

omain-distillation documents containing lists of core domain-

bstractions and/or domain-definition and feature tables [60] .

Formal textual models (O1.2) use textual formalism to identify

nd to unambiguously define domain abstractions and their rela-

ionships; e.g., mathematical expressions (e.g. universal algebra [2])

r formal grammars (e.g. extended BNF [61]).

Informal diagrammatic models (O1.3) are ad hoc diagram-

atic representations not compliant to any standardized software

B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74 57

Fig. 4. Design-decision card for D1: Defining a DSML’s platform-independent language model. Associations are ordered by their support in the 80 reviewed DSMLs (relative

occurrences). Details in italics and marked by an asterisk (∗) are presented as part of the overview in this paper; the remainder is described in [42] .

m

r

g

b

a

U

U

t

s

t

O

d

F

(

t

4

f

U

a

b

c

u

t

c

p

f

g

b

f

D

f

t

a

c

s

t

p

c

n

r

f

i

c

o

c

c

g

d

m

n

o

q

a

i

a

s

t

(

t

w

d

m

c

4

o

p

W

t

s

i

s

w

m

s

e

s

o

13 Filtered for and ordered by their relative support. Please note that some pairs of

affected D1-related decision options (e.g. O6.2 ↔ O1.4 ∧ O2.2) are described at other

design decision points (i.e. in other sections of this paper; e.g. in Section 4.6) and

are not re-iterated here. The same applies to association descriptions at other de-

sign decision points.
odeling language and corresponding diagrammatic production

ules; e.g., forms of visual concept modeling (e.g. early feature dia-

rams [60]) or pseudo UML diagrams (e.g. class diagram notations

eing used as re-composable drawing shapes).

Formal diagrammatic models (O1.4) are diagrams defined by

 (formally) specified/standardized modeling language (e.g. MOF,

ML, ER, STATEMATE) which adopt a graphical representation (e.g.

ML class models, UML activity models, STATEMATE statecharts)

o identify and to describe domain abstractions and their relation-

hips. A combination of options may be beneficial, e.g., to facili-

ate communication about concepts. Diagrammatic models (O1.3,

1.4) can be used in support of a predominantly informal textual

escription (O1.1; see also related association O1.1 ↔ O1.4 below).

or explanatory purposes, normative and formal textual definitions

O1.2) are commonly supported by non-normative and informal

extual descriptions (O1.1).

.1.2. Drivers

Availability of existing diagrammatic domain descriptions : If either

ormal or informal diagrammatic descriptions are available (e.g. a

ML M1 class model), a domain description could be devised as

 refinement (see also association O1.4 ↔ D2 below); for example,

y perfective refinement (e.g. turning an informal into a formally

orrect diagram; O1.4). In general, the language-model definition is

sed as a communication vehicle for both, the domain experts and

he DSML engineers.

Domain-expert audience : Different views and notations must be

onsidered depending on the domain-expert audience. For exam-

le, in case of a DSML targeting software engineers (e.g. a DSML

or defining software tests), the UML can be used to define the lan-

uage model (O1.4). If the domain is described in a generic manner

y adopting a formal notation (O1.2, O1.4), it needs to be trans-

ormed into a formal UML-compliant implementation model (see

2 in Section 4.2).

Consistency preservation effort : Considering a combination of dif-

erent options introduces the challenge of preserving the consis-

ency between different domain-description artifacts (e.g. diagrams

nd textual descriptions). The negative effects of introducing in-

onsistencies, for instance, between a diagram and its textual de-

cription, can be mitigated by declaring either representation to be

he normative one.

Cognitive effectiveness of a representation format : Another im-

ortant driver is the cognitive load incurred by a representation

hoice, especially for formal textual (O1.2) or formal diagrammatic

otations (O1.4). Irrespective of the target domain, diagrammatic

epresentations benefit from their capacity to spatially group in-
ormation bits that are spread in their textual form. Moreover,

mproved visual perception and visual reasoning facilitate pro-

essing and communicating domain abstractions (see [62] for an

verview). At the same time, there is a major tension between

ognitive effectiveness of diagrams and the complexity of the per-

eption task. This complexity is determined by the level of dia-

rammatic detail (e.g. in a formal notation) and the multiplicity of

iagrams and views covered. Depending on the domain require-

ents (e.g., extensiveness of a domain, the domain experts’ tech-

ical skills and preferences), textual (in support of visualizations)

r graphical representations can be considered more or less ade-

uate. For feature and variability modeling, both graphical, textual,

nd mixed concrete syntaxes are available, for example. Depend-

ng on the context (e.g., novices vs. experts) and different quality

ttributes (e.g., cognitive effectiveness, working time), each syntax

tyle performs differently (see, e.g., [63,64]). However, given the in-

entionally focused and thereby limited expressiveness of DSMLs

in terms of concepts covered), diagrammatic representations at

he level of a generic domain description are suitable; especially

hen supported by (formal) textual descriptions to cover certain

etails. Besides, the perceptional bias of a target audience of do-

ain experts (i.e., established legacy notations) might affect the

ognitive effectiveness of the adopted representation type.

.1.3. Associations 13

A decision option chosen at one decision point may influence

ptions at the same or at subsequent decision points (for exam-

le, a choice can favor, determine, or exclude following options).

e denote each association by a pairing of affected decision op-

ions and/or decision points (e.g. O1.2 ↔ O3.1 or O1.4 ↔ D2). An as-

ociation between an option and a decision point shows a pair-

ng between the option and all options of the corresponding deci-

ion point (e.g. O1.4 ↔ D2 which is equivalent to O1.4 ↔ O2.1 – O2.4

hich is a short form of O1.4 ↔ O2.1 ∨ O2.2 ∨ O2.3 ∨ O2.4).

At decision point D1, diagrammatic models complying to a for-

al specification (O1.4; e.g. the MOF) may not be sufficient to de-

cribe a DSML’s language model unambiguously without further

xplanations (e.g. textually accompanied formal models ; O1.1 ↔ O1.4;

ee, e.g., [20,42]). Textual descriptions (O1.1) were found for all

f the DSML projects [42] , particularly explaining the semantics

58 B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74

Fig. 5. Design-decision card for D2: UML compliant formalization of a DSML’s language model. Associations are ordered by their support in the 80 reviewed DSMLs (relative

occurrences). Details in italics and marked by an asterisk (∗) are presented as part of the overview in this paper; the remainder is described in [42] .

m

n

t

e

p

U

b

w

t

[

c

m

l

m

4

i

U

t

t

n

s

T

t

b

c

l

a

a

O

m

s

s

s

b

O

w

p

t

O

t
of accompanying language models and rationale for design deci-

sions (e.g., arguments on model and package designs, explanation

of model elements, attributes, and associations).

If the domain description includes MOF or UML diagrams, a

stepwise transition into a UML-based core language model (D2) is

facilitated (i.e. refined language-model formalization). In particular,

an association between options O1.4 and O2.2 (O1.4 ↔ D2) is a can-

didate (see Section 4.2). Nevertheless, in some DSML projects found

by our SLR, the definition of a MOF-based or modeling-language

independent metamodel and the corresponding mapping to a UML

profile was not explicitly documented. This lack of explicit doc-

umentation is problematic, because it is implicitly assumed that

the modeling-language independent metamodel and the UML pro-

file share underlying semantics, which is not necessarily the case

though.

4.2. Language-model formalization (D2)

A formal language model (also: abstract syntax, core language

model, or metamodel [20]) is an implementation of the lan-

guage model using a well-defined metamodeling language such

as the MOF. A metamodeling language is itself based on a well-

defined and well-documented language model (CMOF for the UML

metamodel [4]) and provides at least one well-defined and well-

documented concrete syntax to define an own language model

(e.g. the CMOF diagram syntax to specify a UML metamodel exten-

sion). Here, formalization requires to make a decision on different

UML/MOF implementation choices. Depending on the development

style, this is typically performed after decision making at D1 (see

Section 4.1). The card of this reusable design decision is depicted in

Fig. 5 .

4.2.1. Options

M1 structural models (O2.1) implement the core language model

using structural UML models at the M1 modeling level (e.g. via

UML class diagrams [125]) rather than MOF expressed in class-

diagram notation. In a class model, for instance, domain abstrac-

tions can be expressed as classes and their relationships via asso-

ciations. Other examples are composite structure, component, and

package diagrams.

Profile (re-)definitions (O2.2) implement the core language

model by creating (or by adapting existing) UML profiles [3,65] . A

profile consists of a set of stereotypes which define how an existing

UML metaclass may be extended.

Metamodel extensions (O2.3) implement the core language

model by creating one or several extensions to an existing meta-
odel. A metamodel extension introduces new metaclasses and/or

ew associations between metaclasses to the UML metamodel or

o other, pre-existing metamodel extensions [3,4,65] . The extension

lements are typically organized into dedicated �metamodel �
ackages. The structure and semantics of existing elements of the

ML metamodel are preserved.

Metamodel modifications (O2.4) implement the language model

y creating one or several MOF-based metamodel extensions

hich modify existing metaclasses; for example, by changing the

ype of a class property or by redefining existing associations

3,4,65] . The extension elements are typically organized into dedi-

ated �metamodel � packages.

A combination of options may include the definition of a meta-

odel extension as well as an equivalent profile definition. Simi-

arly, stereotype definitions can be provided to accompany a meta-

odel extension/modification (see, e.g., [126]).

.2.2. Drivers

Degree of DSML expressiveness : The expressiveness of a DSML

s a major force in DSML development (see, e.g., [10,36,66]). A

ML profile (O2.2) can only customize a metamodel in such a way

hat the profile semantics do not conflict with the semantics of

he referenced metamodel. In particular, UML profiles cannot add

ew metaclasses to the UML metaclass hierarchy or modify con-

traints that apply to the extended metaclasses (see, e.g., [10]).

herefore, profile constraints may only define well-formed rules

hat are more constraining (but consistent with) those specified

y the metamodel [3] (see also association O2.2 ↔ O3.1 ∨ O3.4). In

ontrast, a metamodel extension/modification (O2.3, O2.4) is only

imited by the constraints imposed by the MOF metamodel (i.e. the

bstract syntax of the UML can be extended via new metaclasses

nd associations between metaclasses; see also association O2.2 –

2.4 ↔ D4).

Portability and evolution requirements : A newly created meta-

odel (O2.3, O2.4) is an extension of a certain version of the UML

pecification. Thus, the domain-specific metamodel extension pos-

ibly needs to be adapted to conform with newly released OMG

pecifications [65] . Re-usability of a UML extension is also affected

y the extension’s level of compliance with the UML standard (e.g.

2.2, O2.3) or not (e.g. O2.4).

Compatibility with existing artifacts : Pre-existing DSMLs, soft-

are systems, and tool support have a direct impact on the design

rocess of a DSML with respect to its compatibility and integra-

ion possibilities with other software artifacts (see also associations

4.6 ↔ O2.2 and O6.2 ↔ O1.4 ∧ O2.2 in Sections 4.4 and 4.6 , respec-

ively). For instance, the UML specification defines a standardized

B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74 59

w

p

a

4

m

s

r

a

t

s

�
[

t

c

m

o

m

d

r

S

i

c

e

s

t

fi

v

t

S

t

4

t

s

i

c

m

t

fi

s

c

c

n

t

s

i

4

c

p

d

t

c

t

g

s

a

p

b

i

n

w

O

4

i

f

i

p

p

(

i

s

c

m

O

o

p

(

(

l

o

t

s

c

b

m

e

i

(

t

r

f

c

U

s

[

n

[

m

t

m

M

b

v

e

s

v

o

g

e

O

4

c

t
ay to use icons and display options for profiles (O2.2). Tool sup-

ort for authoring UML models and profiles (O2.1, O2.2) is widely

vailable (see, e.g., [10] and also Section 4.7).

.2.3. Associations

A UML profile definition (O2.2) for the language-model for-

alization is typically observed in combination with a concrete

yntax specification via annotating model elements (O4.1) and

eusing diagram symbols (O4.6; see, e.g., [127,128]). This associ-

tion (O2.2 ↔ O4.1 ∧ O4.6) can be explained by the native stereo-

ype definition of the UML specification: “A Stereotype uses the

ame notation as a Class, with the addition that the keyword

stereotype � is shown before or above the name of the Class”

3] . Hence, a reused symbol (from Class ; O4.6) is annotated with

he keyword �stereotype � (O4.1). Please note that this asso-

iation does not cover icons graphically attached to the model ele-

ents extended by the stereotype (O4.2).

Constrained UML profiles (O2.2 ↔ O3.1 ∨ O3.4): The specification

f a UML profile (O2.2) was found accompanied by either for-

al (O3.1; see Section 4.3) or informal textual (O3.4) constraint

efinitions (or both; see, e.g., [129,130]). The profile-specific part

epresents an extension to association O3.1 ↔ O3.4 described in

ection 4.3 and may indicate a demand for the definition of ded-

cated constraints besides native UML profile semantics.

Extending the UML metamodel (O2.3) without an explicit con-

rete syntax definition (O4.6)—even without annotating model el-

ments (O4.1)—was an observed association (O2.3 ↔ O4.6 ∧ ¬O4.1;

ee, e.g., [131,132]). The authors of such DSMLs implicitly assume

hat symbols defined for UML metaclasses (in the UML speci-

cation [3]) are inherited by the DSML-specific extensions (e.g.

ia a generalization relationship). However, this is in contrast to

he practice applied in the UML specification itself (see O4.6 in

ection 4.4) and results in an underspecified concrete syntax defini-

ion .

.3. Language-model constraints (D3)

The language model (also: core language model or abstract syn-

ax) has been implemented using either a UML metamodel exten-

ion/modification, a UML profile, or a UML class model. Depend-

ng on the requirements of the language-model definition and the

apabilities of the modeling language, the language-model imple-

entation might not capture all structural and behavioral seman-

ics. For example, a structural UML model cannot (or only insuf-

ciently) capture certain categories of constraints on domain ab-

tractions, such as invariants for domain abstractions, pre-/post-

onditions, or guards. As a result, the (graphical) metamodel alone

ould be incomplete or ambiguous. Thus, there might be the

eed for specifying additional model constraints (see also associa-

ion O2.2 ↔ O3.1 ∨ O3.4 in Section 4.2). 60% of the reviewed DSMLs

pecify additional constraints (O3.5). See Fig. 6 for the correspond-

ng design-decision card.

.3.1. Options

Constraint-language expressions (O3.1) make language-model

onstraints explicit via a constraint-expression language, for exam-

le the Object Constraint Language (OCL [67]) or the Epsilon Vali-

ation Language (EVL [68]).

Informal textual annotations (O3.4) use informal and unstruc-

ured text annotations to capture constraint descriptions in the

ore language model (e.g. prose text in UML comments). Cer-

ain constraints (e.g. temporal bindings) elicited from the tar-

et domain cannot be captured sufficiently via evaluable expres-

ions (i.e. constraint-language expressions or code annotations)

nd/or the constraints are intended to serve a documentary pur-

ose (esp. annotations for domain experts). Regarding the com-
ination of options, textual annotations (prose text) can be used

n addition to constraint-language expressions in order to provide

atural-language constraint descriptions for readers not familiar

ith a specific constraint language, for example (see association

3.1 ↔ O3.4).

.3.2. Drivers

Constraint-formalization requirements : One decision driver steer-

ng a DSML designer towards an option are requirements on the

ormalization style of constraints (see, e.g., [20,42,69]). In early

terations (e.g. DSML prototyping), constraints might not be ex-

ressed via well-formed, syntactically valid constraint-language ex-

ressions, but rather as pseudo-expressions or unstructured text

O3.4). When the language model is maturing due to subsequent

terations, these annotations can be changed into evaluable expres-

ions (O3.1–O3.3; see, e.g., [70]).

Language-model checking time : If tool integration for constraint

hecking on models is a requirement, we have to choose one or

ore of the options O3.1–O3.3 (see also associations O3.4 ↔ O3.1 –

3.3 and O3.2 ↔ O6.6 as well as, e.g., [51]). A driver towards either

ption is the intended time of language-model checking. Relevant

oints in time follow from the model formalization option adopted

e.g. class model vs. metamodel-based) and the platform support

model-level or instance-level checks; see, e.g., [71]).

Integrated language-model constraint requirements : Constraint-

anguage expressions (O3.1) are developed with the purpose

f integrating the constraints with the (meta)model representa-

ions (see, e.g., [72]). Examples are standard-compliant or vendor-

pecific OCL expressions for the UML. Models and constraints

an also be integrated, for instance, via programming-language-

ased expressions, for example via natural-language UML com-

ents (O3.4). Note, however, that O3.4 lacks support for automatic

valuation (constraint definitions would need to be transformed

nto evaluable expressions; see, e.g., [70]).

Maintainability effort : Explicitl y defined model constraints

O3.1–O3.3) create structured text artifacts which must be main-

ained along with the model artifacts (e.g. a corresponding XMI

epresentation [73]). Toolkits and their model representations of-

er different strategies for this purpose, for example embedding

onstraints into model elements (i.e. model annotations, such as

ML comments), maintaining constraint collections as external re-

ources (e.g. separate text files), or editor integration (see, e.g.,

72]). Each strategy affects the artifact complexity and the effort

eeded to keep the constraints and the models synchronized. See

74] for an approach to assist in constraint adaptation during meta-

odel evolution.

Portability requirements : If constraints should be portable be-

ween different MDD toolkits—such as, Eclipse Model Develop-

ent Tools (MDT), IBM Rational Software Architect, No Magic

agicDraw—, platform-dependent options (e.g., code annotations)

ecome infeasible. However, due to version incompatibilities and

endor-specific constraint-language dialects (e.g. Eclipse MDT OCL),

ven O3.1 cannot guarantee basic portability for the ambiguously

pecified sections of the UML/OCL specifications (esp. for semantic

ariation points such as navigating stereotypes in model instances

r for transitive quantifiers such as closure ; see, e.g., [75]).

Conformance between language model and constraints : When lan-

uage models and their implementations evolve, constraints of

ach form must be adapted to match metamodel changes, such as

CL navigation expressions under O3.1 (see, e.g., [76]).

.3.3. Associations

Similarly to the association O1.1 ↔ O1.4 (see Section 4.1),

onstraint-language expressions are also found often annotated tex-

ually (e.g., an OCL statement is additionally explained in natural

60 B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74

Fig. 6. Design-decision card for D3: Defining constraints for a DSML’s language-model. Associations are ordered by their support in the 80 reviewed DSMLs (relative occur-

rences). Details in italics and marked by an asterisk (∗) are presented as part of the overview in this paper; the remainder is described in [42] .

o

c

a

O

4

s

i

i

l

i

k

U

b

i

m

t

a

i

(

o

t

t

i

s

o

t

d

c

s

e

a

r

s

m

t

i

t

e

f

(

b
language; see, e.g., [133,134]). However, this is merely done to in-

crease the readability of constraints as the reader may not be fa-

miliar with a certain constraint language (e.g., the OCL). This as-

sociation (O3.1 ↔ O3.4) emerges also from the fact that not ev-

ery language-model constraint can formally be described with a

constraint language. Some constraints cannot be captured by the

means of constraint languages and the underlying language mod-

els, code annotations, or model transformation templates (see, e.g.,

[3]). Such constraints have to be provided as text annotations in

natural language.

Customizing the UML or any extensions of it (e.g., SoaML [77] ,

SysML [78]) via explicit constraint expressions (O3.1, O3.4) with-

out a concrete syntax definition (O4.7; see Section 4.4) to specify a

DSML was another observed association (see, e.g., [134,135]). This

association (tailoring semantics only ; O3.1 ∧ O3.4 ↔ O4.7) bears the

risk that while the formal semantics of DSML elements may be

well-defined, they cannot be distinguished from non-constrained

UML elements (see also associations O2.3 ↔ O4.6 ∧ ¬O4.1 and

O4.6 ↔ O2.2 in Sections 4.2 and 4.4 , respectively). Thus, a corre-

sponding DSML should only be used in isolation, without mixing

concrete syntaxes of tailored and UML model elements.

Shared expression foundations : Adopting certain formal textual

(e.g. set-theoretical) models affect the choice of a language (e.g.

OCL [67]) for defining constraints over the core language model

(O1.2 ↔ O3.1). If there is a common (formal) foundation of both

languages, a transformation is facilitated. For example, as basic OCL

semantics have been defined in terms of a set-theoretical model

(see, e.g., [79]), set theory and set algebras are a natural choice to

define a generic language model.

Given a language model implemented at M1 (e.g. a class

model), the language model is defined at the UML instance level

(i.e. at the M1 layer [4]). This means, no metamodel is employed

to reflect the domain space and, therefore, domain abstractions can

neither be instantiated nor explicitly constrained for their usage as

modeling constructs (contradicting the meta-layer architecture of

MDD). Thus, restrictions can only be defined in terms of text an-

notations attached to the language model (constraint limitations for

structural models ; O2.1 ↔ O3.4).

4.4. Concrete-syntax definition (D4)

The concrete syntax of a UML-based DSML serves as its user

interface and can be defined in several ways. Multiple concrete-

syntax styles are available and a DSML can be equipped with one

or more concrete syntaxes. Different syntax types can be defined

and tailored to the needs of the modeler (e.g., chosen depending
n the modeler’s domain and/or software-technical proficiency). A

lear majority of DSMLs include a concrete-syntax decision, only

 minority leave the concrete syntax undefined (none/not specified ;

4.7). See Fig. 7 for the corresponding design-decision card.

.4.1. Options

Model annotations (O4.1) attach UML comments as concrete-

yntax cues to a UML model, containing complementary domain

nformation such as keywords, narrative statements, or formal def-

nitions (see, e.g., [136]). The expressions can be predefined at the

evel of the language-model definition or they are tailored for each

nstance. In addition, the UML specification describes the use of

eywords and maintains a list of predefined keywords [3] .

Diagrammatic syntax extensions (O4.2) extend one or multiple

ML diagram types by creating novel symbols in addition to the

asic UML symbol set. The new symbols can be derived from ex-

sting shapes. The DSML is to be used primarily in a diagrammatic

anner adopting these extended UML diagram types. In principle,

he design space for the new symbols is unlimited but has to be

ligned with the requirements of the target domain. However, ex-

sting guidelines for designing UML symbols should be considered

e.g. avoidance of synographs; see, e.g., [80]). A notable example

f a diagrammatic extension is the option to equip UML stereo-

ype elements with dedicated icons which appear in addition to

he standard notions of stereotyped elements (e.g. tags or nested

cons in classifier rectangles [3]).

A mixed syntax (foreign syntax) (O4.3) creates a DSML’s concrete

yntax as either a non-diagrammatic syntax (textual, tree-based,

r tabular) or as a diagrammatic syntax that is not integrated with

he native UML syntax. Thus, in contrast to O4.2, this option would

efine a new and domain-specific diagram type. Hence, the DSML

oncrete syntax is independent of and thereby foreign to the ba-

ic UML symbol set. For example, model specifications in the for-

ign syntax are managed and stored separately from the UML di-

grams. The UML base syntax is not extended, the symbols of the

efined or modified metaclasses are reused (see O4.6). The exten-

ion syntax maps only to the DSML abstract syntax, no UML meta-

odel element is covered. The foreign syntax is used exclusively

o model the domain-specific parts of an extended UML model. For

nstance, a non-diagrammatic foreign syntax can be embedded into

he primary, diagrammatic UML syntax (e.g. via UML comments or

xpression elements). Important candidates for non-diagrammatic

oreign syntaxes are textual, tree-structured, and tabular notations

see, e.g., [32]).

A textual concrete syntax expresses DSML models in a text-

ased format [81] . Typically, textual grammars are used to define

B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74 61

Fig. 7. Design-decision card for D4: Defining a DSML’s concrete syntax. Associations are ordered by their support in the 80 reviewed DSMLs (relative occurrences). Details

in italics and marked by an asterisk (∗) are presented as part of the overview in this paper; the remainder is described in [42] .

a

o

t

c

t

b

a

t

c

T

o

t

t

n

m

U

t

m

U

t

n

s

c

t

d

o

r

O

p

t

4

i

(

r

i

r

b

e

f

s

s

n

t

i

f

c

m

i

s

n

b

c

t

t

D

s

d

p

s

p

c

t

n

s

v

t

e

f

p

t

n

4

d

s

c

a

i

o

w

d

s

a

b

a

 textual concrete syntax (e.g. via the extended BNF [61]). Based

n such a grammar, a parser infrastructure is build (in some cases

he parser can even be generated automatically). A tree-structured

oncrete syntax is a graphical, but non-diagrammatic representa-

ion. It represents a MOF or an UML model as a nested, collapsi-

le structure with composite and leaf elements having text labels

nd/or symbols (for example, the default UML editor provided by

he Eclipse MDT uses a tree structure). A tabular and form-based

oncrete syntax organizes DSML elements in a table-like layout.

extual labels and corresponding input fields populate a structure

ftable rows and columns (such a syntax is similar to the user in-

erface of language workbenches [82]). In the resulting mixed syn-

ax, there is a hierarchical relation between the basic UML diagram

otation and the nested foreign notation. To fully capture a DSML

odel, the two syntaxes are mutually dependent. The unextended

ML base syntax cannot capture DSML specifics (unambiguously),

he foreign syntax cannot represent basic UML concepts.

Diagram symbol reuse (O4.6) is a commonly applied option and

eans that no custom, DSML-specific extension to the standard

ML symbol vocabulary is created. The UML has a concrete syn-

ax that provides a visual notation, with its symbol set being orga-

ized into 14 diagram types [3] . The number of distinct graphical

ymbols applicable in these diagram types ranges from eight (in

ommunication diagrams) to 60 (e.g. in class diagrams) [80] . With

he UML specification [3] not being explicit about the case of un-

eclared notations (i.e. missing “Notation” sub clauses), the reuse

f symbols that are defined for native UML metaclasses which are

efined by the DSML must be stated explicitly (see also association

2.3 ↔ O4.6 ∧ ¬O4.1 in Section 4.2). This resembles the practice ap-

lied in the UML specification itself (e.g. “A Class is shown using

he Classifier symbol” [3]).

.4.2. Drivers

Degree of cognitive expressiveness : UML stereotypes have a lim-

ted visual expressiveness, in contrast to tailored model elements

O4.2) which are not restricted with respect to their visual rep-

esentation. A textual representation can have a steeper learn-

ng curve but might be used to define models in a shorter pe-

iod of time (for advanced users). Nevertheless, it is often not the

est way to get an overview (i.e. not well-suited for large mod-

ls). A tree-based syntax fits a hierarchically structured DSML, but

alls short in an adequate representation of process-flow constructs

uch as loops and sequences, for example.

Disruptiveness : The UML includes symbolic (e.g., class, state, as-

ociation, generalization) as well as iconic signs (e.g., actor, compo-

ent, fork and join nodes) for its graphical notation (concrete syn-
ax) [3] . The perception of symbolic and iconic signs differ and is

nfluenced by the intended application domain as well as the pro-

essional background and individual preferences of model users. A

orresponding set of experiments [17] provides evidence that UML

odels (class and collaboration diagrams) mostly consisting of

conic signs (in the form of stereotype icons) improve comprehen-

ion compared to models mostly consisting of symbolic signs (an-

otated non-stereotyped elements). These findings are supported

y results of another study which says that “iconic UML graphi-

al notations are more accurately interpreted by subjects and that

he number of connotations is lower for iconic UML graphical no-

ations than for symbolic UML graphical notations” [18] . While a

SML designer must keep this information in mind, the concrete

yntax must also be developed to fit its purpose (i.e. conform to

omain requirements, integrate with other DSMLs etc.). For exam-

le, when the domain’s graphical notation has a long history of

ymbolic signs, a change may cause confusion and comprehension

roblems which may again lead to a decrease of DSML users’ effi-

iency.

Degree of required modeling-tool support : A textual concrete syn-

ax (O4.3) can be processed by a parser and (most often) does not

eed specific editor tools (in contrast to a graphical/diagrammatic

yntax). It can be integrated with existing developer tools, such as

ersion management systems or diff and merge tools (an advan-

age for joint modeling as well as model evolution). Due to its hi-

rarchical form, a tree-based syntax can be serialized as or created

rom XML-based textual representations (e.g. XMI). Modeling sup-

ort for UML stereotypes (O4.1/O4.6) as well as for tree-based syn-

axes exists in standard tools, but must be explicitly integrated for

ew graphical elements (O4.2).

.4.3. Associations

When reusing existing UML symbols, the resulting “extended”

iagrams risk becoming ambiguous. In particular, using the same

ymbol for two or more different concepts means that refining

oncepts cannot be distinguished from the refined ones (symbol

mbiguity in diagrams ; see O4.6 ↔ O2.2 and also, e.g., [65,83]). To

ntroduce a simplistic discriminator without creating new symbols,

ne can provide a UML profile to define a series of stereotype tags

hich can then be attached to the reused symbols in order to

enote the DSML-specific refinements. In this case, UML profiles

erve primarily for clarifying the concrete syntax elements used for

 DSML. This resembles the usage of standard profiles as defined

y the UML [3] , however, without adding to the abstract syntax

nd semantics of the language model.

62 B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74

Fig. 8. Design-decision card for D5: Specifying a DSML’s behavior. Associations are ordered by their support in the 80 reviewed DSMLs (relative occurrences). Details in

italics and marked by an asterisk (∗) are presented as part of the overview in this paper; the remainder is described in [42] .

s

t

t

t

s

f

g

f

s

g

a

c

a

w

t

m

a

t

w

e

a

h

T

i

t

b

c

o

w

(

c

t

m

m

a

t

4

b

a

i

m
4.5. Behavior Specification (D5)

The behavioral specification of a DSML (also: dynamic seman-

tics) defines the behavioral effects that result from using one or

more DSML language element(s). It determines how the language

elements of the DSML interact to produce the behavior intended

by the DSML engineer. Moreover, the behavior specification defines

how the DSML language elements can interact at runtime [20] . Be-

havioral relationships may emerge from the language-model for-

malization (D2; see Section 4.2) or the language-model constraints

(D3; see Section 4.3). Explicitly specified behavior allows for a cor-

rect mapping of the (platform-independent) DSML specifications to

a certain software platform (see Section 4.6). If no behavioral spec-

ification exists (which is the case for nearly all of the 80 DSMLS in-

vestigated; see O5.5 in Fig. 8), the DSML’s runtime behavior is im-

plicitly defined via the DSML’s platform integration (e.g. via chains

of method calls in a source-code implementation). See Fig. 8 for the

design-decision card.

4.5.1. Options

M1 behavioral models (O5.1) specify additional behavior of

language-model elements using UML behavioral models at the M1

level (e.g. state machines, interaction diagrams, or activity dia-

grams). For instance, in the UML a classifier can reference “owned

behavior” specifications. Behavior is then executed in the context

of the directly owning classifier [3] .

Formal textual specifications (O5.2) specify the additional DSML

behavior using a textual formalism (e.g. algebraic expressions). In

this context, a formal textual specification is a set of expressions

in a formal language at some level of abstraction with the purpose

that its correctness can be checked (e.g. by using the Z notation

[84]).

Informal textual specifications (O5.3) are used to informally spec-

ify the behavior of a DSML, for example via narrative prose text.

With regard to the combination of options, textual comments

(O5.3) may be used to annotate models (O5.1) or to clarify formal

specifications (O5.2), for example. Such combined uses were not

found documented in the 80 DSMLs, though.

4.5.2. Drivers

Model consistency preservation : UML behavioral models (O5.1)

allow for a native integration of behavioral semantics into UML-

based DSMLs (see also association O5.1 ↔ O3.1). For example, the

behavior of a DSML element can be defined via an owned behav-

ior specification [3] . This facilitates support for integrated model-

ing tools as well as execution engines (O5.4). Nevertheless, some
emantics elements may be left unconstrained in the specifica-

ions to defer behavioral interpretations to the platform integra-

ion phase (which could slightly differ from one software platform

o the other; e.g. the semantics of concurrency or event dispatch

cheduling in the fUML [85]).

Limited expressiveness : If it is not feasible or even impossible

or some behavioral expressions to be sufficiently expressed via

raphical models (O5.1) or formal (textual) statements (O5.2), in-

ormal textual specifications are an option (O5.3). For instance, the

pecification of the fUML execution model incorporates a degree of

enerality for the semantics of inter-object communication mech-

nisms [85] . The respective execution model is specified as if all

ommunications were perfectly reliable and deterministic (e.g. it is

ssumed that signals and messages are never lost or duplicated),

hich is not realistic, of course. As raising exceptions and excep-

ion handling are excluded from the fUML specification, an infor-

al and descriptive addition (O5.3) may be useful.

Behavior verification requirements : Depending on the language

nd/or formalism that is used to specify a particular behavior,

he correctness of formal specifications (O5.2) and executable (i.e.

ell-formed) models (O5.4) can be (automatically) checked (see,

.g., [134] and [84,86]). If the objective is to verify all artifacts in

 DSML (such as, language model, language-model constraints, be-

avior specification, platform-specific artifacts), O5.2 is an option.

his is in contrast to non-executable behavioral models (O5.1) and

nformal textual specifications (O5.3) for which behavioral seman-

ics may remain underspecified. The benefit of proving the correct

ehavior of a DSML may come with the additional effort of a pre-

ise specification and the development (or, at least, employment)

f adequate verification methods and tools.

Visualization preferences : Behavior specifications may be aligned

ith other visualization options. For example, if all DSML artifacts

such as, language-model definition, language-model constraints,

oncrete syntax, platform-specific artifacts) are text-based, a tex-

ual behavior specification may satisfy the respective user require-

ents best (O5.2, O5.3). For instance, in case of the fUML, UML

odels can be represented using the action language ALF [87] . ALF

cts as a textual surface representation for UML modeling elements

hat can be used to specify executable behavior.

.5.3. Associations

UML M1 models can be attached to metamodel elements for

ehavioral specifications (e.g. via the ownedBehavior relation of

 BehavioredClassifier [3]). In doing so, they are constrain-

ng/defining the behavior of metamodel elements (M1 behavioral

odels as constraints ; O5.1 ↔ O3.1). For example, in [123 , 124] the

B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74 63

Fig. 9. Design-decision card for D6: Defining a DSML’s platform integration. Associations are ordered by their support in the 80 reviewed DSMLs (relative occurrences).

Details in italics and marked by an asterisk (∗) are presented as part of the overview in this paper; the remainder is described in [42] .

a

p

s

4

p

D

p

s

f

v

t

a

a

u

m

e

[

a

D

i

o

i

4

a

a

m

v

e

p

t

m

a

w

c

p

m

o

o

E

t

m

m

c

o

f

[

b

t

a

[

t

i

i

T

t

p

s

(

m

d

s

i

t

i

p

e

v

[

o

4

c

b

p

e

t

t

c

g

m
uthors make use of a UML state machine to define states (e.g.

assive, pending, discharged) and transition options between those

tates for DSML elements.

.6. Platform integration (D6)

At this stage, decisions must be made on how to produce

latform-specific executable models (esp. source code) by mapping

SML models (or an executable subset of the models) to a software

latform (e.g. programming languages, frameworks, components,

ervice applications). This platform integration is achieved via dif-

erent types of model transformations (see, e.g., [88,89]) that con-

ert a model into another platform-specific model (also: model-

o-model transformation, M2M) or into textual/executable software

rtifacts (also: model-to-text transformation, M2T; see also associ-

tion O6.2 ↔ O6.5). Alternatively, DSML models can also be eval-

ated and executed without intermediate transformations. To be

ore precise, DSML models are then directly transformed into

xecutable machine code via a corresponding DSML interpreter

42] . Not that performing no platform integration at all is also

 viable option (none/not specified ; O6.6), for example, when the

SML should only serve for documentation purposes, for sketch-

ng a software design, or for analyzing requirements. Two thirds

f the 80 reviewed DSMLs do not document or contain platform-

ntegration decisions. The design-decision card is shown in Fig. 9 .

.6.1. Options

Intermediate model representations (O6.1) provide for generating

 second and intermediate model (i.e. the target model) based on

 DSML model (i.e. the source model) using so-called model-to-

odel transformations. This intermediate model can be described

ia an own (separate) metamodel. The source and target mod-

ls are also separate model entities. From the intermediate model,

latform-specific artifacts/models can be created (e.g. using M2T

ransformations). This intermediate structure can be used to opti-

ize the source model (e.g. model canonization and compression)

nd to attach debugging metadata (see, e.g., [90]).

Generator templates (O6.2) create transformation templates

hich turn DSML models into platform-specific execution specifi-

ations (e.g. markup documents) and/or source code in the host

rogramming language. Templates access input model data via

etamodel-based selections and extraction expressions (e.g. OCL

r XPath) and integrate the extracted model data into opaque

utput strings that represent code fragments. Examples are the

clipse-based Xpand or EGL generator-template languages.
API-based generators (O6.3) realize the platform-specific model

ransformation (e.g. code generation) by instrumenting a program-

atic representation of DSML models. The DSML core language

odel and thereby each DSML model (i.e. each instance of the

ore language model) are internally represented as a collaboration

f programmatic entities (e.g. objects). Based on a dedicated API

or traversing this internal representation (e.g. a visitor-based API

90] or a mixin-based API [91]), model transformation is achieved

y instrumenting this API (e.g. implementing visitors or mixins)

o travel the object-based DSML model representation and, for ex-

mple, to serialize the model data to an output string (see, e.g.,

92]). The resulting platform-specific artifacts are independent of

he generator language or the generator implementation.

Model-to-model (M2M) transformations (O6.5) perform platform

ntegration via (multiple) endogenous M2M transformations spec-

fied via M2M transformation languages (e.g. ATL [93] , ETL [68]).

he source and target models share the same metamodel infras-

ructure on the M3 level (e.g. several refined platform-specific UML

rofiles). This is in contrast to O6.1 which describes platform-

pecific model chains not necessarily sharing the same metamodel

e.g. a transformation between a UML-based model and an inter-

ediate Java object model). Target models can either be executed

irectly (O6.4) or they need further processing, for instance, via

ubsequent model-to-text (M2T) transformations (O6.2, O6.3).

Template-based (O6.2), generator-driven (O6.3), and model-

nterpreting (O6.4) platform integration can be combined with in-

ermediate structures (O6.1) to benefit from the advantages of an

ntermediate representation [90] . In this way, transformation tem-

lates can operate on compressed and canonicalized DSML mod-

ls (see, e.g., [90]), generators run against decorator models pro-

iding generation-specific metadata (e.g. an EMF generator model

72]), and a model interpreter finds a prefabricated and execution-

riented model representation (e.g. an unfolded control flow).

.6.2. Drivers

Targeting multiple platforms : An intermediate model (O6.1)

an act as a common, canonicalizing representation that can

e mapped to multiple software platforms which have similar

latform-specific abstractions (e.g. a family of process-engine ex-

cution specification languages such as BPEL4WS and WS-BPEL). If

he constructs of the modeling language differ significantly from

heir intended platform integration, an intermediary representation

an increase the efficiency of subsequent M2T transformations.

Maintainability effort of static-code fragments : With an API-based

enerator (O6.3), the code independent from the DSML model

ust be integrated with the generator implementation (e.g. a

64 B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74

i

i

i

t

p

b

O

p

s

M

a

t

i

f

4

t

p

a

u

e

f

t

p

p

s

t

H

w

r

t

o

4

t

d

E

l

p

l

g

r

t

f

t

s

(

l

D

r

t

c

a

s

c

a
custom visitor). When using generation templates (O6.2), non-

changeable and non-parametric code fragments can be clearly sep-

arated from generator statements in templates [92] . Depending on

the relative amount of static code fragments, an API-based gener-

ator involves extra maintenance efforts for managing the interwo-

ven fragments of generative code and static code.

Non-executable models : If the DSML should only serve for mod-

eling purposes, for example via the definition of a UML profile and

the utilization of a standard modeling editor, no explicit platform

integration might be needed (O6.6). In this case, the DSML is not

meant to be executed on a software platform (see also association

O3.3 ↔ O6.6 in Section 4.3) and might primarily serve as a commu-

nication vehicle between domain experts and software engineers.

4.6.3. Associations

The observed association O6.2 ↔ O3.5 (platform-specific con-

straint enforcement) is characterized by a late and platform-specific

constraint enforcement point. Corresponding DSMLs do not de-

fine explicitly constraints for the language model (O3.5; see

Section 4.3), but integrate them into (templates of) code generators

(see, e.g., [137,138]). As generation templates (O6.2) are applied to

instances of the language model, constraints can basically be en-

forced. However, constraints are checked late in the DSML devel-

opment process; i.e. at the time of executing model-to-text (M2T)

transformations. Until platform integration is performed, the con-

formance of models to their corresponding constraints is not vali-

dated. Furthermore, constraints need to be duplicated for different

generator engines and for the support of multiple platforms. In ad-

dition, a DSML designer has to keep in mind that—independent of

an existing or lacking definition of language model constraints—no

constraints are enforced on the generated code (i.e. the output of

an M2T transformation is not interpreted by its generator compo-

nent).

Existing toolchain support (O6.2 ↔ O1.4 ∧ O2.2): Tools for editing

UML models, including the definition and application of profiles

(see O2.2 in Section 4.2), are nowadays frequently available (e.g. No

Magic MagicDraw, Eclipse Papyrus, IBM Rational Software Archi-

tect). In addition, template-based M2T transformations (O6.2) are a

widely supported platform-integration technique in contemporary

MDD tool chains, and a variety of template-language implementa-

tions exist, such as, Eclipse Xpand, EGL, JET, or Acceleo (see, e.g.,

[88,94]). Several UML model editors provide combined tool sup-

port for M2T transformations in an MDD-based way, as well – for

example based on EMF-compliant models in the Eclipse toolchain.

Thus, the observed association is characterized by a high availabil-

ity of modeling tools and generator engines (see, e.g., [139,140]).

Nevertheless, a formal diagrammatic model not compliant with the

UML specification (e.g., an ER model; see O1.4 in Section 4.1) must

be mapped to native UML constructs first (i.e. a profile definition)

to benefit from standard tool support. Alternatively, the EMF-based

technical projection of the EMOF [4] (i.e. an Ecore model; O1.4) is

also a candidate option to facilitate toolchain support as automatic

transformations into and from UML class models exist. Moreover,

a partially tool-supported approach for the semi-automatic trans-

formation of MOF-based models into UML profiles is presented in

[95] (see also association O1.4 ↔ D2 in Section 4.1). Further tooling

decisions related to the development of DSMLs are discussed in

Section 4.7 (decision point D7).

Model transformation chains (O6.2 ↔ O6.5) are characterized by

endogenous M2M transformations (O6.5) prior to the code genera-

tion step (O6.2; see, e.g., [141,142]). In these M2M transformations,

source and target models share the same metamodel infrastruc-

ture on the M3 level (e.g. the MOF). For example, we found this

association being employed for analyzing models [142] as well as

for generating test cases [141] . On the one hand, [142] provides

an approach for analyzing OCL-constrained UML class models for
nconsistencies via Alloy [96] . A UML class model is transformed

nto an instance model of the Alloy metamodel (both instantiat-

ng the MOF; O6.2). From the Alloy model, an M2T transforma-

ion generates a textual representation (O6.5) which serves as in-

ut to the Alloy analyzer. Located conflicts can then be traced

ack to the original model elements in the UML class diagram.

n the other hand, [141] uses M2M transformations to generate

latform-independent and platform-specific test models (e.g., UML

equence diagrams) from the actual application models (O6.2). Via

2T transformations application code and corresponding test cases

re generated (O6.5). In both examples, the Alloy model [142] and

he platform-specific application and test models [141] all serve as

ntermediate representations (O6.1) for the creation of textual arti-

acts.

.7. Development-tool support (D7)

DSML tool support requires important design decisions and, in

urn, affects decision making on other DSML concerns (decision

oints). In MDD, the objective is to assist engineers in the cre-

tion of DSML language models as well as to automate the eval-

ation of language-model constraints, the transformation of mod-

ls to platform-specific software artifacts (e.g. source code), and so

orth. For instance, the generative nature of MDD makes model-

ransformation engines a key building block of most DSML ap-

roaches (see, e.g., [97–99]). At the same time, the choice of a

articular MDD tool chain may affects other DSML design deci-

ions because not all decision options (e.g. concrete-syntax op-

ions) might be supported by a given toolkit (see, e.g., [42,100]).

owever, the variety of available MDD tools (e.g. IBM Rational Soft-

are Architect, Sparx Systems Enterprise Architect) makes the cor-

esponding decision challenging. Researchers have discussed MDD

ooling as a key barrier to MDD adoption (see [101] for a recent

verview). The design-decision card is shown in Fig. 10 .

.7.1. Options

Language-model editors (O7.1) are used to create, edit, and main-

ain the language model of the DSML. The editor can support the

evelopment of the language-model diagrammatically (e.g. Eclipse

coreTools) or textually (e.g. Eclipse Emfatic).

Constraint evaluators (O7.2) are used to automatically ana-

yze and validate conformance criteria for models. For exam-

le, language-model constraints defined as dedicated constraint-

anguage expressions (e.g. OCL invariants evaluated via the OCL en-

ine of the Eclipse MDT).

Generating diagrammatic-syntax editors (O7.3) support the rep-

esentation of a DSML’s graphical concrete syntax. Corresponding

ools allow for creating, editing, and maintaining tailored editors

or the domain-specific models in a given graphical concrete syn-

ax (e.g. Eclipse Graphical Modeling Framework, GMF).

Generators for textual-syntax editors (O7.4) support the repre-

entation of a DSML’s textual concrete syntax. Corresponding tools

e.g. Eclipse Xtext) allow for creating, editing, and maintaining tai-

ored editors for the domain-specific models textually (i.e. textual

SLs).

Model-execution engines (O7.5) are used to interpret models di-

ectly without the need of additional transformation steps (e.g.

he Moka module for Eclipse Papyrus includes an execution engine

omplying with fUML [85]).

M2M transformation engines (O7.6) take one or multiple models

s input and generate one or multiple models as output. An editor

upports creating, editing, and maintaining transformation specifi-

ations in a dedicated transformation language (e.g. ETL [68]).

M2T transformation engines (O7.7) take one or multiple models

s input and generate one or multiple textual artifacts as output.

B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74 65

Fig. 10. Design-decision card for D7: Tools supporting the development of a DSML. Associations are ordered by their support in the 80 reviewed DSMLs (relative occurrences).

Details in italics and marked by an asterisk (∗) are presented as part of the overview in this paper; the remainder is described in [42] .

A

t

[

e

M

e

c

q

f

M

4

i

a

a

t

t

H

o

a

a

m

t

n

D

f

c

r

r

e

f

c

s

m

c

T

t

t

F

w

(

i

b

g

4

p

e

t

p

o

p

l

s

m

d

a

(

i

i

(

l

g

n

U

fi

t

t

O

b

w

s

p

W

e

o

p

b

h

f

b

n editor supports creating, editing, and maintaining transforma-

ion expressions in a dedicated transformation language (e.g. EGL

68]).

Orchestration engines (O7.8): As a DSML may consist of sev-

ral tool-supported artifacts (e.g. language-model constraints,

2M/M2T transformation expressions etc.) for which the order of

xecution is important, orchestration engines (O7.8) can be used to

oordinate the execution process as well as data input/output re-

uirements of these artifacts providing an MDD-based tool chain

or DSML development (e.g. Eclipse Modeling Workflow Engine,

WE).

.7.2. Drivers

Availability of existing tools : One of the drivers towards adopt-

ng a specific toolkit or toolchain is the availability of existing tools

nd their suitability to support DSML development (e.g. to serve as

n editor for the language model; O7.1). Porting existing (legacy)

ools to fulfill requirements of a new DSML may be more efficient

han adopting (and possibly adapting) a completely new tool set.

owever, whether existing tools qualify for supporting the devel-

pment of a DSML is dependent on a multitude of factors, for ex-

mple, the capability of developing a DSML with existing software

rtifacts, the compatibility of different tooling license models, the

aturity of available tools, or the portability, evolution, and main-

ainability effort needed in comparison to adopting a completely

ew tool set [21] .

Purpose of the DSML : The adopted tools must also match the

SML’s purpose, of course. For example, constraints defined in a

ormat that cannot be validated automatically (e.g. O3.4) may make

onstraint evaluators (O7.2) useless. In the same way, models di-

ectly interpreted via a model-execution engine (O6.4, O7.5) may

ender any M2M/M2T transformation engines (O7.6, O7.7) unnec-

ssary. In contrast, transformation engines may be essential when

ollowing a generative approach (see, e.g., [60]) to create (exe-

utable) platform-specific artifacts (e.g. source code).

Integrated development-tool environment (IDE): As a DSML con-

ists of multiple, complex, and interrelated artifacts (models,

odel transformations etc.), the availability of an IDE becomes

rucial (e.g. to fulfill compatibility and traceability requirements).

hus, DSML development tools must also be assessed regarding

heir ability to interoperate (e.g. to enable an orchestration engine

o coordinate the execution order of interdependent tools; O7.8).

or example, interoperability between different Eclipse-based soft-

are tools is facilitated through utilizing standardized interfaces
e.g. export/import of XMI serialized models [73]) allowing, for

nstance, that model transformation chains (see, e.g., [102]) can

e developed by cascading multiple M2M/M2T transformation en-

ines (O7.6, O7.7).

.7.3. Associations

All of the decision points involved in the DSML development

rocess (D1–D6) may be supported by tools (e.g. a language-model

ditor or an M2T transformation engine; see the D7-related op-

ions above). Thus, the decision point on development-tool sup-

ort (D7) is likely to have interdependencies with each of the

ther six decision points. The effort of providing D1 tool sup-

ort (O7.1 ∧ O7.2 ↔ D1) for the initial definition of a generic DSML

anguage-model (e.g. language-model editors) depends on the cho-

en representation option. An informal textual description (O1.1)

ay not need a DSML-specific tool support. For formal textual and

iagrammatic models (O1.2, O1.4)—when based on well-defined

nd/or standardized specifications—it is likely that some sort of

reusable) development-tool support exists already (e.g. mathemat-

cal formula or UML diagram editors, model validators). In contrast,

nformal diagrammatic models (O1.3) may lack any tool support

e.g. an underspecification of the semantics of ad hoc modeling

anguages may render constraint evaluation impossible). The de-

ree of tool support at decision point D1 also influences the effort

eeded to (automatically) refactor language-model concepts into a

ML-compliant format (D2). For example, it may be easier to de-

ne reusable mappings for a formally specified model (O1.2, O1.4)

han for an informal diagrammatic model (O1.3) where the seman-

ics of the modeling constructs are not clearly specified.

The definition of tool-enforced DSML semantics (O7.5 –

7.7 ↔ O6.1 – O6.5) for the phase of platform integration can

e distinguished into interpretative semantics (O7.5 for O6.4),

hich directly execute a model representation, and translational

emantics, which compile a model into a model/program ex-

ressed in another language (O7.6, O7.7 for O6.1–O6.3, O6.5) [103] .

hen transforming models, keeping track of a model’s origin

nables linking elements of the transformation result back to the

riginal input model. Such traceability capabilities of tools are

articularly important for debugging activities. Furthermore, to

etter understand the behavior of a model, it can be useful to

ave a view of the code the model compiles to. For this, tooling

eatures that can display the model and the generated code side

y side are beneficial [103] .

66 B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74

n

s

i

f

“

e

p

t

a

s

c

t

A

m

(

t

c

t

p

e

w

m

s

t

t

o

b

p

t

b

s

n

c

t

p

g

[

p

p

g

L

m

l

l

g

s

f

a

t

r

m

[

o

f

s

h

t

d

m

o

s

(
In this context, the extent of UML compliance of a DSML’s

language-model formalization influences the adoptability of stan-

dard tools (D7 ↔ O2.3 ∧ O2.4). For example, if the DSML’s language

model is formalized via an extension to the UML metamodel (O2.3;

e.g. via the introduction of new datatypes), standard language-

model editors (O7.1) may not be able to handle the new mod-

eling constructs or it may be difficult for standard generators of

diagrammatic-syntax editors (O7.3) to visually integrate new syn-

tax elements within the native UML syntax set.

5. Limitations

Design-Decisions Catalog. The catalog of reusable design decisions

was deliberately narrowed down to DSMLs embedded into UML

2.x. We excluded DSMLs from the catalog that are based on UML

1.x and metamodeling infrastructures such as Kermeta, Ecore, XMF.

While this appears, at first glance, as a barrier to generalizing the

reusable design decisions, the focus on UML 2.x was necessary be-

cause important decisions taken for the UML 2.x are substantially

different from those for UML 1.x, not to mention from other infras-

tructures. Moreover, there are important lines separating the UML

2.x and UML 1.x regarding their language architectures and the

foundational semantics of the available extension techniques (e.g.

profiles, package merge; see [16,104,105]). The survey also sup-

ported the relative importance of the UML 2.x as opposed to its

predecessors: More than 50% of the respondents (42/80) indicated

having adopted UML 2.x (versions 2.0 through 2.5) for their DSML

projects. Note, however, that many reusable decisions can still be

adopted in a broader sense to be compatible with DSMLs based on

other metamodeling infrastructures and DSLs (e.g. concrete-syntax

decisions).

Survey. The design of our questionnaire included four question

types. Crucial questions were used to identify break-off, partial, and

complete questionnaires. All crucial questions were also mandatory

questions. A mandatory question , when presented to the partici-

pant, had to be answered in order to continue the questionnaire.

However, note that not all mandatory questions needed to be pre-

sented to a participant because of filter questions. A filter question

controlled the succession of the questions in our questionnaire (e.g.

depending on an answer, a subsequent question was presented or

not). An optional question could be left out by the participant. Re-

garding the outcome rates of the survey, we considered an attempt

a break-off if the respective participant answered less than 50% of

the crucial questions. If a participant answered 50% or more of the

crucial questions but less than 100% of the mandatory questions,

this was considered a partial response. If a participant answered

100% of both, the crucial and the mandatory questions, this was

considered a complete response (for further details see [5]).

Closely following the guidelines from [106] , we carefully de-

signed the questionnaire to minimize any negative influence on

participants and their replies. For example, we paid specific atten-

tion to develop value-free, non-suggestive wordings for the ques-

tions and items. Moreover, the questions have been devised in

an exhaustive, unbiased manner providing mutually exclusive re-

sponse categories. The questionnaire was pre-tested in two it-

erations. In the first iteration, four co-researchers with a gen-

eral software-engineering background were asked to complete the

questionnaire to provide feedback on the comprehensibility of the

questions and to measure the time required to answer all ques-

tions. Second, and based on a revised version of the questionnaire,

we invited another three participants to run another pre-test. This

second iteration included two experts, one on design-decision doc-

umentation (Uwe van Heesch; see, e.g., [49]) and one on UML-

based DSML designs (Sigrid Schefer-Wenzl; see, e.g., [123 , 124])—

the third again having a general software-engineer background. Fi-
ally, we consulted the WU Competence Center for Empirical Re-

earch Methods to review the survey’s design and questionnaire.

Nevertheless, personal bias cannot be ruled out completely. For

nstance, certain answer options may have been interpreted dif-

erently by the respondents. As an example, the answer option

extremely important” [5] could mean different things to differ-

nt subjects. The comparatively high effort per participant to com-

lete the questionnaire (i.e. 15–20 min), and the expected substan-

ial barriers to motivating invited researchers and practitioners to

ctually participate, did not allow us to provide for repeated mea-

urement. Therefore, we have no means to quantify the internal

onsistency (reliability) of the responses (e.g., by having each par-

icipant complete the survey twice after some cool-down phase).

s, to the best of our knowledge, there is no alternative or comple-

entary data set on UML-based DSML design decisions available

i.e. a second measurement instrument), we could also not quan-

ify the validity of the survey responses.

We asked MDD researchers and practitioners identified via

arefully selected scientific venues to take part in the survey. Al-

hough the venues included premier outlets for researchers and

ractitioners in the field of MDD and DSMLs, our selection strat-

gy (convenience sampling [45]) may have missed further peers

ho are professionally designing and developing DSMLs. Further-

ore, non-response errors may have been introduced because

ome members of the sample did not respond to our invitation for

aking part in the survey (although we sent out reminders). Thus,

here is a possibility that those who do not believe in the benefits

f documenting DR may have opted not to respond which would

ias our results. Hence, and because of the non-probabilistic sam-

ling method [45] , it is difficult to assess the representativeness of

he sample.

The majority of our respondents indicated that their DSMLs are

ased on Ecore, MOF, and/or UML (see Section 2.1). However, our

urvey, the questions, and the data reporting in this paper are

ot specific to any infrastructure, modeling language, or MDD tool

hain. This was mainly because we aimed at maximizing participa-

ion and responses. In most sections of the questionnaire, we ex-

licitly asked participants to answer the questions based on their

eneral experience with their DSMLs (whether UML-based or not)

5] . Given these generic, non-UML-specific questions, we would ex-

ect widely consistent responses when re-running the survey ex-

licitly setting the context to UML-based DSMLs (i.e. we expect a

ood alternative-form reliability [45]).

iterature Review. Despite being prior work, because the docu-

ented design decisions are based on papers identified by our

iterature review, the work reported in this paper inherits some

imitations of the original review. We closely followed established

uidelines on designing and conducting SLRs available from re-

earch on evidence-based software engineering to avoid any pit-

alls [41] . The DSML papers were subjected to a documentation

nalysis to extract design decisions from scientific publications and

heir companion material. We considered supporting material if

eported by and available from the publication authors. A docu-

entation analysis represents an indirect data-collection technique

107] . Therefore, information on the ordering of design decisions

ver time (decision sequences) often remained implicit and, there-

ore, unrecoverable for us. Even if documented, any indirectly ob-

erved order of decision options adopted by DSML engineers might

ave also followed from the presentation requirements of a scien-

ific publication (i.e. the one reporting on a DSML); an order which

oes not necessarily correspond to the original one during decision

aking. Therefore, in our research setting, we could only study

ption sets in terms of decision associations. For the same rea-

on, we focused on one process style of DSML development only

i.e. language-model-driven development). Thus, we might have

B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74 67

Fig. 11. Number of respondents having performed selected activities (performed at least once) and perceived usefulness of the performed DR documentation activities

(n = 68), ordered by decreasing combined levels 4 and 5 support (useful to extremely useful). P = Performed; DK = don’t know; NA = not answered.

n

f

m

o

c

t

p

d

e

s

l

p

i

s

fi

t

d

U

a

i

s

c

t

l

r

t

5

6

s

a

f

t

l

t

s

W

a

i

c

t

i

n

f

e

s

m

s

t

i

T

w

b

g

b

c

i

u

c

t

u

r

t

i

t

a

(

a

r

t

i

p

a

d

s

n

d

F

r

(

(

(

s

r

c

a

s

s

u

p

l

l
eglected design-decisions details (e.g., associations) characteristic

or other development styles (e.g. mockup-driven DSML develop-

ent [20]).

There is a bias inherent to the SLR design in that by relying

n scientific publications only, the reusable decisions on DSMLs

ould be specific to DSMLs developed as research-driven proto-

ypes and proof-of-concept implementations. While there is an im-

ortant scientific audience, with approx. 48% of the survey respon-

ents (38/80) having contributed to at least one UML-based sci-

ntific DSML, design decisions during DSML development in the

oftware industry might not necessarily be covered by the cata-

og. For example, we established a clear preponderance of UML

rofiles in 80% of the reviewed DSMLs. Whether this character-

stic also holds for DSMLs reported in other, predominantly non-

cientific venues cannot be answered at this point. However, we

nd it difficult to assess the severity of this bias. To begin with,

he primary studies reviewed in our SLR did not disclose their in-

ustrial background. Similarly, while related empirical studies on

ML usage certainly document the existence of UML extensions

nd UML-based DSML designs (see, e.g., [6,7]), they do not discrim-

nate between industry-driven and research-driven projects. Our

urvey also documents that it is likely that DSML developers have

ontributed to both scientific and industry projects over time, so

hat their design expertise (although documented in scientific pub-

ications) reflects industrial practices: Approx. a quarter of the total

espondents (19/80) have contributed to both scientific and indus-

ry UML-based DSMLs. For all DSMLs, this share increases even to

7.5% (46/80).

. Discussion

In our survey [5] , we collected expert opinions from DSML re-

earchers and practitioners on different aspects of documenting

nd using DR when developing DSMLs (see also Section 2.1). As

or documenting DR, we asked the participants to indicate whether

hey performed certain documentation activities (known from DR

iterature) for at least one DSML, and, if the answer was yes, how

hey rate the usefulness of DR. Fig. 11 shows that 92.6% of the re-

pondents (sample size: n = 68) documented DR in written form.

ritten documentation artifacts include source-code comments

nd changelog files, for example. This activity is followed by meet-

ng protocols (83.8%; e.g. brainstorming sessions, focus groups) and

onceptual diagrams (69.1%; e.g. decision-flow modeling). These

hree DR documentation activities were also the ones the partic-

pants perceived most useful with 73% (useful to extremely useful;

 = 63), 71.9% (n = 57), and 72.3% (n = 47), respectively.

The combined levels of high usage and high perceived use-

ulness of written DR documentation, as part of more gen-

ral documentation artifacts, can be explained straightforwardly

ince such practices (code commenting, source-code and model-
anagement systems) are among the most established ones in

oftware-development projects. This also holds for meeting pro-

ocols, which are often seen as central documentation artifacts

n collaborative software development and project management.

he importance of diagrams as form of decision documentation,

hether ad hoc or based on a dedicated modeling language, has

een stated before (e.g., QOC diagrams [108] , UML activity dia-

rams for tailored development processes [20]) and is confirmed

y our survey results. In Section 3 , we showcase how the catalog

an support written DR documentation in general as well as meet-

ng documentation by referencing elements from the catalog. The

se of the catalog for QOC diagramming is exemplified in [41] .

It is noteworthy that some participants commented (via freetext

omments in the questionnaire) that they have performed some of

hese activities before, but did not explicitly or systematically doc-

mented them (e.g. because of customers not wanting to become

ecorded) or they documented not the complete rationale leading

o a design decision, but the decision (solution) only. However, be-

ng aware of such undocumented activities is important because

hey exhibit potential to introduce routine documentation practices

nd they can be influential in the overall decision-making process

e.g. because they contribute to eliciting requirements; see [5]).

Based on the opinions of participating MDD researchers

nd practitioners, we derived a documentation format (decision

ecords) for our setting (UML-based DSMLs). In Section 3 , a struc-

ured document to capture one project-specific decision (referenc-

ng the catalog) is introduced by example. Looking at the actual

ractice of documenting DR (i.e., without any document templates

s a scaffold), the survey participants indicated that they have

ocumented the following details for at least one DSML (in de-

cending order of respondent counts): issues (76.9%, sample size:

 = 65), alternatives (69.2%), criteria (67.7%), project context (64.6%),

ecision-making context (58.5%), and activity context (46.2%; see

ig. 12). The frequency of documenting these details is widely mir-

ored by their perceived usefulness: criteria (81.8%, n = 44), issues

78%, n = 50), alternatives (64.4%, n = 45), decision-making context

55.2%, n = 38), project context (54.8%, n = 42), and activity context

53.3%, n = 30). To the extent these details are relevant for the de-

cription of a reusable design decision, the top-ranked items are

eflected by the current documentation format (criteria: driver,

onsequences; alternatives: options; see Section 2.2). Issues, which

re specific to a particular decision-making step, are out of the

cope for reusable decisions.

The overall picture is that major problems, listing alternative

olutions, and reasons for/against a solution are most often doc-

mented and perceived as most useful. Contextual information ap-

ears less frequently documented and considered comparatively

ess useful. In this context, the participants’ comments can shed

ight on the corresponding figures: Some survey participants artic-

68 B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74

Fig. 12. Number of respondents having authored selected DR documentation details (documented at least once) and the perceived usefulness of the documented details

(n = 65), ordered by decreasing combined levels 4 and 5 support (useful to extremely useful). D = Documented; DK = don’t know; NA = not answered.

Fig. 13. Number of respondents having encountered selected forces (at lease once) and the criticality of these encountered forces as perceived barrier to documenting DR

(n = 62), ordered by decreasing combined levels 4 and 5 support (barrier to extreme barrier). E = Encountered; DK = don’t know; NA = not answered.

u

l

o

t

F

c

[

m

b

d

s

e

s

d

o

7

r

S

o

E

t

d

D

d

a

[

i

t
ulated that contextual details “are useful, but in practice the results

are used only rarely”, that “the industry projects did not really doc-

ument design decisions”, and that “these things were documented

in research papers, but more as a result of the dissemination obli-

gation, not so much to support the development/design process”

[5] .

Finally, our survey covered the participants’ opinions on se-

lected forces (e.g., time and budget constraints) in their DSML

development projects which they encountered at least once, and

whether these forces constituted actual barriers to DR documen-

tation (i.e. their criticality; see Fig. 13). Candidate barriers we pro-

posed to the participants reflect the state of research on the DR

capture problem [22,23] . Four-fifth of the participants encountered

(at least one of) the candidate barriers, in decreasing order by

frequency: absence of tool support to document decisions (80.6%,

sample size: n = 62), time/budget constraints (79%), lack of stan-

dards/requirements to document design decisions (79%), and miss-

ing justification for extra work of documenting design decisions

(79%). These forces were also perceived as being actual and the

most critical barriers. Less frequently encountered barriers were

the absence of prior, reusable decisions (72.6%), an uncertainty of

what to document exactly (66.1%), missing benefits of reusing doc-

umented design decisions (66.1%), the disruption of the decision-

making process (62.9%), and the risk of seeing decisions challenged

at a later point in time (59.7%). While observed by comparatively

many respondents (clearly more than the half), these forces were

deemed less critical barriers.

Our quantitative results, which highlight the role of orga-

nizational and contextual barriers to DR documentation (e.g.

time/budget constraints, extra work not justified) are also sup-

ported by comments of the participants. Examples are that “spend-

ing time on documenting design decisions rather than user doc-

o
mentation was not appreciated” and that there existed “dead-

ines to deliver products not docs” [5] . Furthermore, the absence

f organization/project-wide standards (e.g. which DR documen-

ation activities to perform, which details to document; see also

igs. 11 and 12) as well as the lack of adequate tool support (for

apturing, organizing, and retrieving design decisions; see also

109]) impede the systematic collection of DR in a reusable for-

at. However, it is also obvious that DR can only pay off when it

ecomes available (i.e. explicitly documented) to be reused in later

evelopment projects (e.g. by saving time deciding on the best de-

ign variant). Our decision catalog is intended to serve as a ref-

rence source to be used when creating and maintaining project-

pecific DR. Moreover, it assists engineers by pre-structuring the

esign-decision space for a systematic exploration in the context

f an actual DSML project (see Section 3).

. Related work

The related work in the fields of DR documentation and of

eusable (architectural) design decisions has been elaborated on in

ections 1 and 2 . In addition, our effort relates closely to a body

f research describing systematic procedures for developing DSLs.

ach of these approaches is based on experiences drawn from ac-

ual DSL engineering projects and provides insights into the DSL

evelopment process, into certain aspects of DSL design, or into

SL-related design decisions. For example, in [20] , different DSL

evelopment activities are discussed and it is described how these

ctivities can be combined to tailor a DSL engineering process.

In a complementary contribution, Zdun and Strembeck

32] document three main decisions to be made when apply-

ng the DSL development process from [20] . These decisions relate

o the choices of a specific type of DSL development process,

f a concrete syntax style, and of developing an external vs. an

B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74 69

e

a

p

A

a

o

d

t

a

t

d

r

t

(

a

m

s

w

p

s

t

D

c

t

m

[

t

v

t

t

o

(

o

s

p

c

s

s

d

T

e

t

s

v

[

i

s

o

s

t

h

W

i

a

c

a

a

t

D

c

r

p

D

t

q

o

t

t

l

b

b

[

p

i

a

a

b

T

d

e

w

D

a

s

a

H

l

t

i

d

e

i

D

l

c

g

T

o

t

t

t

m

r

D

l

p

a

w

t

c

w

8

b

w
mbedded DSL. To render these decision descriptions reusable,

 pattern-like format is applied [32] . In software engineering, a

attern is a time-proven solution to a recurring design problem.

 pattern description includes (at least) a “problem description”,

 description of the “context” in which the respective problem

ccurs, and one or more (alternative) “solutions”. Typically, pattern

escriptions also include different “forces” that may influence

he choice of a certain solution, “consequences” that arise from

 solution, as well as “known uses” of a particular solution. In

his way, the description format we chose for the reusable design

ecisions resembles a pattern format to a certain degree. However,

eusable decisions are not identical to or variants of software pat-

erns, since, for example, they list multiple solution propositions

decision options) rather than one.

While prior work on patterns for DSL development [20,32] aims

t describing generic procedures and decisions for DSL develop-

ent projects, our contribution in this paper provides detailed in-

ights into design decisions for UML-based DSLs. In this way, our

ork complements [20,32] , as well as other DSL development ap-

roaches such as [92,110] . This is because our work provides a

ystematic and in-depth documentation of the follow-up decisions

hat DSL engineers face after they decided to develop a UML-based

SL. 14

A number of other patterns and pattern languages exist that

an be applied in DSL development and are thereby complemen-

ary to our work. This includes patterns for the design and imple-

entation of DSLs [33] , patterns for evolving frameworks into DSLs

111] , and approaches for pattern-based DSL development [34] . Of-

en, DSL-related patterns do not only describe how a DSL is de-

eloped, but also why it is developed in a specific way. In addi-

ion, pattern languages also describe potential sequences in which

he patterns can be applied [58] . Pattern sequences compare with

ur notion of sets of co-adopted decision options in the sense that

ordered) option sets can represent sequences of adopted decision

ptions.

In [36] , Mernik et al. used the patterns from [33] to conduct a

urvey on decision factors affecting the analysis, design, and im-

lementation phases of DSL development. These decision factors

an be considered during DSL development. For example, the deci-

ion factor Notation deals with the consideration whether the DSL

hould provide a new or an existing domain notation. For a few

ecision factors, Mernik et al. suggest implementation guidelines.

he work of [36] is complementary to ours as it focuses on gen-

ral issues of design-decision making and implementation, rather

han on design decisions for a specific (host) language environment

uch as the UML.

Another group of related work reports observations from de-

eloping DSLs in (industrial) practice. For example, Luoma et al.

37] conducted a study including 23 industrial projects for the def-

nition of DSMLs. Similar to our approach, a number of DSLs are

ystematically compared. However, in contrast to our paper, Lu-

ma et al. provide a high-level description only and do not de-

cribe specific DSL design decisions or decision-option sets in de-

ail. Similar to patterns, lessons learned have been used as a ve-

icle to preserve best practices of DSL development. For example,

ile [112] reports on twelve lessons learned from three DSL exper-

ments. For each lesson, he introduces a respective rule of thumb

nd gives an overview of the experiences that are the origin of the

orresponding rule. Despite Wile’s lessons learned being described

t a comparatively high level of abstraction, they can, in general,

lso be observed in our work and are hence reflected in parts of

he design-decisions catalog. Kelly and Pohjonen [100] present a
14 Remember that each UML-based DSL is an embedded DSL and that UML-based

SLs usually have a graphical concrete syntax or a mixture of graphical and textual

oncrete syntaxes.

r

r

i

p

eport on worst practices found by reviewing 76 DSL development

rojects, and Karsai et al. [83] proposes 26 general guidelines for

SL development derived from their own experiences.

A UML-based DSL uses UML as its host language and extends

he UML with domain-specific language elements and, therefore,

ualifies as an embedded DSL (also: internal DSL). Related work

n developing embedded DSLs includes the contributions by Gün-

her et al. which describe a process and corresponding patterns for

he development of internal DSLs on top of dynamic programming

anguages, such as Ruby or Python [44,113] . Other related contri-

utions describe how to develop DSLs from component building

locks that can be incrementally designed and composed (see, e.g.,

114]). This idea originates from approaches such as keyword-based

rogramming [115] , in which so called “keywords” serve as build-

ng blocks for DSLs. In particular, a number of (universal) keywords

re suggested which are then glued together to compose DSLs. This

pproach was first envisioned in [116] and is akin to building em-

edded DSLs in dynamic languages (such as Ruby, Perl, Python, or

cl for example).

In the UML context, some authors propose approaches that

efine domain-specific UML extensions via UML profiles (see,

.g., [52–54]). While each of these approaches is related to our

ork, none of them documents reusable decisions for UML-based

SLs. The authors of [117] give an overview of standard compli-

nt ways to define domain-specific UML extensions, while Atkin-

on and Kühne [118] discuss potential issues with UML profiles

nd suggest a solution to address these problems. Bruck and

ussey [65] present different techniques for tailoring the UML (e.g.

ightweight profile or middleweight metamodel extension). In par-

icular, Bruck and Hussey define a catalog of options and character-

ze different extension mechanisms accordingly. The authors also

iscuss pros and cons of using one approach or the other. How-

ver, Bruck and Hussey focus on UML customization techniques

n general and do not integrate design decisions in the process of

SML development (e.g. no development phases are distinguished,

anguage-model constraints as well as platform integration are not

onsidered).

In addition, knowledge on DSL design decisions can also be

ained from analyzing toolkits for DSL development. For example,

olvanen and Kelly [119] present a tool for the definition and usage

f integrated DSMLs. Similarly, Zdun [91] presents a tool suite for

extual DSL-based software and provides a discussion of architec-

ural decisions for DSL development. However, most existing con-

ributions have a strong focus on textual domain-specific program-

ing languages. To the best of our knowledge, there is no report

eflecting on design decisions embodied in toolkits for UML-based

SML development.

In summary, the related work on patterns, best practices, and

essons learned in DSL development has in common with our ap-

roach that all are based on experiences from actual DSL projects

nd contain some information on DSL design decisions and DR. Our

ork provides a systematic and detailed description of decision op-

ions for building UML-based DSLs. In this way, our contribution is

omplementary to those other approaches and can be combined

ith them.

. Conclusion

In this paper, we adopt a decision-centric perspective on UML-

ased domain-specific modeling languages (DSMLs). Our focus

as on providing a tailorable documentation [25] of generic and

eusable design decisions [27] . Our work is based on a long-term

esearch effort and complements other approaches for systematiz-

ng DSML development [20,43] , which put forth a development-

rocess perspective.

70 B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74

Table A.3

Positive/negative links between drivers and options.

Driver/Option O2.1 O2.2 O2.3 O2.4

Overlap of DSML and UML domain spaces + /– + /– + /– + /–

Degree of DSML expressiveness −− – + ++

Portability and evolution requirements + + – −−
Compatibility with existing artifacts ++ ++ – –

r

t

b

s

m

b

t

t

m

o

a

s

c

m

o

T

�

t

i

p

e

D

t

b

p

i

c

n

c

d

p

m

t

m

c

a

t

s

c

m

s

s

s

b

o

w

p

t
Using a Web-based survey among MDD researchers and practi-

tioners [5] , we collected 80 expert opinions on the current prac-

tice of documenting and (re)using design rationale (DR) on UML-

based DSMLs. Among others, the survey helped us to validate

the description format that we used for our design-decision cata-

log. In particular, the design-decision catalog for UML-based DSMLs

[21,42] includes 35 decision options for seven decision points, cov-

ering design aspects from UML-based language-model specification

to development-tool support. The reusable decisions include de-

scriptions of positive and negative assessments of the considered

options (decision drivers) as well as positive and negative effects

on subsequent design decisions when adopting one or several op-

tions (decision consequences). The catalog was compiled from sec-

ondary studies as well as 80 unique DSML designs. To the best of

our knowledge, our work is the first attempt to document DR on

UML-based DSML development on a broad empirical basis. Thus,

the catalog complements existing contributions via an evidence-

based source of documented DR. As such, the design rationale doc-

umented in the catalog becomes available for reuse in new DSML

projects. For example, our catalog offers a building block for docu-

mentation guidelines on extending the UML and can be used when

documenting a DSML design in a systematic manner.

In our future work, we will incorporate further design ratio-

nale found on additional DSMLs. Moreover, we will proceed in en-

gaging more MDD researchers and practitioners to collect further

qualitative evidence on design-decision making (e.g., on the order

of decisions) as well as to allow for a validation of documented

drivers and consequences by performing interviews and partici-

pant observations based on our catalog. To this end, we will in-

vestigate ways of incorporating the reusable design decisions into

design-support software. This includes design-knowledge manage-

ment [120] for UML-based DSML development using DR-aware

design-support tools (e.g., MetaEdit++ plus Debate Browser and

Link Ability [121] , Collaboro [122]).

Acknowledgment

This work was partly funded by the Austrian research funding

association (FFG) under the scope of the DLUX project within the

funding programme ICT of the Future (4th call 2015) of the Austrian

Federal Ministry for Transport, Innovation and Technology (BMVIT),

contract # 855465.

Appendix. Excerpt from decision catalog

This is the actual reusable decision on implementation options

for a language model based on the UML (D2) as found in [42] ,

pp. 16–19. The motivating example in Section 3 refers to the de-

tails of this decision.

Problem statement . In which MOF/UML-compliant way should

the domain concepts be formalized?

Decision context . After the identification of language-model con-

cepts, the corresponding definitions serve as input for the phase of

formalizing the domain constructs into a MOF/UML compliant core

language model.

Decision options . For UML-based DSMLs, the language model can

be formalized via dedicated language extension constructs (such as

UML profiles) or by extending the modeling language to provide

the required semantics (see, e.g., [3,65]).

O2.1 M1 structural model: Implement the core language model

using structural UML models at level M1. In a class model, for in-

stance, domain abstractions can be expressed as classes and their
elationships as associations. Other examples are composite struc-

ure, component diagrams, and package diagrams.

O2.2 Profile (re-)definition: Implement the core language model

y creating (or by adapting existing) UML profiles. A profile con-

ists of a set of stereotypes which define how an existing UML

etaclass may be extended.

O2.3 Metamodel extension: Implement the core language model

y creating one or several metamodel extensions. A metamodel ex-

ension introduces new metaclasses and/or new associations be-

ween metaclasses to the UML metamodel or to other, pre-existing

etamodel extensions [3,4] . The extension elements are typically

rganized into dedicated �metamodel � packages. The structure

nd semantics of existing elements of the UML metamodel are pre-

erved.

O2.4 Metamodel modification: Implement the language model by

reating one or several MOF-based metamodel extensions which

odify existing metaclasses; for example, by changing the type

f a class property or by redefining existing associations [3,4] .

he extension elements are typically organized into dedicated

metamodel � packages.

Combination of options: A combination may include the defini-

ion of a metamodel extension as well as an equivalent profile def-

nition (see, e.g., [143,144]). Similarly, stereotype definitions can be

rovided to accompany a metamodel extension/modification (see,

.g., [126]).

ecision drivers . An overview of positive and negative links be-

ween decision drivers and available options is shown in Table A.3 .

Overlap of DSML and UML domain spaces: The degree of overlap

etween the domain space of the DSML concepts and the general

urpose language constructs (i.e., the UML specification) has, for

nstance, a direct impact on whether a profile definition is suffi-

ient (O2.2) or on whether a metamodel extension/modification is

eeded (O2.3, O2.4).

Degree of DSML expressiveness: A UML profile (O2.2) can only

ustomize a metamodel in such a way that the profile semantics

o not conflict with the semantics of the referenced metamodel. In

articular, UML profiles cannot add new metaclasses to the UML

etaclass hierarchy or modify constraints that apply to the ex-

ended metaclasses (see, e.g., [10]). Therefore, profile constraints

ay only define well-formed rules that are more constraining (but

onsistent with) those specified by the metamodel [3] . In contrast,

 metamodel extension/modification (O2.3, O2.4) is only limited by

he constraints imposed by the MOF metamodel (i.e. the abstract

yntax of the UML can be extended via new metaclasses and asso-

iations between metaclasses).

Portability and evolution requirements: A newly created meta-

odel (O2.3, O2.4) is an extension of a certain version of the UML

pecification. Thus, the domain-specific metamodel extension pos-

ibly needs to be adapted to conform with newly released OMG

pecifications. Re-usability of a UML extension is also affected by

eing either compliant with the UML standard (e.g. O2.2 or O2.3)

r not (e.g. O2.4).

Compatibility with existing artifacts: Pre-existing DSMLs, soft-

are systems, and tool support have a direct impact on the design

rocess of a DSML in terms of compatibility requirements and in-

egration possibilities. For instance, the UML specification defines

https://dlux.wu.ac.at/

B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74 71

Fig. A.14. Exemplary UML metamodel extension and profile definition [143] .

a

(

a

D

d

i

o

b

m

e

g

m

m

i

m

A

g

fi

w

w

i

i

a

b

C

p

e

U

i

c

T

o

t

a

i

o

g

d

c

S

f

i

o

U

p

v

t

e

t

R

 standardized way to use icons and display options for profiles

O2.2). Tool support for authoring UML models and profiles (O2.1

nd O2.2) is widely available (see, e.g., [10]).

ecision consequences . Formalization style dependencies: Certain

ependencies can result from combined language-model formal-

zations (e.g. O2.2 and O2.3). For instance, profiles are dependent

n the corresponding metamodel (i.e., the UML). If a profile is com-

ined with a metamodel modification (O2.4), changes to the meta-

odel can affect the respective stereotypes (e.g. if a stereotype-

xtended metaclass is modified).

Language-model ambiguities: If no further constraints to the lan-

uage model are specified (see Decision D3), the language model

ust be fully and unambiguously defined using the chosen for-

alization option and implicitly enforced restrictions (e.g. by us-

ng profiles and thus inheriting all semantics from the UML meta-

odel; O2.2).

pplication . In all our DSML projects, we formalized the lan-

uage models as metamodel extensions (O2.3). Additionally, pro-

les (O2.2) were employed in [123 , [124,126,143–146]]. Therefore,

e effectively adopted combined strategies. In related approaches,

e also found the application of M1 structural models (O2.1, e.g.,

n [147]) and the modification of the UML metamodel (O2.4, e.g.,

n [148]) for the formalization of the language model. As an ex-

mple for O2.4, [148] documents a UML metamodel modification

y adding new attributes to existing UML classes (e.g. to classes

lass and Property). This is in contrast to several other ap-

roaches which employ metamodel extensions (O2.3), but do not

xplicitly document whether they perform modifications to the

ML metamodel (O2.4), as well. For instance, in [149] , exist-

ng classes from the UML metamodel (e.g. UseCase) are asso-

iated with newly defined classes (e.g. UseCaseDescription).
he metamodel definition in [149] remains uncertain regarding the

wnership of association ends: (1) Both ends could be owned by

he association (O2.3); (2) one end could be owned by the associ-

tion, one by a class (O2.3 or O2.4, depending if the owning class

s coming from the UML metamodel); or (3) both ends could be

wned by their corresponding classes (O2.4). To avoid such ambi-

uities, association end ownership can be made explicit with the

ot-notation [3] . Furthermore, accompanying textual annotations

an provide clarifying details.

ketch . Fig. A.14 depicts an excerpt from a UML extension (taken

rom [143,144]). On the left hand side, it shows a UML package def-

nition called SecureObjectFlows::Services as an example

f a metamodel extension (O2.3) and, on the right hand side, a
ML profile specification named SOF::Services (O2.2). Map-

ings between these two language-model representations are pro-

ided as M2M transformations. Both UML customizations provide

he same modeling capabilities for using one of our UML security

xtensions (for details see [143,144,150]) with the SoaML specifica-

ion [77] .

eferences

[1] C. Atkinson , T. Kühne , A tour of language customization concepts, Adv. Com-

put. 70 (2007) 105–161 .

[2] E. Jackson , J. Sztipanovits , Formalizing the structural semantics of do-
main-specific modeling languages, Softw. Syst. Model. 8 (4) (2009) 451–478 .

[3] Object Management Group, OMG Unified Modeling Language (OMG
UML), 2015a, (available at: http://www.omg.org/spec/UML). Version 2.5,

formal/2015-03-01.
[4] Object Management Group, OMG Meta Object Facility (MOF) core speci-

fication, 2015b, (available at: http://www.omg.org/spec/MOF). Version 2.5,

formal/2015-06-05.
[5] B. Hoisl, S. Sobernig, A Survey on Documenting and Using Design Rationale

when Developing Domain-specific Modeling Languages, Tech. Rep. 2016/01,
WU Vienna, 2016 . Available at: http://epub.wu.ac.at/4920/ .

[6] J. Hutchinson , J. Whittle , M. Rouncefield , Model-driven engineering practices
in industry: Social, organizational and managerial factors that lead to success

or failure, Sci. Comput. Program. 89, Part B (2014) 144–161 .

[7] L. Nascimento , D.L. Viana , P.A .M.S. Neto , D.A .O. Martins , V.C. Garcia ,
S.R.L. Meira , A systematic mapping study on domain-specific languages, in:

Proceedings of the 7th International Conference on Software Engineering Ad-
vances, IARIA XPS Press, 2012, pp. 179–187 .

[8] J. Hutchinson , J. Whittle , M. Rouncefield , S. Kristoffersen , Em pirical assess-
ment of MDE in industry, in: Proceedings of the 33th International Confer-

ence on Software Engineering, ACM, 2011, pp. 471–480 .

[9] J. Pardillo , C. Cachero , Domain-specific language modelling with UML profiles
by decoupling abstract and concrete syntaxes, J. Syst. Softw. 83 (12) (2010)

2591–2606 .
[10] M. Staron , C. Wohlin , An industrial case study on the choice between lan-

guage customization mechanisms, in: Proceedings of the 7th International
Conference on Product-Focused Software Process Improvement, LNCS, 4034,

Springer, 2006, pp. 177–191 .

[11] B. Selic , What will it take? A view on adoption of model-based methods in
practice, Softw. Syst. Model. 11 (4) (2012) 513–526 .

[12] G. Giachetti , B. Marín , O. Pastor , Using UML as a domain-specific modeling
language: A proposal for automatic generation of UML profiles, in: Proceed-

ings of the 21st International Conference on Advanced Information Systems
Engineering, LNCS, 5565, Springer, 2009, pp. 110–124 .

[13] S. Sen , N. Moha , B. Baudry , J.-M. Jézéquel , Meta-model pruning, in: Proceed-

ings of the 12th International Conference on Model Driven Engineering Lan-
guages and Systems, LNCS, 5795, Springer, 2009, pp. 32–46 .

[14] A. Blouin , B. Combemale , B. Baudry , O. Beaudoux , Kompren: Modeling and
generating model slicers, Softw. Syst. Model. 14 (1) (2015) 321–337 .

[15] X. Burgués , X. Franch , J.M. Ribó, Improving the accuracy of UML metamodel
extensions by introducing induced associations, Softw. Syst. Model. 7 (3)

(2008) 361–379 .
[16] J. Dingel , Z. Diskin , A. Zito , Understanding and improving UML package merge,

Softw. Syst. Model. 7 (4) (2008) 443–467 .

[17] M. Staron , L. Kuzniarz , C. Wohlin , Empirical assessment of using stereotypes
to improve comprehension of UML models: A set of experiments, J. Syst.

Softw. 79 (5) (2006) 727–742 .
[18] K. Siau , Y. Tian , A semiotic analysis of unified modeling language graphical

notations, Requir. Eng. 14 (1) (2009) 15–26 .

http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0002
http://www.omg.org/spec/UML
http://www.omg.org/spec/MOF
http://epub.wu.ac.at/4920/
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0016

72 B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74

[19] J. Pardillo , A systematic review on the definition of UML profiles, in: Pro-
ceedings of the 13th International Conference on Model Driven Engineering

Languages and Systems, LNCS, 6394, Springer, 2010, pp. 407–422 .
[20] M. Strembeck , U. Zdun , An approach for the systematic development of do-

main-specific languages, Softw. Pract. Exper. 39 (15) (2009) 1253–1292 .
[21] B. Hoisl , S. Sobernig , Open-source development tools for domain-specific

modeling: Results from a systematic literature review, in: Proceedings of
the 49th Hawaii International Conference on System Sciences, IEEE, 2016,

pp. 5001–5010 .

[22] J.E. Burge , J.M. Carroll , R. McCall , I. Mistrík , Rationale-Based Software Engi-
neering, Springer, 2008 .

[23] A.H. Dutoit , R. McCall , I. Mistrík , B. Paech , Rationale management in software
engineering: Concepts and techniques, in: Rationale Management in Software

Engineering, Springer, 2006, pp. 1–48 .
[24] R. Capilla , F. Nava , C. Carrillo , Effort estimation in capturing architectural

knowledge, in: Proceedings of the 26th IEEE/ACM International Conference

on Automated Software Engineering, IEEE CS, 2008, pp. 208–217 .
[25] D. Falessi , L.C. Briand , G. Cantone , R. Capilla , P. Kruchten , The value of de-

sign rationale information, ACM Trans. Softw. Eng. Methodol. 22 (3) (2013)
21:1–21:32 .

[26] J. Horner , M. Atwood , Effective design rationale: Understanding the barriers,
Rationale Management in Software Engineering, Springer, 2006, pp. 73–90 .

[27] N. Harrison , P. Avgeriou , U. Zdun , Using patterns to capture architectural de-

cisions, IEEE Softw. 24 (4) (2007) 38–45 .
[28] O. Zimmermann , J. Koehler , F. Leymann , R. Polley , N. Schuster , Managing ar-

chitectural decision models with dependency relations, integrity constraints,
and production rules, J. Syst. Softw. 82 (8) (2009) 1249–1267 .

[29] O. Zimmermann , U. Zdun , T. Gschwind , F. Leymann , Combining pattern lan-
guages and reusable architectural decision models into a comprehensive and

comprehensible design method, in: Proceedings of the 7th Working IEEE/IFIP

Conference on Software Architecture, IEEE, 2008, pp. 157–166 .
[30] I. Lytra , S. Sobernig , U. Zdun , Architectural decision making for service-based

platform integration: A qualitative multi-method study, in: Joint Proceedings
of the 10th Working IEEE/IFIP Conference on Software Architecture & 6th Eu-

ropean Conference on Software Architecture, IEEE, 2012, pp. 111–120 .
[31] I. Lytra , H. Tran , U. Zdun , Supporting consistency between architectural design

decisions and component models through reusable architectural knowledge

transformations, in: Proceedings of the 7th European Conference on Software
Architecture, LNCS, 7957, Springer, 2013, pp. 224–239 .

[32] U. Zdun , M. Strembeck , Reusable architectural decisions for DSL design: Foun-
dational decisions in DSL development, in: Proceedings of the 14th European

Conference on Pattern Language Programming, ACM, 2009, pp. 1–37 .
[33] D. Spinellis , Notable design patterns for domain-specific languages, J. Syst.

Softw. 56 (1) (2001) 91–99 .

[34] C. Schäfern , T. Kuhn , M. Trapp , A pattern-based approach to DSL development,
in: Workshop Proceedings of the Conference on Systems, Programming, Lan-

guages, and Applications: Software for Humanity, ACM, 2011, pp. 39–46 .
[35] D. Budgen , A.J. Burn , O.P. Brereton , B.A. Kitchenham , R. Pretorius , Empirical

evidence about the UML: A systematic literature review, Softw. Pract. Exper.
41 (4) (2011) 363–392 .

[36] M. Mernik , J. Heering , A. Sloane , When and how to develop domain-specific
languages, ACM Comput. Surv. 37 (4) (2005) 316–344 .

[37] J. Luoma , S. Kelly , J. Tolvanen , Defining domain-specific modeling languages:

Collected experiences, in: Proceedings of the 4th OOPSLA Workshop on Do-
main-Specific Modelling, no TR-33 in Computer Science and Information Sys-

tem Reports, University of Jyväskylä, 2004, pp. 1–10 .
[38] B. Hoisl , S. Sobernig , S. Schefer-Wenzl , M. Strembeck , A. Baumgrass , Design

decisions for UML and MOF based domain-specific language models: Some
lessons learned, in: Proceedings of the 2nd Workshop on Process-based Ap-

proach for Model-Driven Engineering, 2012, pp. 303–314 .

[39] E. Filtz , Systematic Literature Review and Evaluation of DSML-Design Deci-
sions, Bachelor Thesis, WU Vienna, 2013 .

[40] B. Hoisl, S. Sobernig, S. Schefer-Wenzl, M. Strembeck, A. Baumgrass, A catalog
of reusable design decisions for developing UML- and MOF-based domain-

specific modeling languages, 2012, Available at: http://epub.wu.ac.at/3578/ .
[41] S. Sobernig , B. Hoisl , M. Strembeck , Extracting reusable design decisions for

UML-based domain-specific languages: A multi-method study, J. Syst. Softw.

113 (2016) 140–172 .
[42] B. Hoisl, S. Sobernig, M. Strembeck, A Catalog of Reusable Design Decisions

for Developing UML/MOF-based Domain-specific Modeling Languages, Tech.
Rep. 2014/03, WU Vienna, 2016 . Available at: http://epub.wu.ac.at/4815/ .

[43] F. Lagarde , E. Huáscar , F. Terrier , C. André, S. Gérard , Leveraging patterns on
domain models to improve UML profile definition, in: Proceedings of the 11th

International Conference on Fundamental Approaches to Software Engineer-

ing, LNCS, 4961, Springer, 2008, pp. 116–130 .
[44] S. Günther , Development of internal domain-specific languages: Design prin-

ciples and design patterns, in: Proceedings of the 18th Conference on Pattern
Languages of Programs, ACM, 2011, pp. 1:1–1:25 .

[45] B. Kitchenham , S.L. Pfleeger , Principles of survey research – part 5: Popula-
tions and samples, SIGSOFT Softw. Eng. Notes 27 (5) (2002) 17–20 .

[46] The American Association for Public Opinion Research , Standard definitions:

Final dispositions of case codes and outcome rates for surveys, 7th, AAPOR,
2011 .

[47] A . Tang , M.A . Babar , I. Gorton , J. Han , A survey of architecture design ratio-
nale, J. Syst. Softw. 79 (12) (2006) 1792–1804 .
[48] M. Shahin , P. Liang , M.R. Khayyambashi , Architectural design decision: Exist-
ing models and tools, in: Joint Proceedings of the 3rd European Conference

on Software Architecture and the 8th Working IEEE/IFIP Conference on Soft-
ware Architecture, IEEE, 2009, pp. 293–296 .

[49] U. Heesch , P. Avgeriou , R. Hilliard , A documentation framework for architec-
ture decisions, J. Syst. Softw. 85 (4) (2012) 795–820 .

[50] P. Kruchten , P. Lago , H. van Vliet , Building up and reasoning about archi-
tectural knowledge, in: Proceedings of the 2nd International Conference on

Quality Software Architecture, LNCS, 4214, Springer, 2006, pp. 43–58 .

[51] B. Hoisl , S. Sobernig , Consistency rules for UML-based domain-specific lan-
guage models: A literature review, in: Proceedings of the 1st Workshop UML

Consistency Rules, CEUR Worksh. Proc, 1508, CEUR-WS.org, 2015, pp. 29–36 .
[52] R. Paige , J. Ostroff, P. Brooke , Principles for modeling language design, Inform.

Softw. Tech. 42 (10) (20 0 0) 665–675 .
[53] S. Robert , S. Gérard , F. Terrier , F. Lagarde , A lightweight approach for do-

main-specific modeling languages design, in: Proceedings of the 35th EU-

ROMICRO Conference on Software Engineering and Advanced Applications,
IEEE, 2009, pp. 155–161 .

[54] B. Selic , A systematic approach to domain-specific language design using
UML, in: Proceedings of the 10th IEEEInternational Symposium on Object and

Component-Oriented Real-Time Distributed Computing, IEEE, 2007, pp. 2–9 .
[55] I. Lytra , P. Gaubatz , U. Zdun , Two controlled experiments on model-based ar-

chitectural decision making, Inform. Softw. Tech. 63 (2015) 58–75 .

[56] U. van Heesch , P. Avgeriou , U. Zdun , N. Harrison , The supportive effect of pat-
terns in architecture decision recovery: A controlled experiment, Sci. Comput.

Program. 77 (5) (2012) 551–576 .
[57] S. Sobernig , U. Zdun , Distilling architectural design decisions and their re-

lationships using frequent item-sets, in: Proceedings of the 13th Working
IEEE/IFIP Conference on Software Architecture, IEEE, 2016, pp. 61–70 .

[58] F. Buschmann , K. Henney , D.C. Schmidt , Pattern-Oriented Software Architec-

ture – On Patterns and Pattern Languages, John Wiley & Sons, 2007 .
[59] M. Strembeck , J. Mendling , Modeling process-related RBAC models with

extended UML activity models, Inform. Softw. Tech. 53 (5) (2011)
456–483 .

[60] K. Czarnecki , U.W. Eisenecker , Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 20 0 0 .

[61] International Organization for Standardization, Information technology –

Syntactic metalanguage – Extended BNF (ISO/IEC 14977), 1996, (avail-
able at: http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153 _ ISO _

IEC _ 14977 _ 1996(E).zip).
[62] B.C. Hungerford , A.R. Hevner , R.W. Collins , Reviewing software diagrams: A

cognitive study, IEEE T. Softw. Eng. 30 (2004) 82–96 .
[63] A. Jakši ́c , R.B. France , P. Collet , S. Ghosh , Evaluating the usability of a vi-

sual feature modeling notation, in: Proceedings of the 7th International

Conference on Software Language Engineering, LNCS, 8706, Springer, 2014,
pp. 122–140 .

[64] A. Classen , Q. Boucher , P. Heymans , A text-based approach to feature mod-
elling: Syntax and semantics of TVL, Sci. Comput. Program. 76 (12) (2011)

1130–1143 .
[65] J. Bruck, K. Hussey, Customizing UML: Which technique is right for you?,

2008, (available at: http://www.eclipse.org/modeling/mdt/uml2/docs/articles/
Customizing _ UML2 _ Which _ Technique _ is _ Right _ For _ You/article.html . Last ac-

cessed: Feb 9, 2017.). IBM.

[66] G. Kahraman , S. Bilgen , A framework for qualitative assessment of do-
main-specific languages, Softw. Syst. Model. 14 (4) (2015) 1505–1526 .

[67] Object Management Group, Object Constraint Language, 2014, (available at:
http://www.omg.org/spec/OCL). Version 2.4, formal/2014-02-03.

[68] D. Kolovos, L. Rose, A. García-Domínguez, R. Paige, The Epsilon book, 2017,
(available at: http://www.eclipse.org/epsilon/doc/book/).

[69] A. Demuth , R.E. Lopez-Herrejon , A. Egyed , Supporting the co-evolution of

metamodels and constraints through incremental constraint management, in:
Proceedings of the 16th International Conference on Model-Driven Engineer-

ing Languages and Systems, LNCS, 8107, Springer, 2013, pp. 287–303 .
[70] B. Hoisl , S. Sobernig , M. Strembeck , Natural-language scenario descriptions for

testing core language models of domain-specific languages, in: Proceedings of
the 2nd International Conference on Model-Driven Engineering and Software

Development, SciTePress, 2014, pp. 356–367 .

[71] D.S. Kolovos , R.F. Paige , F.A. Polack , Aligning OCL with domain-specific lan-
guages to support instance-level model queries, Electron. Commun. EASST 5

(2006) .
[72] D. Steinberg , F. Budinsky , M. Paternostro , E. Merks , EMF: Eclipse Modeling

Framework, 2nd, Addison-Wesley, 2008 .
[73] Object Management Group, XML Metadata Interchange (XMI) specifi-

cation, 2015, (available at: http://www.omg.org/spec/XMI). Version 2.5.1,

formal/2015-06-07.
[74] K. Hassam , S. Sadou , V.L. Gloahec , R. Fleurquin , Assistance system for OCL

constraints adaptation during metamodel evolution, in: Proceedings of the
15th European Conference on Software Maintenance and Reengineering, IEEE,

2011, pp. 151–160 .
[75] D. Chiorean , V. Petra ̧s cu , D. Petra ̧s cu , How my favorite tool supporting OCL

must look like, Electron. Commun. EASST 15 (2008) .

[76] A. Kusel , J. Etzlstorfer , E. Kapsammer , W. Retschitzegger , J. Schoenboeck ,
W. Schwinger , M. Wimmer , Systematic co-evolution of OCL expressions, in:

Proceedings of the 11th Asia-Pacific Conference on Conceptual Modelling, 165,
ACS, 2015, pp. 33–42 .

http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0037
http://epub.wu.ac.at/3578/
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0038
http://epub.wu.ac.at/4815/
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0052
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0052
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0052
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0052
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0057
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0057
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0057
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0058
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0058
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0058
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0058
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0060
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0060
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0060
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0060
http://www.eclipse.org/modeling/mdt/uml2/docs/articles/Customizing_UML2_Which_Technique_is_Right_For_You/article.html
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0061
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0061
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0061
http://www.omg.org/spec/OCL
http://www.eclipse.org/epsilon/doc/book/
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0062
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0062
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0062
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0062
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0063
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0063
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0063
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0063
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0065
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0065
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0065
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0065
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0065
http://www.omg.org/spec/XMI
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0066
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0066
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0066
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0066
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0066
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0067
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0067
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0067
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0067
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0068
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0068
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0068
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0068
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0068
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0068
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0068
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0068

B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74 73

[

[

[

[

[

[

[

[

[

[

[

[

[
[77] Object Management Group, Service oriented architecture Modeling Language
(SoaML) specification, 2012, (available at: http://www.omg.org/spec/SoaML).

Version 1.0.1, formal/2012-05-10.
[78] Object Management Group, OMG Systems Modeling Language (OMG

SysML), 2015, (available at: http://www.omg.org/spec/SysML). Version 1.4,
formal/2015-06-03.

[79] M. Richters , M. Gogolla , OCL: Syntax, semantics, and tools, in: Object Mod-
elling with the OCL, LNCS, 2263, Springer, 2002, pp. 447–450 .

[80] D. Moody , J. van Hillegersberg , Evaluating the visual syntax of UML: An analy-

sis of the cognitive effectiveness of the UML family of diagrams, in: Proceed-
ings of the 1st International Conference on Software Language Engineering,

LNCS, 5452, Springer, 2009, pp. 16–34 .
[81] H. Grönniger , H. Krahn , B. Rumpe , M. Schindler , S. Völkel , Text-based model-

ing, CoRR abs/1409.6623 (2014) .
[82] M. Fowler, Language workbenches: The killer-app for domain spe-

cific languages?, 2005, (available at: http://martinfowler.com/articles/

languageWorkbench.html). Last accessed: Feb 9, 2017.
[83] G. Karsai , H.K.C. Pinkernell , B. Rumpe , M. Schindler , S. Völkel , Design guide-

lines for domain specific languages, in: Proceedings of the 9th OOPSLA Work-
shop on Domain-Specific Modelling, 2009, pp. 7–13 .

[84] International Organization for Standardization, Information technology – Z
formal specification notation – Syntax, type system and semantics, 2002,

(available at: http://www.iso.org/iso/catalogue _ detail?csnumber=21573 . Last

accessed: Feb 9, 2017). ISO/IEC 13568:2002.
[85] Object Management Group, Semantics of a foundational subset for executable

UML models (fUML), 2016, (available at: http://www.omg.org/spec/FUML).
Version 1.2.1, formal/2016-01-05.

[86] International Organization for Standardization, Information technology – Z
formal specification notation – Syntax, type system and semantics – technical

corrigendum 1, 2007, (available at: http://www.iso.org/iso/catalogue _ detail?

csnumber=46112 . Last accessed: Feb 9, 2017). ISO/IEC 13568:2002/Cor 1:2007.
[87] Object Management Group, Action language for foundational UML (ALF): Con-

crete syntax for a UML action language, 2013, (available at: http://www.omg.
org/spec/ALF). Version 1.0.1, formal/2013-09-01.

[88] K. Czarnecki , S. Helsen , Feature-based survey of model transformation ap-
proaches, IBM Syst. J. 45 (3) (2006) 621–645 .

[89] T. Mens , P.v. Gorp , A taxonomy of model transformation, Electron. Notes

Theor. Comput. Sci. 152 (2006) 125–142 .
[90] K. Czarnecki , S. Helsen , Classification of model transformation approaches, in:

Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the
Context of Model Driven Architecture, 2003 .

[91] U. Zdun , A DSL toolkit for deferring architectural decisions in DSL-based soft-
ware design, Inform. Softw. Tech. 52 (9) (2010) 733–748 .

[92] T. Stahl , M. Völter , Model-Driven Software Development: Technology, Engi-

neering, Management, John Wiley & Sons, 2006 .
[93] J. Bézivin , G. Dupé, F. Jouault , G. Pitette , J.E. Rougui , First experiments with

the ATL model transformation language: Transforming XSLT into XQuery, in:
Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the

context of Model Driven Architecture, 2003 .
[94] L.M. Rose , N. Matragkas , D.S. Kolovos , R.F. Paige , A feature model for mod-

el-to-text transformation languages, in: Proceedings of the 4th International
Workshop on Modeling in Software Engineering, IEEE, 2012, pp. 57–63 .

[95] F. Lagarde , H. Espinoza , F. Terrier , S. Gérard , Improving UML profile design

practices by leveraging conceptual domain models, in: Proceedings of the
22nd IEEE/ACM International Conference on Automated Software Engineer-

ing, ACM, 2007, pp. 4 45–4 48 .
[96] D. Jackson , Software Abstractions: Logic, Language, and Analysis, MIT Press,

2012 .
[97] P. Mohagheghi , V. Dehlen , Where is the proof? – A review of experiences

from applying MDE in industry, in: Proceedings of the 4th European Con-

ference on Model Driven Architecture: Foundations and Applications, LNCS,
5095, Springer, 2008, pp. 432–443 .

[98] A . Khalaoui , A . Abran , E. Lefebvre , DSML Success factors and their assessment
criteria, Metrics News 13 (1) (2008) 43–51 .

[99] R. Schaefer , A survey on transformation tools for model based user inter-
face development, in: Human-Computer Interaction. Interaction Design and

Usability, LNCS, 4550, Springer, 2007, pp. 1178–1187 .

100] S. Kelly , R. Pohjonen , Worst practices for domain-specific modeling, IEEE
Softw. 26 (4) (2009) 22–29 .

[101] J. Whittle , J. Hutchinson , M. Rouncefield , H. Burden , R. Heldal , A taxonomy of
tool-related issues affecting the adoption of model-driven engineering, Softw.

Syst. Model. 16 (2) (2017) 313–331 .
[102] A. Yie , R. Casallas , D. Deridder , D. Wagelaar , Realizing model transformation

chain interoperability, Softw. Syst. Model. 11 (1) (2012) 55–75 .

[103] S. Erdweg , T. van der Storm , M. Völter , L. Tratt , R. Bosman , W.R. Cook , A. Ger-
ritsen , A. Hulshout , S. Kelly , A. Loh , G. Konat , P.J. Molina , M. Palatnik , R. Po-

hjonen , E. Schindler , K. Schindler , R. Solmi , V. Vergu , E. Visser , K. van der
Vlist , G. Wachsmuth , J. van der Woning , Evaluating and comparing language

workbenches: Existing results and benchmarks for the future, Comput. Lang.
Syst. Str. 44, Part A (2015) 24–47 .

104] S. Cook , Looking back at UML, Softw. Syst. Model. 11 (4) (2012) 471–480 .

[105] B. Henderson-Sellers , C. Gonzalez-Perez , Uses and abuses of the stereotype
mechanism in UML 1.x and 2.0, in: Proceedings of the 9th International Con-

ference on Model Driven Engineering Languages and Systems, LNCS, 4199,
Springer, 2006, pp. 16–26 .
106] B. Kitchenham , S.L. Pfleeger , Principles of survey research – part 4: Question-
naire evaluation, SIGSOFT Softw. Eng. Notes 27 (3) (2002) 20–23 .

[107] J. Singer , S.E. Sim , T.C. Lethbridge , Software engineering data collection for
field studies, in: Guide to Advanced Empirical Software Engineering, Springer,

2008, pp. 9–34 .
[108] A. MacLean , R.M. Young , V.M.E. Bellotti , T.P. Moran , Questions, options, and

criteria: Elements of design space analysis, in: Design Rationale: Concepts,
Techniques, and Use, Lawrence Erlbaum Associates, 1996, pp. 53–106 .

[109] W.C. Regli , X. Hu , M. Atwood , W. Sun , A survey of design rationale systems:

Approaches, representation, capture and retrieval, Eng. Comput. 16 (3) (20 0 0)
209–235 .

[110] M. Völter , DSL Engineering – Designing, Implementing, and Using Do-
main-Specific Languages, Amazon Distribution, 2013 .

[111] D. Roberts , R. Johnson , Patterns for evolving frameworks, in: Pattern Lan-
guages of Program Design 3, Addison-Wesley, 1997, pp. 471–486 .

[112] D. Wile , Lessons learned from real DSL experiments, Sci. Comput. Program.

51 (3) (2004) 265–290 .
[113] S. Günther , M. Haupt , M. Splieth , Agile engineering of internal domain-spe-

cific languages with dynamic programming languages, in: Proceedings of the
5th International Conference on Software Engineering Advances, IEEE, 2010,

pp. 162–168 .
[114] N. Allen , C. Shaffer , L. Watson , Building modeling tools that support verifi-

cation, validation, and testing for the domain expert, in: Proceedings of the

37th Conference on Winter Simulation, IEEE, 2005, pp. 419–426 .
[115] T. Cleenewerck , Component-based DSL development, in: Proceedings of the

2nd International Conference on Generative Programming and Component
Engineering, Springer, 2003, pp. 245–264 .

[116] P. Landin , The next 700 programming languages, Commun. ACM 9 (3) (1966)
157–166 .

[117] I. Weisemöller , A. Schürr , A comparison of standard compliant ways to de-

fine domain specific languages, in: Proceedings of the Workshop 10th Inter-
national Conference on Model Driven Engineering Languages and Systems,

LNCS, 5002, Springer, 2008, pp. 47–58 .
[118] C. Atkinson , T. Kühne , Profiles in a strict metamodeling framework, Sci. Com-

put. Program. 44 (1) (2002) 5–22 .
[119] J.-P. Tolvanen , S. Kelly , MetaEdit+: Defining and using integrated domain-spe-

cific modeling languages, in: Proceedings of the 24th ACM SIGPLAN Confer-

ence on Companion on Object Oriented Programming System Language Ap-
plications, ACM, 2009, pp. 819–820 .

120] A. Tang , P. Avgeriou , A. Jansen , R. Capilla , M.A. Babar , A comparative study
of architecture knowledge management tools, J. Syst. Softw. 83 (3) (2010)

352–370 .
[121] H. Oinas-Kukkonen , Method rationale in method engineering and use, in:

S. Brinkkemper, K. Lyytinen, R.J. Welke (Eds.), Method Engineering: Princi-

ples of method construction and tool support, Springer, Boston, MA, 1996,
pp. 87–93 .

122] J.L.C. Izquierdo , J. Cabot , J.J. López-Fernández , J.S. Cuadrado , E. Guerra , J. de
Lara , Engaging end-users in the collaborative development of domain-specific

modelling languages, in: Proceedings of the 10th International Conference on
Cooperative Design, Visualization and Engineering, LNCS, 8091, Springer, 2013,

pp. 101–110 .
123] S. Schefer-Wenzl , M. Strembeck , Modeling process-related duties with ex-

tended UML activity and interaction diagrams, Electron. Commun. EASST 37

(2011) .
124] S. Schefer-Wenzl , M. Strembeck , An approach for consistent delegation in pro-

cess-aware information systems, in: Proceedings of the 15th International
Conference on Business Information Systems, Vol. 117 of LNBIP, Springer,

2012, pp. 60–71 .
125] M. Alam , R. Breu , M. Hafner , Model-driven security engineering for trust

management in SECTET, J. Softw. 2 (1) (2007) 47–59 .

126] B. Hoisl , M. Strembeck , A UML extension for the model-driven specification of
audit rules, in: Proceedings of the 2nd International Conference on Advanced

Information Systems Engineering, LNBIP, 112, Springer, 2012, pp. 16–30 .
[127] J.E. Pérez-Martínez , A. Sierra-Alonso , From analysis model to software archi-

tecture: A PIM2PIM mapping, in: Proceedings of the 2nd European Confer-
ence on Model Driven Architecture - Foundations and Applications, LNCS,

4066, Springer, 2006, pp. 25–39 .

128] F. Aoussat , M. Oussalah , M. Nacer , SPEM extension with software process ar-
chitectural concepts, in: Proceedings of the 35th Annual IEEE Computer Soft-

ware and Applications Conference, IEEE, 2011, pp. 215–223 .
129] U. Zdun , P. Avgeriou , Modeling architectural patterns using architectural prim-

itives, in: Proceedings of the 20th Annual ACM SIGPLAN Conference Objec-
t-oriented Programming, Systems, Languages, and Applications, ACM, 2005,

pp. 133–146 .

130] I. Ivkovic , K. Kontogiannis , A framework for software architecture refactor-
ing using model transformations and semantic annotations, in: Proceedings

of the 10th European Conference Software Maintenance and Reengineering,
IEEE, 2006, pp. 135–144 .

[131] R. Bendraou , M.-P. Gervais , X. Blanc , UML4SPM: A UML2.0-based metamodel
for software process modelling, in: Proceedings of the 8th International Con-

ference on Model Driven Engineering Language Systems, LNCS, 3713, Springer,

2005, pp. 17–38 .
132] A. Cicchetti , D.D. Ruscio , A. Pierantonio , A metamodel independent approach

to difference representation, J. Object Technol. 6 (9) (2007) 165–185 .

http://www.omg.org/spec/SoaML
http://www.omg.org/spec/SysML
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0069
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0069
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0069
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0070
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0070
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0070
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0071
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0071
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0071
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0071
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0071
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0071
http://martinfowler.com/articles/languageWorkbench.html
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0072
http://www.iso.org/iso/catalogue_detail?csnumber=21573
http://www.omg.org/spec/FUML
http://www.iso.org/iso/catalogue_detail?csnumber=46112
http://www.omg.org/spec/ALF
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0073
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0073
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0073
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0074
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0074
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0074
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0076
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0076
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0077
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0077
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0077
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0079
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0079
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0079
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0079
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0079
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0080
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0080
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0080
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0080
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0080
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0081
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0081
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0082
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0082
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0082
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0083
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0083
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0083
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0083
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0084
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0084
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0085
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0085
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0085
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0086
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0086
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0086
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0086
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0086
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0086
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0087
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0087
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0087
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0087
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0087
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0089
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0089
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0090
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0090
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0090
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0091
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0091
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0091
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0092
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0092
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0092
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0092
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0093
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0093
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0093
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0093
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0093
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0094
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0094
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0094
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0094
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0094
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0095
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0095
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0096
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0096
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0096
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0097
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0097
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0098
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0098
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0098
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0098
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0099
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0099
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0099
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0099
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0100
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0100
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0101
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0101
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0102
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0102
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0102
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0103
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0103
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0103
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0104
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0104
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0104
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0105
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0105
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0105
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0105
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0105
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0105
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0106
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0106
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0107
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0107
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0107
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0107
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0107
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0107
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0107
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0108
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0108
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0108
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0109
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0109
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0109
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0110
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0110
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0110
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0110
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0111
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0111
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0111
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0112
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0112
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0112
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0113
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0113
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0113
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0113
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0114
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0114
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0114
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0115
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0115
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0115
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0116
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0116
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0116
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0116
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0117
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0117
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0117
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0117

74 B. Hoisl et al. / Information and Software Technology 92 (2017) 49–74

[133] K. Berkenkötter , U. Hannemann , Modeling the railway control domain rigor-
ously with a UML 2.0 profile, in: Proceedings of the 25th International Con-

ference on Computer Safety, Reliability, and Security, LNCS, 4166, Springer,
2006, pp. 398–411 .

[134] E. Cariou , C. Ballagny , A. Feugas , F. Barbier , Contracts for model execution ver-
ification, in: Proceedings of the 7th European Conference on Modelling Foun-

dations and Applications, LNCS, 6698, Springer, 2011, pp. 3–18 .
[135] A. Queralt , E. Teniente , A platform independent model for the electronic mar-

ketplace domain, Softw. Syst. Model. 7 (2) (2008) 219–235 .

[136] J. Jürjens , Secure Systems Development with UML, Springer, 2005 .
[137] I.-C. Hsu , Extending UML to model Web 2.0-based context-aware applications,

Softw. Pract. Exper. 42 (10) (2012) 1211–1227 .
[138] G.M. Kapitsaki , D.A. Kateros , G.N. Prezerakos , I.S. Venieris , Model-driven de-

velopment of composite context-aware web applications, Inform. Softw. Tech.
51 (8) (2009) 1244–1260 .

[139] S. Ali , L.C. Briand , H. Hemmati , Modeling robustness behavior using as-

pect-oriented modeling to support robustness testing of industrial systems,
Softw. Syst. Model. 11 (4) (2012) 633–670 .

[140] G.N. Rodrigues , D.S. Rosenblum , S. Uchitel , Reliability prediction in mod-
el-driven development, in: Proceedings of the 8th International Conference

on Model Driven Engineering Languages and Systems, LNCS, 3713, Springer,
2005, pp. 339–354 .

[141] E.L. Alves , P.D. Machado , F. Ramalho , Automatic generation of built-in contract

test drivers, Softw. Syst. Model. 13 (3) (2012) 1141–1165 .
[142] K. Anastasakis , B. Bordbar , G. Georg , I. Ray , On challenges of model transfor-

mation from UML to Alloy, Softw. Syst. Model. 9 (1) (2010) 69–86 .
[143] B. Hoisl , S. Sobernig , Integrity and confidentiality annotations for service
interfaces in SoaML models, in: Proceedings of the International Work-

shop on Security Aspects of Process-aware Information Systems, IEEE, 2011,
pp. 673–679 .

[144] B. Hoisl , S. Sobernig , M. Strembeck , Modeling and enforcing secure object
flows in process-driven SOAs: An integrated model-driven approach, Softw.

Syst. Model. 13 (2) (2014) 513–548 .
[145] M. Strembeck , U. Zdun , Modeling interdependent concern behavior using ex-

tended activity models, J. Object Technol. 7 (6) (2008) 143–166 .

[146] U. Zdun , M. Strembeck , Modeling composition in dynamic programming en-
vironments with model transformations, in: Proceedings of the 5th Inter-

national Conference on Software Composition, LNCS, 4089, Springer, 2006,
pp. 178–193 .

[147] C. Song , E. Cho , C. Kim , An integrated GUI-business component modeling
method for the MDD- and MVC-based hierarchical designs, Int. J. Softw. Eng.

Know. 21 (3) (2011) 447–490 .

[148] A.M.R.d. Cruz , J.a.P. Faria , A metamodel-based approach for automatic user
interface generation, in: Proceedings of the 13th International Conference

on Model Driven Engineering Languages and Systems: Part I, LNCS, 6394,
Springer, 2010, pp. 256–270 .

[149] S.S. Somé, A meta-model for textual use case description, J. Object Technol. 8
(7) (2009) 87–106 .

[150] B. Hoisl , M. Strembeck , Modeling support for confidentiality and integrity

of object flows in activity models, in: Proceedings of the 14th Interna-
tional Conference on Business Information Systems, LNBIP, 97, Springer, 2011,

pp. 278–289 .

http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0118
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0118
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0118
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0119
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0119
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0119
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0119
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0119
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0120
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0120
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0120
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0121
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0121
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0122
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0122
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0123
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0123
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0123
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0123
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0123
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0124
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0124
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0124
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0124
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0125
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0125
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0125
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0125
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0126
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0126
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0126
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0126
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0127
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0127
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0127
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0127
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0127
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0128
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0128
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0128
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0129
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0129
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0129
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0129
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0130
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0130
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0130
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0131
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0131
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0131
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0132
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0132
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0132
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0132
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0133
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0133
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0133
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0134
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0134
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0135
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0135
http://refhub.elsevier.com/S0950-5849(17)30453-6/sbref0135

	Reusable and generic design decisions for developing UML-based domain-specific languages
	1 Introduction
	2 Background and preliminaries
	2.1 Documenting design rationale on DSMLs
	2.2 Structure of reusable design decisions
	2.3 Material corpus for recovering DSML design rationale
	2.4 Empirical evidence on DR reuse

	3 Motivating example: DSML design-process documentation
	4 A catalog of design decisions for UML-based DSMLs
	4.1 Language-model definition (D1)
	4.1.1 Options
	4.1.2 Drivers
	4.1.3 Associations

	4.2 Language-model formalization (D2)
	4.2.1 Options
	4.2.2 Drivers
	4.2.3 Associations

	4.3 Language-model constraints (D3)
	4.3.1 Options
	4.3.2 Drivers
	4.3.3 Associations

	4.4 Concrete-syntax definition (D4)
	4.4.1 Options
	4.4.2 Drivers
	4.4.3 Associations

	4.5 Behavior Specification (D5)
	4.5.1 Options
	4.5.2 Drivers
	4.5.3 Associations

	4.6 Platform integration (D6)
	4.6.1 Options
	4.6.2 Drivers
	4.6.3 Associations

	4.7 Development-tool support (D7)
	4.7.1 Options
	4.7.2 Drivers
	4.7.3 Associations

	5 Limitations
	6 Discussion
	7 Related work
	8 Conclusion
	 Acknowledgment
	Appendix Excerpt from decision catalog
	 References

